JP4732284B2 - 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械 - Google Patents

慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械 Download PDF

Info

Publication number
JP4732284B2
JP4732284B2 JP2006244891A JP2006244891A JP4732284B2 JP 4732284 B2 JP4732284 B2 JP 4732284B2 JP 2006244891 A JP2006244891 A JP 2006244891A JP 2006244891 A JP2006244891 A JP 2006244891A JP 4732284 B2 JP4732284 B2 JP 4732284B2
Authority
JP
Japan
Prior art keywords
hydraulic
motor
generator
construction machine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006244891A
Other languages
English (en)
Other versions
JP2008063888A (ja
Inventor
哲 松本
靖雄 加藤
圭介 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2006244891A priority Critical patent/JP4732284B2/ja
Publication of JP2008063888A publication Critical patent/JP2008063888A/ja
Application granted granted Critical
Publication of JP4732284B2 publication Critical patent/JP4732284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Ac Motors In General (AREA)
  • Operation Control Of Excavators (AREA)

Description

本発明は、油圧ショベル等の建設機械における駆動装置、特にエンジン若しくは他の原動機により駆動される油圧ポンプを油圧供給源とした駆動と、電動機を駆動源とした駆動との2種類の駆動系統を有するハイブリッド型建設機械において、該建設機械の一部を成す慣性体を制動する際に該慣性体の有する運動エネルギを電気エネルギに変換する機能を備えたハイブリッド型建設機械に関する。
油圧ショベル等の建設機械において、近年、排気ガスや騒音等の作業環境を改善する方策がハイブリッド型として種々提案されている。ハイブリッド型の建設機械の駆動制御方式は大別すると、シリーズとパラレルの2方式がある。シリーズ方式は、エンジンで一旦発電機を駆動し、この発電機で発生した電力によって電動機を駆動し、そしてこの電動機で油圧ポンプを駆動する建設機械であり、更に、発電機からの余剰電力をバッテリに蓄え、蓄電されたバッテリの電力で必要に応じて電動機を駆動するものである。図9はこの油圧ショベルの駆動系及び制御系のブロック構成を示している(特許文献1)。
また、パラレル方式は、エンジンで油圧ポンプと発電機を同時に機械的に駆動し、さらに、同発電機を電動機としてバッテリにより駆動するものである。
前記図9において、実線矢印は電気駆動系、点線矢印は油圧駆動系をそれぞれ示す。
発電機21と、電動機24及びバッテリ22との間にインバータ23が設けられ、このインバータ23により、発電機21で作られた交流電力が直流に変換されてバッテリ22に蓄えられ(充電作用)、バッテリ22の蓄電力が交流に変換されて電動機24に供給される(放電作用)。
なお、インバータ23には、図示しないが切換手段が設けられ、オペレータの操作により、あるいは負荷状況に応じて自動で、上記充放電作用の切換が行われる。
電動機24によって駆動される油圧ポンプ25の圧油は、各油圧アクチュエータに設けられたコントロールバルブ32を介して各油圧アクチュエータ(旋回及び走行用油圧モータ26、27、28および、ブーム、アーム、バケット用の各シリンダ31、30、29)に供給され、コントロールバルブ23によって各油圧アクチュエータの作動速度、トルク、作動方向が制御される。
上記の充放電作用を含めたこのハイブリッド型油圧ショベルの駆動制御作用を次に説明する。
エンジン20が運転されると発電機21が駆動されて発電作用を行い、発生した交流電力により電動機24が駆動されて油圧ポンプ25が回転し、上記のように各油圧アクチュエータが作動することにより、各ショベル動作(掘削、走行、旋回)が行われる。
ここで、基本的に、電動機24は、発電機21からインバータ23経由で供給される電力によって駆動されるが、重負荷時には、前記した切換手段の作用により、バッテリ22の蓄電力によって電力不足を補い、逆に軽負荷時には発電機21の余剰電力がバッテリ22に蓄えられる。
一方、軽負荷時でかつバッテリ容量が十分な場合は、エンジン20の出力を低下させ、あるいはエンジン停止させてバッテリ電力のみによって電動機24を駆動することもできる。
このような作用により、エンジン負荷を平滑化し、騒音及び排ガスを削減し、燃費を低減することができる。
このショベルによると、上記のようにエンジン20−発電機21−電動機24−油圧ポンプ25の経路で回転力が伝達され、パワーユニットをエンジン20+発電機21の組と、電動機24+油圧ポンプ25の組に分けて設置することが可能となる。従って、一個所にまとまった大きな設置スペースを必要としないため、とくに小旋回型のショベルに適したものとなる。また、発電機21と電動機24は電気配線によって接続できるため、エネルギの伝達ロスを大幅に削減することができる。
なお、図9では単一の、電動機24と油圧ポンプ25を組み合わせて各油圧アクチュエータ(旋回及び走行用油圧モータ26、27、28および、ブーム、アーム、バケット用の各シリンダ31、30、29)に所要の圧油を供給するようにしているが、各アクチュエータに対応させて専用の電動機と油圧ポンプとをそれぞれ設けることにより各アクチュエータを独立して駆動すること、すなわち、ある1つのアクチュエータのために供給される圧油が他のアクチュエータを駆動するための圧油によって影響を受けないようにすることも可能である。
しかしながら、この特許文献1では、各油圧アクチュエータにおける減速時に電気エネルギを回生するという技術的思想は開示されていない。また、このシリーズ方式では、油圧ポンプ25はエンジン20により直接駆動されず、電動機24により駆動されており、しかもこの電動機24は電力を回生する方式ではない。また、ハイブリッド型建設機械を形成するため、2つの、発電機21と電動機24を採用しているので、バッテリ22の蓄電容量は比較的大容量のものが必要であり、さらに、既存の建設機械上にて、発電機21、電動機24を簡単に併設・追加することは、図9の当該システム構成上から考えて容易ではないことがわかる。
一方、前述したパラレル方式ではないが、ハイブリッド型建設機械の例として、特許文献2を挙げることができる。同特許文献2の段落0012〜0014には、
「(0012)
