WO2013080633A1 - 作業車両の回生制御装置および作業車両の回生制御方法 - Google Patents
作業車両の回生制御装置および作業車両の回生制御方法 Download PDFInfo
- Publication number
- WO2013080633A1 WO2013080633A1 PCT/JP2012/073703 JP2012073703W WO2013080633A1 WO 2013080633 A1 WO2013080633 A1 WO 2013080633A1 JP 2012073703 W JP2012073703 W JP 2012073703W WO 2013080633 A1 WO2013080633 A1 WO 2013080633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- regeneration
- regenerative
- accumulator
- regeneration control
- traveling
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/08—Prime-movers comprising combustion engines and mechanical or fluid energy storing means
- B60K6/12—Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/10—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T1/00—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
- B60T1/02—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
- B60T1/10—Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T10/00—Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
- B60T10/04—Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrostatic brake
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/662—Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2253—Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2289—Closed circuit
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/4078—Fluid exchange between hydrostatic circuits and external sources or consumers
- F16H61/4096—Fluid exchange between hydrostatic circuits and external sources or consumers with pressure accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/4078—Fluid exchange between hydrostatic circuits and external sources or consumers
- F16H61/4139—Replenishing or scavenging pumps, e.g. auxiliary charge pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/42—Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
- F16H61/421—Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/42—Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
- F16H61/431—Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention is a regenerative control device for a working vehicle that does not cause the operator to feel discomfort or anxiety in operation so that a difference does not occur between the regeneration performance and the non-regeneration time in which kinetic energy is stored as hydraulic energy in an accumulator. And a method of regenerative control of a work vehicle.
- the brake torque acting on the vehicle is adjusted by changing the capacity of the traveling variable motor.
- the kinetic energy of the vehicle is regenerated as hydraulic energy and charged to the accumulator, and when the accumulator is fully charged, this charge is stopped and the kinetic energy is heated by the service brake. Release control as energy is described.
- the present invention has been made in view of the above, and it is intended to prevent the operator from feeling unnatural in operation so that there is no difference in motion performance between regeneration and non-regeneration at which kinetic energy is stored as hydraulic energy in the accumulator. It is an object of the present invention to provide a regeneration control device for a working vehicle and a regeneration control method for a working vehicle that do not cause anxiety.
- a regeneration control device for a working vehicle includes a traveling hydraulic pump coupled to a drive source and a traveling hydraulic motor coupled to wheels. And a work machine driven by the work machine hydraulic pump coupled to the drive source, kinetic energy during deceleration is converted into hydraulic energy and stored, and the accumulated hydraulic energy is stored in the drive source.
- Regeneration is performed at the time of regeneration in which the regeneration hydraulic energy is stored by opening the regeneration valve and storing the regeneration hydraulic energy in the regeneration accumulator with the regeneration accumulator supplied to the coupled regeneration motor, the regeneration valve connecting between the pipe line and the regeneration accumulator And a controller configured to variably control the motor displacement so that the brake torque at the time of non-regeneration and the time of non-regeneration become the same.
- the control unit may set one target brake torque among a plurality of target brake torques determined in advance according to a traveling state.
- the motor displacement is variably controlled such that the difference with the current brake torque is reduced.
- the target brake torque combines any one or more of an accelerator operation amount, a brake operation amount, a work implement height, and a work implement raise speed. It is characterized in that correction is made on the basis of
- the control unit performs the regeneration when the drive source rotational speed or the drive source output is equal to or less than a first threshold and / or a work machine If the height is equal to or greater than the second threshold or the work implement raising speed is equal to or less than the third threshold, control is performed to increase the physical supply amount for driving source output and / or increase the capacity of the traveling hydraulic pump. It features.
- the control unit starts regeneration control based on an accumulator pressure and / or an absolute value of traveling speed. Do.
- the control unit may match / mismatch between a forward / backward lever position and a traveling direction, and / or an accelerator operation amount and / or a brake operation. It is characterized in that regenerative control is started based on the amount.
- the regeneration control is started based on the physical supply amount for driving source output and / or the driving source rotational speed. Do.
- the control unit terminates the regeneration control based on the accumulator pressure and / or the absolute value of the traveling speed. Do.
- the control unit performs regeneration based on coincidence / mismatch between the forward / backward lever position and the traveling direction and / or the accelerator operation amount. It is characterized by ending control.
- the regeneration control device for a working vehicle is characterized in that in the above invention, the regeneration control is ended based on the physical supply amount for driving source output and / or the driving source rotational speed. Do.
- a hydraulic circuit in which a traveling hydraulic pump coupled to a drive source and a traveling hydraulic motor coupled to wheels are closed by a pipe and coupled to the drive source.
- a regeneration control method for a work vehicle comprising: a regeneration valve connecting between the pipe line and the regeneration accumulator, wherein the regeneration valve is opened to perform regeneration hydraulic energy storage in the regeneration accumulator.
- the motor displacement is variably controlled such that the brake torque at the regeneration time is equal to the brake torque at the non-regeneration time.
- the accumulator pressure and / or the absolute value of the traveling speed, and / or the coincidence / mismatch between the forward / reverse lever position and the traveling direction And / or starting or ending regeneration control based on the amount of accelerator operation and / or the amount of brake operation and / or the physical supply amount for driving source output and / or the driving source rotational speed It features.
- the motor capacity is variably controlled so that the brake torques at the time of regeneration and at the time of non-regeneration become the same at the time of regeneration in which the regeneration hydraulic energy is accumulated in the regeneration accumulator with the regeneration valve open.
- FIG. 1 is a diagram showing an entire configuration of a wheel loader which is an example of a work vehicle.
- FIG. 2 is a diagram showing a circuit configuration focusing on the HST circuit of the wheel loader.
- FIG. 3 is an overall flowchart showing a regeneration control processing procedure by the controller.
- FIG. 4 is a detailed flowchart showing the regeneration start determination processing procedure of step S11.
- FIG. 5 is a detailed flowchart showing the regenerative brake torque control procedure of step S13.
- FIG. 6 is a detailed flowchart showing the regeneration end determination processing procedure shown in step S14.
- FIG. 7 is a time chart showing an example of specific regenerative control at the time of shuttle operation.
- FIG. 8 is a time chart showing another example of regeneration control at the time of specific shuttle operation.
- FIG. 9 is a flowchart of a regenerative brake torque control procedure according to the first modification.
- FIG. 10 is a flowchart of a regeneration start determination process according to the second modification.
- FIG. 11 is a flowchart of the regeneration start determination process according to the third modification.
- FIG. 12 is a flowchart of the regeneration end determination process according to the fourth modification.
- FIG. 13 is a flowchart of the regeneration end determination process according to the fifth modification.
- FIG. 14 is a flowchart of the regeneration end determination process according to the sixth modification.
- FIG. 1 is a diagram showing an entire configuration of a wheel loader 50 which is an example of a work vehicle.
- FIG. 2 is a diagram showing a circuit configuration focusing on the HST circuit of the wheel loader 50.
- the wheel loader 50 is composed of a vehicle body 51, a lift arm 52 mounted on the front of the vehicle body 51, a bucket 53 attached to the tip of the lift arm 52, a bell crank 56, etc. It has an aircraft, four wheels 54 that rotate to support the vehicle body 51 and travel the vehicle body 51, and a cab (driver's cab) 55 mounted on the upper portion of the vehicle body 51.
- the lift arm 52 is a link member for lifting the bucket 53 attached to the front end, and operates up and down by extension and contraction of a working machine hydraulic cylinder (lift cylinder) 19a connected to the lift arm 52. Further, the bucket 53 is attached to the tip of the lift arm 52, and dumps and tilts due to the working machine hydraulic cylinder (bucket cylinder) 19b connected via a link member called a bell crank 56 extending and contracting. .
- the wheel loader 50 is mounted with the circuit configuration shown in FIG. That is, the hydraulic fluid discharged from the HST pump (hydraulic pump for traveling) 2 driven by the drive source 1 such as an engine or a motor drives the HST motor (hydraulic motor for traveling) 3 to drive the wheels 54. It has an HST circuit 10 for causing the wheel loader 50 to travel.
- the HST circuit 10 forms a closed hydraulic circuit in which the HST pump 2 and the HST motor 3 are connected by the HST pipe line 4 constituted by the HST pipe lines 4A and 4B.
- a work implement pump 5 supplies hydraulic fluid to the control valve 18 to extend and retract the work implement hydraulic cylinders 19a and 19b.
- the charge pump 6 is connected to the tank via the low pressure relief valve 11. Further, the charge pump 6 supplies hydraulic fluid to the HST pipelines 4A and 4B, which are in a low pressure state, via the check valves 12A and 12B.
- the regenerative motor 7 is a pump that is rotationally driven by hydraulic energy stored in the regenerative accumulator 8.
- the regenerative valve 9 is “opened” in the regenerative control mode, and the high pressure hydraulic fluid from the HST pipelines 4A and 4B is accumulated in the regenerative accumulator 8 as hydraulic energy through the check valves 13A and 13B. That is, in the regenerative control mode, kinetic energy from the wheels 54 due to traveling deceleration or the like is converted into hydraulic energy through the HST motor 3 and the HST pipelines 4A and 4B, and this hydraulic energy is checked valves 13A and 13B and It is stored in the regenerative accumulator 8 through the regenerative valve 9.
