WO2013082998A1 - 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 - Google Patents
同步抑制磁悬浮分子泵转子次临界振动的方法和系统 Download PDFInfo
- Publication number
- WO2013082998A1 WO2013082998A1 PCT/CN2012/085064 CN2012085064W WO2013082998A1 WO 2013082998 A1 WO2013082998 A1 WO 2013082998A1 CN 2012085064 W CN2012085064 W CN 2012085064W WO 2013082998 A1 WO2013082998 A1 WO 2013082998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- molecular pump
- vibration
- subcritical
- magnetic suspension
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/048—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/058—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/668—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
Definitions
- the invention relates to a magnetic suspension molecular pump, in particular to a method and a system for simultaneously suppressing the secondary critical vibration of a magnetic suspension molecular pump rotor.
- the magnetic suspension molecular pump uses a magnetic bearing to suspend the molecular pump rotor in the air, thereby realizing the characteristics of the magnetic suspension molecular pump rotor without contact, friction and lubrication at high speed. Due to the above advantages of the magnetic suspension molecular pump, it is widely used in the field of obtaining high vacuum and high cleanliness vacuum environments.
- the structure of the magnetic suspension molecular pump is generally as shown in Fig. 1. It consists of the following parts: magnetic suspension molecular pump body, magnetic suspension molecular pump rotor, magnetic suspension molecular pump motor, first radial magnetic bearing, second radial magnetic bearing, axial magnetic Bearing, first radial protection bearing, second radial protection bearing, axial protection bearing, second radial position sensor, second radial position sensor, axial position sensor and magnetic suspension molecular pump controller.
- the rotor When the magnetic suspension molecular pump is in normal operation, the rotor is stably suspended at a predetermined suspension center. When the rotor is unstable and dropped by the external disturbance onto the protective bearing, the rotor enters the subcritical vibration state.
- the subcritical vibration refers to the vibration whose vibration frequency is lower than the synchronous frequency of the rotor speed.
- the subcritical vibration of the rotor is mainly represented by a circular vortex, and the motion trajectory is shown in Fig. 3. Among them, the circular vortex refers to a circular forward or backward precessional motion of the rotor axis about the support center line.
- the magnetic bearing enters a non-linear state, and the general magnetic bearing controller cannot control the magnetic bearing to provide a suitable electromagnetic force to effectively control the rotor.
- the existing methods for suppressing the subcritical vibration of the magnetic suspension molecular pump rotor are generally suppressing the subcritical vibration, and the common magnetic bearing controller cannot achieve accurate synchronization of the rotor subcritical vibration signal, and cannot solve the problem under the rotor drop condition.
- the critical vibration problem makes it difficult to effectively suppress the subcritical vibration of the rotor.
- the existing magnetic suspension molecular pump controller to be solved by the present invention cannot provide a method and system for simultaneously suppressing the subcritical vibration of the magnetic suspension molecular pump rotor for the rotor subcritical problem.
- a method for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor comprises the following steps: 1 after the magnetic suspension molecular pump rotor is unstable and falling, the magnetic suspension molecular pump controller controls the digital signal processing chip to obtain the molecular pump rotor displacement signal, and The displacement signal is subjected to fast Fourier transform, and the frequency of the subcritical vibration of the molecular pump rotor is obtained by analyzing the rotor vibration frequency. And amplitude ;
- the digital signal processing chip is started to perform a single frequency fast Fourier transform on the rotor displacement in the next critical vibration period of the rotor, and the rotor subcritical vibration amplitude can be obtained. Value 4 and phase.
- the frequency of the single frequency fast Fourier transform is set to the current rotor subcritical frequency.
- the magnetic suspension molecular pump controller will measure the current rotor subcritical vibration amplitude 4 and the phase and the amplitude of the last subcritical vibration period. Comparing with the phase, correcting the magnitude and phase of the compensation force of the next subcritical vibration period according to the comparison result; repeating this step until a predetermined period elapses;
- the digital signal processing chip performs a fast Fourier transform on the rotor displacement signal every predetermined period ⁇ to obtain a new rotor subcritical vibration frequency f], and sets the compensation force frequency of the next subcritical vibration period.
