WO2013082998A1 - 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 - Google Patents

同步抑制磁悬浮分子泵转子次临界振动的方法和系统 Download PDF

Info

Publication number
WO2013082998A1
WO2013082998A1 PCT/CN2012/085064 CN2012085064W WO2013082998A1 WO 2013082998 A1 WO2013082998 A1 WO 2013082998A1 CN 2012085064 W CN2012085064 W CN 2012085064W WO 2013082998 A1 WO2013082998 A1 WO 2013082998A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
molecular pump
vibration
subcritical
magnetic suspension
Prior art date
Application number
PCT/CN2012/085064
Other languages
English (en)
French (fr)
Inventor
张剀
武涵
李奇志
张小章
邹蒙
Original Assignee
北京中科科仪股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科科仪股份有限公司, 清华大学 filed Critical 北京中科科仪股份有限公司
Priority to DE112012005157.2T priority Critical patent/DE112012005157B4/de
Priority to GB1411233.8A priority patent/GB2511984B/en
Priority to US14/363,725 priority patent/US9644634B2/en
Publication of WO2013082998A1 publication Critical patent/WO2013082998A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations

Definitions

  • the invention relates to a magnetic suspension molecular pump, in particular to a method and a system for simultaneously suppressing the secondary critical vibration of a magnetic suspension molecular pump rotor.
  • the magnetic suspension molecular pump uses a magnetic bearing to suspend the molecular pump rotor in the air, thereby realizing the characteristics of the magnetic suspension molecular pump rotor without contact, friction and lubrication at high speed. Due to the above advantages of the magnetic suspension molecular pump, it is widely used in the field of obtaining high vacuum and high cleanliness vacuum environments.
  • the structure of the magnetic suspension molecular pump is generally as shown in Fig. 1. It consists of the following parts: magnetic suspension molecular pump body, magnetic suspension molecular pump rotor, magnetic suspension molecular pump motor, first radial magnetic bearing, second radial magnetic bearing, axial magnetic Bearing, first radial protection bearing, second radial protection bearing, axial protection bearing, second radial position sensor, second radial position sensor, axial position sensor and magnetic suspension molecular pump controller.
  • the rotor When the magnetic suspension molecular pump is in normal operation, the rotor is stably suspended at a predetermined suspension center. When the rotor is unstable and dropped by the external disturbance onto the protective bearing, the rotor enters the subcritical vibration state.
  • the subcritical vibration refers to the vibration whose vibration frequency is lower than the synchronous frequency of the rotor speed.
  • the subcritical vibration of the rotor is mainly represented by a circular vortex, and the motion trajectory is shown in Fig. 3. Among them, the circular vortex refers to a circular forward or backward precessional motion of the rotor axis about the support center line.
  • the magnetic bearing enters a non-linear state, and the general magnetic bearing controller cannot control the magnetic bearing to provide a suitable electromagnetic force to effectively control the rotor.
  • the existing methods for suppressing the subcritical vibration of the magnetic suspension molecular pump rotor are generally suppressing the subcritical vibration, and the common magnetic bearing controller cannot achieve accurate synchronization of the rotor subcritical vibration signal, and cannot solve the problem under the rotor drop condition.
  • the critical vibration problem makes it difficult to effectively suppress the subcritical vibration of the rotor.
  • the existing magnetic suspension molecular pump controller to be solved by the present invention cannot provide a method and system for simultaneously suppressing the subcritical vibration of the magnetic suspension molecular pump rotor for the rotor subcritical problem.
  • a method for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor comprises the following steps: 1 after the magnetic suspension molecular pump rotor is unstable and falling, the magnetic suspension molecular pump controller controls the digital signal processing chip to obtain the molecular pump rotor displacement signal, and The displacement signal is subjected to fast Fourier transform, and the frequency of the subcritical vibration of the molecular pump rotor is obtained by analyzing the rotor vibration frequency. And amplitude ;
  • the digital signal processing chip is started to perform a single frequency fast Fourier transform on the rotor displacement in the next critical vibration period of the rotor, and the rotor subcritical vibration amplitude can be obtained. Value 4 and phase.
  • the frequency of the single frequency fast Fourier transform is set to the current rotor subcritical frequency.
  • the magnetic suspension molecular pump controller will measure the current rotor subcritical vibration amplitude 4 and the phase and the amplitude of the last subcritical vibration period. Comparing with the phase, correcting the magnitude and phase of the compensation force of the next subcritical vibration period according to the comparison result; repeating this step until a predetermined period elapses;
  • the digital signal processing chip performs a fast Fourier transform on the rotor displacement signal every predetermined period ⁇ to obtain a new rotor subcritical vibration frequency f], and sets the compensation force frequency of the next subcritical vibration period.