- the hydraulic energy stored in the regenerative accumulator 8 is supplied to the regenerative motor 7 to assist rotation of the rotation shaft of the drive source 1.
- the high-pressure side pipeline pressure of the HST pipelines 4A and 4B is larger than the pressure of the regenerative accumulator 8.
- the regenerative motor 7 is driven until the hydraulic energy stored in the regenerative accumulator 8 is exhausted, but when the hydraulic energy accumulated in the regenerative accumulator 8 is exhausted, the oil from the tank through the check valve 14 is input to the inlet of the motor 7 Acts to suck in to the side.
- the regeneration valve 9 When the regeneration control mode is not set, the regeneration valve 9 is "closed", and the high pressure hydraulic fluid from the HST pipelines 4A and 4B is further checked via the check valves 13A and 13B and the high pressure relief valve 15 Hydraulic fluid is supplied to the HST lines 4A and 4B in the low pressure state via the low pressure state.
- the controller 20 controls the drive of the drive source 1 based on the detection results of the forward / reverse lever sensor 21, the accelerator opening degree sensor 22, the brake opening degree sensor 23, etc., the number of rotations of the drive source 1, and the like. Further, the controller 20 controls the control valve 18 based on the detection result of the work machine lever sensor 24 to control the driving of the work machine hydraulic cylinders 19a and 19b. Furthermore, the controller 20 controls the swash plate 2C of the HST pump 2 and the swash plate 3C of the HST motor 3 based on the pressure of the HST pressure sensors 2A, 2B which detect the pressure of the HST pipelines 4A, 4B respectively. Control the capacity and motor capacity respectively.
- the controller 20 controls the opening and closing of the regenerative valve 9 based on the accumulator pressure of the regenerative accumulator 8 detected by the pressure sensor 8a, the traveling speed detected by the traveling speed sensor 25, etc.
- the motor displacement of the HST motor 3 is variably controlled so that the brake torque at the regeneration time and at the non regeneration time becomes the same.
- FIG. 3 is an overall flowchart showing a regeneration control processing procedure by the controller 20.
- the controller 20 first determines whether or not to start the regeneration control process with the regeneration valve 9 in the “closed” state, and whether the regeneration valve 9 is “opened” It is judged whether or not it is (step S11). Thereafter, in the process of step S11, it is determined whether or not the regenerative valve 9 is set to "open” (step S12), and when the regenerative valve 9 is not set to "open” (step S12, No), the step The process of S11 is repeated.
- step S12 when the regenerative valve 9 is set to "open" (step S12, Yes), the swash plate 3C of the HST motor 3 is changed so that the brake torque at the regeneration time is the same as the brake torque at the non regeneration time. Then, a regenerative brake torque control process is performed to change the motor displacement (step S13). Since the brake torque is proportional to the motor capacity and the brake pressure (absolute differential pressure between HST pipelines 4A and 4B), in order to equalize the brake torque at the time of regeneration and at the time of non-regeneration, Since the brake pressure decreases, control is performed to increase the motor displacement in response to the decrease.
- step S14 it is determined whether or not the regeneration control for bringing the regenerative valve 9 into the "open” state is ended, that is, whether or not the regenerative valve 9 is to be "closed” (step S14). Thereafter, in the process of step S14, it is determined whether or not the regenerative valve 9 is set to "close” (step S15), and the regenerative valve 9 is not set to "close” (step S15, No). The "open” state of the valve 9 is maintained, and the process proceeds to step S13 to repeat the regenerative brake torque control process. On the other hand, when the regenerative valve 9 is set to "close” (step S15, Yes), the process proceeds to step S11, and the regeneration start determination processing of whether to start regeneration control is performed again.
- step S11 the regeneration start determination processing procedure of step S11 will be described.
- the controller 20 determines whether the forward / backward lever position matches the traveling direction. It judges (step S101).
- the forward / reverse lever sensor 21 detects the states of forward (F), neutral (N), and reverse (R).
- the traveling speed sensor 25 detects forward (F) if it is positive and reverse (R) if it is negative according to the sign of the traveling speed.
- the forward / reverse lever position and the advancing direction do not match, the vehicle is rapidly decelerated.
- the forward / reverse lever operation at time t1 in FIG. 7 corresponds to this rapid deceleration.
- Such reverse operation of the forward and reverse lever is called “shuttle operation", and in V-shape work such as a wheel loader, work is often performed only by the shuttle operation without performing an accelerator operation or a brake operation.
- the process proceeds to step S103.
- step S101 when the forward / reverse lever position coincides with the traveling direction (Yes in step S101), the accelerator operation amount is further thresholded based on the detection results of the accelerator opening sensor 22 and the brake opening sensor 23. It is determined whether the amount is less than or not and / or the brake operation amount is equal to or more than a threshold (step S102). That is, it is determined whether or not it is in the deceleration state. If the accelerator operation amount is less than the threshold value and / or the brake operation amount is equal to or more than the threshold value (step S102, Yes), the process proceeds to step S103. On the other hand, when the accelerator operation amount is less than the threshold value and / or the brake operation amount is not the threshold value or more (step S102, No), the present process is ended, and the "closed" state of the regenerative valve 9 is maintained.
- step S103 based on the detection result of pressure sensor 8a, it is determined whether the accumulator pressure of regenerative accumulator 8 is less than or equal to a threshold, that is, whether there is an ability to store regenerative hydraulic energy (step S103). If the accumulator pressure is not equal to or less than the threshold (No at Step S103), the regenerative valve 9 is maintained in the “closed” state and the process returns, since there is no effect of regeneration.
- step S104 it is further determined based on the detection result of the traveling speed sensor 25 whether the absolute value of the traveling speed is greater than or equal to the threshold.
- the absolute value of the traveling speed is less than the threshold value, the hydraulic energy that can be regenerated is reduced.
- step S104 Yes
- the regeneration valve 9 is set in the "open" state to perform regeneration control (step S105), and the process returns to step S11.
- the absolute value of the traveling speed is not equal to or more than the threshold (No in step S104)
- the "closed" state of the regenerative valve 9 is maintained, and the process returns to step S11.
- the regenerative accumulator 8 has an ability to accumulate hydraulic oil, and the traveling speed is to some extent, the regenerative valve 9 is opened to start regenerative control. There is.
- step S201 determines whether the forward / reverse lever position is neutral (N) (step S201). If the forward / reverse lever position is neutral (step S201, Yes), the process proceeds to step S205, the target brake torque TC in this regenerative state is set, and the process proceeds to step S206.
- step S202 it is further determined whether the forward / reverse lever position matches the traveling direction (step S202). If the forward / reverse lever position matches the traveling direction (step S202, Yes), the process proceeds to step S203, the target brake torque TA in this regenerative state is set, and the process proceeds to step S206. If the forward / reverse lever position does not coincide with the advancing direction (step S202, No), the process proceeds to step S204, the target brake torque TB in this regenerative state is set, and the process proceeds to step S206.
- the target brake torques TA, TB, and TC are values set in advance corresponding to the traveling state classified by the determination results of the steps S201 and S202. Although the magnitude is different depending on the rapid deceleration state or the like, the value becomes smaller in the order of target brake torque TB ⁇ TA ⁇ TC.
- the target brake torque in steps S203 to S205 is corrected by taking into consideration values such as the accelerator operation amount and the brake operation amount, and the bucket height and bucket raising speed of the working machine. It is also good. By this correction, it is possible to perform fine-grained brake torque control.
- the motor capacity of the HST motor 3 is variably controlled so that the current brake torque becomes equal to the set target brake torque (step S206), and the process returns to step S13.
- the current brake torque is obtained from a value obtained by multiplying the absolute differential pressure between the HST pipe 4A pressure and the HST pipe 4B pressure detected by the HST pressure sensors 2A and 2B and the current motor displacement.
- step S301 the controller 20 determines whether the accumulator pressure is equal to or less than a threshold (step S301). If the accumulator pressure is not equal to or less than the threshold (No at step S301), the regeneration valve 9 is closed (step S303) to end regeneration control (step S303), and the process returns to step S14.
- step S301 when the accumulator pressure is equal to or less than the threshold (Yes at step S301), it is further determined whether the absolute value of the traveling speed is equal to or more than the threshold (step S302). If the absolute value of the traveling speed is not equal to or higher than the threshold (No in step S302), the regenerative valve 9 is closed (step S303), and the process returns to step S14. In addition, when the absolute value of the traveling speed is equal to or more than the threshold (Yes in step S302), the process returns to step S14 while maintaining the regenerative valve 9 in the "open" state.
- FIGS. 7 and 8 are time charts showing an example of specific regenerative control at the time of shuttle operation.
- FIG. 7 illustrates an example in which the regeneration control is basically started when the forward and reverse levers do not match, and the regeneration control is ended when the absolute value of the traveling speed is equal to or less than the threshold. Further, in FIG. 8, the regeneration control is basically started when the forward and reverse levers do not match, and the regeneration control is ended when the accumulator pressure becomes equal to or less than the threshold.
- 7 (a) and 8 (a) show the traveling speed and the forward / backward lever position
- FIGS. 7 (b) and 8 (b) show the regeneration control ON / OFF (opening and closing of the regeneration valve 9).
