WO2013080591A1 - バルブシート - Google Patents

バルブシート Download PDF

Info

Publication number
WO2013080591A1
WO2013080591A1 PCT/JP2012/065196 JP2012065196W WO2013080591A1 WO 2013080591 A1 WO2013080591 A1 WO 2013080591A1 JP 2012065196 W JP2012065196 W JP 2012065196W WO 2013080591 A1 WO2013080591 A1 WO 2013080591A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
based sintered
sintered alloy
valve seat
area ratio
Prior art date
Application number
PCT/JP2012/065196
Other languages
English (en)
French (fr)
Inventor
善夫 小山
房宣 花田
松太郎 原
Original Assignee
Tpr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社 filed Critical Tpr株式会社
Priority to IN4824CHN2014 priority Critical patent/IN2014CN04824A/en
Priority to EP12854384.0A priority patent/EP2787183B1/en
Priority to KR1020147017589A priority patent/KR101563446B1/ko
Priority to BR112014012669A priority patent/BR112014012669B8/pt
Priority to US14/361,182 priority patent/US9581056B2/en
Priority to CN201280055789.XA priority patent/CN104024585B/zh
Publication of WO2013080591A1 publication Critical patent/WO2013080591A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/025Making ferrous alloys by powder metallurgy having an intermetallic of the REM-Fe type which is not magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • the present invention relates to a valve seat using an iron-based sintered alloy.
  • the valve seat is a part that serves as a valve seat for the intake valve and the exhaust valve, and is a part that is in contact with the valve (valve) to keep the combustion chamber airtight.
  • the valve seat is (1) an airtight holding function for preventing compressed gas and combustion gas from leaking to the manifold, (2) a heat conduction function for releasing the heat of the valve to the cylinder head side, and (3) when the valve is seated There are demands for functions such as strength that can withstand valve collisions, and (4) wear resistance that resists wear even in high heat and high load environments.
  • valve seat the required characteristics include (5) less aggressiveness to the counterpart valve, (6) reasonable price, and (7) easy cutting during processing.
  • an iron-based sintered alloy is used for the valve seat in order to satisfy the functions and characteristics described above.
  • Patent Document 1 discloses a valve seat made of an iron-based sintered alloy in which at least the outer peripheral surface is sealed with triiron tetroxide and the inside of the pores is filled with an organic compound.
  • Patent Document 2 discloses a valve seat made of an iron-based sintered alloy whose base is an iron-based sintered alloy and whose surface is coated with an iron oxide film mainly composed of iron trioxide. .
  • the wear resistance of the valve seat is improved by oxidizing the iron-based sintered alloy to form an iron oxide layer on the surface.
  • an object of the present invention is to provide a valve seat made of an iron-based sintered alloy and having excellent strength and wear resistance.
  • the inventors have formed an oxide mainly composed of iron trioxide on the surface and inside of the iron-based sintered alloy, and the iron trioxide in the iron-based sintered alloy.
  • the inventors have found that the wear resistance can be improved while maintaining the strength by keeping the ratio of the main oxide in a specific range, and the present invention has been completed.
  • an oxide mainly composed of iron trioxide is formed on the surface and inside of the iron-based sintered alloy by oxidation treatment.
  • the average area ratio of the oxide mainly composed of iron trioxide in the cross section of the iron-based sintered alloy is 5 to 20% before being attached to the cylinder head.
  • the valve seat of the present invention since an oxide mainly composed of iron trioxide is formed on the surface and inside of the iron-based sintered alloy, it is formed in advance on the surface of the iron-based sintered alloy during operation. Starting from the oxidized oxide, the oxide is likely to be formed on the contact surface with the valve. By forming an oxide on the contact surface with the valve, metal contact between the valve and the valve seat is suppressed, and the wear resistance of the valve seat is improved. Further, by setting the average area ratio of the oxide mainly composed of triiron tetroxide in the cross section of the iron-based sintered alloy to 5 to 20%, it is possible to improve the wear resistance while maintaining the strength.
  • the iron-based sintered alloy includes at least one compound of an intermetallic compound, carbide, silicide, nitride, and boride containing one or more elements selected from Group 4a to 6a of the periodic table It is preferable that the average area ratio of the hard particles in the cross section of the iron-based sintered alloy is 5 to 45% in a state before the hard particles are formed and are mounted on the cylinder head. According to this aspect, the plastic flow of the iron-based sintered alloy is suppressed by the hard particles, and the wear resistance can be further improved.
  • the hardness of the hard particles is preferably 600 to 1600 HV.
  • a valve seat excellent in strength and wear resistance can be provided.
  • tissue photograph and oxygen map image of the valve seat using the iron-based sintered alloy of the composition 3 before an abrasion resistance test It is the cross-sectional structure
  • the valve seat of the present invention is composed of an iron-based sintered alloy in which an oxide mainly composed of iron trioxide is formed on the surface and inside by an oxidation treatment.
  • the valve seat has an average area ratio of an oxide mainly composed of triiron tetroxide in a cross section of the iron-based sintered alloy in a state before being attached to the cylinder head, of 5 to 20%. It is necessary and is preferably 7 to 15%. If the average area ratio of the oxide mainly composed of iron trioxide is within the above range, a valve seat having excellent strength and wear resistance can be obtained. When the average area ratio exceeds 20%, the crushing strength is lowered, and the valve is easily damaged by an impact when the valve is seated on the valve seat. If it is less than 5%, the wear resistance is poor.
  • an arbitrary cross section of the iron-based sintered alloy is observed with a scanning electron microscope, and the observed image is represented by an oxygen map of an energy dispersive X-ray analyzer (EDX).