  • the magnetic suspension molecular pump controller determines whether the amplitude of the sub-critical vibration of the molecular pump rotor is reduced by 'j to a preset threshold value in each subcritical vibration period; when the detected subcritical vibration amplitude of the rotor is less than a preset threshold When the molecular pump rotor has completely detached from the protective bearing, the suppression of the subcritical vibration of the molecular pump rotor is completed; otherwise, the above steps 3-4 are repeatedly performed.
  • the rotor displacement vector has a positive angle of zero with the coordinate axis X.
  • the frequency of the compensating force is equal to the frequency of the subcritical vibration; the magnitude of the compensating force is proportional to the magnitude of the subcritical vibration, and the phase is opposite.
  • the predetermined period ⁇ may be selected from five to fifteen rotor subcritical vibration periods.
  • a system for simultaneously suppressing subcritical vibration of a magnetic suspension molecular pump rotor including: a position sensor;
  • a magnetic suspension molecular pump controller which controls the displacement sensor to acquire a displacement signal of the displacement signal of the magnetic suspension molecular pump rotor, and is responsible for controlling the operation of each component;
  • a digital signal processing chip receiving and analyzing the displacement signal of the magnetic suspension molecular pump rotor obtained by the magnetic suspension molecular pump controller, obtaining frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor, and obtaining the obtained
  • the frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor are transmitted to the magnetic suspension molecular pump controller;
  • the magnetic bearing receives the magnetic suspension molecular pump controller to control the subcritical vibration of the magnetic suspension molecular pump rotor according to a predetermined frequency, amplitude and phase output compensation force.
  • the predetermined period ⁇ is ten rotor subcritical vibration periods.
  • the amplitude and frequency of the rotor subcritical vibration are obtained by synchronously sampling the rotor subcritical vibration signal generated by the suspension of the magnetic suspension molecular pump rotor, and the compensation force is output to suppress the rotor subcritical vibration.
  • the method achieves accurate synchronization of the subcritical vibration signal, and can quickly achieve the suppression of the subcritical vibration of the rotor.
  • Figure 1 is a diagram showing the internal structure of a magnetic suspension molecular pump
  • Figure 3 is a schematic diagram of the subcritical vibration of a magnetic suspension molecular pump rotor
  • the reference numerals in the figure are indicated as: 1-impeller, 2-magnetic suspension molecular pump controller, 3-pump body, 4-first radial protection bearing, 5-first radial sensor, 6-first radial magnetic bearing , 7-rotor shaft, 8-motor, 9-second radial magnetic bearing, 10-second radial sensor, 11-second radial protection bearing, 12-axial protection bearing, 13-first axial magnetic Bearing, 14-thrust disk, 15-second axial magnetic bearing, 16-axis sensor, 17-terminal, 18-displacement detection device, 19-speed detection device.
  • a method for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor includes the following steps:
  • Step S01 the magnetic suspension molecular pump rotor is unstable and falls, the magnetic suspension molecular pump controller controls the digital signal processing chip to obtain the molecular pump rotor displacement signal, and performs fast Fourier transform on the displacement signal (English full name is Fas t Fourier Transforma The t ion, the cylinder is called FFT), and the frequency of the subcritical vibration of the molecular pump rotor is obtained by analyzing the rotor vibration frequency.
  • FFT fast Fourier transform
  • Step S02 establishing a Cartesian coordinate system with the center of the inner circle of the radial magnetic bearing stator as the origin, setting the position on the subcritical vibration trajectory of the rotor as the starting point of the rotor subcritical vibration synchronization, when the rotor displacement vector
  • the rotor is considered to move to point A, and the phase of the subcritical vibration of the molecular pump rotor at point A is obtained; starting from the movement of the molecular pump rotor to the position A, according to the The frequency of the subcritical vibration of the molecular pump rotor.
  • Step S03 determining whether the molecular pump rotor moves to the position A again, and then proceeds to the next step;
  • Step S04 the magnetic levitation molecular pump controller starts a digital signal processing chip, and the displacement signal of the rotor of the molecular pump rotor measured from the position A in the next critical vibration period measured by the displacement sensor, and the signal is A single frequency fast Fourier transform is performed to obtain the subcritical vibration amplitude 4 and phase of the molecular pump rotor.