- FIGS. 7 (c) and 8 (c) show the engine rotational speed
- FIGS. 7 (d) and 8 (d) show the accelerator operation amount and the brake operation amount
- FIG. 7 (e) shows the HST pipeline pressure
- FIGS. 7 (f) and 8 (f) show the HST pump displacement and the HST motor displacement
- FIGS. 7 (g) and 8 (g) show the accumulator
- the internal gas pressure (accumulator pressure) and the gas volume in the accumulator are shown
- FIG. 7 (h) and FIG. 8 (h) the brake torque is shown.
- the solid line indicates the case where the regenerative control according to the present embodiment is performed
- the broken line indicates the case where the regenerative control according to the present embodiment is not performed.
- the solid line indicates the case where the regenerative control according to the present embodiment is performed
- the two-dot chain line indicates the case where the regenerative control shown in FIG. 7 is performed.
- a slow reverse acceleration is performed from time t0 to t1
- the forward / reverse lever is reversely operated at time t1
- a decelerating state is performed from time t1 to t2, and from time t2 to t3.
- the state of advancing by reverse acceleration is shown, and after time t3, the case of a steady traveling state of advancing is shown.
- the accumulator pressure is less than or equal to the threshold Pmax (FIG. 7 (g)), and the absolute value of the traveling speed is less than the threshold Vth (FIG. 7 (a)).
- the state shifts to the "closed" state (FIG. 7 (b)), and the regenerative control ends.
- the controller 20 sets the absolute difference between the HST pipe 4B pressure and the HST pipe 4A pressure as the brake pressure, and the brake pressure at the time of regeneration with respect to the brake pressure at the time of non-regeneration
- the HST motor displacement is increased (FIG. 7 (f)) in response to the increase (FIG. 7 (e)).
- FIG. 7 (h) the time change of the brake torque is the same as that during non-regeneration regardless of regeneration and non-regeneration.
- the operator of the work vehicle can perform the work without feeling unnaturalness or anxiety in operation without unexpected sudden acceleration or the like when transitioning from regeneration to non-regeneration.
- the threshold value of the accumulator pressure is set to the maximum value Pmax.
- the present invention is not limited to this, but may be a near value less than the maximum value Pmax.
- FIG. 9 is a flowchart of a regenerative brake torque control procedure according to the first modification.
- the controller 20 determines whether the forward / reverse lever position is neutral (N) as in the regenerative brake torque control process shown in FIG. 5 (step S401). If the forward / reverse lever position is neutral (Yes at step S401), the process proceeds to step S405, the target brake torque TC in this regenerative state is set, and the process proceeds to steps S406 and S411.
- step S402 it is further determined whether the forward / reverse lever position matches the traveling direction (step S402). If the forward / reverse lever position matches the forward direction (step S402, Yes), the process proceeds to step S403, the target brake torque TA in this regenerative state is set, and the process proceeds to steps S406 and S411. If the forward / reverse lever position does not coincide with the advancing direction (step S402, No), the process proceeds to step S404 to set the target brake torque TB in the regenerative state, and proceeds to steps S406 and S411.
- the target brake torques TA, TB, and TC are values set in advance corresponding to the traveling states classified by the determination results of the steps S401 and S402. Although the magnitude is different depending on the rapid deceleration state or the like, the value becomes smaller in the order of target brake torque TB ⁇ TA ⁇ TC.
- the target brake torque in steps S403 to S405 is corrected by taking into consideration values such as the accelerator operation amount and the brake operation amount, and further, the bucket height and bucket raising speed of the working machine. It is also good. By this correction, it is possible to perform fine-grained brake torque control.
- step S406 the motor displacement of the HST motor 3 is variably controlled so that the current brake torque becomes equal to the set target brake torque, and the process returns to step S13.
- the current brake torque is obtained from a value obtained by multiplying the absolute differential pressure between the HST pipe 4A pressure and the HST pipe 4B pressure detected by the HST pressure sensors 2A and 2B and the current motor displacement.
- step S411 it is determined whether the engine speed or the engine output is equal to or less than a threshold (step S411). If the engine speed or the engine output is less than or equal to the threshold (Yes at step S411), the fuel injection amount of the engine is increased and / or the HST pump capacity is increased (step S413), and step S13 Return to
- step S412 it is further determined whether the bucket height is above the threshold or the bucket raising speed is below the threshold (step S412).
- the controller 20 acquires the bucket height and the bucket raising speed based on the detection result of the posture sensor 17 of the working machine. If the bucket height is equal to or more than the threshold or the bucket raising speed is equal to or less than the threshold (Yes at step S412), the process proceeds to step S413 to increase the fuel injection amount of the engine and / or increase the HST pump capacity And return to step S13. If the bucket height is equal to or more than the threshold or the bucket raising speed is not equal to or less than the threshold (No at step S412), the process returns to step S13.
- This determination of whether the engine fuel injection amount is equal to or less than the threshold is added because the engine fuel injection amount often becomes almost zero in the shuttle operation.
- the determination as to whether or not the engine rotational speed is equal to or higher than the threshold value is made because the engine rotational speed may be high during shuttle operation. This is because when the accelerator operation is performed, the engine rotational speed is often higher than the engine rotational speed corresponding to the accelerator operating amount.
- this modification 4 is a modification of the regeneration end determination processing. As shown in FIG. 12, in the regeneration end determination process, it is further determined whether or not the engine speed is equal to or less than the threshold (step S703), and the engine speed is equal to or less than the threshold (Yes in step S703). In this case, the regeneration control is terminated by closing the regeneration valve 9.
- the other steps S701, S702, and S704 correspond to steps S301 to S303 shown in FIG.
- step S803 it is determined whether the forward / backward lever position matches the traveling direction and the accelerator operation amount is equal to or greater than the threshold (step S803)
- the regeneration valve 9 is closed to end regeneration control.
- the other steps S801, S802 and S804 correspond to the steps S701, S702 and S704 shown in FIG.
- the forward / reverse lever position coincides with the traveling direction and the accelerator operation amount is equal to or greater than the threshold value because the deceleration may be interrupted during the deceleration to re-accelerate.
- step S 903 it is determined whether the fuel injection amount of the engine is equal to or greater than the threshold (step S 903), and the fuel injection amount of the engine is equal to or greater than the threshold In the case (Yes in step S903), the regeneration valve 9 is closed to end regeneration control.
- the other steps S901, S902, and S904 correspond to steps S801, S802, and S804 illustrated in FIG.
- the reason for adding the determination as to whether or not the fuel injection amount of the engine is equal to or greater than the threshold value is that the deceleration may be interrupted during deceleration and reacceleration may be performed.
- the regeneration valve 9 may be "opened" only by the determination processes of steps S103 and S104 shown in FIG.
- the regeneration 4 determines whether the accumulator pressure is equal to or less than the threshold Pth1 and equal to or more than the threshold Pth2.
- the threshold value Pth2 approaches the value of the full charge, the above-described regeneration enabled period becomes shorter.