  • EDX energy dispersive X-ray analyzer
  • the iron-based sintered alloy used for the valve seat is at least one compound of intermetallic compounds, carbides, silicides, nitrides and borides containing one or more elements selected from groups 4a to 6a of the periodic table It is preferable to contain the hard particle
  • the average area ratio of the hard particles in the cross section of the iron-based sintered alloy is preferably 5 to 45% and more preferably 15 to 45% before being attached to the cylinder head.
  • the average area ratio of the hard particles exceeds 45%, the manufacturability is inferior, and the density of the iron-based sintered alloy tends to be lowered and the strength tends to be lowered. If it is less than 5%, the effect of addition to wear resistance is reduced.
  • the arbitrary cross sections of a valve seat are observed by 200 time using an optical microscope or an electron microscope, and the hard particle part of the cross-sectional structure
  • the area was obtained by tracing on paper, and the average value of the four measured values was taken as the average area ratio of the hard particles.
  • the hardness of the hard particles is preferably 600 to 1600 HV, and more preferably 650 to 1400 HV. If it is less than 600 HV, the wear resistance is insufficient, and if it exceeds 1600 HV, the wear of the counterpart valve increases.
  • the hardness of the hard particles is a value measured according to JIS Z2244 “Vickers hardness test—test method”.
  • the hard particles include Fe-Mo (ferromolybdenum), Fe-Cr (ferrochromium), intermetallic compounds such as Co-Mo-Cr, Fe group in which carbides such as Cr and Mo are dispersed, Co group, or Ni.
  • Fe-Mo ferrromolybdenum
  • Fe-Cr ferrochromium
  • intermetallic compounds such as Co-Mo-Cr, Fe-based, Co-based or Ni-based alloys in which carbides such as Cr and Mo are dispersed have hardness. Is 600 to 1600 HV and can be preferably used.
  • the method for manufacturing the valve seat of the present invention is not particularly limited, but can be manufactured as follows, for example.
  • raw iron powder such as pure iron powder, Cr steel powder, Mn steel powder, MnCr steel, CrMo steel powder, NiCr steel powder, NiCrMo steel powder, tool steel powder, high speed steel powder, Co alloy steel powder, Ni steel powder
  • additive elements C, Cu, Ni, Cr, Mo, Co, P, Mn, etc.
  • hard particles solid lubricants (calcium fluoride, manganese sulfide, molybdenum sulfide, tungsten sulfide, chromium sulfide, Ensta Tight, talc, boron nitride, etc.) are added and mixed.
  • the mixing ratio of each raw material is not particularly limited. Examples thereof include 30 to 99% by mass of raw iron powder, 0 to 50% by mass of hard particles, 0 to 20% by mass of additive elements, and 0 to 5% by mass of a solid lubricant.
  • the average area ratio of the hard particles in the cross section of the iron-based sintered alloy can be increased by increasing the mixing ratio of the hard particles. For example, by setting the mixing ratio of the hard particles to 5 to 50% by mass, the average area ratio of the hard particles in the cross section of the iron-based sintered alloy can be set to 5 to 45%.
  • the average particle size of the raw iron powder is preferably 40 to 150 ⁇ m. If it is less than 40 ⁇ m, the density of the green compact varies due to the decrease in fluidity, and the strength of the iron-based sintered alloy tends to vary. When it exceeds 150 ⁇ m, the gap between the powders becomes large, the density of the green compact is lowered, and the strength of the iron-based sintered alloy tends to be lowered.
  • the average particle diameter is a value measured with a laser diffraction / scattering particle size distribution analyzer.
  • the additive element is preferably added in the form of an oxide, carbonate, elemental element, alloy or the like.
  • the average particle size is preferably 1 to 60 ⁇ m.
  • the thickness is less than 1 ⁇ m, the additive elements aggregate and are not uniformly distributed in the iron-based sintered alloy, and the wear resistance of the iron-based sintered alloy tends to vary.
  • it exceeds 60 ⁇ m the additive elements in the iron-based sintered alloy become sparse, and the wear resistance of the iron-based sintered alloy tends to vary.
  • the average particle size of the hard particles is preferably 5 to 90 ⁇ m. If it is less than 5 ⁇ m, it becomes difficult to obtain the effect of suppressing the plastic flow of the iron-based sintered alloy. Variation tends to occur.
  • the average particle size of the solid lubricant is preferably 1 to 50 ⁇ m. If it is less than 1 ⁇ m, the solid lubricant aggregates and is not uniformly distributed in the iron-based sintered alloy, and the wear resistance of the iron-based sintered alloy tends to vary. If it exceeds 50 ⁇ m, the compressibility is inhibited during molding, the density of the green compact decreases, and the strength of the iron-based sintered alloy tends to decrease.
  • the mixture of raw material powders is filled in a mold and compression molded by a molding press to produce a green compact.
  • the green compact is fired to form a sintered body and then oxidized.
  • the firing conditions are preferably 1050 to 1200 ° C. and 0.2 to 1.5 hours.
  • the oxidation treatment is preferably a steam treatment from the viewpoint of the stability of the oxidizing atmosphere, but a method capable of generating iron trioxide on the surface and inside of the iron-based sintered alloy, such as a method of oxidizing in an oxidizing atmosphere in a heating furnace. If there is no particular limitation.
  • the oxidation treatment is performed so that the average area ratio of the oxide mainly composed of iron trioxide in the cross section of the iron-based sintered alloy is 5 to 20%.
  • the average area ratio of the oxide can be made 5 to 20% by performing steam treatment at 500 to 600 ° C. for 0.2 to 5 hours.
  • valve seat is obtained by polishing and turning the iron-based sintered alloy that has been subjected to the oxidation treatment.