- the magnetic suspension molecular pump controller determines whether the amplitude of the sub-critical vibration of the molecular pump rotor is reduced by 'j to a preset threshold value in each subcritical vibration period; when the detected subcritical vibration amplitude of the rotor is less than a preset threshold When the molecular pump rotor has completely detached from the protective bearing, the suppression of the subcritical vibration of the molecular pump rotor is completed; otherwise, the above steps 3-4 are repeatedly performed.
- the rotor displacement vector has a positive angle of zero with the coordinate axis X.
- the frequency of the compensating force is equal to the frequency of the subcritical vibration; the magnitude of the compensating force is proportional to the magnitude of the subcritical vibration, and the phase is opposite.
- the predetermined period ⁇ may be selected from five to fifteen rotor subcritical vibration periods.
- a system for simultaneously suppressing subcritical vibration of a magnetic suspension molecular pump rotor including: a position sensor;
- a magnetic suspension molecular pump controller which controls the displacement sensor to acquire a displacement signal of the displacement signal of the magnetic suspension molecular pump rotor, and is responsible for controlling the operation of each component;
- a digital signal processing chip receiving and analyzing the displacement signal of the magnetic suspension molecular pump rotor obtained by the magnetic suspension molecular pump controller, obtaining frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor, and obtaining the obtained
- the frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor are transmitted to the magnetic suspension molecular pump controller;
- the magnetic bearing receives the magnetic suspension molecular pump controller to control the subcritical vibration of the magnetic suspension molecular pump rotor according to a predetermined frequency, amplitude and phase output compensation force.
- the predetermined period ⁇ is ten rotor subcritical vibration periods.
- the amplitude and frequency of the rotor subcritical vibration are obtained by synchronously sampling the rotor subcritical vibration signal generated by the suspension of the magnetic suspension molecular pump rotor, and the compensation force is output to suppress the rotor subcritical vibration.
- the method achieves accurate synchronization of the subcritical vibration signal, and can quickly achieve the suppression of the subcritical vibration of the rotor.
- Figure 1 is a diagram showing the internal structure of a magnetic suspension molecular pump
- Figure 3 is a schematic diagram of the subcritical vibration of a magnetic suspension molecular pump rotor
- the reference numerals in the figure are indicated as: 1-impeller, 2-magnetic suspension molecular pump controller, 3-pump body, 4-first radial protection bearing, 5-first radial sensor, 6-first radial magnetic bearing , 7-rotor shaft, 8-motor, 9-second radial magnetic bearing, 10-second radial sensor, 11-second radial protection bearing, 12-axial protection bearing, 13-first axial magnetic Bearing, 14-thrust disk, 15-second axial magnetic bearing, 16-axis sensor, 17-terminal, 18-displacement detection device, 19-speed detection device.
- a method for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor includes the following steps:
- Step S01 the magnetic suspension molecular pump rotor is unstable and falls, the magnetic suspension molecular pump controller controls the digital signal processing chip to obtain the molecular pump rotor displacement signal, and performs fast Fourier transform on the displacement signal (English full name is Fas t Fourier Transforma The t ion, the cylinder is called FFT), and the frequency of the subcritical vibration of the molecular pump rotor is obtained by analyzing the rotor vibration frequency.
- FFT fast Fourier transform
- Step S02 establishing a Cartesian coordinate system with the center of the inner circle of the radial magnetic bearing stator as the origin, setting the position on the subcritical vibration trajectory of the rotor as the starting point of the rotor subcritical vibration synchronization, when the rotor displacement vector
- the rotor is considered to move to point A, and the phase of the subcritical vibration of the molecular pump rotor at point A is obtained; starting from the movement of the molecular pump rotor to the position A, according to the The frequency of the subcritical vibration of the molecular pump rotor.