(1)上記目的を達成するために、本発明は、油圧作業機を駆動する複数の油圧アクチュエータと、前記複数の油圧アクチュエータに圧油を供給する油圧ポンプと、前記油圧ポンプを直接又は間接的に駆動する原動機とを備える油圧建設機械に設けられた油圧建設機械のエネルギ回生装置において、前記複数の油圧アクチュエータのうち少なくとも1つに直結され又は機械的機構を介し間接的に連結され、当該油圧アクチュエータの補助的な駆動・被駆動を行う電動・発電機と、前記電動・発電機と電気エネルギの授受を行う蓄電手段と、前記電動・発電機の動作を制御する電動・発電機制御手段とを備える。
(0013)
本発明においては、電動・発電機制御手段の制御に基づき、少なくとも1つの油圧アクチュエータに併設された電動・発電機がそのアクチュエータの補助的な駆動・被駆動を行い、蓄電手段と電気エネルギの授受を行う。これにより、例えば上部旋回体の減速時にその慣性運動エネルギによって旋回用油圧モータに併設した電動・発電機で発電を行ったり、またブームが落下する時にその位置エネルギによってブーム用油圧シリンダに併設した電動・発電機で発電を行ったりして、それらの電気エネルギを蓄電手段に効率よく蓄える(回生する)ことが可能となる。また上部旋回体の駆動時やブーム用油圧シリンダの駆動時には、その蓄電手段に蓄えた電気エネルギを電動・発電機に供給し旋回用油圧モータやブーム用油圧シリンダを補助的に駆動することができる。
(0014)
本発明においては、以上のようにして、高効率でエネルギ回収を行うことができる。また、既存の油圧建設機械をベースとして、その油圧アクチュエータに電動・発電機を併設するとともに電動・発電機制御手段、蓄電手段を後づけで追加するだけの簡単な構成で実現できるので、実用化が非常に容易である。さらに、原動機としてエンジンを使う場合には作業あたりの燃費を向上するとともにエンジン排気ガス量を低減できる効果もある。」
と記載されている。
さらに、特許文献2の図2、3を参照すると、その段落0026〜0029には、
「(0026)
上記構成である本実施形態においては、例えば操作者が掘削積み込み作業を行おうとして油圧ショベルの上部旋回体2を右旋回動作させるべく操作レバー装置15の旋回用操作レバー(図示せず)を右旋回方向(又は左旋回方向、かっこ内対応関係同じ)に操作すると、その操作信号を入力したコントローラ16からその操作量に対応する駆動信号が生成されてコントロールバルブ装置14に出力され、旋回用コントロールバルブがその駆動信号に対応して切り換えられ、油圧ポンプ13からの圧油が旋回用コントロールバルブから旋回用油圧モータ10へ供給されて右方向(又は左方向)へ回転駆動され、旋回を開始する。またこのとき、図3に示すように、操作量x(右方向を正で表す)が所定値xo以上となると(又は所定値−xo以下となると)、コントローラ16からの信号に基づく電動・発電機制御装置18の制御によって蓄電装置19に蓄えた電気エネルギが電動・発電機17に供給されて電動・発電機17が電動機として作用し図3に示すように右旋回方向のトルクTo(又は左旋回方向のトルク−To)を発生し、これによって旋回用油圧モータ19の駆動を補助する。
(0027)
その後、例えば上部旋回体2がある程度旋回したら(例えばバケット5が土砂運搬用ダンプトラックの荷台に近づいたら)、操作者は右(又は左)旋回動作を停止させるべく操作レバー装置15の旋回用操作レバー(図示せず)を中立位置に戻す。すると、これに応じてコントローラ16から旋回用コントロールバルブへの駆動信号がゼロとなり、旋回用コントロールバルブが中立位置に復帰して油圧ポンプ13から旋回用油圧モータ10への圧油供給が遮断される。
(0028)
このとき、旋回用油圧モータ17により旋回駆動される上部旋回体2は大型物であって自重が比較的重いことから、旋回運動している上部旋回体2は大きな慣性運動エネルギを持っており、旋回用油圧モータ10への圧油供給が遮断されてもそのまま旋回運動を継続しようとする。これを利用して本実施形態においては、操作量xが0(中立位置)近傍の所定範囲内(−xi≦x≦xi)となるとコントローラ16からの信号に基づく電動・発電機制御装置18の制御によって、旋回用油圧モータ10に併設した電動・発電機17で発電を行う。すなわちこの場合、電動・発電機17は発電機として作用して逆方向の左旋回方向へのトルク−To(又は右旋回方向へのトルクTo)を発生しつつ発電を行い上記慣性エネルギを電気エネルギに変換し、この電気エネルギを蓄電装置19に効率よく蓄える(回生する)。この蓄電装置19に蓄えた電気エネルギは、次回の上部旋回体2の旋回駆動時に再び電動・発電機17に供給され旋回用油圧モータ10を補助的に駆動することに用いられる。
(0029)
以上のようにして、本実施形態によれば、上部旋回体2の旋回減速時・停止時に高い効率でエネルギ回収を行うことができる。またこのとき、本実施形態の構成によれば、既存の油圧建設機械をベースとして、その油圧アクチュエータ7,8,9,10,1l,11Rのうちの旋回用油圧モータ10に電動・発電機17を併設するとともに電動・発電機制御装置18、蓄電装置19を後づけで追加するだけの簡単な構成で実現できるので、実用化が非常に容易である。さらに、エンジン12の作業あたりの燃費を向上するとともにエンジン排気ガス量を低減できる効果もある。」
と記載され、油圧アクチュエータにより駆動される慣性体の減速時に該慣性体の運動エネルギを電気エネルギとして回生することが開示されている。
しかしながら、上記の特許文献2においては、上述した段落0026の記載および図3に示されるように、
「操作量x(右方向を正で表す)が所定値xo以上となると(又は所定値−xo以下となると)、コントローラ16からの信号に基づく電動・発電機制御装置18の制御によって蓄電装置19に蓄えた電気エネルギが電動・発電機17に供給されて電動・発電機17が電動機として作用し図3に示すように右旋回方向のトルクTo(又は左旋回方向のトルク−To)を発生し、これによって旋回用油圧モータ19の駆動を補助する。」と記載されている。
一方、段落0028には、
「操作量xが0(中立位置)近傍の所定範囲内(−xi≦x≦xi)となるとコントローラ16からの信号に基づく電動・発電機制御装置18の制御によって、旋回用油圧モータ10に併設した電動・発電機17で発電を行う。すなわちこの場合、電動・発電機17は発電機として作用して逆方向の左旋回方向へのトルク−To(又は右旋回方向へのトルクTo)を発生しつつ発電を行い上記慣性エネルギを電気エネルギに変換し、この電気エネルギを蓄電装置19に効率よく蓄える(回生する)。」
と記載されている。すなわち、コントローラ16に基づく電動・発電機17の制御は、電動機、発電機としてそれぞれ作用する場合のトルクTはレバー操作量x(x0、xi)に対応して定められており、その駆動時および回生時のトルクTは共に所定値T0とされている。
同様な関係は、特許文献2の図6に示されるブームに対する回生制御においても、レバー操作量yに対するモータトルクTiとして、駆動時および回生時に示されている。
しかしながら、特許文献2の回生制御においては、電動・発電機17を油圧アクチュエータの補助的な駆動、被駆動手段として利用することに主眼が置かれ、さらに、コントローラ16のINV/CON18を介しての制御を比較的単純にするため、当該油圧アクチュエータ10に対する供給圧油、あるいは排出圧油の圧力や流量との関係に基づいて前記トルクT0を定めるようにはなっておらず、単にレバー操作量に対応して所定値T0に切換えるという制御を行うものであり、それ故、該油圧アクチュエータの起動時や停止時における前記電動・発電機17の駆動、回生制御の切換時には油圧系、電気系においてショックを発生し、また、特に軽負荷または低速状態からの回生時には例えば、設定値T0の方が大きい場合、旋回モータは直ちに停止されるため駆動系統への機械的ショックが生じる恐れもある。そしてこうした問題を回避するためT0をそれぞれの状態に応じて変化させるようにしようとすれば、結局のところコントローラの制御が複雑になるという問題がある。