  • an oxide mainly composed of iron tetroxide is formed on the surface and inside of the iron-based sintered alloy. Therefore, the valve seat is formed in advance on the surface of the iron-based sintered alloy during operation. Oxide tends to be formed on the contact surface with the valve starting from the oxide that is present. By forming an oxide on the contact surface with the valve, metal contact between the valve and the valve seat is suppressed, and the wear resistance of the valve seat is improved. Further, by setting the average area ratio of the oxide mainly composed of iron trioxide in the cross section of the iron-based sintered alloy to 5 to 20%, it is possible to improve the wear resistance while maintaining the strength.
  • valve seat of the present invention is excellent in strength and wear resistance, it can be preferably used as a valve seat for diesel engines, LPG engines, CNG engines, alcohol engines and the like.
  • the valve seat of the present invention may be composed only of the iron-based sintered alloy, and is a laminated body with other materials, at least the contact surface with the valve being composed of the iron-based sintered alloy. May be.
  • a laminated body it is possible to reduce the material cost by selecting a material that is cheaper than the iron-based sintered alloy as the other material.
  • EDX energy dispersive X-ray analyzer
  • X-ray acquisition was performed 10 times with a dwell time of 100 ⁇ s / pixel, with a process time scale set 6, a spectral range of 0 to 20 keV, a channel number of 2 k, and a collection count rate of 30%.
  • a process of combining 2 ⁇ 2 pixels into one pixel was performed, and the X-ray intensity was quadrupled.
  • Valve valve wear resistance test Valve seat 3 was attached to a valve seat wear tester shown in FIG. That is, the valve seat wear tester is configured such that the face surface of the valve 4 is brought into contact with the valve seat 3 fitted in the seat holder 2 at the upper end of the frame 1 by the spring 5.
  • the valve 4 is lifted upward via a rod 8 by a camshaft 7 that is rotated by an electric motor 6, and then returned by a spring 5, thereby hitting the valve seat 3.
  • the valve 4 is heated by the gas burner 9 and the temperature of the valve seat 3 is measured by the thermocouple 10 to control the temperature.
  • the combustion state of the gas burner is set to complete combustion so that no oxide film is formed on the surface.
  • the valve 4, the spring 5, the camshaft 7 and the like use actual engine parts. And the abrasion resistance test was done on the conditions shown in Table 1.
  • Test Example 1 Fe powder, hard particles, and solid lubricant (manganese sulfide) were mixed in the proportions shown in Table 2 and filled in a mold, and then compression molded with a molding press. Baked for 5 hours to obtain an iron-based sintered alloy.
  • this iron-based sintered alloy is subjected to a steam treatment in a temperature range of 500 to 600 ° C. and under conditions of a treatment time of 0.2 to 5 hours.
  • An oxide mainly composed of triiron tetroxide was formed in the inside while changing the average area ratio.
  • iron-based sintered alloys having an average oxide area ratio of 0%, 5%, 10%, 15%, 20%, 25%, and 30% were obtained.
  • the crushing strength was measured for each iron-based sintered alloy in which the average area ratio of the oxide thus obtained was changed.
  • FIGS. 1 and 2 show the relationship between the average area ratio and the intensity ratio of the oxide mainly composed of iron trioxide obtained in this way.
  • FIG. 1 and 2 show the relationship between the average area ratio and the intensity ratio of the oxide mainly composed of iron trioxide obtained in this way.
  • FIG. 1 is a result of an iron-based sintered alloy having a composition 1 (average area ratio of hard particles 5%)
  • FIG. 2 is a result of an iron-based sintered alloy having a composition 2 (average area ratio of hard particles 45%). It is a result.
  • the strength ratio is shown as a relative value when the crushing strength of an iron-based sintered alloy not subjected to oxidation treatment is 100.
  • FIG. 3 shows the results of the iron-based sintered alloy of composition 1 (average area ratio of hard particles 5%), and FIG. 4 shows the results of the iron-based sintered alloy of composition 2 (average area ratio of hard particles 45%). It is a result.
  • the wear amount ratio is shown as a relative value when the wear amount of a valve seat using an iron-based sintered alloy that has not been oxidized is set to 100.
  • Test Example 2 Fe powder, hard particles, and solid lubricant (manganese sulfide) were mixed in the proportions shown in Table 3 and filled in a mold, and then compression molded by a molding press to obtain a green compact. It fired similarly and obtained the iron-based sintered alloy.
  • FIG. 5 shows a cross-sectional structure photograph and oxygen map image of the valve seat using the iron-based sintered alloy of composition 3 before the wear resistance test
  • FIG. 6 uses the iron-based sintered alloy of composition 4.
  • tissue photograph and oxygen map image before a wear resistance test of a valve seat are shown.
  • tissue photograph and oxygen map image after a wear resistance test of the valve seat using the iron-based sintered alloy of the composition 3 are shown in FIG.
  • an oxide mainly composed of triiron tetroxide was formed on the surface and inside of the iron-based sintered alloy by performing the oxidation treatment.
  • the cross-sectional structure of the valve seat surface was not subject to oxygen analysis because it contained embedded resin, but the oxidized iron-based sintered alloy had a cross-sectional structure near the surface and the internal structure. The distribution of oxides in the cross-sectional structure of was equal.
  • valve seat using the iron-based sintered alloy subjected to the oxidation treatment is changed to the valve seat using the iron-based sintered alloy not subjected to the oxidation treatment.
  • a large amount of oxide was formed on the contact surface with the valve after the wear test, metal contact between the valve and the valve seat was suppressed, and the wear resistance of the valve seat could be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 強度及び耐摩耗性に優れたバルブシートを提供する。 鉄基焼結合金を用いたバルブシートにおいて、酸化処理により、鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物が形成されており、シリンダヘッドに装着される前の状態で、鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率が5~20%であるバルブシート。鉄基焼結合金は、周期表4a~6a族から選ばれる1種以上の元素の金属間化合物、炭化物、珪化物、窒化物及び硼化物の少なくとも1つの化合物から形成される硬質粒子を含有し、シリンダヘッドに装着される前の状態で、鉄基焼結合金の断面における硬質粒子の平均面積率が5~45%であることが好ましい。