- Step S03 determining whether the molecular pump rotor moves to the position A again, and then proceeds to the next step;
- Step S04 the magnetic levitation molecular pump controller starts a digital signal processing chip, and the displacement signal of the rotor of the molecular pump rotor measured from the position A in the next critical vibration period measured by the displacement sensor, and the signal is A single frequency fast Fourier transform is performed to obtain the subcritical vibration amplitude 4 and phase of the molecular pump rotor.
- the frequency of the FFT transform is set to the current rotor subcritical frequency; the magnetic suspension molecular pump controller compares the current rotor subcritical vibration amplitude 4 and the phase with the amplitude 4_ ⁇ and the phase _i in the last subcritical vibration period, according to The comparison result corrects the magnitude and phase of the compensation force of the next subcritical vibration period; this step is repeated until a predetermined period T is passed;
- Step S 05 determining whether the molecular pump rotor has passed the predetermined period T, and then transferring to the next step; wherein the predetermined vibration period T is determined by the hardware speed and the rotor subcritical vibration frequency, preferably ten rotor subcritical vibrations It is only necessary to update the data once in a cycle, and a satisfactory result can be obtained by updating the vibration frequency in five to fifteen rotor subcritical vibration periods;
- Step S 06 the digital signal processing chip performs an FFT transformation on the rotor displacement signal every predetermined period T, obtains the frequency fj of the sub-critical vibration of the molecular pump rotor at this time, and completes the next sub-critical according to the obtained frequency.
- Step S07 the magnetic suspension molecular pump controller judges in each rotor subcritical vibration period Whether the amplitude of the subcritical vibration of the molecular pump rotor is reduced to a preset threshold; when the amplitude of the subcritical vibration of the molecular pump rotor is reduced to a preset threshold, and the molecular pump rotor has completely detached from the protective bearing, Then completing the suppression of the sub-critical vibration of the molecular pump rotor, the molecular pump rotor returns to normal rotation, then proceeds to step S9, the control process ends; otherwise, proceeds to step S04 above;
- Step S 08 ends.
- the subcritical vibration suppression method of the magnetic suspension molecular pump rotor proposed in this embodiment obtains the amplitude and frequency of the rotor subcritical vibration by synchronously sampling the rotor subcritical vibration signal generated by the suspension of the magnetic suspension molecular pump rotor, and outputs the compensation force accordingly.
- the rotor secondary critical vibration is suppressed.
- the method achieves accurate synchronization of the subcritical vibration signal, and the suppression of the subcritical vibration of the rotor can be quickly realized.
- the digital signal processing chip can perform an FFT transformation on the displacement signal of the molecular pump rotor every predetermined vibration period T, thereby obtaining a new molecule.
- the sub-critical vibration frequency of the pump rotor is used, and the frequency of the compensation force in the next sub-critical vibration period is corrected by using the newly obtained frequency, that is, the compensation force frequency in the next sub-critical vibration period is set to be the newly obtained rotor times.
- the critical vibration frequencies are equal.
- the vibration amplitude of the molecular pump rotor changes during each subcritical vibration period, so it is necessary to repair the compensation force amplitude in the next subcritical vibration period.
- the specific correction step is as follows: the magnetic levitation molecular pump controller starts a single frequency FFT transformation when the rotor is turned to the position A, and then the amplitude and phase of the subcritical vibration of the molecular pump rotor are obtained, wherein the frequency of the FFT transformation is set. For the current rotor subcritical vibration frequency.
- the magnetic suspension molecular pump controller compares the amplitude and phase of the sub-critical vibration of the molecular pump rotor with the amplitude and phase of the sub-critical vibration period of the last rotor, and compares the sub-critical vibration period of the next rotor according to the comparison result.
- the compensation force amplitude and phase are corrected.
- the present invention provides a system for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor, comprising: a position sensor; a magnetic suspension molecular pump controller, controlling the displacement sensor to obtain a displacement signal of a displacement signal of the magnetic suspension molecular pump rotor, At the same time, it is responsible for controlling the operation of each component; the digital signal processing chip receives and analyzes the displacement signal of the magnetic suspension molecular pump rotor obtained by the magnetic suspension molecular pump controller, and obtains the frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor.