特開2001−11888 特開2004−124381
本発明者は、前記の事情に鑑み、鋭意研究した結果、電動・発電機に対応する油圧アクチュエータの圧油供給口および排出口における圧油の差圧に関連付けて前記電動・発電機に接続されているインバータおよびコンバータへの制御指令を生成するようにすれば、前記の種々の問題点が基本的に解決できることを見出した。
従って、本発明の目的は、原動機により駆動される油圧ポンプを駆動源とした駆動と、電動機による駆動との、2種類の駆動系統を有するハイブリッド型建設機械において、油圧アクチュエータの起動時や停止時における駆動、回生制御の切換時に油圧系、電気系においてショックを発生することがなく、かつ効率よくエネルギの回生を可能とする、慣性体の有する運動エネルギを電気エネルギに変換する機能を備えたハイブリッド型建設機械を提供することにある。
上記の目的を達成するため、本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械は、
原動機により駆動される油圧ポンプ、複数の油圧アクチュエータ、前記油圧アクチュエータのそれぞれに結合された慣性体、前記油圧ポンプからの圧油を前記複数の油圧アクチュエータヘそれぞれ給排する複数の切換制御弁、および前記切換制御弁を操作するパイロット操作弁を備えた油圧装置を有する建設機械であって、
前記油圧装置の油圧アクチュエータの少なくとも1つに併設された第1の電動・発電機と、
同第1の電動・発電機を電動機としておよび/または発電機として駆動制御するインバータ/コンバータを含む制御手段と、
前記少なくとも1つの油圧アクチュエータに結合された慣性体の有する運動エネルギに基づいて、前記第1の電動・発電機が発電機として作動することにより発生する電気エネルギを蓄える蓄電装置と、
前記第1の電動・発電機を併設した油圧アクチュエータの両ポートの圧力を検出しその差圧を生成する差圧検出手段と、を備え、
さらに前記制御手段には、前記第1の電動・発電機が電動機としておよび/または発電機として駆動制御されるときのトルクを、前記検出された差圧に関連させて指令するトルク指令手段を備えたことを特徴とする、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械において、
前記油圧アクチュエータが油圧モータで構成されており、前記トルク指令手段は、前記油圧モータにより駆動される回転慣性体を、前記油圧モータの駆動・制動トルクと前記第1の電動・発電機の駆動・制動トルクとの和で駆動制御するよう構成され、さらに駆動時の油圧モータと電動・発電機の各出力トルク和における前記油圧モータの出力トルクの割合を、制動時の制動トルク和における前記油圧モータ制動トルクの割合よりも大きくなるよう調整する調整手段を設けたことを特徴とする
その場合、前記トルク指令手段において、前記第1の電動・発電機のトルクを前記油圧アクチュエータの両ポートの差圧に関連せしめるに際し、発電機として作動する場合の前記差圧に対するトルク制御のゲインを、電動機として作動する場合の前記差圧に対するトルク制御のゲインよりも大きく設定することが好ましい。
さらにその場合、前記回転慣性体の減速に伴い同回転慣性体により前記油圧モータを駆動する過程において、外部信号により前記油圧モータの両ポートを短絡するバイパス弁を前記調整手段の要素として設けることができる。
さらにまたその場合、前記調整手段として、前記油圧モータには該油圧モータの駆動、停止時の最高駆動圧を制限するリリーフ弁を設けると共に、該リリーフ弁の起動加速時の作動圧力を、減速停止時の作動圧力より高くなるよう構成することができる。
またその場合、前記回転慣性体は前記建設機械の旋回台であり、前記油圧モータは該旋回台を回転駆動する旋回用油圧モータであることができる。
またその場合、前記油圧装置には、前記油圧ポンプに接続された開閉弁と、同開閉弁を介して接続された油圧モータと、同油圧モータにより駆動される第2の発電機と、前記蓄電手段の蓄電レベルを検出する蓄電レベル検出手段および、前記切換制御弁又はパイロット弁の操作状態を検出する操作状態検出手段をさらに備え、前記蓄電装置の蓄電レベルが規定値より低下し且つ切換弁又はパイロット弁が操作されていない場合に前記開閉弁を操作して前記油圧モータを介して前記第2の発電機を駆動し、発電された電気エネルギを前記蓄電装置へ蓄電するよう構成することができる。
さらに、その場合、前記ハイブリッド型建設概械は油圧ショベルであり、前記調整手段は、該油圧ショベルのブームシリンダのヘッド側圧力を検出する検出手段を有し、該検出手段の検出圧力の高低に応じて前記電動・発電機の駆動・制動トルクを制御するよう調整するよう構成することができる。
請求項1に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
原動機により駆動される油圧ポンプ、複数の油圧アクチュエータ、前記油圧アクチュエータのそれぞれに結合された慣性体、前記油圧ポンプからの圧油を前記複数の油圧アクチュエータヘそれぞれ給排する複数の切換制御弁、および前記切換制御弁を操作するパイロット操作弁を備えた油圧装置を有する建設機械であって、
前記油圧装置の油圧アクチュエータの少なくとも1つに併設された第1の電動・発電機と、
同第1の電動・発電機を電動機としておよび発電機として駆動制御するインバータ/コンバータを含む制御手段と、
前記少なくとも1つの油圧アクチュエータに結合された慣性体の有する運動エネルギに基づいて、前記第1の電動・発電機が発電機として作動することにより発生する電気エネルギを蓄える蓄電装置と、
前記第1の電動・発電機を併設した油圧アクチュエータの両ポートの圧力を検出しその差圧を生成する差圧検出手段と、を備え、
さらに前記制御手段には、前記第1の電動・発電機が電動機としておよび/または発電機として駆動制御されるときのトルクを、前記検出された差圧に関連させて指令するトルク指令手段を備えたので、前記第1の電動・発電機の駆動時および制動時のそれぞれ駆動トルクおよび制動トルクは前記差圧に関連して制御されるので、慣性体を連続してスムースに駆動制御することが可能となり、また、第1の電動・発電機の駆動および制動時の制御をパイロット弁の操作レバーに依存することなく連続して指令できるので制御装置を単純化することができる。
請求項2に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
前述した効果に加え、前記トルク指令手段において、前記第1の電動・発電機のトルクを前記油圧アクチュエータの両ポートの差圧に関連せしめるに際し、発電機として作動する場合の前記差圧に対するトルク制御のゲインを、電動機として作動する場合の前記差圧に対するトルク制御のゲインよりも大きく設定したので、慣性体制動時のエネルギを電気エネルギとしてより効果的に蓄電装置に取り込むことができ、環境にやさしい建設機械を構成することが可能となる。
請求項3に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