- the reason why the period for regenerating is possible is that the condition of the accumulator pressure is only one condition of the regeneration start, and the regeneration is performed only when the other conditions are satisfied. That is, by appropriately changing the value of the above-described threshold value Pth2, it is possible to change and control the regeneration possible period. Also in the regeneration end determination process, the regeneration end possible time can be advanced by changing and controlling the threshold value Pth2, and as a result, the regeneration possible period can be shortened.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
- Control Of Fluid Gearings (AREA)
- Motor Power Transmission Devices (AREA)
- Regulating Braking Force (AREA)
Abstract
アキュムレータに運動エネルギーを油圧エネルギーとして貯蔵する回生時と非回生時との運動性能に違いが生じないようにしてオペレータに操作上の違和感や不安を抱かせない作業車両の回生制御装置を提供するため、駆動源1に結合されたHSTポンプ2と車輪54に結合されたHSTモータ3とをHST管路4A,4Bで閉じたHST回路10と、減速時の運動エネルギーを油圧エネルギーに変換して蓄積し、蓄積した油圧エネルギーを駆動源1に結合された回生モータ7に供給する回生アキュムレータ8と、HST管路4A,4Bと回生アキュムレータ8との間を接続する回生バルブ9と、回生バルブ9を開にして回生アキュムレータ8に回生油圧エネルギー蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御するコントローラ20と、を備える。
Description
この発明は、アキュムレータに運動エネルギーを油圧エネルギーとして貯蔵する回生時と非回生時との運動性能に違いが生じないようにしてオペレータに操作上の違和感や不安を抱かせない作業車両の回生制御装置および作業車両の回生制御方法に関する。
従来から、HST(Hydrostatic Transmission:静油圧式動力伝達装置)を備えたホイールローダなどの建設機械、農業機械、産業車両などの作業車両が知られている。HSTを備えた作業車両は、油圧ポンプと油圧モータとを閉じた油圧回路で連通させ、油圧モータの動力で走行する構成をとる。最近では、エンジンや油圧ポンプ、油圧モータを電子制御技術によって最適な出力やポンプ容量、モータ容量で駆動させて、作業効率の向上や省燃費を図ることができるようになっている。
一方、HSTを備えた作業車両では、走行減速時の運動エネルギーを油圧エネルギーに変換して貯蔵し、この貯蔵したエネルギーを放出することで動力源を補助的に駆動し、同時に相当する動力源の出力を低減することによって、燃費を低減するものがある。
たとえば、特許文献1に記載されたものでは、詳細には記載されていないが、車両に作用するブレーキトルクを、走行用可変モータの容量を変更することで調整するようにしている。また、特許文献1には、車両の運動エネルギーを油圧エネルギーとして回生し、アキュムレータにチャージすることと、アキュムレータが満充填状態になった場合に、このチャージを中止し、運動エネルギーをサービスブレーキによって熱エネルギーとして放出すること、とを選択制御するものが記載されている。
しかしながら、上述した特許文献1に記載されたものでは、アキュムレータに運動エネルギーをチャージする回生時とチャージしない非回生時とにおける作業車両の運動性能の違いについては何ら考慮されておらず、回生の有無によって運動性能に違いが生じる場合、オペレータに操作上の違和感や不安を抱かせてしまうという問題があった。特に、作業車両の減速途中において回生を中止する場合、作業車両の運動エネルギーの変化は大きいため、回生および非回生の変化によってオペレータが予期し得ないほどの大きな作業車両の運動性能の変化が生じる。
この発明は、上記に鑑みてなされたものであって、アキュムレータに運動エネルギーを油圧エネルギーとして貯蔵する回生時と非回生時との運動性能に違いが生じないようにしてオペレータに操作上の違和感や不安を抱かせない作業車両の回生制御装置および作業車両の回生制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、この発明にかかる作業車両の回生制御装置は、駆動源に結合された走行用油圧ポンプと車輪に結合された走行用油圧モータとを管路で閉じた油圧回路と、前記駆動源に結合された作業機油圧ポンプによって駆動される作業機と、減速時の運動エネルギーを油圧エネルギーに変換して蓄積し、蓄積した油圧エネルギーを前記駆動源に結合された回生モータに供給する回生アキュムレータと、前記管路と前記回生アキュムレータとの間を接続する回生バルブと、前記回生バルブを開にして前記回生アキュムレータに回生油圧エネルギーを蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御する制御部と、を備えたことを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、回生時に、走行状態に応じて予め決定された複数の目標ブレーキトルクのうちの1つの目標ブレーキトルクと現在のブレーキトルクとの差分が小さくなるように前記モータ容量を可変制御することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記目標ブレーキトルクは、アクセル操作量、ブレーキ操作量、作業機高さ、および作業機上げ速度のいずれか1以上を組み合わせた値をもとに補正することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、回生時に、駆動源回転数あるいは駆動源出力が第1閾値以下である場合、および/または、作業機高さが第2閾値以上あるいは作業機上げ速度が第3閾値以下である場合、駆動源出力用の物理供給量を増大、および/または前記走行用油圧ポンプの容量を増大させる制御を行うことを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、アキュムレータ圧、および/または、走行速度の絶対値をもとに、回生制御を開始することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量、および/またはブレーキ操作量をもとに、回生制御を開始することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を開始することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、アキュムレータ圧、および/または、走行速度の絶対値をもとに、回生制御を終了することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、前記制御部は、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量をもとに、回生制御を終了することを特徴とする。
また、この発明にかかる作業車両の回生制御装置は、上記の発明において、駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を終了することを特徴とする。
また、この発明にかかる作業車両の回生制御方法は、駆動源に結合された走行用油圧ポンプと車輪に結合された走行用油圧モータとを管路で閉じた油圧回路と、前記駆動源に結合された作業機油圧ポンプによって駆動される作業機と、減速時の運動エネルギーを油圧エネルギーに変換して蓄積し、蓄積した油圧エネルギーを前記駆動源に結合された回生モータに供給する回生アキュムレータと、前記管路と前記回生アキュムレータとの間を接続する回生バルブと、を備えた作業車両の回生制御方法であって、前記回生バルブを開にして前記回生アキュムレータに回生油圧エネルギーを蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御することを特徴とする。
また、この発明にかかる作業車両の回生制御方法は、上記の発明において、アキュムレータ圧、および/または、走行速度の絶対値、および/または、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量、および/または、ブレーキ操作量、および/または、駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を開始あるいは終了することを特徴とする。
この発明によれば、回生バルブを開にして回生アキュムレータに回生油圧エネルギー蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御するようにしているので、回生アキュムレータに運動エネルギーを油圧エネルギーとして貯蔵する回生時と非回生時との運動性能に違いが生じなくなり、結果的に、オペレータに操作上の違和感や不安を抱かせることがなくなる。
以下、添付図面を参照してこの発明を実施するための形態について説明する。
[全体構成]
図1は、作業車両の一例であるホイールローダ50の全体構成を示す図である。また、図2は、ホイールローダ50のHST回路を中心に示した回路構成を示す図である。図1に示すように、ホイールローダ50は、車体51と、車体51の前部に装着されたリフトアーム52やリフトアーム52の先端に取り付けられたバケット53、ベルクランク56などで構成される作業機と、車体51を支持しながら回転して車体51を走行させる4つの車輪54と、車体51の上部に搭載されたキャブ(運転室)55とを有する。
図1は、作業車両の一例であるホイールローダ50の全体構成を示す図である。また、図2は、ホイールローダ50のHST回路を中心に示した回路構成を示す図である。図1に示すように、ホイールローダ50は、車体51と、車体51の前部に装着されたリフトアーム52やリフトアーム52の先端に取り付けられたバケット53、ベルクランク56などで構成される作業機と、車体51を支持しながら回転して車体51を走行させる4つの車輪54と、車体51の上部に搭載されたキャブ(運転室)55とを有する。
リフトアーム52は、先端に取り付けられたバケット53を持ち上げるためのリンク部材であって、リフトアーム52に連結された作業機用油圧シリンダ(リフトシリンダ)19aが伸縮動作することによって上下に動作する。また、バケット53は、リフトアーム52の先端に取り付けられており、さらにベルクランク56というリンク部材を介して連結された作業機用油圧シリンダ(バケットシリンダ)19bが伸縮動作することによってダンプおよびチルトする。
[回路構成]