- the magnetic bearing receiving the magnetic levitation molecular pump controller to control according to a predetermined frequency, amplitude and The phase output 4 compensation force suppresses the subcritical vibration of the magnetic suspension molecular pump rotor.
- the position A may be selected as an angle between the molecular pump rotor displacement vector and the coordinate axis X in the positive direction, such as thirty degrees or fifty degrees, and the present invention can also be implemented.
- the purpose of the present invention falls within the scope of protection of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112012005157.2T DE112012005157B4 (de) | 2011-12-08 | 2012-11-22 | Verfahren und System zur synchronen Unterdrückung der unterkritischen Schwingungdes Magnetschwebe-Molekularpumpe-Rotors |
GB1411233.8A GB2511984B (en) | 2011-12-08 | 2012-11-22 | Method and system for synchronously inhibiting subcritical vibrations of magnetic levitation molecular pump rotor |
US14/363,725 US9644634B2 (en) | 2011-12-08 | 2012-11-22 | Method and system for synchronously inhibiting subcritical vibrations of magnetic levitation molecular pump rotor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110407350.6A CN102425563B (zh) | 2011-12-08 | 2011-12-08 | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 |
CN201110407350.6 | 2011-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013082998A1 true WO2013082998A1 (zh) | 2013-06-13 |
Family
ID=45959583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085064 WO2013082998A1 (zh) | 2011-12-08 | 2012-11-22 | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9644634B2 (zh) |
CN (1) | CN102425563B (zh) |
DE (1) | DE112012005157B4 (zh) |
GB (1) | GB2511984B (zh) |
WO (1) | WO2013082998A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113530873A (zh) * | 2021-09-16 | 2021-10-22 | 天津飞旋科技股份有限公司 | 一种磁悬浮分子泵的控制方法、装置及磁悬浮分子泵 |
CN113659911A (zh) * | 2021-08-10 | 2021-11-16 | 江苏明磁动力科技有限公司 | 一种磁悬浮轴承系统中转子振动抑制系统及方法 |
CN114371622A (zh) * | 2022-01-07 | 2022-04-19 | 北京航空航天大学 | 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法 |
CN115182928A (zh) * | 2022-03-28 | 2022-10-14 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
CN115857362A (zh) * | 2023-03-01 | 2023-03-28 | 坎德拉(深圳)新能源科技有限公司 | 储能飞轮转子的同频振动抑制方法、磁轴承控制器 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102425563B (zh) * | 2011-12-08 | 2014-03-12 | 北京中科科仪股份有限公司 | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 |
CN103196672B (zh) * | 2013-03-01 | 2015-07-01 | 北京中科科仪股份有限公司 | 一种磁悬浮分子泵径向保护轴承检测方法 |
CN106441894B (zh) * | 2016-09-28 | 2018-10-19 | 清华大学 | 基于希尔伯特变换的磁悬浮轴承轴系跌落轨迹响应识别方法及装置 |
CN106503387B (zh) * | 2016-11-08 | 2019-07-12 | 清华大学 | 一种磁悬浮轴承轴系跌落轨迹响应识别方法 |
CN107220456B (zh) * | 2017-06-20 | 2020-07-28 | 清华大学 | 磁悬浮轴系跌落轨迹识别与重新悬浮的控制方法及装置 |
CN109854438B (zh) * | 2019-03-07 | 2020-04-14 | 贵州电网有限责任公司 | 一种发电机组临界振动区的持续运行时间控制方法 |