  • the frequency of the FFT transform is set to the current rotor subcritical frequency; the magnetic suspension molecular pump controller compares the current rotor subcritical vibration amplitude 4 and the phase with the amplitude 4_ ⁇ and the phase _i in the last subcritical vibration period, according to The comparison result corrects the magnitude and phase of the compensation force of the next subcritical vibration period; this step is repeated until a predetermined period T is passed;
  • Step S 05 determining whether the molecular pump rotor has passed the predetermined period T, and then transferring to the next step; wherein the predetermined vibration period T is determined by the hardware speed and the rotor subcritical vibration frequency, preferably ten rotor subcritical vibrations It is only necessary to update the data once in a cycle, and a satisfactory result can be obtained by updating the vibration frequency in five to fifteen rotor subcritical vibration periods;
  • Step S 06 the digital signal processing chip performs an FFT transformation on the rotor displacement signal every predetermined period T, obtains the frequency fj of the sub-critical vibration of the molecular pump rotor at this time, and completes the next sub-critical according to the obtained frequency.
  • Step S07 the magnetic suspension molecular pump controller judges in each rotor subcritical vibration period Whether the amplitude of the subcritical vibration of the molecular pump rotor is reduced to a preset threshold; when the amplitude of the subcritical vibration of the molecular pump rotor is reduced to a preset threshold, and the molecular pump rotor has completely detached from the protective bearing, Then completing the suppression of the sub-critical vibration of the molecular pump rotor, the molecular pump rotor returns to normal rotation, then proceeds to step S9, the control process ends; otherwise, proceeds to step S04 above;
  • Step S 08 ends.
  • the subcritical vibration suppression method of the magnetic suspension molecular pump rotor proposed in this embodiment obtains the amplitude and frequency of the rotor subcritical vibration by synchronously sampling the rotor subcritical vibration signal generated by the suspension of the magnetic suspension molecular pump rotor, and outputs the compensation force accordingly.
  • the rotor secondary critical vibration is suppressed.
  • the method achieves accurate synchronization of the subcritical vibration signal, and the suppression of the subcritical vibration of the rotor can be quickly realized.
  • the digital signal processing chip can perform an FFT transformation on the displacement signal of the molecular pump rotor every predetermined vibration period T, thereby obtaining a new molecule.
  • the sub-critical vibration frequency of the pump rotor is used, and the frequency of the compensation force in the next sub-critical vibration period is corrected by using the newly obtained frequency, that is, the compensation force frequency in the next sub-critical vibration period is set to be the newly obtained rotor times.
  • the critical vibration frequencies are equal.
  • the vibration amplitude of the molecular pump rotor changes during each subcritical vibration period, so it is necessary to repair the compensation force amplitude in the next subcritical vibration period.
  • the specific correction step is as follows: the magnetic levitation molecular pump controller starts a single frequency FFT transformation when the rotor is turned to the position A, and then the amplitude and phase of the subcritical vibration of the molecular pump rotor are obtained, wherein the frequency of the FFT transformation is set. For the current rotor subcritical vibration frequency.
  • the magnetic suspension molecular pump controller compares the amplitude and phase of the sub-critical vibration of the molecular pump rotor with the amplitude and phase of the sub-critical vibration period of the last rotor, and compares the sub-critical vibration period of the next rotor according to the comparison result.
  • the compensation force amplitude and phase are corrected.
  • the present invention provides a system for synchronously suppressing subcritical vibration of a magnetic suspension molecular pump rotor, comprising: a position sensor; a magnetic suspension molecular pump controller, controlling the displacement sensor to obtain a displacement signal of a displacement signal of the magnetic suspension molecular pump rotor, At the same time, it is responsible for controlling the operation of each component; the digital signal processing chip receives and analyzes the displacement signal of the magnetic suspension molecular pump rotor obtained by the magnetic suspension molecular pump controller, and obtains the frequency, amplitude and phase information of the subcritical vibration of the molecular pump rotor.
  • the magnetic bearing receiving the magnetic levitation molecular pump controller to control according to a predetermined frequency, amplitude and The phase output 4 compensation force suppresses the subcritical vibration of the magnetic suspension molecular pump rotor.
  • the position A may be selected as an angle between the molecular pump rotor displacement vector and the coordinate axis X in the positive direction, such as thirty degrees or fifty degrees, and the present invention can also be implemented.
  • the purpose of the present invention falls within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种同步抑制磁悬浮分子泵转子次临界振动的方法,其通过对磁悬浮分子泵转子跌落后产生的转子次临界振动信号进行同步采样获得转子次临界振动的幅值、频率和相位,并据此输出补偿力抑制转子次临界振动。该方法实现了对次临界振动信号的准确同步,可快速实现对所述转子次临界振动的抑制。