ホイールローダ50には、図2に示した回路構成が搭載されている。すなわち、エンジンやモータなどの駆動源1によって駆動されるHSTポンプ(走行用油圧ポンプ)2から吐き出された作動油によってHSTモータ(走行用油圧モータ)3を駆動し、車輪54を駆動することによってホイールローダ50を走行させるためのHST回路10を有する。HST回路10は、HSTポンプ2とHSTモータ3との間をHST管路4A,4Bで構成されるHST管路4で接続されて閉じた油圧回路を形成している。
ホイールローダ50には、図2に示した回路構成が搭載されている。すなわち、エンジンやモータなどの駆動源1によって駆動されるHSTポンプ(走行用油圧ポンプ)2から吐き出された作動油によってHSTモータ(走行用油圧モータ)3を駆動し、車輪54を駆動することによってホイールローダ50を走行させるためのHST回路10を有する。HST回路10は、HSTポンプ2とHSTモータ3との間をHST管路4A,4Bで構成されるHST管路4で接続されて閉じた油圧回路を形成している。
駆動源1の駆動軸には、HSTポンプ2のほかに、作業機ポンプ5、チャージポンプ6、回生モータ7が結合されている。作業機ポンプ5は、制御バルブ18に作動油を供給して作業機用油圧シリンダ19a,19bを伸縮動作させる。チャージポンプ6は、低圧リリーフ弁11を介してタンクに接続される。また、チャージポンプ6は、チェック弁12A,12Bを介し、それぞれ低圧状態となるHST管路4A,4Bに作動油を供給する。
回生モータ7は、回生アキュムレータ8に蓄積された油圧エネルギーによって回転駆動するポンプである。回生バルブ9は、回生制御モードの場合、「開」となり、チェック弁13A,13Bを介して、HST管路4A,4Bからの高圧作動油を油圧エネルギーとして回生アキュムレータ8に蓄積する。すなわち、回生制御モードの場合、走行減速などによる車輪54からの運動エネルギーは、HSTモータ3およびHST管路4A,4Bを介して油圧エネルギーに変換され、この油圧エネルギーは、チェック弁13A,13Bおよび回生バルブ9を介して回生アキュムレータ8に蓄積される。そして、回生アキュムレータ8に蓄積された油圧エネルギーは、回生モータ7に供給され、駆動源1の回転軸を回転アシストする。回生アキュムレータ8に油圧エネルギーが蓄積される場合は、HST管路4A,4Bの高圧側管路圧が、回生アキュムレータ8の圧力よりも大きい場合である。回生モータ7は、回生アキュムレータ8に蓄積された油圧エネルギーがなくなるまで駆動されるが、回生アキュムレータ8に蓄積された油圧エネルギーがなくなると、チェック弁14を介してタンクから油を回生モータ7の入口側に吸い込むように動作する。なお、回生制御モードでない場合、回生バルブ9は「閉」となり、HST管路4A,4Bからの高圧作動油は、チェック弁13A,13Bおよび高圧リリーフ弁15を介し、さらにチェック弁12A,12Bを介して低圧状態のHST管路4A,4Bに作動油を供給する。
コントローラ20は、前後進レバーセンサ21、アクセル開度センサ22、ブレーキ開度センサ23などの検出結果、および駆動源1の回転数などをもとに駆動源1の駆動を制御する。また、コントローラ20は、作業機レバーセンサ24の検出結果をもとに制御バルブ18を制御して作業機用油圧シリンダ19a,19bの駆動を制御する。さらに、コントローラ20は、HST管路4A,4Bの圧力をそれぞれ検出するHST圧力センサ2A,2Bの圧力をもとにHSTポンプ2の斜板2CおよびHSTモータ3の斜板3Cを制御してポンプ容量およびモータ容量をそれぞれ制御する。
特に、コントローラ20は、圧力センサ8aが検出する回生アキュムレータ8のアキュムレータ圧、および走行速度センサ25が検出する走行速度などをもとに、回生バルブ9の開閉を制御して回生アキュムレータ8への油圧エネルギーの蓄積を制御するとともに、回生バルブ9を「開」状態にする回生制御モード時に、回生時と非回生時とのブレーキトルクが同じになるようにHSTモータ3のモータ容量を可変制御する。
[回生制御]
つぎに、コントローラ20による回生制御処理について、フローチャートを参照して説明する。図3は、コントローラ20による回生制御処理手順を示す全体フローチャートである。図3に示すように、コントローラ20は、まず、回生バルブ9を「閉」にした状態で、回生制御処理を開始するか否かの判断を行うとともに、回生バルブ9を「開」にするか否かの判断を行う(ステップS11)。その後、ステップS11の処理で、回生バルブ9が「開」に設定されたか否かを判断し(ステップS12)、回生バルブ9が「開」に設定されない場合(ステップS12,No)には、ステップS11の処理を繰り返す。一方、回生バルブ9が「開」に設定された場合(ステップS12,Yes)には、回生時と非回生時とのブレーキトルクが同じになるように、HSTモータ3の斜板3Cを変化させてモータ容量を変化させる回生ブレーキトルク制御処理を行う(ステップS13)。ブレーキトルクは、モータ容量とブレーキ圧(HST管路4A,4Bの絶対差圧)とに比例するため、回生時と非回生時とのブレーキトルクを同じにするためには、回生時に回生分のブレーキ圧が減少するため、この減少分に対応してモータ容量を増大させる制御を行うようにしている。
つぎに、コントローラ20による回生制御処理について、フローチャートを参照して説明する。図3は、コントローラ20による回生制御処理手順を示す全体フローチャートである。図3に示すように、コントローラ20は、まず、回生バルブ9を「閉」にした状態で、回生制御処理を開始するか否かの判断を行うとともに、回生バルブ9を「開」にするか否かの判断を行う(ステップS11)。その後、ステップS11の処理で、回生バルブ9が「開」に設定されたか否かを判断し(ステップS12)、回生バルブ9が「開」に設定されない場合(ステップS12,No)には、ステップS11の処理を繰り返す。一方、回生バルブ9が「開」に設定された場合(ステップS12,Yes)には、回生時と非回生時とのブレーキトルクが同じになるように、HSTモータ3の斜板3Cを変化させてモータ容量を変化させる回生ブレーキトルク制御処理を行う(ステップS13)。ブレーキトルクは、モータ容量とブレーキ圧(HST管路4A,4Bの絶対差圧)とに比例するため、回生時と非回生時とのブレーキトルクを同じにするためには、回生時に回生分のブレーキ圧が減少するため、この減少分に対応してモータ容量を増大させる制御を行うようにしている。
その後、回生バルブ9を「開」状態にする回生制御を終了するか否か、すなわち回生バルブ9を「閉」にするか否かの判断処理を行う(ステップS14)。その後、ステップS14の処理で、回生バルブ9が「閉」に設定されたか否かを判断し(ステップS15)、回生バルブ9が「閉」に設定されない場合(ステップS15,No)には、回生バルブ9の「開」状態を維持し、ステップS13に移行して回生ブレーキトルク制御処理を繰り返す。一方、回生バルブ9が「閉」に設定された場合(ステップS15,Yes)、ステップS11に移行して、回生制御を開始するか否かの回生開始判断処理を再度行う。
ここで、図4に示したフローチャートを参照して、ステップS11の回生開始判断処理手順について説明する。図4に示すように、まず、コントローラ20は、前後進レバーセンサ21の検出結果と走行速度センサ25の検出結果とをもとに、前後進レバー位置が進行方向と一致しているか否かを判断する(ステップS101)。前後進レバーセンサ21は、図7(a)に示すように、前進(F)、中立(N)、後進(R)の状態を検出している。また、走行速度センサ25は、走行速度の符号によって、正ならば前進(F)、負ならば後進(R)であると検出している。ここで、前後進レバー位置と進行方向とが一致しない場合には、急減速状態になる。たとえば、図7の時点t1における前後進レバー操作がこの急減速に相当する。このような前後進レバーの逆操作を「シャトル操作」といい、ホイールローダなどのVシェープ作業では、アクセル操作やブレーキ操作を行わず、シャトル操作のみで作業を行う場合が多い。ここで、前後進レバー位置が進行方向と一致していない、急減速の場合(ステップS101,No)には、ステップS103に移行する。
一方、前後進レバー位置が進行方向と一致している場合(ステップS101,Yes)には、さらに、アクセル開度センサ22およびブレーキ開度センサ23の検出結果をもとに、アクセル操作量が閾値未満、および/またはブレーキ操作量が閾値以上であるか否かを判断する(ステップS102)。すなわち、減速状態であるか否かを判断する。アクセル操作量が閾値未満、および/またはブレーキ操作量が閾値以上である場合(ステップS102,Yes)には、ステップS103に移行する。一方、アクセル操作量が閾値未満、および/またはブレーキ操作量が閾値以上でない場合(ステップS102,No)には、本処理を終了し、回生バルブ9の「閉」状態を維持する。
その後、ステップS103では、圧力センサ8aの検出結果をもとに、回生アキュムレータ8のアキュムレータ圧が閾値以下であるか否か、すなわち、回生油圧エネルギーを蓄える能力があるか否かを判断する(ステップS103)。アキュムレータ圧が閾値以下でない場合(ステップS103,No)には、回生の効果がないため、回生バルブ9の「閉」状態を維持して、リターンする。
一方、アキュムレータ圧が閾値以下である場合(ステップS103,Yes)には、さらに走行速度センサ25の検出結果をもとに、走行速度の絶対値が閾値以上であるか否かを判断する(ステップS104)。走行速度の絶対値が閾値未満である場合には、回生できる油圧エネルギーが減少している。そして、走行速度の絶対値が閾値以上である場合(ステップS104,Yes)には、回生制御を行うべく、回生バルブ9を「開」状態にして(ステップS105)、ステップS11にリターンする。一方、走行速度の絶対値が閾値以上でない場合(ステップS104,No)には、回生バルブ9の「閉」状態を維持して、ステップS11にリターンする。
すなわち、作業機械が急減速状態で、回生アキュムレータ8に作動油を蓄積する能力があり、走行速度が、ある程度ある場合には、回生バルブ9を「開」にして回生制御を開始させるようにしている。
つぎに、図5に示したフローチャートを参照して、ステップS13の回生ブレーキトルク制御処理手順について説明する。まず、コントローラ20は、前後進レバー位置が中立(N)であるか否かを判断する(ステップS201)。前後進レバー位置が中立である場合(ステップS201,Yes)には、ステップS205に移行し、この回生状態における目標ブレーキトルクTCを設定し、ステップS206に移行する。
一方、前後進レバー位置が中立でない場合(ステップS201,No)には、さらに前後進レバー位置が進行方向と一致するか否かを判断する(ステップS202)。前後進レバー位置が進行方向と一致する場合(ステップS202,Yes)には、ステップS203に移行し、この回生状態における目標ブレーキトルクTAを設定し、ステップS206に移行する。また、前後進レバー位置が進行方向と一致しない場合(ステップS202,No)には、ステップS204に移行し、この回生状態における目標ブレーキトルクTBを設定し、ステップS206に移行する。目標ブレーキトルクTA,TB,TCは、これらステップS201,S202の判断結果によって分類された走行状態に対応してあらかじめ設定される値である。急減速状態などによって大きさは異なるが、目標ブレーキトルクTB→TA→TCの順に小さな値となる。
なお、この段階で、アクセル操作量やブレーキ操作量の大きさ、さらには、作業機のバケット高さやバケット上げ速度などの値を加味して、このステップS203~S205の目標ブレーキトルクを補正してもよい。この補正によって、さらに、きめの細かいブレーキトルク制御を行うことができる。