Description

バルブシート
 本発明は、鉄基焼結合金を用いたバルブシートに関する。
 バルブシートは、吸気弁、排気弁の弁座になる部品であって、弁(バルブ)と接触し、燃焼室の気密を保たせるために必要な部品である。
 バルブシートは、(1)圧縮気体、燃焼ガスがマニホールドへ洩れるのを防ぐための気密保持機能、(2)バルブの熱をシリンダヘッド側へ逃がすための熱伝導機能、(3)バルブの着座時にバルブの衝突に耐えうる強度、(4)高熱且つ高負荷の環境においても摩耗しにくい耐摩耗機能等の機能が求められている。
 また、バルブシートの要求特性として、(5)相手バルブへの攻撃性が少ないこと、(6)リーズナブルな価格であること、(7)加工の際、削りやすいことが挙げられる。
 そのため、上述した機能、特性を満たすべく、バルブシートには鉄基焼結合金が用いられている。
 例えば、特許文献1には、少なくとも外周面は四三酸化鉄で封孔されており、空孔内部が有機化合物で充填されている鉄基焼結合金製バルブシートが開示されている。
 また、特許文献2には、鉄基焼結合金を基体として、その表面が四三酸化鉄を主体とする酸化鉄膜で被覆されている鉄基焼結合金からなるバルブシートが開示されている。
実開昭54-173117号公報 特開平7-133705号公報
 上記特許文献1,2では、鉄基焼結合金を酸化処理して、表面に酸化鉄層を形成することで、バルブシートの耐摩耗性の向上を図っている。
 しかしながら、本発明者らの研究によれば、バルブシートの強度は、鉄基焼結合金の内部に形成される酸化物の量によって大きく影響されることがわかった。上記特許文献1,2では、鉄基焼結合金の内部に形成される酸化物の量について何ら検討されておらず、強度低下が生じる可能性があった。
 よって、本発明の目的は、鉄基焼結合金からなる、強度及び耐摩耗性に優れたバルブシートを提供することにある。
 本発明者らは、種々の検討の結果、鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物を形成させ、かつ、鉄基焼結合金内部における四三酸化鉄を主体とする酸化物の割合を、特定の範囲にすることで、強度を保ちつつ、耐摩耗性を向上できることを見出し、本発明を完成するに至った。
 すなわち、本発明のバルブシートは、鉄基焼結合金を用いたバルブシートにおいて、酸化処理により、前記鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物が形成されており、シリンダヘッドに装着される前の状態で、前記鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率が5~20%であることを特徴とする。
 本発明のバルブシートによれば、鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物が形成されているので、運転時において、鉄基焼結合金の表面に予め形成されている酸化物を起点として、バルブとの当たり面に酸化物が形成され易い。バルブとの当たり面に酸化物が形成されることで、バルブとバルブシートとの金属接触が抑制されて、バルブシートの耐摩耗性が向上する。そして、鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率を5~20%としたことにより、強度を保ちつつ、耐摩耗性を向上できる。
 本発明のバルブシートは、前記鉄基焼結合金が、周期表4a~6a族から選ばれる1種以上の元素を含む金属間化合物、炭化物、珪化物、窒化物及び硼化物の少なくとも1つの化合物から形成される硬質粒子を含有し、シリンダヘッドに装着される前の状態で、前記鉄基焼結合金の断面における前記硬質粒子の平均面積率が5~45%であることが好ましい。この態様によれば、硬質粒子によって鉄基焼結合金の塑性流動が抑制され、耐摩耗性をより向上できる。
 本発明のバルブシートは、前記硬質粒子の硬度が600~1600HVであることが好ましい。
 本発明によれば、強度及び耐摩耗性に優れたバルブシートを提供することができる。
組成1の鉄基焼結合金の四三酸化鉄を主体とする酸化物の平均面積率と強度比との関係を示す図表である。 組成2の鉄基焼結合金の四三酸化鉄を主体とする酸化物の平均面積率と強度比との関係を示す図表である。 組成1の鉄基焼結合金の四三酸化鉄を主体とする酸化物の平均面積率と摩耗量比との関係を示す図表である。 組成2の鉄基焼結合金の四三酸化鉄を主体とする酸化物の平均面積率と摩耗量比との関係を示す図表である。 組成3の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験前の断面組織写真及び酸素マップ画像である。 組成4の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験前の断面組織写真及び酸素マップ画像である。 組成3の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験後の断面組織写真及び酸素マップ画像である。 バルブシート摩耗試験機の概略図である。
 本発明のバルブシートは、酸化処理により、表面及び内部に四三酸化鉄を主体とする酸化物が形成された鉄基焼結合金で構成される。
 本発明において、バルブシートは、シリンダヘッドに装着される前の状態で、鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率が5~20%であることが必要であり、7~15%が好ましい。四三酸化鉄を主体とする酸化物の平均面積率が上記範囲であれば、強度及び耐摩耗性に優れたバルブシートとすることができる。平均面積率が20%を超えると圧環強度が低下して、バルブシートにバルブが着座する際の衝撃により破損し易くなる。5%未満であると耐摩耗性が劣る。
 なお、本発明では、後述する実施例に示すように、鉄基焼結合金の任意断面を走査型電子顕微鏡で観察し、該観察画像をエネルギー分散型X線分析装置(EDX)の酸素マップを用いて酸素マップを求め、得られた酸素マップデータの輝度を二値化して輝度5以上の面積比を求め、N=3ヶ所/個×10点の平均値を、四三酸化鉄を主体とする酸化物の平均面積率とした。
 本発明において、バルブシートに用いる鉄基焼結合金は、周期表4a~6a族から選ばれる1種以上の元素を含む金属間化合物、炭化物、珪化物、窒化物及び硼化物の少なくとも1つの化合物から形成される硬質粒子を含有することが好ましい。そして、シリンダヘッドに装着される前の状態で、鉄基焼結合金の断面における硬質粒子の平均面積率が5~45%であることが好ましく、15~45%がより好ましい。鉄基焼結合金に上記硬質粒子を含有させることで、バルブシートの塑性流動を抑制でき、耐摩耗性をより向上できる。硬質粒子の平均面積率が45%を超えると、製造性が劣ると共に、鉄基焼結合金の密度が低下して、強度が低下する傾向にある。5%未満であると、耐摩耗性に対する添加効果が少なくなる。