Description

同步抑制磁悬浮分子泵转子次临界振动的方法和系统 技术领域
本发明涉及到磁悬浮分子泵,具体是一种同步抑制磁悬浮分子泵转子次临 界振动的方法和系统。
背景技术
磁悬浮分子泵利用磁轴承将分子泵转子悬浮在空中,从而实现磁悬浮分子 泵转子在高速工作过程中无接触、 无摩擦和无需润滑等特点。 由于磁悬浮分子 泵的上述优点, 因此被广泛地应用到高真空度、 高洁净度真空环境的获得领域 中。
磁悬浮分子泵结构一般如图 1所示, 由以下几个部分组成: 磁悬浮分子泵 体、 磁悬浮分子泵转子、 磁悬浮分子泵电机、 第一径向磁轴承、 第二径向磁轴 承、 轴向磁轴承、 第一径向保护轴承、 第二径向保护轴承、 轴向保护轴承、 第 二径向位置传感器、 第二径向位置传感器、 轴向位置传感器和磁悬浮分子泵控 制器等。
磁悬浮分子泵在正常工作时, 转子稳定悬浮在预先设定的悬浮中心处。 当 转子受到外界扰动失稳跌落到保护轴承上时, 转子进入次临界振动状态。 所述 次临界振动指振动频率低于转子转速同步频率的振动,转子的次临界振动主要 表现为一种圆涡动, 运动轨迹如图 3所示。 其中, 圆涡动指转子轴线绕支承中 心线作圆形的前向或后向进动的运动形式。 此时磁轴承进入非线性状态, 一般 的磁轴承控制器无法控制磁轴承提供合适的电磁力对转子进行有效控制。现有 抑制磁悬浮分子泵转子次临界振动的方法都是笼统的对次临界振动进行抑制, 而常见的磁轴承控制器无法对转子次临界振动信号实现准确的同步,无法解决 转子跌落条件下的次临界振动问题, 因此很难对转子的次临界振动进行有效的 抑制。
发明内容
为此, '本发明所要解决的^现有的磁悬浮分子泵控制器无法对转子次临界 问题, 提供一种同步抑制磁悬浮分子泵转子次临界振动的方法和系统。
为解决上述技术问题, 本发明釆用的技术方案如下:
一种同步抑制磁悬浮分子泵转子次临界振动的方法, 依次包括如下步骤: ① 磁悬浮分子泵转子失稳跌落后, 磁悬浮分子泵控制器控制数字信号处理 芯片获取所述分子泵转子位移信号, 并对所述位移信号进行快速傅立叶变 换,通过分析转子振动频语得到所述分子泵转子次临界振动的频率 /。和幅值 ;
② 以径向磁轴承定子内圆中心为原点建立直角坐标系, 设定转子次临界振 动轨迹上的位置 Α为转子次临界振动同步的起始点, 当转子位移矢量与坐标 轴 X正向夹角为预先设定的夹角 Φ时即认为转子运动到 A点,获取 A点处所 述分子泵转子次临界振动的相位 ; 当所述分子泵转子运动到所述位置 A 时, 根据所述分子泵转子次临界振动的频率 /。、 幅值 4)和相位^)按照正弦 规律输出补偿力抑制所述转子次临界振动;
③ 当所述分子泵转子再一次运动到所述位置 Α时, 启动数字信号处理芯片 在转子下个次临界振动周期内对转子位移做单一频率快速傅立叶变换变换, 则可得到转子次临界振动幅值 4和相位 .,其中,单一频率快速傅立叶变换 的频率设为当前转子次临界频率 磁悬浮分子泵控制器将当前转子次临界 振动幅值 4和相位 与上个次临界振动周期内的幅值 4_i和相位 进行比 较, 根据比较结果对下个次临界振动周期的补偿力幅值和相位进行修正; 重 复此步骤, 直到经过预定周期 Τ;
④ 数字信号处理芯片每隔预定周期 Τ对转子位移信号做一次快速傅立叶变 换获得新的转子次临界振动频率 f] ,将下个次临界振动周期的补偿力频率设
⑤ 磁悬浮分子泵控制器在每个次临界振动周期均判断所述分子泵转子次临 界振动的幅值是否减 ' j、到预设阈值; 当检测到转子次临界振动幅值已小于预 设阈值, 且所述分子泵转子已经彻底脱离保护轴承时, 则完成所述分子泵转 子次临界振动的抑制; 否则继续重复执行上述步骤③-④。
所述转子位移矢量与坐标轴 X正向夹角为零度。
所述补偿力的频率与所述次临界振动的频率大小相等;所述补偿力的大小 正比于所述次临界振动的幅值, 相位相反。
所述步骤④中, 所述预定周期 τ可选为五到十五个转子次临界振动周期。 同时, 提供同步抑制磁悬浮分子泵转子次临界振动的系统, 包括: 位置传感器;
磁悬浮分子泵控制器,控制所述位移传感器获取所述磁悬浮分子泵转子位 移信号的位移信号, 同时负责控制各部件工作;
数字信号处理芯片,接收并分析所述磁悬浮分子泵控制器获取的所述磁悬 浮分子泵转子位移信号, 得到所述分子泵转子次临界振动的频率、 幅值和相位 信息, 并将获取的所述分子泵转子次临界振动的频率、 幅值和相位信息传送给 所述磁悬浮分子泵控制器; 磁轴承, 接受所述磁悬浮分子泵控制器控制按照预定频率、 幅值和相位输 出补偿力抑制所述磁悬浮分子泵转子次临界振动。
所述预定周期 τ为十个转子次临界振动周期。
本发明的上述技术方案相比现有技术具有以下优点:
通过对磁悬浮分子泵转子跌落后产生的转子次临界振动信号进行同步釆 样获得转子次临界振动的幅值和频率, 并据此输出补偿力抑制转子次临界振 动。 该方法实现了对次临界振动信号的准确同步, 可快速实现所述转子次临界 振动的抑制。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例 并结合附图, 对本发明作进一步详细的说明, 其中
图 1为磁悬浮分子泵内部结构图;
图 2为本发明所述控制方法流程图;
图 3为磁悬浮分子泵转子次临界振动示意图;
图中附图标记表示为: 1-叶轮, 2-磁悬浮分子泵控制器, 3-泵体, 4-第一 径向保护轴承, 5-第一径向传感器, 6-第一径向磁轴承, 7-转子轴, 8-电机, 9-第二径向磁轴承, 10-第二径向传感器, 11-第二径向保护轴承, 12-轴向保 护轴承, 13-第一轴向磁轴承, 14-推力盘, 15-第二轴向磁轴承, 16-轴向传感 器, 17-接线端子, 18-位移检测装置, 19-转速检测装置。