その後、現在のブレーキトルクが、設定された目標ブレーキトルクと同じになるように、HSTモータ3のモータ容量を可変制御し(ステップS206)、ステップS13にリターンする。なお、現在のブレーキトルクは、HST圧力センサ2A,2Bによって検出されたHST管路4A圧とHST管路4B圧との絶対差圧と、現在のモータ容量とを乗算した値とから求められる。
ここで、図6のフローチャートを参照して、ステップS14に示した回生終了判断処理手順について説明する。まず、コントローラ20は、アキュムレータ圧が閾値以下であるか否かを判断する(ステップS301)。アキュムレータ圧が閾値以下でない場合(ステップS301,No)には、回生制御を終了させるため、回生バルブ9を「閉」にして(ステップS303)、ステップS14にリターンする。
一方、アキュムレータ圧が閾値以下である場合(ステップS301,Yes)には、さらに走行速度の絶対値が閾値以上であるか否かを判断する(ステップS302)。走行速度の絶対値が閾値以上でない場合(ステップS302,No)には、回生バルブ9を「閉」にして(ステップS303)、ステップS14にリターンする。また、走行速度の絶対値が閾値以上である場合(ステップS302,Yes)には、回生バルブ9を「開」に維持したまま、ステップS14にリターンする。
すなわち、この回生終了判断処理では、回生アキュムレータ8に作動油を蓄積する能力が実質的になくなり、走行速度が小さいときに回生油圧エネルギーの蓄積が実質的にない場合には、回生バルブ9を「閉」にして回生制御を終了するようにしている。
[回生制御の具体例]
図7および図8は、それぞれ具体的なシャトル操作時の回生制御の一例を示すタイムチャートである。図7では、基本的に前後進レバーの不一致状態で回生制御を開始し、走行速度の絶対値が閾値以下となった状態で回生制御を終了している一例を示している。また、図8では、基本的に前後進レバーの不一致状態で回生制御を開始し、アキュムレータ圧が閾値以下となった状態で回生制御を終了している。図7(a),図8(a)では、走行速度および前後進レバー位置を示し、図7(b),図8(b)では、回生制御ON/OFF(回生バルブ9の開閉)を示し、図7(c),図8(c)では、エンジン回転数を示し、図7(d),図8(d)では、アクセル操作量およびブレーキ操作量を示し、図7(e),図8(e)では、HST管路圧を示し、図7(f),図8(f)では、HSTポンプ容量およびHSTモータ容量を示し、図7(g),図8(g)では、アキュムレータ内ガス圧力(アキュムレータ圧)およびアキュムレータ内ガス容量を示し、図7(h),図8(h)では、ブレーキトルクを示している。なお、図7において、実線は、本実施の形態による回生制御を行った場合を示し、破線は、本実施の形態による回生制御を行わない場合を示している。図8において、実線は、本実施の形態による回生制御を行った場合を示し、2点鎖線は、図7に示した回生制御を行った場合を示している。なお、図7および図8では、時点t0からt1までは、緩い後進の加速を行い、時点t1において、前後進レバーを逆操作し、時点t1からt2までは減速状態となり、時点t2からt3まで反転加速で前進する状態を示し、時点t3以降は、前進の定常走行状態となる場合を示している。
図7および図8は、それぞれ具体的なシャトル操作時の回生制御の一例を示すタイムチャートである。図7では、基本的に前後進レバーの不一致状態で回生制御を開始し、走行速度の絶対値が閾値以下となった状態で回生制御を終了している一例を示している。また、図8では、基本的に前後進レバーの不一致状態で回生制御を開始し、アキュムレータ圧が閾値以下となった状態で回生制御を終了している。図7(a),図8(a)では、走行速度および前後進レバー位置を示し、図7(b),図8(b)では、回生制御ON/OFF(回生バルブ9の開閉)を示し、図7(c),図8(c)では、エンジン回転数を示し、図7(d),図8(d)では、アクセル操作量およびブレーキ操作量を示し、図7(e),図8(e)では、HST管路圧を示し、図7(f),図8(f)では、HSTポンプ容量およびHSTモータ容量を示し、図7(g),図8(g)では、アキュムレータ内ガス圧力(アキュムレータ圧)およびアキュムレータ内ガス容量を示し、図7(h),図8(h)では、ブレーキトルクを示している。なお、図7において、実線は、本実施の形態による回生制御を行った場合を示し、破線は、本実施の形態による回生制御を行わない場合を示している。図8において、実線は、本実施の形態による回生制御を行った場合を示し、2点鎖線は、図7に示した回生制御を行った場合を示している。なお、図7および図8では、時点t0からt1までは、緩い後進の加速を行い、時点t1において、前後進レバーを逆操作し、時点t1からt2までは減速状態となり、時点t2からt3まで反転加速で前進する状態を示し、時点t3以降は、前進の定常走行状態となる場合を示している。
図7において、時点t1で、前後進レバー位置が進行方向と不一致となり(図7(a))、アキュムレータ圧も閾値Pmax以下であり(図7(g))、走行速度の絶対値も閾値Vth以上である(図7(a))ため、回生バルブ9は、「閉」状態から「開」状態に移行して(図7(b))、回生制御が開始される。
そして、時点t12で、アキュムレータ圧は閾値Pmax以下であり(図7(g))、走行速度の絶対値が閾値Vth未満となる(図7(a))ため、回生バルブ9は、「開」状態から「閉」状態に移行して(図7(b))、回生制御が終了する。
この時点t1からt12の間の回生制御中に、コントローラ20は、HST管路4B圧とHST管路4A圧との絶対差分をブレーキ圧とし、非回生時のブレーキ圧に対する回生時のブレーキ圧の増大分に対応して(図7(e))、HSTモータ容量を増大させている(図7(f))。この結果、図7(h)に示すように、回生時および非回生時にかかわらず、ブレーキトルクの時間変化は、非回生時と同じになる。
この結果、作業車両のオペレータは、回生時から非回生時に移行する際に不測の急な加速などがなく、操作上の違和感や不安を抱かずに作業を行うことができる。
一方、図8では、回生制御の終了判断として、時点t13で、アキュムレータ圧が閾値Pmaxを越えたため(図8(g))、回生バルブ9を「開」から「閉」にし、回生制御を終了させている(図8(b))。この場合でも、図8(h)に示すように、回生時および非回生時にかかわらず、ブレーキトルクの時間変化は、非回生時と同じになる。
なお、上述した実施の形態では、アキュムレータ圧の閾値を最大値Pmaxに設定したが、これに限らず、最大値Pmax未満の近傍値でもよい。
[変形例1]
なお、上述した実施の形態で回生制御を行う場合、走行回生の背反として、エンジン(駆動源)回転数の低下が大きく、減速後の加速が悪くなる場合がある。このため、この変形例1では、減速後の加速に影響を与えない制御を同時に行うようにしている。
なお、上述した実施の形態で回生制御を行う場合、走行回生の背反として、エンジン(駆動源)回転数の低下が大きく、減速後の加速が悪くなる場合がある。このため、この変形例1では、減速後の加速に影響を与えない制御を同時に行うようにしている。
図9は、変形例1にかかる回生ブレーキトルク制御処理手順を示すフローチャートである。図9に示すように、まず、コントローラ20は、図5に示した回生ブレーキトルク制御処理と同様に、前後進レバー位置が中立(N)であるか否かを判断する(ステップS401)。前後進レバー位置が中立である場合(ステップS401,Yes)には、ステップS405に移行し、この回生状態における目標ブレーキトルクTCを設定し、ステップS406,S411に移行する。
一方、前後進レバー位置が中立でない場合(ステップS401,No)には、さらに前後進レバー位置が進行方向と一致するか否かを判断する(ステップS402)。前後進レバー位置が進行方向と一致する場合(ステップS402,Yes)には、ステップS403に移行し、この回生状態における目標ブレーキトルクTAを設定し、ステップS406,S411に移行する。また、前後進レバー位置が進行方向と一致しない場合(ステップS402,No)には、ステップS404に移行し、この回生状態における目標ブレーキトルクTBを設定し、ステップS406,S411に移行する。目標ブレーキトルクTA,TB,TCは、これらステップS401,S402の判断結果によって分類された走行状態に対応してあらかじめ設定される値である。急減速状態などによって大きさは異なるが、目標ブレーキトルクTB→TA→TCの順に小さな値となる。
なお、この段階で、アクセル操作量やブレーキ操作量の大きさ、さらには、作業機のバケット高さやバケット上げ速度などの値を加味して、このステップS403~S405の目標ブレーキトルクを補正してもよい。この補正によって、さらに、きめの細かいブレーキトルク制御を行うことができる。
その後、ステップS406の処理と、ステップS411の処理とが並行処理される。まず、ステップS406では、現在のブレーキトルクが、設定された目標ブレーキトルクと同じになるように、HSTモータ3のモータ容量を可変制御し、ステップS13にリターンする。なお、現在のブレーキトルクは、HST圧力センサ2A,2Bによって検出されたHST管路4A圧とHST管路4B圧との絶対差圧と、現在のモータ容量とを乗算した値とから求められる。
一方、上述したステップS406によるモータ容量の可変制御によるブレーキトルク制御時に並行して、エンジン噴射量制御およびHSTポンプ容量制御を行う。まず、エンジン回転数あるいはエンジン出力が閾値以下であるか否かを判断する(ステップS411)。エンジン回転数あるいはエンジン出力が閾値以下である場合(ステップS411,Yes)には、エンジンの燃料噴射量を増大し、および/またはHSTポンプ容量を増大させる処理を行って(ステップS413)、ステップS13にリターンする。
一方、エンジン回転数あるいはエンジン出力が閾値以下でない場合(ステップS411,No)には、さらにバケット高さが閾値以上あるいはバケット上げ速度が閾値以下であるか否かを判断する(ステップS412)。なお、コントローラ20は、このバケット高さおよびバケット上げ速度を、作業機の姿勢センサ17の検出結果によって取得する。バケット高さが閾値以上あるいはバケット上げ速度が閾値以下である場合(ステップS412,Yes)には、ステップS413に移行し、エンジンの燃料噴射量を増大し、および/またはHSTポンプ容量を増大させる処理を行って、ステップS13にリターンする。また、バケット高さが閾値以上あるいはバケット上げ速度が閾値以下でない場合(ステップS412,No)には、そのままステップS13にリターンする。
[変形例2]
この変形例2では、図10に示すように、図4に示した回生開始判断処理に、エンジンの燃料噴射量が閾値以下であるか否かを判断し(ステップS505)、エンジンの燃料噴射量が閾値以下である場合(ステップS505,Yes)には、回生バルブ9を「開」にして回生制御を行うようにしている。その他のステップS501~S504,S506は、図4に示したステップS101~S104,S105に相当する。
この変形例2では、図10に示すように、図4に示した回生開始判断処理に、エンジンの燃料噴射量が閾値以下であるか否かを判断し(ステップS505)、エンジンの燃料噴射量が閾値以下である場合(ステップS505,Yes)には、回生バルブ9を「開」にして回生制御を行うようにしている。その他のステップS501~S504,S506は、図4に示したステップS101~S104,S105に相当する。
このエンジン燃料噴射量が閾値以下であるか否かの判断を加えたのは、シャトル操作には、エンジン燃料噴射量がほぼゼロになる場合が多いからである。
なお、エンジンの燃料噴射量が閾値以下であるか否かの判断に替えて、エンジンの燃料噴射量の時間変化が負(噴射量減少)であるか否かの判断であってもよい。