CN110531626B (zh) * | 2019-09-20 | 2022-04-05 | 河海大学 | 基于滚动时域估计的磁悬浮转子振动补偿控制方法及系统 |
CN113124053B (zh) * | 2021-04-26 | 2022-06-10 | 清华大学 | 同步阻尼方法及装置 |
CN113638903B (zh) * | 2021-10-13 | 2022-02-11 | 亿昇(天津)科技有限公司 | 一种磁悬浮离心氧压机控制系统及其控制方法 |
CN114909407B (zh) * | 2022-07-13 | 2022-09-20 | 江苏明磁动力科技有限公司 | 基于位移控制器幅相频特性的磁悬浮电机失稳预诊断方法 |
CN115628224B (zh) * | 2022-10-14 | 2024-05-21 | 北方工业大学 | 一种磁悬浮分子泵叶片峰在线监测系统和方法 |
CN117990196A (zh) * | 2023-12-28 | 2024-05-07 | 北京中科科仪股份有限公司 | 一种分子泵微振动测量方法、系统、装置、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1650441A2 (de) * | 2004-10-19 | 2006-04-26 | Pfeiffer Vacuum GmbH | Vibrationsarme Vakuumpumpe |
CN1920511A (zh) * | 2006-08-01 | 2007-02-28 | 东北电力大学 | 离心泵振动故障融合诊断方法及振动信号采集装置 |
CN101187589A (zh) * | 2007-12-27 | 2008-05-28 | 浙江飞旋科技有限公司 | 一种调整磁悬浮真空分子泵转子动平衡的方法 |
CN101495760A (zh) * | 2006-07-26 | 2009-07-29 | 厄利孔莱博尔德真空技术有限责任公司 | 用于确定涡轮分子泵的状态信息的方法和涡轮分子泵 |
CN102425563A (zh) * | 2011-12-08 | 2012-04-25 | 北京中科科仪技术发展有限责任公司 | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3457353B2 (ja) * | 1993-05-25 | 2003-10-14 | ビーオーシーエドワーズテクノロジーズ株式会社 | 磁気軸受装置 |
JP3211615B2 (ja) * | 1995-04-06 | 2001-09-25 | 日産自動車株式会社 | 機械作動音の異常判定方法 |
IT1289811B1 (it) * | 1996-12-27 | 1998-10-16 | Varian Spa | Metodo ed apparato di diagnosi per pompa da vuoto. |
US20050186099A1 (en) * | 2004-02-19 | 2005-08-25 | Graeme Huntley | Active vibration reduction |
EP1621785A1 (en) * | 2004-07-30 | 2006-02-01 | Mecos Traxler AG | Method and apparatus for controlling a magnetic bearing device |
EP1650411A1 (de) | 2004-10-19 | 2006-04-26 | Ford Global Technologies, LLC, A subsidary of Ford Motor Company | Nockenwellenversteller und Verfahren zur Veränderung der Nockenwellenphase mittels einem künstlichen Muskel |
KR101629979B1 (ko) * | 2008-07-14 | 2016-06-13 | 에드워즈 가부시키가이샤 | 진공 펌프 |
-
2011
- 2011-12-08 CN CN201110407350.6A patent/CN102425563B/zh active Active
-
2012
- 2012-11-22 WO PCT/CN2012/085064 patent/WO2013082998A1/zh active Application Filing
- 2012-11-22 DE DE112012005157.2T patent/DE112012005157B4/de active Active
- 2012-11-22 GB GB1411233.8A patent/GB2511984B/en active Active
- 2012-11-22 US US14/363,725 patent/US9644634B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1650441A2 (de) * | 2004-10-19 | 2006-04-26 | Pfeiffer Vacuum GmbH | Vibrationsarme Vakuumpumpe |
CN101495760A (zh) * | 2006-07-26 | 2009-07-29 | 厄利孔莱博尔德真空技术有限责任公司 | 用于确定涡轮分子泵的状态信息的方法和涡轮分子泵 |
CN1920511A (zh) * | 2006-08-01 | 2007-02-28 | 东北电力大学 | 离心泵振动故障融合诊断方法及振动信号采集装置 |
CN101187589A (zh) * | 2007-12-27 | 2008-05-28 | 浙江飞旋科技有限公司 | 一种调整磁悬浮真空分子泵转子动平衡的方法 |
CN102425563A (zh) * | 2011-12-08 | 2012-04-25 | 北京中科科仪技术发展有限责任公司 | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113659911A (zh) * | 2021-08-10 | 2021-11-16 | 江苏明磁动力科技有限公司 | 一种磁悬浮轴承系统中转子振动抑制系统及方法 |
CN113530873A (zh) * | 2021-09-16 | 2021-10-22 | 天津飞旋科技股份有限公司 | 一种磁悬浮分子泵的控制方法、装置及磁悬浮分子泵 |