 なお、本発明では、後述する実施例に示すように、バルブシートの任意断面を、光学顕微鏡又は電子顕微鏡を用いて200倍で観察し、1mm×1mm範囲の断面組織写真の硬質粒子部を方眼紙にトレースして面積を求め、4箇所の測定値の平均値を、硬質粒子の平均面積率とした。
 硬質粒子の硬度は、600~1600HVが好ましく、650~1400HVがより好ましい。600HV未満であると耐摩耗性が不足し、1600HVを超えると相手材であるバルブの摩耗が増加する。なお、本発明において、硬質粒子の硬度は、JIS Z2244「ビッカース硬さ試験-試験方法」に準じて測定した値である。
 硬質粒子の具体例としては、Fe-Mo(フェロモリブデン)、Fe-Cr(フェロクロム)、Co-Mo-Cr等の金属間化合物、Cr、Mo等の炭化物が分散したFe基、Co基又はNi基合金、Cr、Mo等の珪化物が分散したFe基、Co基又はNi基合金、Cr、Mo等の窒化物が分散したFe基、Co基又はNi基合金、Cr、Mo等の硼化物が分散したFe基、Co基又はNi基合金が挙げられる。なかでも、Fe-Mo(フェロモリブデン)、Fe-Cr(フェロクロム)、Co-Mo-Cr等の金属間化合物、Cr、Mo等の炭化物が分散したFe基、Co基又はNi基合金は、硬度が600~1600HVであり、好ましく用いることができる。
 本発明のバルブシートの製造方法は、特に限定されないが、例えば次のようにして製造できる。
 純鉄粉、Cr鋼粉、Mn鋼粉、MnCr鋼、CrMo鋼粉、NiCr鋼粉、NiCrMo鋼粉、工具鋼粉、高速度鋼粉、Co合金鋼粉、Ni鋼粉等の原料鉄粉に、任意成分として、添加元素(C、Cu、Ni、Cr、Mo、Co、P、Mn等)、硬質粒子、固体潤滑剤(フッ化カルシウム、硫化マンガン、硫化モリブデン、硫化タングステン、硫化クロム、エンスタタイト、タルク、窒化硼素等)を添加し、混合する。
 各原料の混合割合は、特に限定はない。例えば、原料鉄粉30~99質量%、硬質粒子0~50質量%、添加元素0~20質量%、固体潤滑剤0~5質量%が挙げられる。また、硬質粒子の混合割合を増加させることで、鉄基焼結合金の断面における硬質粒子の平均面積率を大きくすることができる。例えば、硬質粒子の混合割合を5~50質量%とすることで、鉄基焼結合金の断面における硬質粒子の平均面積率を、5~45%にすることができる。
 原料鉄粉の平均粒径は40~150μmが好ましい。40μm未満であると、流動性低下により圧粉体の密度にばらつきが生じ、鉄基焼結合金の強度にばらつきが生じる傾向にある。150μmを超えると粉末同士の空隙が大きくなって圧粉体の密度が低下し、鉄基焼結合金の強度が低下する傾向にある。なお、本発明において平均粒径は、レーザー回折散乱式粒度分布測定装置で測定した値である。
 添加元素は、酸化物、炭酸塩、元素単体、合金等の形態で添加することが好ましい。また、平均粒径は1~60μmが好ましい。1μm未満であると、添加元素が凝集して鉄基焼結合金中に均一分布せず、鉄基焼結合金の耐摩耗性にばらつきが生じる傾向にある。60μmを超えると鉄基焼結合金中の添加元素がまばらになり、鉄基焼結合金の耐摩耗性にばらつきが生じる傾向にある。
 硬質粒子の平均粒径は5~90μmが好ましい。5μm未満であると、鉄基焼結合金の塑性流動抑制効果が得られ難くなり、90μmを超えると鉄基焼結合金中の硬質粒子がまばらになり、鉄基焼結合金の耐摩耗性にばらつきが生じる傾向にある。
 固体潤滑剤の平均粒径は1~50μmが好ましい。1μm未満であると、固体潤滑剤が凝集して鉄基焼結合金中に均一分布せず、鉄基焼結合金の耐摩耗性にばらつきが生じる傾向にある。50μmを超えると成形時に圧縮性を阻害して圧粉体の密度が低下し、鉄基焼結合金の強度が低下する傾向にある。
 次に、原料粉末の混合物を、金型に充填し、成形プレスにより圧縮成形して圧粉体を製造する。
 次に、圧粉体を焼成し、焼結体とした後、酸化処理する。
 焼成条件は、1050~1200℃で、0.2~1.5時間が好ましい。
 酸化処理は、酸化雰囲気の安定性の面から、水蒸気処理が好ましいが、加熱炉において、酸化雰囲気中で酸化させる方法など、鉄基焼結合金の表面及び内部に四三酸化鉄を生成できる方法であれば特に限定は無い。
 本発明では、鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率が5~20%となるように、酸化処理を行う。酸化処理時間を長く設定すると、酸化物の平均面積率が大きくなり、短く設定すると、酸化物の平均面積率が小さくなる。具体的な一例を挙げて説明すると、500~600℃で、0.2~5時間水蒸気処理することで、酸化物の平均面積率を5~20%にすることができる。
 次に、酸化処理を行った鉄基焼結合金を、研磨、旋削することでバルブシートが得られる。
 本発明のバルブシートは、鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物が形成されているので、運転時において、鉄基焼結合金の表面に予め形成されている酸化物を起点として、バルブとの当たり面に酸化物が形成され易い。バルブとの当たり面に酸化物が形成されることで、バルブとバルブシートとの金属接触が抑制されて、バルブシートの耐摩耗性が向上する。そして、鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率を5~20%としたことにより、強度を保ちつつ、耐摩耗性を向上できる。
 このように、本発明のバルブシートは、強度及び耐摩耗性に優れていることから、特にディーゼルエンジン、LPGエンジン、CNGエンジン、アルコールエンジン等のバルブシートとして好ましく用いることができる。
 本発明のバルブシートは、上記鉄基焼結合金のみで構成されていてもよく、少なくともバルブとの当接面が上記鉄基焼結合金で構成された、他の材料との積層体であってもよい。積層体とすることで、他の材料に、鉄基焼結合金よりも安価な材料を選択して材料コストの低減を図ることができる。
 <測定方法>
 ・酸化物の平均面積率の測定
 バルブシートの断面の一部を走査型電子顕微鏡で抽出し、エネルギー分散型X線分析装置(EDX)の酸素マップを用いて以下の手順で求めた。
 (1)切断したバルブシートを樹脂に埋め込み、ダイヤモンド砥粒を使用して試料研磨した。
 (2)走査型電子顕微鏡は、「VE8800」(商品名、キーエンス製)を使用し、加速電圧15kV倍率500倍で観察した。