具体实施方式
参见图 2所示,本发明一个实施例所述同步抑制磁悬浮分子泵转子次临界 振动的方法, 包括如下步骤:
步骤 S01 ,磁悬浮分子泵转子失稳跌落后, 磁悬浮分子泵控制器控制数字 信号处理芯片获取所述分子泵转子位移信号,并对所述位移信号进行快速傅立 叶变换(英文全称为 Fas t Four ier Transforma t ion, 筒称 FFT) , 通过分析转 子振动频语得到所述分子泵转子次临界振动的频率 /。和和幅值 Λ; 步骤 S02,以径向磁轴承定子内圆中心为原点建立直角坐标系, 设定转子 次临界振动轨迹上的位置 Α为转子次临界振动同步的起始点, 当转子位移矢量 与坐标轴 X正向夹角为零度时即认为转子运动到 A点,获取 A点处所述分子泵 转子次临界振动的相位 ;从所述分子泵转子运动到所述位置 A开始,根据所 述分子泵转子次临界振动的频率 /。、 幅值 4)和相位^)按照正弦规律输出补偿 力抑制所述次临界振动;其中所述补偿力的频率和所述分子泵转子次临界振动 的频率大小相等;所述补偿力的大小正比于所述分子泵转子次临界振动的幅值 : 相位相反; 步骤 S 03 ,判断所述分子泵转子是否再一次运动到所述位置 A ,是则转入下 一步骤;
步骤 S 04 ,所述磁悬浮分子泵控制器启动数字信号处理芯片釆集位移传感 器测得的所述分子泵转子从所述位置 A 开始下个次临界振动周期内的转子位 移信号,并对该信号进行单一频率快速傅立叶变换,获取所述分子泵转子的次 临界振动幅值 4和相位 .。其中, FFT变换的频率设为当前转子次临界频率 ; 磁悬浮分子泵控制器将当前转子次临界振动幅值 4和相位 与上个次临界振 动周期内的幅值 4_ι和相位 _i进行比较, 根据比较结果对下个次临界振动周 期的补偿力幅值和相位进行修正; 重复此步骤, 直到经过预定周期 T ;
步骤 S 05 ,判断分子泵转子是否经过预定周期 T ,是则转入下一步骤;其中, 所述预定振动周期 T由硬件速度与转子次临界振动频率共同决定,优选为十个 转子次临界振动周期更新一次数据即可,在五到十五个转子次临界振动周期内 更新一次振动频率也可获得比较满意的结果;
步骤 S 06 ,数字信号处理芯片每隔预定周期 T对转子位移信号做一次 FFT 变换,获取此时所述分子泵转子次临界振动的频率 fj , 并根据获取的所述频率 周整下个次临界振动周期内的所述补偿力的频率,即将下个次临界振动周期 内的所述补偿力的频率设置为 ^; 步骤 S 07 ,磁悬浮分子泵控制器在每个转子次临界振动周期均判断所述分 子泵转子次临界振动的幅值是否减小到预设阈值; 当所述分子泵转子次临界振 动的幅值减小到预设阈值, 且所述分子泵转子已经彻底脱离保护轴承时, 则完 成所述分子泵转子次临界振动的抑制,所述分子泵转子恢复正常转动,此时转 入步骤 S 9 ,控制过程结束; 否则转入上述步骤 S 04;
步骤 S 08 ,结束。
本实施例提出的磁悬浮分子泵转子次临界振动抑制方法通过对磁悬浮分 子泵转子跌落后产生的转子次临界振动信号进行同步釆样获得转子次临界振 动的幅值和频率, 并据此输出补偿力抑制转子次临界振动。 该方法实现了对次 临界振动信号的准确同步, 可快速实现所述转子次临界振动的抑制。
上述控制方法中,由于分子泵转子的次临界振动频率变化緩慢, 因此数字 信号处理芯片可以每隔预定振动周期 T对所述分子泵转子的位移信号做一次 FFT 变换,进而获得新的所述分子泵转子次临界振动频率, 并利用该新获得的 频率对下个次临界振动周期内的补偿力频率进行修正,即将下个次临界振动周 期内的补偿力频率设定成与新获得的转子次临界振动频率相等。
同时,由于所述补偿力的加入, 所述分子泵转子的振动幅值在每个次临界 振动周期内都会变化, 因此需要对下个次临界振动周期内的补偿力幅值进行修 正。 具体修正步骤如下:磁悬浮分子泵控制器在转子转到所述位置 A时, 启动 做单一频率 FFT变换, 则可得到所述分子泵转子次临界振动的幅值和相位, 其 中 FFT变换的频率设为当前转子次临界振动频率。所述磁悬浮分子泵控制器将 新获得所述分子泵转子次临界振动幅值和相位与上个转子次临界振动周期内 的幅值和相位进行比较,根据比较结果对下个转子次临界振动周期的补偿力幅 值和相位进行修正。
相应地, 本发明提供了一种同步抑制磁悬浮分子泵转子次临界振动的系 统, 包括: 位置传感器; 磁悬浮分子泵控制器, 控制所述位移传感器获取所述 磁悬浮分子泵转子位移信号的位移信号, 同时负责控制各部件工作;数字信号 处理芯片,接收并分析所述磁悬浮分子泵控制器获取的所述磁悬浮分子泵转子 位移信号, 得到所述分子泵转子次临界振动的频率、 幅值和相位信息, 并将获 取的所述分子泵转子次临界振动的频率、幅值和相位信息传送给所述磁悬浮分 子泵控制器;磁轴承, 接受所述磁悬浮分子泵控制器控制按照预定频率、 幅值 和相位输出 4卜偿力抑制所述磁悬浮分子泵转子次临界振动。本系统的各个部分 在磁悬浮分子泵控制器的控制下按照上述实施例中的方法实现同步抑制磁悬 浮分子泵转子次临界振动, 在此不再赘述。
当然作为本发明的其它实施例,所述位置 A可以选为所述分子泵转子位移 矢量与坐标轴 X正向为其它度数的夹角, 比如三十度或者五十度, 同样能实现 本发明的目的, 属于本发明的保护范围。
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的 限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做出其 它不同形式的变化或变动。 这里无需也无法对所有的实施方式予以穷举。 而由 此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims

1. 一种同步抑制磁悬浮分子泵转子次临界振动的方法,其特征在 于: 依次包括如下步骤:
①磁悬浮分子泵转子失稳跌落后,磁悬浮分子泵控制器控制数字 信号处理芯片获取所述分子泵转子位移信号, 并对所述位移信号 进行快速傅立叶变换, 通过分析转子振动频谱得到所述分子泵转 子次临界振动的频率 /。和幅值 Λ ;
② 以径向磁轴承定子内圓中心为原点建立直角坐标系,设定转子 次临界振动轨迹上的位置 A为转子次临界振动同步的起始点, 当 转子位移矢量与坐标轴 X正向夹角为预先设定的夹角 Φ时即认为 转子运动到 A点, 获取 A点处所述分子泵转子次临界振动的相位 φ 当所述分子泵转子运动到所述位置 Α时, 4艮据所述分子泵转 子次临界振动的频率 、 幅值 A和相位 按照正弦规律输出补偿 力抑制所述转子次临界振动;
③ 当所述分子泵转子再一次运动到所述位置 A时,启动数字信号 处理芯片在转子下个次临界振动周期内对转子位移做单一频率快 速傅立叶变换变换, 则可得到转子次临界振动幅值 4和相位 ., 其中, 单一频率快速傅立叶变换的频率设为当前转子次临界频率 ft; 磁悬浮分子泵控制器将当前转子次临界振动幅值 A,和相位 与上个次临界振动周期内的幅值 4^和相位 进行比较, 根据比 较结果对下个次临界振动周期的补偿力幅值和相位进行修正; 重 复此步骤, 直到经过预定周期 τ ;
④ 数字信号处理芯片每隔预定周期 τ对转子位移信号做一次快 速傅立叶变换获得新的转子次临界振动频率 将下个次临界振 动周期的补偿力频率设定为 f
⑤磁悬浮分子泵控制器在每个次临界振动周期均判断所述分子 泵转子次临界振动的幅值是否减 d、到预设阔值; 当检测到转子次 临界振动幅值已 d、于预设阔值, 且所述分子泵转子已经彻底脱离 保护轴承时, 则完成所述分子泵转子次临界振动的抑制; 否则继 续重复执行上述步骤③ -④。
2. 根据权利要求 1所述的方法, 其特征在于: 所述转子位移矢量 与坐标轴 X正向夹角为零度。
3. 根据权利要求 2所述的方法, 其特征在于: 所述步骤③中, 所 述补偿力的频率与所述次临界振动的频率大小相等;所述补偿力的大 小正比于所述次临界振动的幅值, 相位相反。
4. 根据权利要求 3所述的方法, 其特征在于: 所述步骤④中, 所 述预定周期 T可选择五到十五个转子次临界振动周期。
5. 根据权利要求 4所述的方法, 其特征在于: 所述预定周期 T为 十个转子次临界振动周期。
6. 实现如权利要求 1所述方法的同步抑制磁悬浮分子泵转子次临 界振动的系统, 其特征在于, 包括:
位置传感器;
磁悬浮分子泵控制器,控制所述位移传感器获取所述磁悬浮分子泵转 子位移信号的位移信号, 同时负责控制各部件工作; 数字信号处理芯片, 接收并分析所述磁悬浮分子泵控制器获取的 所述磁悬浮分子泵转子位移信号,得到所述分子泵转子次临界振动的 频率、 幅值和相位信息, 并将获取的所述分子泵转子次临界振动的频 率、 幅值和相位信息传送给所述磁悬浮分子泵控制器;
磁轴承,接受所述磁悬浮分子泵控制器控制按照预定频率、 幅值和相 位输出补偿力抑制所述磁悬浮分子泵转子次临界振动。
PCT/CN2012/085064 2011-12-08 2012-11-22 同步抑制磁悬浮分子泵转子次临界振动的方法和系统 WO2013082998A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012005157.2T DE112012005157B4 (de) 2011-12-08 2012-11-22 Verfahren und System zur synchronen Unterdrückung der unterkritischen Schwingungdes Magnetschwebe-Molekularpumpe-Rotors
GB1411233.8A GB2511984B (en) 2011-12-08 2012-11-22 Method and system for synchronously inhibiting subcritical vibrations of magnetic levitation molecular pump rotor
US14/363,725 US9644634B2 (en) 2011-12-08 2012-11-22 Method and system for synchronously inhibiting subcritical vibrations of magnetic levitation molecular pump rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110407350.6A CN102425563B (zh) 2011-12-08 2011-12-08 同步抑制磁悬浮分子泵转子次临界振动的方法和系统
CN201110407350.6 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013082998A1 true WO2013082998A1 (zh) 2013-06-13