前記油圧アクチュエータが油圧モータで構成されており、前記トルク指令手段は、前記油圧モータにより駆動される回転慣性体を、前記油圧モータの駆動・制動トルクと前記第1の電動・発電機の駆動・制動トルクとの和で駆動制御するよう構成され、さらに駆動時の油圧モータと電動・発電機の各出力トルク和における前記油圧モータの出力トルクの割合を、制動時の制動トルク和における前記油圧モータ制動トルクの割合よりも大きくなるよう調整する調整手段を設けたので、請求項2の効果と同様な効果が得られると共に、それぞれのトルクを比率として定めるようにしたので、それだけ制御を簡単にすることができる。
請求項4に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
外部信号により前記油圧モータの両ポートを短絡するバイパス弁を前記調整手段の要素として設けたので、制動時の油圧流路における流路抵抗が非常に小さくなりこの分、電気エネルギとしての制動・回収を最も効果的に遂行することが可能である。
請求項5に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
前記調整手段として、前記油圧モータには該油圧モータの駆動、停止時の最高駆動圧を制限するリリーフ弁を設けると共に、該リリーフ弁の起動加速時の作動圧力を、減速停止時の作動圧力より高くなるよう構成したので、請求項3または4の効果と同様な効果を得ることができる。
請求項6に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
回転慣性体は前記建設機械の旋回台であり、同旋回台は、建設機械を構成する最も慣性体重量が大きくまた、頻繁に駆動される要素であるので、建設機械としてのエネルギ効率を高めることに最も効果がある。
請求項7に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
油圧ポンプに接続された開閉弁と、同開閉弁を介して接続された油圧モータと、同油圧モータにより駆動される第2の発電機と、蓄電装置の蓄電レベルを検出する蓄電レベル検出手段および、切換制御弁又はパイロット操作弁の操作状態を検出する操作状態検出手段をさらに備え、前記蓄電装置の蓄電レベルが規定値より低下し且つ切換弁又はパイロット操作弁が操作されていない場合に前記開閉弁を操作して前記油圧モータを介して前記第2の発電機を駆動し、発電された電気エネルギを前記蓄電装置へ蓄電するよう構成したので、前記蓄電装置の蓄電レベルを規定値以上に保持することが可能となり、その結果、旋回の操作頻度が非常に少なく旋回操作によって回収された電機エネルギが少ない場合でも、確実に旋回体を駆動することができる。
請求項8に記載された本発明による慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械によれば、
前記ハイブリッド型建設概械は油圧ショベルであり、前記調整手段は、該油圧ショベルのブームシリンダのヘッド側圧力を検出する検出手段を有し、該検出手段の検出圧力の高低に応じて前記電動・発電機の駆動・制動トルクを制御するよう調整する構成としたので、ブームシリンダヘッド側保持圧を検出しその高低に応じて電動・発電機の駆動・制動トルクを調整すれば、ブーム、アームあるいはバケット等の各構造物の位置・姿勢に関わらず上部旋回体の動きに対して、ほほ一定の加速・減速特性をもたせることが可能となり、該油圧ショベルの操作性を大幅に向上させることができる。
以下、本発明の実施の形態に基づく1実施例について添付の図面を参照して詳細に説明する。
図1は、建設機械としての油圧ショベルの概略構成を示す。同図1において、油圧ショベル10は、油圧モータにより駆動される下部走行体11の上に旋回機構12を介して上部旋回体13が旋回自在に載置されている。上部旋回体13には、その前方一側部にキャブ14が設けられ、且つ、前方中央部にブーム15が俯仰可能に取り付けられている。又、ブーム15の先端にアーム16が上下回動自在に取り付けられ、更にアーム16の先端にバケット17が取り付けられている。
図2は、本発明の基本構成を説明する概念ブロック図である。同図2において、参照符号50は、ハイブリッド型建設機械の油圧装置であり、同油圧装置50は、原動機52および油圧ポンプ54を備えている。同図では油圧装置50の中の1つの切換制御弁56に対応して接続された油圧アクチュエータ58と同油圧アクチュエータ58により駆動される慣性体60ならびに、切換制御弁56へのパイロット操作圧信号Pa、Pbを発生するパイロット操作弁59が例示されている。前記油圧アクチュエータ58としては、例えば、旋回用油圧モータやブーム用シリンダを、また、前記慣性体60として旋回台やブームを挙げることができる。
参照符号70は、油圧アクチュエータ58に併設された交流電動機で構成される電動・発電機であって、慣性体60を駆動するとき油圧アクチュエータ58と協働して所定の駆動力を慣性体60に供給し、また、慣性体60を減速、制動するとき油圧アクチュエータ58と協働して所定の制動力を慣性体60に作用させるようになっている。
ここで、参照符号Cは前記併設の結合状態を示し、具体的には、油圧アクチュエータ58が油圧モータであり、慣性体60が回転慣性体である場合、電動・発電機70の軸は該油圧モータ58の回転軸と同軸または歯車機構を介して結合され、また、油圧アクチュエータ58が油圧シリンダであり、慣性体60が直動する慣性体である場合、電動・発電機70の軸は該油圧シリンダのロッドと平行に設けられたラックに係合するピニオン歯車からなる直動回転変換機構を介して結合される。
参照符号72は、電動・発電機70の回転量を検出するエンコーダである。また、参照符号80は、前記油圧アクチュエータ58の圧油供給口側の圧力PAと排出口側の圧力PBを検出しその差圧D(=PA−PB)を生成する差圧検出手段である。さらに、参照符号90はバッテリおよびキャパシタを備えた蓄電装置であって、電動・発電機70が電動機として作用するとき必要とされる電力が制御装置100を構成する電力変換部102を介して蓄電装置90から供給される。また、電動・発電機70が発電機として作用するとき発生される電力が電力変換部102を介して蓄電装置90へ供給される。
参照符号100は、前記ハイブリッド型建設機械全体の制御手段である。ここでは、同制御手段100の中で本発明に直接関係する制御部分のみをブロックとして例示してある。前記電力変換部102は、公知のインバータ/コンバータ回路102aと、同インバータ/コンバータ回路102aを形成する複数の大電力トランジスタのゲートをオンオフするためのスイッチング用パルス列信号を演算生成するPWM(パルス幅変調器)102bとから構成される。さらに、前記電力変換部102へは、電動・発電機70に結合され、該電動・発電機70の回転角位置を出力するエンコーダ72の出力信号Pと、また図示しないが、電動・発電機70の各励磁相巻線に流れる電流の検出部からの出力信号がそれぞれ入力されている。なお、前記インバータ回路は直流電圧(流)を交流電圧(流)に変換し、コンバータ回路は交流電圧(流)を直流電圧(流)に変換するものである。
参照符号104はトルク指令手段であって、前記差圧検出手段80の出力信号Dが入力されている。このトルク指令手段104の機能は、前記PWM102bにおける各パルスの立ち上がりおよび立ち下がりのタイミングすなわち前記各大電力トランジスタに対するスイッチングの位相と各パルスの幅を前記信号P、各励磁相巻線に流れる電流に基づいて演算生成するものである。なお、前記制御手段100中の調整手段104a、パイロット操作信号Pa、Pbの作用については後述する。