[変形例3]
この変形例3では、図11に示すように、図10に示した回生開始判断処理のステップS505の処理に替えて、エンジン回転数が閾値以上であるか否かを判断するようにしている(ステップS605)。その他のステップS601~S604,S606は、図10に示したステップS501~S504,S506に相当する。
この変形例3では、図11に示すように、図10に示した回生開始判断処理のステップS505の処理に替えて、エンジン回転数が閾値以上であるか否かを判断するようにしている(ステップS605)。その他のステップS601~S604,S606は、図10に示したステップS501~S504,S506に相当する。
このエンジン回転数が閾値以上であるか否かの判断を加えたのは、シャトル操作時には、エンジン回転数が高くなる場合があるからである。アクセル操作を行っている場合には、アクセル操作量に対応するエンジン回転数よりも高いエンジン回転数となる場合が多いからである。
なお、上述した変形例2,3の要素は、それぞれ適宜組み合わせ可能であり、判断もそれぞれの要素のアンドあるいはオアの組み合わせが可能である。
[変形例4]
つぎに、この変形例4は、回生終了判断処理の変形例である。図12に示すように、この回生終了判断処理では、さらにエンジン回転数が閾値以下であるか否かを判断し(ステップS703)、エンジン回転数が閾値以下である場合(ステップS703,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS701,S702,S704は、図6に示したステップS301~S303に相当する。
つぎに、この変形例4は、回生終了判断処理の変形例である。図12に示すように、この回生終了判断処理では、さらにエンジン回転数が閾値以下であるか否かを判断し(ステップS703)、エンジン回転数が閾値以下である場合(ステップS703,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS701,S702,S704は、図6に示したステップS301~S303に相当する。
[変形例5]
図13に記載の変形例5では、図12のステップS703に替えて、前後進レバー位置が進行方向と一致し、アクセル操作量が閾値以上であるか否かを判断し(ステップS803)、前後進レバー位置が進行方向と一致し、アクセル操作量が閾値以上である場合(ステップS803,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS801,S802,S804は、図12に示したステップS701,S702,S704に相当する。
図13に記載の変形例5では、図12のステップS703に替えて、前後進レバー位置が進行方向と一致し、アクセル操作量が閾値以上であるか否かを判断し(ステップS803)、前後進レバー位置が進行方向と一致し、アクセル操作量が閾値以上である場合(ステップS803,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS801,S802,S804は、図12に示したステップS701,S702,S704に相当する。
この前後進レバー位置が進行方向と一致し、アクセル操作量が閾値以上であるか否かの判断を加えたのは、減速中に減速を中断して再加速をする場合があるからである。
[変形例6]
図14に記載の変形例6では、図13のステップS803に替えて、エンジンの燃料噴射量が閾値以上であるか否かを判断し(ステップS903)、エンジンの燃料噴射量が閾値以上である場合(ステップS903,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS901,S902,S904は、図13に示したステップS801,S802,S804に相当する。
図14に記載の変形例6では、図13のステップS803に替えて、エンジンの燃料噴射量が閾値以上であるか否かを判断し(ステップS903)、エンジンの燃料噴射量が閾値以上である場合(ステップS903,Yes)には、回生バルブ9を「閉」にして回生制御を終了するようにしている。その他のステップS901,S902,S904は、図13に示したステップS801,S802,S804に相当する。
このエンジンの燃料噴射量が閾値以上であるか否かの判断を加えたのは、減速中に減速を中断して再加速をする場合があるからである。
なお、上述した変形例4~6の要素は、それぞれ適宜組み合わせ可能であり、判断もそれぞれの要素のアンドあるいはオアの組み合わせが可能である。また、それぞれの回生開始判断処理と回生終了判断処理との適宜な組み合わせも可能である。
また、回生開始判断処理では、図4に示したステップS103,S104の判断処理のみで、回生バルブ9を「開」にするようにしてもよい。
[変形例7]
なお、上述した実施の形態および変形例1~6の回生開始判断処理および回生終了判断処理におけるアキュムレータ圧の各閾値(ステップS103,S301,S503,S603,S701,S801,S901)は、満充填に近い閾値として説明したが、これに限らず、満充填に近い閾値(Pth1)よりも低い閾値Pth2(Pth2<Pth1)を設定し、現在のアキュムレータ圧が満充填に近づくにしたがって、回生バルブ9を「開」にする回生可能期間を短くするようにしてもよい。たとえば、図4に示した回生開始判断処理におけるステップS104の判断処理を、アキュムレータ圧が閾値Pth1以下、かつ、閾値Pth2以上であるか否かを判断するようにする。この場合、閾値Pth2を満充填の値に近づけるにしたがって、上述した回生可能期間は短くなる。なお、回生可能期間と呼称するのは、アキュムレータ圧の条件は、回生開始の1つの条件に過ぎず、他の条件を満足してはじめて回生が行われるからである。すなわち、上述した閾値Pth2の値を適宜変更することによって、回生可能期間を変更制御することができる。なお、回生終了判断処理においても、閾値Pth2を変更制御することによって回生終了可能時期を早めることができ、結果的に回生可能期間を短くすることができる。
なお、上述した実施の形態および変形例1~6の回生開始判断処理および回生終了判断処理におけるアキュムレータ圧の各閾値(ステップS103,S301,S503,S603,S701,S801,S901)は、満充填に近い閾値として説明したが、これに限らず、満充填に近い閾値(Pth1)よりも低い閾値Pth2(Pth2<Pth1)を設定し、現在のアキュムレータ圧が満充填に近づくにしたがって、回生バルブ9を「開」にする回生可能期間を短くするようにしてもよい。たとえば、図4に示した回生開始判断処理におけるステップS104の判断処理を、アキュムレータ圧が閾値Pth1以下、かつ、閾値Pth2以上であるか否かを判断するようにする。この場合、閾値Pth2を満充填の値に近づけるにしたがって、上述した回生可能期間は短くなる。なお、回生可能期間と呼称するのは、アキュムレータ圧の条件は、回生開始の1つの条件に過ぎず、他の条件を満足してはじめて回生が行われるからである。すなわち、上述した閾値Pth2の値を適宜変更することによって、回生可能期間を変更制御することができる。なお、回生終了判断処理においても、閾値Pth2を変更制御することによって回生終了可能時期を早めることができ、結果的に回生可能期間を短くすることができる。
1 駆動源
2 HSTポンプ
2A,2B HST圧力センサ
2C,3C 斜板
3 HSTモータ
4,4A,4B HST管路
5 作業機ポンプ
6 チャージポンプ
7 回生モータ
8 回生アキュムレータ
8a 圧力センサ
9 回生バルブ
10 HST回路
11 低圧リリーフ弁
12A,12B,13A,13B,14 チェック弁
15 高圧リリーフ弁
17 姿勢センサ
18 制御バルブ
19a,19b 作業機用油圧シリンダ
20 コントローラ
21 前後進レバーセンサ
22 アクセル開度センサ
23 ブレーキ開度センサ
24 作業機レバーセンサ
25 走行速度センサ
54 車輪
2 HSTポンプ
2A,2B HST圧力センサ
2C,3C 斜板
3 HSTモータ
4,4A,4B HST管路
5 作業機ポンプ
6 チャージポンプ
7 回生モータ
8 回生アキュムレータ
8a 圧力センサ
9 回生バルブ
10 HST回路
11 低圧リリーフ弁
12A,12B,13A,13B,14 チェック弁
15 高圧リリーフ弁
17 姿勢センサ
18 制御バルブ
19a,19b 作業機用油圧シリンダ
20 コントローラ
21 前後進レバーセンサ
22 アクセル開度センサ
23 ブレーキ開度センサ
24 作業機レバーセンサ
25 走行速度センサ
54 車輪
Claims (12)
- 駆動源に結合された走行用油圧ポンプと車輪に結合された走行用油圧モータとを管路で閉じた油圧回路と、
前記駆動源に結合された作業機油圧ポンプによって駆動される作業機と、
減速時の運動エネルギーを油圧エネルギーに変換して蓄積し、蓄積した油圧エネルギーを前記駆動源に結合された回生モータに供給する回生アキュムレータと、
前記管路と前記回生アキュムレータとの間を接続する回生バルブと、
前記回生バルブを開にして前記回生アキュムレータに回生油圧エネルギーを蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御する制御部と、
を備えたことを特徴とする作業車両の回生制御装置。 - 前記制御部は、回生時に、走行状態に応じて予め決定された複数の目標ブレーキトルクのうちの1つの目標ブレーキトルクと現在のブレーキトルクとの差分が小さくなるように前記モータ容量を可変制御することを特徴とする請求項1に記載の作業車両の回生制御装置。
- 前記目標ブレーキトルクは、アクセル操作量、ブレーキ操作量、作業機高さ、および作業機上げ速度のいずれか1以上を組み合わせた値をもとに補正することを特徴とする請求項1または2に記載の作業車両の回生制御装置。
- 前記制御部は、回生時に、駆動源回転数あるいは駆動源出力が第1閾値以下である場合、および/または、作業機高さが第2閾値以上あるいは作業機上げ速度が第3閾値以下である場合、駆動源出力用の物理供給量を増大、および/または前記走行用油圧ポンプの容量を増大させる制御を行うことを特徴とする請求項1~3のいずれか一つに記載の作業車両の回生制御装置。
- 前記制御部は、アキュムレータ圧、および/または、走行速度の絶対値をもとに、回生制御を開始することを特徴とする請求項1~4のいずれか一つに記載の作業車両の回生制御装置。
- 前記制御部は、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量、および/またはブレーキ操作量をもとに、回生制御を開始することを特徴とする請求項5に記載の作業車両の回生制御装置。
- 駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を開始することを特徴とする請求項5または6に記載の作業車両の回生制御装置。
- 前記制御部は、アキュムレータ圧、および/または、走行速度の絶対値をもとに、回生制御を終了することを特徴とする請求項5~7のいずれか一つに記載の作業車両の回生制御装置。
- 前記制御部は、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量をもとに、回生制御を終了することを特徴とする請求項5~8のいずれか一つに記載の作業車両の回生制御装置。
- 駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を終了することを特徴とする請求項5~9のいずれか一つに記載の作業車両の回生制御装置。