 (3)EDXは、「INCA 250 XTK」(商品名、オックスフォード・インストゥルメンツ社製)を用い、EDXソフトは「The Microanalysis Suite-Issue 18d バージョン4.15」(オックスフォード・インストゥルメンツ社製)を使用した。
 (4)EDXソフトに、画像解像度512×384ピクセルで電子顕微鏡像を取り込んだ。
 (5)X線収集は、プロセスタイム目盛セット6、スペクトルレンジ0~20keV、チャンネル数2kとし、収集計数率をデッドタイム30%に調整して、デュエルタイム100μs/ピクセルで10回積算させた。
 (6)得られた酸素マップのコントラストを強調するため、2×2ピクセルを1ピクセルに結合する処理を行い、X線強度を4倍にした。
 (7)(6)の処理後、EDXソフトの面積計算機能を用い、酸素マップデータの輝度を二値化して輝度5以上の面積比を求め、N=3ヶ所/個×10点の平均値を酸化物の平均面積率とした。
 ・硬質粒子の平均面積率の測定
 鉄基焼結合金の断面を、光学顕微鏡又は電子顕微鏡を用いて200倍で観察し、1mm×1mm範囲の断面組織写真の硬質粒子部を方眼紙にトレースして面積を求め、4箇所の測定値の平均値を、硬質粒子の平均面積率とした。
 ・バルブシートの耐摩耗試験
 図8に示すバルブシート摩耗試験機にバルブシート3を取り付けた。すなわち、このバルブシート摩耗試験機は、枠体1の上端部のシートホルダ2に嵌め込まれたバルブシート3に対して、バルブ4のフェース面がスプリング5によって当接するように構成されている。バルブ4は、電動機6で回転するカムシャフト7によってロッド8を介して上方へ持ち上げられ、次にスプリング5によって戻されることにより、バルブシート3に当たる。そして、バルブ4をガスバーナ9で加熱し、バルブシート3の温度を熱電対10で測定し、温度管理している。また、バルブ4の加熱の際には、表面に酸化膜が生じないようにガスバーナの燃焼状態を完全燃焼とする。なお、バルブ4、スプリング5、カムシャフト7などはエンジン実機部品を用いている。
 そして、表1に示す条件にて耐摩耗試験を行った。
Figure JPOXMLDOC01-appb-T000001
 ・鉄基焼結合金の圧環強度測定
 JIS Z2507「焼結含油軸受の圧環強さ試験方法」に準じて測定した。
 ・鉄基焼結合金の硬度測定
 JIS Z2245「ロックウェル硬さ試験-試験方法」に準じて測定した。
 ・鉄基焼結合金の密度測定
 JIS Z2501「焼結金属材料-密度、含油率及び開放気孔率試験方法」に準じて測定した。
 (試験例1)
 Fe粉末、硬質粒子、固体潤滑剤(硫化マンガン)を、それぞれ表2に示す割合で混合して金型に充填した後、成形プレスにより圧縮成形し、得られた圧粉体を1120℃で0.5時間焼成し、鉄基焼結合金を得た。
Figure JPOXMLDOC01-appb-T000002
 次に、この鉄基焼結合金を、500~600℃の温度範囲で、かつ、処理時間0.2~5時間の範囲で条件を変えて水蒸気処理を行い、鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物を、その平均面積率を変えて形成させた。こうして、酸化物の平均面積率が、0%、5%、10%、15%、20%、25%、30%の鉄基焼結合金を得た。
 こうして得られた酸化物の平均面積率を変化させたそれぞれの鉄基焼結合金について、圧環強度を測定した。こうして得られた四三酸化鉄を主体とする酸化物の平均面積率と強度比との関係を図1,2に示す。図1は、組成1の鉄基焼結合金(硬質粒子の平均面積率5%)の結果であり、図2は、組成2の鉄基焼結合金(硬質粒子の平均面積率45%)の結果である。なお、強度比は、酸化処理を行っていない鉄基焼結合金の圧環強度を100とした時の相対値で示した。
 次に、酸化物の平均面積率を変化させたそれぞれの鉄基焼結合金を用いてバルブシートを製造した。
 得られた各バルブシートを用いて耐摩耗試験を行った。四三酸化鉄を主体とする酸化物の平均面積率と摩耗量比との関係を図3,4に示す。図3は、組成1の鉄基焼結合金(硬質粒子の平均面積率5%)の結果であり、図4は、組成2の鉄基焼結合金(硬質粒子の平均面積率45%)の結果である。なお、摩耗量比は、酸化処理を行っていない鉄基焼結合金を用いたバルブシートの摩耗量を100とした時の相対値で示した。
 図1~4に示されるように、四三酸化鉄を主体とする酸化物の平均面積率が5~20%であると、圧環強度が大きく、かつ、耐摩耗性に優れたバルブシートとすることができることが分かる。
 一方、四三酸化鉄を主体とする酸化物の平均面積率が20%を超えると圧環強度が低下する傾向にあった。また、四三酸化鉄を主体とする酸化物の平均面積率が5%未満であると、摩耗量が多く、耐摩耗性が劣る傾向にあった。
 (試験例2)
 Fe粉末、硬質粒子、固体潤滑剤(硫化マンガン)を、それぞれ表3に示す割合で混合して金型に充填した後、成形プレスにより圧縮成形して圧粉体を得て、試験例1と同様に焼成し、鉄基焼結合金を得た。
Figure JPOXMLDOC01-appb-T000003
 次に、この鉄基焼結合金を、550℃の温度で、1時間水蒸気処理を行った。そして、酸化処理を行った鉄基焼結合金及び酸化処理を行っていない鉄基焼結合金のそれぞれを用いてバルブシートを製造し、耐摩耗性試験を行った。
 図5に、組成3の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験前の断面組織写真及び酸素マップ画像を示し、図6に、組成4の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験前の断面組織写真及び酸素マップ画像を示す。また、図7に、組成3の鉄基焼結合金を用いたバルブシートの、耐摩耗性試験後の断面組織写真及び酸素マップ画像を示す。
 図5,6に示されるように、酸化処理を行うことで鉄基焼結合金の表面及び内部に、四三酸化鉄を主体とする酸化物が形成されていた。なお、バルブシート表面(バルブとの当たり面)の断面組織は埋込樹脂を含むため酸素分析の対象としなかったが、酸化処理を行った鉄基焼結合金は、表面付近の断面組織と内部の断面組織における酸化物の分布は同等であった。
 そして、図5と図7との比較から明らかなように、酸化処理を行った鉄基焼結合金を用いたバルブシートは、酸化処理を行っていない鉄基焼結合金を用いたバルブシートに比べて、摩耗試験後にバルブとの当たり面に酸化物が多く形成されており、バルブとバルブシートとの金属接触が抑制されて、バルブシートの耐摩耗性を向上することができた。