図3は、図1に例示した建設機械10の油圧装置50における油圧アクチュエータ58として旋回用油圧モータ、慣性体60として回転慣性体である旋回台とした場合における油圧装置を示す。同図3において、参照符号200は可変容量ポンプであって、その吐出側ライン200bへの吐出流量が斜板調整機構200aにより制御される。参照符号202は、旋回用の油圧モータ204への圧油の給排をラインA、Bを介して行う切換制御弁である。なお、参照符号202aは図示しない他の油圧アクチュエータへの圧油の給排を行う切換制御弁である。
切換制御弁202の上方には、ロードセンシング方式で機能する圧力制御弁PCVが設けられている。参照符号LSLはそのロードセンシング用のラインである。参照符号Pa、Pbは、図示しないパイロット操作弁からの操作圧信号を示しており、それぞれ切換制御弁202の受圧部に与えられている。参照符号PA、PBは前記油圧モータ204の圧油の供給口、排出口における圧力を示す。また、参照符号L、Rは油圧モータ204の左回転、右回転をそれぞれ示す。
参照符号206は前記油圧モータ204に併設した発電・電動機である。この発電・電動機206の回転軸と前記油圧モータ204の回転軸は機械的に結合され且つ、減速歯車機構208と結合され、さらに回転慣性体である旋回台210に結合されている。参照符号204aは、油圧モータ204に関し、切換制御弁202と反対側にあるラインAとBの間に設けられ、所定の条件のとき、すなわち、旋回台210を減速・制動するとき開状態とされる開閉弁であって、参照符号Sdは開指令信号を示す。参照符号204bは、一対のリリーフ弁と逆止弁とを対向配置した公知の油圧制動回路であり、同図では、各リリーフ弁の設定圧は一定として示してあるが、設定圧を可変とするタイプのリリーフ弁を設けることも可能であり、その場合の設定圧信号を制御手段100で生成することができる。
参照符号90、100は、それぞれ図2で説明した蓄電装置、制御手段であって、2点鎖線で示すように、前記発電・電動機206と電気的に接続されていることを示す。
参照符号212は、発電用の電動機であって、バッテリおよびキャパシタからなる公知の蓄電装置90の蓄電レベルが所定値より低下している場合に、ポンプ216により前記電動機212を駆動させてその発電エネルギを蓄電装置90へ供給するものである。ここで、ポンプ216への圧油は吐出ライン200bから開閉弁214を介して供給されるようになっており、同開閉弁214は、好適には、前記制御手段100で形成される信号Siにより開状態とされる。この場合、信号Siを形成するための条件として、例えば、油圧装置50の全ての切換制御弁202、202a等が中立位置にあり且つ、前記蓄電装置90の蓄電レベルが所定値以下である場合とすることができる。なお、前記信号Siは本発明では外部信号として定義している。
図4は、前記開閉弁204a、214の具体例を示すものであって、同図(a)は、開閉弁204aがOFF位置の状態のとき、ラインAとBは遮断状態にあり、信号Sdが与えられるとON位置となり、ラインAとBは連通する。なお、図(a)の右側には、制御手段100において減速・制動状態の有無を判別し、肯定YのときON状態を指令する信号Sdが生成されることを模式的に示す。
また、同図(b)は、開閉弁214がOFF位置の状態のとき、ラインLAとLBは遮断状態にあり、信号Siが与えられるとON位置となり、ラインLAとLBは連通する。なお、図(b)の右側には、制御手段100においてバッテリの蓄電レベルを検出し、実際のレベル(Bact)がターゲットレベル(Btgt)以下であるか否かを判別し、同判別結果が肯定Yのときであって、さらに、全ての油圧アクチュエータが非動作状態であるか否かを判別し否定Nの場合にON状態を指令する信号Siが生成されることを模式的に示す。
図5は、旋回台210の加速駆動(acceleration)の状態から減速駆動(deceleration)の制動状態に到る発電・電動機206および油圧モータ204の時間推移を示すグラフであって、同図(a)は縦軸に全体のトルクTtを示し、同図(b)は縦軸に油圧モータ204の各ポートの圧力をMPaで示す。
同図(a)において、加速駆動(acceleration)の状態では、油圧モータ204の発生するトルクがTmとして示され、発電・電動機206が電動機として発生するトルクがTe(motor)として示される。この加速駆動の場合、旋回台210に供給される全体のトルクTtは、図示のように、TmとTe(motor)との和である。一方、減速駆動(deceleration)による制動状態では、油圧モータ204により吸収されるトルクがTmとして示され、発電・電動機206が発電機として吸収するトルクがTe(generator)として示される。この減速駆動の場合、油圧モータ204および発電・電動機206によって旋回台210から吸収される全体のトルクTtは、図示のように、TmとTe(generator)との和である。参照符号dTeは、図示のように、減速駆動時のトルクTe(generator)と加速駆動時のトルクTe(motor)との差である。
旋回台210のように、大きな回転慣性体負荷の場合、加速駆動の際に要求されるトルクが大きいので主として油圧モータ204による駆動が好ましい。したがって、加速駆動の際は、図示のように、トルクTmに対するトルクTe(motor)の比率が小さくされている。一方、減速駆動の際には、図示のように、トルクTmに対するトルクTe(generator)の比率が大きくなるように調整されている。このようにすることで、減速駆動時の運動エネルギを効率的に蓄電装置90へ取り込むことが可能である。
参照符号ET1は、加速駆動時において蓄電装置90の側から発電・電動機206へ電気エネルギが供給されることを示し、また、参照符号ET2は、減速駆動時において発電・電動機206の側から蓄電装置90へ電気エネルギが供給されることを示す。また、参照符号xa、xdは油圧モータ204の加速駆動時、減速駆動時のトルクTmの推移を示し、参照符号ya、ybは発電・電動機206の加速駆動時、減速駆動時のトルクTe(motor)、Te(generator)の推移を示す。
図5(b)において、実線で示されるPAは、それぞれ加速駆動時、減速駆動時の油圧モータ204のラインA側のポート圧力を示し、破線のPBは、それぞれ加速駆動時、減速駆動時の油圧モータ204のラインB側のポート圧力を示す。同図から分かるように、加速駆動時と減速駆動時では、PAとPBの大きさが逆転しているので、この逆転(状態の変化)を加速から減速への状態変化として前記信号Sdを生成するのに利用することが可能である。本発明においては、図(a)における、加速駆動時のトルクxaとyaの大きさが連続的に変化されている。(減速駆動時のトルクxdとydの比率あるいはそれぞれの大きさも同様)これを実現するためには種々方法が考えられるが、好適には、xaとyaの比率、xdとydの比率をそれぞれ設定すること、その場合、図(b)におけるPAとPBとの差圧D(=PA−PB)をパラメータとして前記比率を定めるようにしてもよい。特に、減速駆動時において、信号Sdにより開閉弁204aを開状態とすることにより検出される圧力PAとPBの差圧は非常に小さくなり、この状態に対応してTmに対するTe(generator)の比率を大きくすれば、図3の流路CRでの損失を除き、旋回台210の旋回運動エネルギを、ほぼすべて発電・電動機206の側で電気エネルギとして取り出し蓄電装置90へ蓄電することが可能である。なお、前記開閉弁204aは、図2における調整手段104aを油圧回路として実施した場合の例である。