Family

ID=45959583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085064 WO2013082998A1 (zh) 2011-12-08 2012-11-22 同步抑制磁悬浮分子泵转子次临界振动的方法和系统

Country Status (5)

Country Link
US (1) US9644634B2 (zh)
CN (1) CN102425563B (zh)
DE (1) DE112012005157B4 (zh)
GB (1) GB2511984B (zh)
WO (1) WO2013082998A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113530873A (zh) * 2021-09-16 2021-10-22 天津飞旋科技股份有限公司 一种磁悬浮分子泵的控制方法、装置及磁悬浮分子泵
CN113659911A (zh) * 2021-08-10 2021-11-16 江苏明磁动力科技有限公司 一种磁悬浮轴承系统中转子振动抑制系统及方法
CN114371622A (zh) * 2022-01-07 2022-04-19 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法
CN115182928A (zh) * 2022-03-28 2022-10-14 北方工业大学 一种复合轴视轴稳定设备的动力减摩方法
CN115857362A (zh) * 2023-03-01 2023-03-28 坎德拉(深圳)新能源科技有限公司 储能飞轮转子的同频振动抑制方法、磁轴承控制器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425563B (zh) * 2011-12-08 2014-03-12 北京中科科仪股份有限公司 同步抑制磁悬浮分子泵转子次临界振动的方法和系统
CN103196672B (zh) * 2013-03-01 2015-07-01 北京中科科仪股份有限公司 一种磁悬浮分子泵径向保护轴承检测方法
CN106441894B (zh) * 2016-09-28 2018-10-19 清华大学 基于希尔伯特变换的磁悬浮轴承轴系跌落轨迹响应识别方法及装置
CN106503387B (zh) * 2016-11-08 2019-07-12 清华大学 一种磁悬浮轴承轴系跌落轨迹响应识别方法
CN107220456B (zh) * 2017-06-20 2020-07-28 清华大学 磁悬浮轴系跌落轨迹识别与重新悬浮的控制方法及装置
CN109854438B (zh) * 2019-03-07 2020-04-14 贵州电网有限责任公司 一种发电机组临界振动区的持续运行时间控制方法
CN110531626B (zh) * 2019-09-20 2022-04-05 河海大学 基于滚动时域估计的磁悬浮转子振动补偿控制方法及系统
CN113124053B (zh) * 2021-04-26 2022-06-10 清华大学 同步阻尼方法及装置
CN113638903B (zh) * 2021-10-13 2022-02-11 亿昇(天津)科技有限公司 一种磁悬浮离心氧压机控制系统及其控制方法
CN114909407B (zh) * 2022-07-13 2022-09-20 江苏明磁动力科技有限公司 基于位移控制器幅相频特性的磁悬浮电机失稳预诊断方法
CN115628224B (zh) * 2022-10-14 2024-05-21 北方工业大学 一种磁悬浮分子泵叶片峰在线监测系统和方法
CN117990196A (zh) * 2023-12-28 2024-05-07 北京中科科仪股份有限公司 一种分子泵微振动测量方法、系统、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650441A2 (de) * 2004-10-19 2006-04-26 Pfeiffer Vacuum GmbH Vibrationsarme Vakuumpumpe
CN1920511A (zh) * 2006-08-01 2007-02-28 东北电力大学 离心泵振动故障融合诊断方法及振动信号采集装置
CN101187589A (zh) * 2007-12-27 2008-05-28 浙江飞旋科技有限公司 一种调整磁悬浮真空分子泵转子动平衡的方法
CN101495760A (zh) * 2006-07-26 2009-07-29 厄利孔莱博尔德真空技术有限责任公司 用于确定涡轮分子泵的状态信息的方法和涡轮分子泵
CN102425563A (zh) * 2011-12-08 2012-04-25 北京中科科仪技术发展有限责任公司 同步抑制磁悬浮分子泵转子次临界振动的方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457353B2 (ja) * 1993-05-25 2003-10-14 ビーオーシーエドワーズテクノロジーズ株式会社 磁気軸受装置
JP3211615B2 (ja) * 1995-04-06 2001-09-25 日産自動車株式会社 機械作動音の異常判定方法
IT1289811B1 (it) * 1996-12-27 1998-10-16 Varian Spa Metodo ed apparato di diagnosi per pompa da vuoto.
US20050186099A1 (en) * 2004-02-19 2005-08-25 Graeme Huntley Active vibration reduction
EP1621785A1 (en) * 2004-07-30 2006-02-01 Mecos Traxler AG Method and apparatus for controlling a magnetic bearing device
EP1650411A1 (de) 2004-10-19 2006-04-26 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Nockenwellenversteller und Verfahren zur Veränderung der Nockenwellenphase mittels einem künstlichen Muskel
KR101629979B1 (ko) * 2008-07-14 2016-06-13 에드워즈 가부시키가이샤 진공 펌프