Claims (3)

  1.  鉄基焼結合金を用いたバルブシートにおいて、
     酸化処理により、前記鉄基焼結合金の表面及び内部に四三酸化鉄を主体とする酸化物が形成されており、
     シリンダヘッドに装着される前の状態で、前記鉄基焼結合金の断面における四三酸化鉄を主体とする酸化物の平均面積率が5~20%であることを特徴とするバルブシート。
  2.  前記鉄基焼結合金が、周期表4a~6a族から選ばれる1種以上の元素を含む金属間化合物、炭化物、珪化物、窒化物及び硼化物の少なくとも1つの化合物から形成される硬質粒子を含有し、
     シリンダヘッドに装着される前の状態で、前記鉄基焼結合金の断面における前記硬質粒子の平均面積率が5~45%である請求項1記載のバルブシート。
  3.  前記硬質粒子の硬度が600~1600HVである請求項2記載のバルブシート。
PCT/JP2012/065196 2011-11-29 2012-06-14 バルブシート WO2013080591A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN4824CHN2014 IN2014CN04824A (ja) 2011-11-29 2012-06-14
EP12854384.0A EP2787183B1 (en) 2011-11-29 2012-06-14 Valve seat
KR1020147017589A KR101563446B1 (ko) 2011-11-29 2012-06-14 밸브 시트
BR112014012669A BR112014012669B8 (pt) 2011-11-29 2012-06-14 Sede de válvula
US14/361,182 US9581056B2 (en) 2011-11-29 2012-06-14 Valve seat
CN201280055789.XA CN104024585B (zh) 2011-11-29 2012-06-14 阀座

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260337A JP5525507B2 (ja) 2011-11-29 2011-11-29 バルブシート
JP2011-260337 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080591A1 true WO2013080591A1 (ja) 2013-06-06

Family

ID=48535074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065196 WO2013080591A1 (ja) 2011-11-29 2012-06-14 バルブシート

Country Status (8)