図6は、旋回用の油圧モータ204におけるラインA側およびB側のポートで検出される圧力PA、PBとパイロット操作弁の操作レバーとの関係を説明するものであって、同図(a)は、油圧モータ204の左回転L、右回転Rに対応したラインA側およびB側の各ポートで検出される圧力PA、PBを説明するものであって、ブロックBLKにおいて、油圧モータ204が右回転Rの場合、同油圧モータのラインA側が圧油の供給口(Ain)となり、ラインB側が排出口(Bout)となる。その場合、各検出圧力が、PA>PBのとき発電・電動機206は電動機として動作し、さらに、PA<PBのとき発電・電動機206は発電機として動作する。同様にして、油圧モータ204が左回転Lの場合、同油圧モータのラインB側が圧油の供給口(Bin)となり、ラインA側が排出口(Aout)となる。その場合、各検出圧力が、PA<PBのとき発電・電動機206は発電機として動作し、さらに、PA>PBのとき発電・電動機206は電動機として動作する。
同図(b)は、加速駆動、減速駆動において、パイロット操作弁の操作レバーをフル操作した場合とハーフ操作した場合の各検出圧力PA、PBの波形をそれぞれ上段、下段にグラフとして示す。
図7は、図2の制御手段100の、特にトルク指令手段104における制御機能を説明するためのフローチャートである。同図7において、工程ST0は建設機械10の操縦者が操縦状態にあることを示す。工程ST1では、パイロット操作弁59のパイロット操作圧信号PaまたはPbの有無が判定される。(なお、前記信号Pa、Pbは図2のトルク指令手段104に与えられている。)工程ST1の判定が否定すなわち、Nの場合、工程ST2において前記Nの継続時間が例えば3秒以上の場合工程ST4においてメカニカルブレーキが作動し次いで工程5で発電・電動機206(図3)への指令トルクTeがゼロと設定される。また、工程ST2で3秒未満のときは、工程1に戻り、その判定を繰り返す。
工程1で肯定Yのときは工程3において発電・電動機206の回転の向きが判定される。右回転Rのときは、工程6において、油圧モータ204のそれぞれのポートの圧力PA、PBの大小が判定され、肯定Yのときは工程ST7において、発電・電動機206への指令トルクTeがTemすなわち、発電・電動機206を加速駆動に寄与するべく電動機として動作するよう定義される。また、工程6で否定Nのときは、工程ST8で発電・電動機206への指令トルクTeがTegすなわち、発電・電動機206を減速駆動に寄与するべく発電機として動作するよう定義される。
次いで、工程ST9において、前記Temの値がPAとPBの差に係数c1を作用させた値の関数fとして設定される。また、工程ST10において、前記Tegの値がPAとPBの差に係数c2を作用させた値の関数fとして設定される。前記工程ST9に次いで、工程11において、PAとキャビテーション防止のためにプリセットされた値PAcとの大小が比較判定され、その結果、肯定Yのときはキャビテーションを回避するべく、工程10へ移り、工程9で設定したTemが前述の減速駆動に対応するトルクTegに修正される。また、工程11で否定Nのときは工程9で設定されたTemがトルク指令値として実行され、工程1へ戻る。同様に、工程10で設定されたTegがトルク指令値として実行され、工程1へ戻る。
なお、前記工程ST3において、否定Nすなわち、左回転Lのときは、図示しないが、工程ST6〜ST11と同様な工程を実行するのでその説明は省略する。
図8は、油圧ショベル外観図を示し、本発明における調整手段を油圧ショベルのブームの動作に適用する場合の説明図である。同図8において、ブーム15、アーム16及びバケット17の伸長状態、位置姿勢によりこれら構造物を支えるブームシリンダヘッド側15aの圧力は変化する。つまり、ブーム15が水平前方向へ伸びた状態ではブームシリンダヘッド側15aの保持圧は相対的に高くなり、一方ブーム15が鉛直方向に向くよう操作された状態ではブームシリンダヘッド側15aの圧力は相対的に低くなる。このことは、前者の場合には、ブーム15、アーム16及びバケット17から構成される構造物の重心が上部旋回体の回転中心からより離れた位置に在り、つまり慣性力がより大きくなり、一方後者の場合にはこれとは逆に慣性力がより小さくなる。
ところが、油圧ショベルの運転者にとってはブーム15、アーム16、バケット17の位置・姿勢に関わらず切換操作弁の同じ操作に対しては、上部旋回体はほぼ同じ加速・減速特性を持つことが操作上好ましい。
したがって、ブームシリンダヘッド側保持圧を検出しその高低に応じて電動・発電機の駆動・制動トルクを調整すれば、前記ブーム、アームあるいはバケット等の各構造物の位置・姿勢に関わらず上部旋回体の動きに対して、ほほ一定の加速・減速特性をもたせることが可能となり、該油圧ショベルの操作性を大幅に向上させることができる。
以上、本発明の好適な実施例について説明したが、本発明はこれら図1〜8に示されたものに限定されるものではなく、当業者であれば種々の変形が可能である。例えば、慣性体を駆動する油圧アクチュエータとしてブームシリンダ、アームシリンダや、走行用の油圧モータ等にも発電・電動機を併設することができる。
また、図9のシリーズ方式の建設機械において、各油圧アクチュエータに本発明を適用するため発電・電動機を併設することも可能である。
本発明が適用される建設機械の概略構成を示す図である。 本発明の基本構成を説明する概念ブロック図である。 図2の油圧装置において、油圧アクチュエータとして旋回用の油圧モータ、慣性体として回転慣性体である旋回台とした場合における油圧装置を示す図である。 図3の各開閉弁の具体例を示すものであって、(a)は、開閉弁がOFF位置の状態のとき、ラインAとBは遮断状態にあり、信号Sdが与えられるとON位置となり、ラインAとBは連通することを示し、(b)は、開閉弁がOFF位置の状態のとき、ラインLAとLBは遮断状態にあり、信号Siが与えられるとON位置となり、ラインLAとLBは連通することを示す。 旋回台の加速から減速に到る状態における発電・電動機および油圧モータの時間推移特性を示すグラフであって、(a)は縦軸に全体のトルクTtを示し、(b)は縦軸に油圧モータの各ポートの圧力を示す。 旋回用の油圧モータにおけるラインA側およびB側のポートで検出される圧力PA、PBとパイロット操作弁の操作レバーとの関係を説明するものであって、(a)は、該油圧モータの左回転、右回転に対応してラインA側およびB側の各ポートで検出される圧力PA、PBの説明ブロックを示し、(b)は、加速駆動、減速駆動において、パイロット操作弁の操作レバーをフル操作した場合とハーフ操作した場合の各検出圧力PA、PBの波形をそれぞれ上段、下段にグラフとして示す。 図2におけるトルク指令手段の機能を説明するフローチャートである。 油圧ショベル外観図を示し、本発明における調整手段を油圧ショベルのブームの動作に適用する場合の説明図である。 従来のハイブリッド方式による油圧ショベルの駆動系及び制御系のブロック構成を示す図である。
符号の説明
10 油圧ショベル
11 下部走行体
12 旋回機構
13 上部旋回体
14 キャブ
15 ブーム
16 アーム
17 バケット
50 油圧装置
52 原動機
54 油圧ポンプ
56 切換制御弁
58 油圧アクチュエータ
59 パイロット操作弁
60 慣性体
70 電動・発電機
72 エンコーダ
80 差圧検出手段
90 蓄電装置
100 制御手段
102 電力変換部
104 トルク指令手段
200 可変容量ポンプ
202 切換制御弁
204 油圧モータ
204a 開閉弁
204b リリーフ弁ユニット
206 電動・発電機
208 減速歯車機構
210 回転慣性体
212 発電機
214 開閉弁
216 油圧ポンプ