CN114371622A (zh) * | 2022-01-07 | 2022-04-19 | 北京航空航天大学 | 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法 |
CN114371622B (zh) * | 2022-01-07 | 2024-04-12 | 北京航空航天大学 | 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法 |
CN115182928A (zh) * | 2022-03-28 | 2022-10-14 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
CN115182928B (zh) * | 2022-03-28 | 2023-08-11 | 北方工业大学 | 一种复合轴视轴稳定设备的动力减摩方法 |
CN115857362A (zh) * | 2023-03-01 | 2023-03-28 | 坎德拉(深圳)新能源科技有限公司 | 储能飞轮转子的同频振动抑制方法、磁轴承控制器 |
Also Published As
Publication number | Publication date |
---|---|
GB2511984A (en) | 2014-09-17 |
DE112012005157T5 (de) | 2014-10-30 |
GB201411233D0 (en) | 2014-08-06 |
US9644634B2 (en) | 2017-05-09 |
GB2511984B (en) | 2019-04-10 |
US20140356126A1 (en) | 2014-12-04 |
CN102425563B (zh) | 2014-03-12 |
CN102425563A (zh) | 2012-04-25 |
DE112012005157B4 (de) | 2016-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013082998A1 (zh) | 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 | |
US20200211539A1 (en) | Home appliance and method for voice recognition thereof | |
JP2013514049A (ja) | Pmsmの制御装置 | |
CN111212980B (zh) | 用于压缩机应用的闭环扭矩补偿 | |
CN110165960B (zh) | 偏差角度估计方法、系统、计算机装置及介质 | |
US9112440B2 (en) | Sensorless dynamic driving method and system for single phase alternating current permanent magnet motor | |
CN110939654B (zh) | 一种磁悬浮轴承控制方法、装置、存储介质及磁悬浮系统 | |
EP2412983A2 (en) | Method and device for controlling a hot restart of a centrifugal compressor | |
CN102236074A (zh) | 用于辨识感应电机的参数的装置和方法 | |
US9388854B2 (en) | Magnetic bearing apparatus and method for reducing vibration caused by magnetic bearing apparatus | |
KR101508815B1 (ko) | 영구자석 동기 모터의 회전자 위치 검출 방법 | |
CN111682808A (zh) | 电机启动控制方法、装置、电子设备及存储介质 | |
CN109763979A (zh) | 转子式压缩机并联机组减振控制方法 | |
CN106533316A (zh) | 转子角度估测方法 | |
CN111005871B (zh) | 压缩机并联系统的减振方法 | |
CN114858429B (zh) | 一种旋转机械振动信号等角度采样方法及阶比跟踪分析方法 | |
CN112671279B (zh) | 位置校正装置、方法及存储介质 | |
CN107543303A (zh) | 制冷设备的噪音控制方法及制冷设备 | |
TWI697194B (zh) | 永磁馬達轉子位置偵測裝置及其方法 | |
CN111828364B (zh) | 离心压气机的喘振检测方法 | |
JP2013537398A (ja) | モータ制御のための逆起電力検出 | |
CN105978427A (zh) | 一种电机低速驱动方法、装置及低速抽油烟机 | |
CN113965127B (zh) | 一种高速永磁同步电机的无传感器角度补偿方法 | |
EP3832264B1 (en) | Encoder offset fine tuning | |
WO2018205489A1 (zh) | 调整电机转速的方法和装置及电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12856420 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112012005157 Country of ref document: DE Ref document number: 1120120051572 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 1411233 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20121122 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1411233.8 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14363725 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12856420 Country of ref document: EP Kind code of ref document: A1 |