- 駆動源に結合された走行用油圧ポンプと車輪に結合された走行用油圧モータとを管路で閉じた油圧回路と、
前記駆動源に結合された作業機油圧ポンプによって駆動される作業機と、
減速時の運動エネルギーを油圧エネルギーに変換して蓄積し、蓄積した油圧エネルギーを前記駆動源に結合された回生モータに供給する回生アキュムレータと、
前記管路と前記回生アキュムレータとの間を接続する回生バルブと、
を備えた作業車両の回生制御方法であって、
前記回生バルブを開にして前記回生アキュムレータに回生油圧エネルギーを蓄積する回生時に、回生時と非回生時とのブレーキトルクが同じになるようにモータ容量を可変制御することを特徴とする作業車両の回生制御方法。 - アキュムレータ圧、および/または、走行速度の絶対値、および/または、前後進レバー位置と進行方向との一致・不一致、および/または、アクセル操作量、および/または、ブレーキ操作量、および/または、駆動源出力用の物理供給量、および/または、駆動源回転数をもとに、回生制御を開始あるいは終了することを特徴とする請求項11に記載の作業車両の回生制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011263980A JP5872268B2 (ja) | 2011-12-01 | 2011-12-01 | 作業車両の回生制御装置および作業車両の回生制御方法 |
JP2011-263980 | 2011-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080633A1 true WO2013080633A1 (ja) | 2013-06-06 |
Family
ID=48535110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073703 WO2013080633A1 (ja) | 2011-12-01 | 2012-09-14 | 作業車両の回生制御装置および作業車両の回生制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5872268B2 (ja) |
WO (1) | WO2013080633A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113370957A (zh) * | 2021-08-16 | 2021-09-10 | 北京晟科网鼎网络科技有限公司 | 电动装载机的制动力分配控制方法、制动系统及制动方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013227035A1 (de) * | 2013-12-20 | 2015-06-25 | Hamm Ag | Antriebssystem, insbesondere für eine selbstfahrende Baumaschine, insbesondere Bodenverdichter |
CN103697023B (zh) * | 2013-12-26 | 2015-10-28 | 浙江德泰机电工程有限公司 | 用于工程机械的回转制动的能量回收及释放的电液系统 |
JP6635947B2 (ja) * | 2014-05-06 | 2020-01-29 | イートン コーポレーションEaton Corporation | 静圧付加仕様を備える油圧式ハイブリッド推進回路及び運転方法 |
JP6205339B2 (ja) | 2014-08-01 | 2017-09-27 | 株式会社神戸製鋼所 | 油圧駆動装置 |
JP6285843B2 (ja) * | 2014-10-20 | 2018-02-28 | 川崎重工業株式会社 | 建設機械の油圧駆動システム |
CN105235663B (zh) * | 2015-11-05 | 2017-12-29 | 周凌燕 | 电动汽车能量回收系统 |
CN106740085B (zh) * | 2017-02-15 | 2018-12-11 | 内蒙古科技大学 | 一种带液压储能的直驱式电动轮卡车电液控制系统 |
FR3072148B1 (fr) * | 2017-10-09 | 2019-10-18 | Poclain Hydraulics Industrie | Procede et systeme d'auto-maintenance |
FR3072065B1 (fr) * | 2017-10-09 | 2019-10-18 | Poclain Hydraulics Industrie | Balayage de fluide hyraulique au demarrage |
JP6993899B2 (ja) * | 2018-02-26 | 2022-01-14 | 川崎重工業株式会社 | 建設機械の油圧システム |
JP6815442B2 (ja) * | 2019-06-26 | 2021-01-20 | 日本国土開発株式会社 | スクレーパ車両及びその制御方法並びに牽引車両 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215581A (ja) * | 2007-03-07 | 2008-09-18 | Kobelco Contstruction Machinery Ltd | 油圧走行装置 |
WO2009132765A1 (de) * | 2008-05-02 | 2009-11-05 | Robert Bosch Gmbh | Fahrzeug, insbesondere mobile arbeitsmaschine |
JP2009275854A (ja) * | 2008-05-15 | 2009-11-26 | Toyota Motor Corp | 可変容量型ポンプモータ式変速機 |
JP2009293745A (ja) * | 2008-06-06 | 2009-12-17 | Toyota Motor Corp | 可変容量型ポンプモータ式変速機の制御装置 |
JP2011220390A (ja) * | 2010-04-06 | 2011-11-04 | Kobelco Contstruction Machinery Ltd | 油圧作業機械の制御装置 |
-
2011
- 2011-12-01 JP JP2011263980A patent/JP5872268B2/ja not_active Expired - Fee Related
-
2012
- 2012-09-14 WO PCT/JP2012/073703 patent/WO2013080633A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215581A (ja) * | 2007-03-07 | 2008-09-18 | Kobelco Contstruction Machinery Ltd | 油圧走行装置 |
WO2009132765A1 (de) * | 2008-05-02 | 2009-11-05 | Robert Bosch Gmbh | Fahrzeug, insbesondere mobile arbeitsmaschine |
JP2009275854A (ja) * | 2008-05-15 | 2009-11-26 | Toyota Motor Corp | 可変容量型ポンプモータ式変速機 |
JP2009293745A (ja) * | 2008-06-06 | 2009-12-17 | Toyota Motor Corp | 可変容量型ポンプモータ式変速機の制御装置 |
JP2011220390A (ja) * | 2010-04-06 | 2011-11-04 | Kobelco Contstruction Machinery Ltd | 油圧作業機械の制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113370957A (zh) * | 2021-08-16 | 2021-09-10 | 北京晟科网鼎网络科技有限公司 | 电动装载机的制动力分配控制方法、制动系统及制动方法 |
CN113370957B (zh) * | 2021-08-16 | 2021-11-02 | 北京晟科网鼎网络科技有限公司 | 电动装载机的制动力分配控制方法、制动系统及制动方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013117098A (ja) | 2013-06-13 |
JP5872268B2 (ja) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080633A1 (ja) | 作業車両の回生制御装置および作業車両の回生制御方法 | |
JP4732284B2 (ja) | 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械 | |
KR101657868B1 (ko) | 건설 기계 | |
JP5174952B2 (ja) | 作業車両の省燃費制御装置および作業車両の省燃費制御方法 | |
US8439139B2 (en) | Method of controlling hybrid construction machine and hybrid construction machine | |
JP4509877B2 (ja) | 作業機械のハイブリッドシステム | |
JP5356427B2 (ja) | ハイブリッド式建設機械 | |
JP5000430B2 (ja) | ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械 | |
US20020148144A1 (en) | Wheel loader | |
WO2012050028A1 (ja) | 旋回体を有する建設機械 | |
US9802469B2 (en) | Hybrid powermode with series hybrid | |
WO2008069072A1 (ja) | 作業車両の走行駆動装置、作業車両および走行駆動方法 | |
JP5387343B2 (ja) | 作業車両の走行駆動装置 | |
KR101801507B1 (ko) | 하이브리드식 작업 차량 | |
EP3037589B1 (en) | Construction machine | |
JP2010173599A (ja) | ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法 | |
KR20140018228A (ko) | 휠 로더 | |
JP5560797B2 (ja) | 作業用車両の走行装置 | |
JP5913311B2 (ja) | ハイブリッド式作業機械及びその制御方法 | |
CN108138468B (zh) | 施工机械 | |
JP2014001793A (ja) | 油圧ショベル | |
EP3673117B1 (en) | A drive system and a method for controlling a drive system of a working machine | |
JP5864309B2 (ja) | ショベル | |
JP5947029B2 (ja) | 油圧駆動車両 | |
CN105667291B (zh) | 静液压式驱动系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12853413 Country of ref document: EP Kind code of ref document: A1 |