Claims (6)

  1. 原動機により駆動される油圧ポンプ、複数の油圧アクチュエータ、前記油圧アクチュエータのそれぞれに結合された慣性体、前記油圧ポンプからの圧油を前記複数の油圧アクチュエータヘそれぞれ給排する複数の切換制御弁、および前記切換制御弁を操作するパイロット操作弁を備えた油圧装置を有する建設機械であって、
    前記油圧装置の油圧アクチュエータの少なくとも1つに併設された第1の電動・発電機と、
    同第1の電動・発電機を電動機としておよび発電機として駆動制御するインバータ/コンバータを含む制御手段と、
    前記少なくとも1つの油圧アクチュエータに結合された慣性体の有する運動エネルギに基づいて、前記第1の電動・発電機が発電機として作動することにより発生する電気エネルギを蓄える蓄電装置と、
    前記第1の電動・発電機を併設した油圧アクチュエータの両ポートの圧力を検出しその差圧を生成する差圧検出手段と、を備え、
    さらに前記制御手段には、前記第1の電動・発電機が電動機としておよび/または発電機として駆動制御されるときのトルクを、前記検出された差圧に関連させて指令するトルク指令手段を備えたことを特徴とする、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械において、
    前記油圧アクチュエータが油圧モータで構成されており、前記トルク指令手段は、前記油圧モータにより駆動される回転慣性体を、前記油圧モータの駆動・制動トルクと前記第1の電動・発電機の駆動・制動トルクとの和で駆動制御するよう構成され、さらに駆動時の油圧モータと電動・発電機の各出力トルク和における前記油圧モータの出力トルクの割合を、制動時の制動トルク和における前記油圧モータ制動トルクの割合よりも大きくなるよう調整する調整手段を設けたことを特徴とする慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
  2. 前記回転慣性体の減速に伴い同回転慣性体により前記油圧モータを駆動する過程に於いて、外部信号により前記油圧モータの両ポートを短絡するバイパス弁を前記調整手段の要素として設けたことを特徴とする請求項に記載された、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
  3. 前記調整手段として、前記油圧モータには該油圧モータの駆動、停止時の最高駆動圧を制限するリリーフ弁を設けると共に、該リリーフ弁の起動加速時の作動圧力を、減速停止時の作動圧力より高くなるよう構成した請求項またはに記載された、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
  4. 前記回転慣性体は前記建設機械の旋回台であり、前記油圧モータは該旋回台を回転駆動する旋回用油圧モータである請求項乃至のいずれかに記載された、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
  5. 前記油圧装置には、前記油圧ポンプに接続された開閉弁と、同開閉弁を介して接続された油圧モータと、同油圧モータにより駆動される第2の発電機と、前記蓄電装置の蓄電レベルを検出する蓄電レベル検出手段および、前記切換制御弁又はパイロット弁の操作状態を検出する操作状態検出手段をさらに備え、前記蓄電装置の蓄電レベルが規定値より低下し且つ切換弁又はパイロット弁が操作されていない場合に前記開閉弁を操作して前記油圧モータを介して前記第2の発電機を駆動し、発電された電気エネルギを前記蓄電装置へ蓄電するよう構成した請求項1乃至のいずれかに記載された、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
  6. 前記ハイブリッド型建設概械は油圧ショベルであり、前記調整手段は、該油圧ショベルのブームシリンダのヘッド側圧力を検出する検出手段を有し、該検出手段の検出圧力の高低に応じて前記電動・発電機の駆動・制動トルクを制御するよう調整することを特徴とする請求項またはに記載された、慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械。
JP2006244891A 2006-09-09 2006-09-09 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械 Active JP4732284B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244891A JP4732284B2 (ja) 2006-09-09 2006-09-09 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244891A JP4732284B2 (ja) 2006-09-09 2006-09-09 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械