Country Link
US (1) US9581056B2 (ja)
EP (1) EP2787183B1 (ja)
JP (1) JP5525507B2 (ja)
KR (1) KR101563446B1 (ja)
CN (1) CN104024585B (ja)
BR (1) BR112014012669B8 (ja)
IN (1) IN2014CN04824A (ja)
WO (1) WO2013080591A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982836B1 (en) * 2013-09-05 2019-01-16 Tpr Co., Ltd. Manufacturing method of a valve seat
JP2016053210A (ja) * 2013-12-26 2016-04-14 Ntn株式会社 圧粉体を用いた機械部品およびその製造方法
JP6527459B2 (ja) 2015-12-22 2019-06-05 日本ピストンリング株式会社 耐摩耗性に優れた内燃機関用バルブシート
US10391557B2 (en) 2016-05-26 2019-08-27 Kennametal Inc. Cladded articles and applications thereof
JP6842345B2 (ja) * 2017-04-04 2021-03-17 トヨタ自動車株式会社 耐摩耗性鉄基焼結合金の製造方法
US10344757B1 (en) 2018-01-19 2019-07-09 Kennametal Inc. Valve seats and valve assemblies for fluid end applications
US11566718B2 (en) 2018-08-31 2023-01-31 Kennametal Inc. Valves, valve assemblies and applications thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54173117U (ja) 1978-05-26 1979-12-07
JPH02277905A (ja) * 1989-01-19 1990-11-14 Nippon Piston Ring Co Ltd カムシャフト及びその製造方法
JPH07133705A (ja) 1993-11-10 1995-05-23 Mitsubishi Materials Corp バルブシート
JPH1081902A (ja) * 1996-09-04 1998-03-31 Yanmar Diesel Engine Co Ltd 弁座用耐摩耗材の製造方法と適用方法
JP2000054087A (ja) * 1998-07-31 2000-02-22 Nippon Piston Ring Co Ltd バルブシート用鉄基焼結合金材およびその製造方法
JP2004232088A (ja) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd 鉄基焼結合金製バルブシートおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204031A (en) * 1976-12-06 1980-05-20 Riken Corporation Iron-base sintered alloy for valve seat and its manufacture
JPS597779B2 (ja) * 1978-12-26 1984-02-21 日本ピストンリング株式会社 動弁機部材
JPS60224760A (ja) * 1984-04-21 1985-11-09 Toyota Motor Corp 高温耐摩耗性に優れた摺動部材
JP3469435B2 (ja) * 1997-06-27 2003-11-25 日本ピストンリング株式会社 内燃機関用バルブシート
JP2001050020A (ja) * 1999-05-31 2001-02-23 Nippon Piston Ring Co Ltd 内燃機関用の弁装置
JP3596751B2 (ja) * 1999-12-17 2004-12-02 トヨタ自動車株式会社 焼結合金配合用硬質粒子、耐摩耗性鉄基焼結合金、耐摩耗性鉄基焼結合金の製造方法及びバルブシート
EP1669558A4 (en) * 2003-09-30 2009-04-15 Mitsubishi Materials Pmg Corp ENGINE VALVE SEAT, METHOD FOR PRODUCING VALVE SEAT, AND ENGINE CYLINDER HEAD
JP4213060B2 (ja) * 2004-03-03 2009-01-21 日本ピストンリング株式会社 バルブシート用鉄基焼結合金材
JP5257756B2 (ja) * 2007-12-05 2013-08-07 日産自動車株式会社 鉄系溶射被膜、その形成方法及び摺動部材
WO2009122985A1 (ja) * 2008-03-31 2009-10-08 日本ピストンリング株式会社 バルブシート用鉄基焼結合金及び内燃機関用バルブシート
KR101046418B1 (ko) * 2010-06-11 2011-07-05 (주)씬터온 밸브시트 및 그 제조공정

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54173117U (ja) 1978-05-26 1979-12-07
JPH02277905A (ja) * 1989-01-19 1990-11-14 Nippon Piston Ring Co Ltd カムシャフト及びその製造方法
JPH07133705A (ja) 1993-11-10 1995-05-23 Mitsubishi Materials Corp バルブシート
JPH1081902A (ja) * 1996-09-04 1998-03-31 Yanmar Diesel Engine Co Ltd 弁座用耐摩耗材の製造方法と適用方法
JP2000054087A (ja) * 1998-07-31 2000-02-22 Nippon Piston Ring Co Ltd バルブシート用鉄基焼結合金材およびその製造方法
JP2004232088A (ja) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd 鉄基焼結合金製バルブシートおよびその製造方法

Also Published As

Publication number Publication date
IN2014CN04824A (ja) 2015-09-18
JP2013113220A (ja) 2013-06-10
CN104024585B (zh) 2016-09-07
BR112014012669A2 (pt) 2017-06-13
BR112014012669B1 (pt) 2021-09-21
US20150047596A1 (en) 2015-02-19
BR112014012669B8 (pt) 2022-03-29
KR20140092933A (ko) 2014-07-24
CN104024585A (zh) 2014-09-03
KR101563446B1 (ko) 2015-10-26
EP2787183B1 (en) 2019-12-18
EP2787183A4 (en) 2015-11-11
BR112014012669A8 (pt) 2017-06-20
JP5525507B2 (ja) 2014-06-18
US9581056B2 (en) 2017-02-28
EP2787183A1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5856359B2 (ja) バルブシートの製造方法
WO2013080591A1 (ja) バルブシート
JP6527459B2 (ja) 耐摩耗性に優れた内燃機関用バルブシート
JP6305811B2 (ja) バルブシート用鉄基焼結合金材およびその製造方法
JP2004232088A (ja) 鉄基焼結合金製バルブシートおよびその製造方法
JP2011190526A (ja) 焼結合金配合用硬質粒子、耐摩耗性鉄基焼結合金、及びバルブシート
JP5125488B2 (ja) 焼結体用硬質粒子粉末及び焼結体
JP2005248234A (ja) バルブシート用鉄基焼結合金材
EP2511388B1 (en) Sintered sliding member
JP6290107B2 (ja) 耐摩耗性に優れた内燃機関用バルブシートおよびその製造方法
JP2012149584A (ja) 鉄基焼結合金製バルブシート
JP2019143176A (ja) 焼結体用硬質粒子粉末
JP2706561B2 (ja) 内燃機関用弁座材、及びその製造方法
JPS6119762A (ja) 耐摩耗焼結合金
WO2020218479A1 (ja) 焼結摺動部材およびその製造方法
JP2013163854A (ja) 焼結部材
JP2013173961A (ja) 鉄基焼結合金製バルブシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854384

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012854384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147017589

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201403843

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012669

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14361182

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014012669

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140526