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650441A2 (de) * 2004-10-19 2006-04-26 Pfeiffer Vacuum GmbH Vibrationsarme Vakuumpumpe
CN101495760A (zh) * 2006-07-26 2009-07-29 厄利孔莱博尔德真空技术有限责任公司 用于确定涡轮分子泵的状态信息的方法和涡轮分子泵
CN1920511A (zh) * 2006-08-01 2007-02-28 东北电力大学 离心泵振动故障融合诊断方法及振动信号采集装置
CN101187589A (zh) * 2007-12-27 2008-05-28 浙江飞旋科技有限公司 一种调整磁悬浮真空分子泵转子动平衡的方法
CN102425563A (zh) * 2011-12-08 2012-04-25 北京中科科仪技术发展有限责任公司 同步抑制磁悬浮分子泵转子次临界振动的方法和系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659911A (zh) * 2021-08-10 2021-11-16 江苏明磁动力科技有限公司 一种磁悬浮轴承系统中转子振动抑制系统及方法
CN113530873A (zh) * 2021-09-16 2021-10-22 天津飞旋科技股份有限公司 一种磁悬浮分子泵的控制方法、装置及磁悬浮分子泵
CN114371622A (zh) * 2022-01-07 2022-04-19 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法
CN114371622B (zh) * 2022-01-07 2024-04-12 北京航空航天大学 基于多谐波逆Park变换的磁悬浮转子谐波振动力抑制方法
CN115182928A (zh) * 2022-03-28 2022-10-14 北方工业大学 一种复合轴视轴稳定设备的动力减摩方法
CN115182928B (zh) * 2022-03-28 2023-08-11 北方工业大学 一种复合轴视轴稳定设备的动力减摩方法
CN115857362A (zh) * 2023-03-01 2023-03-28 坎德拉(深圳)新能源科技有限公司 储能飞轮转子的同频振动抑制方法、磁轴承控制器

Also Published As

Publication number Publication date
GB2511984A (en) 2014-09-17
DE112012005157T5 (de) 2014-10-30
GB201411233D0 (en) 2014-08-06
US9644634B2 (en) 2017-05-09
GB2511984B (en) 2019-04-10
US20140356126A1 (en) 2014-12-04
CN102425563B (zh) 2014-03-12
CN102425563A (zh) 2012-04-25
DE112012005157B4 (de) 2016-07-14

Similar Documents

Publication Publication Date Title
WO2013082998A1 (zh) 同步抑制磁悬浮分子泵转子次临界振动的方法和系统
US20200211539A1 (en) Home appliance and method for voice recognition thereof
JP2013514049A (ja) Pmsmの制御装置
CN111212980B (zh) 用于压缩机应用的闭环扭矩补偿
CN110165960B (zh) 偏差角度估计方法、系统、计算机装置及介质
US9112440B2 (en) Sensorless dynamic driving method and system for single phase alternating current permanent magnet motor
CN110939654B (zh) 一种磁悬浮轴承控制方法、装置、存储介质及磁悬浮系统
EP2412983A2 (en) Method and device for controlling a hot restart of a centrifugal compressor
CN102236074A (zh) 用于辨识感应电机的参数的装置和方法
US9388854B2 (en) Magnetic bearing apparatus and method for reducing vibration caused by magnetic bearing apparatus
KR101508815B1 (ko) 영구자석 동기 모터의 회전자 위치 검출 방법
CN111682808A (zh) 电机启动控制方法、装置、电子设备及存储介质
CN109763979A (zh) 转子式压缩机并联机组减振控制方法
CN106533316A (zh) 转子角度估测方法
CN111005871B (zh) 压缩机并联系统的减振方法
CN114858429B (zh) 一种旋转机械振动信号等角度采样方法及阶比跟踪分析方法
CN112671279B (zh) 位置校正装置、方法及存储介质
CN107543303A (zh) 制冷设备的噪音控制方法及制冷设备
TWI697194B (zh) 永磁馬達轉子位置偵測裝置及其方法
CN111828364B (zh) 离心压气机的喘振检测方法
JP2013537398A (ja) モータ制御のための逆起電力検出
CN105978427A (zh) 一种电机低速驱动方法、装置及低速抽油烟机
CN113965127B (zh) 一种高速永磁同步电机的无传感器角度补偿方法
EP3832264B1 (en) Encoder offset fine tuning
WO2018205489A1 (zh) 调整电机转速的方法和装置及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012005157

Country of ref document: DE

Ref document number: 1120120051572

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1411233

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121122

WWE Wipo information: entry into national phase

Ref document number: 1411233.8

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14363725

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12856420

Country of ref document: EP

Kind code of ref document: A1