Publications (2)

Publication Number Publication Date
JP2008063888A JP2008063888A (ja) 2008-03-21
JP4732284B2 true JP4732284B2 (ja) 2011-07-27

Family

ID=39286835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244891A Active JP4732284B2 (ja) 2006-09-09 2006-09-09 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械

Country Status (1)

Country Link
JP (1) JP4732284B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694213B2 (en) 2012-02-21 2014-04-08 Toshiba Kikai Kabushiki Kaisha Construction machine with hybrid drive unit, regenerative device equipped in construction machine, and regenerative method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905424B2 (ja) * 2008-08-22 2012-03-28 ダイキン工業株式会社 油圧装置および建設機械
JP5351471B2 (ja) * 2008-09-12 2013-11-27 住友建機株式会社 作業機械の駆動装置
JP5111323B2 (ja) * 2008-10-08 2013-01-09 東芝機械株式会社 ハイブリッド型建設機械の駆動装置
KR101527221B1 (ko) * 2008-12-24 2015-06-10 두산인프라코어 주식회사 건설기계의 선회장치
JP5175870B2 (ja) * 2010-01-13 2013-04-03 川崎重工業株式会社 作業機械の駆動制御装置
JP5298069B2 (ja) 2010-05-20 2013-09-25 株式会社小松製作所 電動アクチュエータの制御装置
JP5204150B2 (ja) 2010-05-21 2013-06-05 日立建機株式会社 ハイブリッド式建設機械
JP5363430B2 (ja) 2010-07-23 2013-12-11 日立建機株式会社 ハイブリッド式建設機械
JP5542016B2 (ja) 2010-09-15 2014-07-09 川崎重工業株式会社 作業機械の駆動制御方法
JP5667830B2 (ja) * 2010-10-14 2015-02-12 日立建機株式会社 旋回体を有する建設機械
JP5519484B2 (ja) * 2010-12-15 2014-06-11 住友重機械工業株式会社 ハイブリッド型建設機械
JP5548113B2 (ja) * 2010-12-17 2014-07-16 川崎重工業株式会社 作業機械の駆動制御方法
JP5356423B2 (ja) 2011-01-21 2013-12-04 日立建機株式会社 旋回体を有する建設機械
JP5356427B2 (ja) * 2011-02-03 2013-12-04 日立建機株式会社 ハイブリッド式建設機械
JP5562272B2 (ja) 2011-03-01 2014-07-30 日立建機株式会社 ハイブリッド式建設機械
JP5509433B2 (ja) * 2011-03-22 2014-06-04 日立建機株式会社 ハイブリッド式建設機械及びこれに用いる補助制御装置
JP5476555B2 (ja) 2011-03-25 2014-04-23 日立建機株式会社 ハイブリッド式建設機械
JP5647052B2 (ja) 2011-03-25 2014-12-24 日立建機株式会社 ハイブリッド式建設機械
US8826656B2 (en) 2011-05-02 2014-09-09 Kobelco Construction Machinery Co., Ltd. Slewing type working machine
US8826653B2 (en) 2011-05-02 2014-09-09 Kobelco Construction Machinery Co., Ltd. Slewing type working machine
JP5333511B2 (ja) * 2011-05-02 2013-11-06 コベルコ建機株式会社 旋回式作業機械
JP5614373B2 (ja) * 2011-06-03 2014-10-29 コベルコ建機株式会社 旋回式作業機械
JP5860053B2 (ja) * 2011-08-31 2016-02-16 日立建機株式会社 建設機械の油圧駆動装置
JP5969437B2 (ja) 2013-08-22 2016-08-17 日立建機株式会社 建設機械
CN103470557B (zh) * 2013-09-05 2015-09-16 南京工业大学 一种液压回转制动节能控制系统
JP5723947B2 (ja) * 2013-10-10 2015-05-27 日立建機株式会社 旋回体を有する建設機械
EP3085969B1 (en) * 2013-12-20 2018-11-21 Hitachi Construction Machinery Co., Ltd. Construction machine
CN106232905B (zh) * 2014-04-15 2018-10-12 沃尔沃建造设备有限公司 用于工程设备的行驶控制装置及其控制方法
JP6369239B2 (ja) * 2014-09-04 2018-08-08 コベルコ建機株式会社 ハイブリッド建設機械
CN106956607B (zh) * 2017-03-21 2023-10-24 杭州蓝力电动科技有限公司 混合动力型工程机械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049810A (ja) * 2001-08-07 2003-02-21 Hitachi Constr Mach Co Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収装置を備えた建設機械
JP2005290882A (ja) * 2004-04-01 2005-10-20 Kobelco Contstruction Machinery Ltd 旋回式作業機械
JP2005325883A (ja) * 2004-05-13 2005-11-24 Hitachi Constr Mach Co Ltd 作業車両のハイブリッド駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049810A (ja) * 2001-08-07 2003-02-21 Hitachi Constr Mach Co Ltd 圧油のエネルギー回収装置および圧油のエネルギー回収装置を備えた建設機械
JP2005290882A (ja) * 2004-04-01 2005-10-20 Kobelco Contstruction Machinery Ltd 旋回式作業機械
JP2005325883A (ja) * 2004-05-13 2005-11-24 Hitachi Constr Mach Co Ltd 作業車両のハイブリッド駆動システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694213B2 (en) 2012-02-21 2014-04-08 Toshiba Kikai Kabushiki Kaisha Construction machine with hybrid drive unit, regenerative device equipped in construction machine, and regenerative method

Also Published As

Publication number Publication date
JP2008063888A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4732284B2 (ja) 慣性体の有する運動エネルギを電気エネルギに変換するハイブリッド型建設機械
JP5000430B2 (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
JP5180518B2 (ja) ハイブリッド型駆動装置を備えた建設機械
JP5175870B2 (ja) 作業機械の駆動制御装置
JP5667830B2 (ja) 旋回体を有する建設機械
JP4512283B2 (ja) ハイブリッド式建設機械
JP3969068B2 (ja) ハイブリッド作業機械のアクチュエータ駆動装置
KR100461705B1 (ko) 작업 기계의 구동 장치
JP5044727B2 (ja) 油圧ショベル及び油圧ショベルの制御方法
KR101834598B1 (ko) 하이브리드식 건설 기계
JP2005076781A (ja) 作業機械の駆動装置
WO2001090490A1 (fr) Engin de construction
WO2000058569A1 (fr) Excavatrice
JP2003329012A (ja) 建設機械
JP4812655B2 (ja) 建設機械の油圧駆動装置
JP5318329B2 (ja) ハイブリッド型建設機械の駆動装置
JP2001012418A (ja) ハイブリッド作業機械
JP6383226B2 (ja) 作業機械の駆動システム
JP4509874B2 (ja) 作業機械のハイブリッドシステム
JP6009388B2 (ja) 作業機械
JP2010047125A (ja) ハイブリッド建設機械の走行制御回路
JP4990212B2 (ja) 建設機械の電気・油圧駆動装置
JP2010048366A (ja) 油圧装置および建設機械
JP5814835B2 (ja) ショベル
JP5723947B2 (ja) 旋回体を有する建設機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250