WO2013080321A1 - 再生エネルギー型発電装置およびその制御方法 - Google Patents

再生エネルギー型発電装置およびその制御方法 Download PDF

Info

Publication number
WO2013080321A1
WO2013080321A1 PCT/JP2011/077624 JP2011077624W WO2013080321A1 WO 2013080321 A1 WO2013080321 A1 WO 2013080321A1 JP 2011077624 W JP2011077624 W JP 2011077624W WO 2013080321 A1 WO2013080321 A1 WO 2013080321A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
hydraulic motor
hydraulic
state
value
Prior art date
Application number
PCT/JP2011/077624
Other languages
English (en)
French (fr)
Inventor
文夫 浜野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020127033943A priority Critical patent/KR20130083392A/ko
Priority to EP11817191.7A priority patent/EP2626554B1/en
Priority to PCT/JP2011/077624 priority patent/WO2013080321A1/ja
Priority to CN201180022042XA priority patent/CN102893026A/zh
Priority to JP2012507524A priority patent/JP5364842B1/ja
Priority to US13/398,525 priority patent/US8502402B2/en
Publication of WO2013080321A1 publication Critical patent/WO2013080321A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/506Kinematic linkage, i.e. transmission of position using cams or eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a regenerative energy type power generation apparatus that transmits rotational energy of a rotor to a generator via a hydraulic transmission that combines a hydraulic pump and a hydraulic motor, and a control method thereof.
  • Renewable energy power generators are power generators that use renewable energy such as wind, tidal currents, ocean currents, and river currents. For example, wind power generators, tidal current power generators, ocean current generators, river current generators, etc. Can be mentioned.
  • wind power generators using wind power and renewable energy power generators including power generators using tidal currents, ocean currents, or river currents are becoming popular.
  • the kinetic energy of wind, tidal current, ocean current or river current is converted into the rotational energy of the rotor, and the rotational energy of the rotor is converted into electric power by the generator.
  • Patent Document 1 describes a wind power generator in which a rotor is decelerated using a mechanical brake as a method for stopping a renewable energy type power generator.
  • Patent Document 2 describes a method in which a pitch angle is controlled to the feather side by a pitch control device to decelerate the rotor blades.
  • Patent Document 3 describes a method of using a mechanical brake in addition to a pitch brake by controlling the pitch angle of the rotor blades.
  • Patent Document 4 describes a wind turbine generator that includes a hydraulic transmission that combines a hydraulic pump driven by the rotation of a rotor and a hydraulic motor connected to a generator.
  • a hydraulic pump and a hydraulic motor are connected to each other via a hydraulic fluid passage, and the rotational energy of the rotor is transmitted to the generator via a hydraulic transmission.
  • the present invention has been made in view of the above circumstances, and can perform stop control according to the operation state when an abnormal event occurs, reducing the load on the device due to the stop control while ensuring safety. It is an object of the present invention to provide a renewable energy type power generating device and a control method thereof.
  • a regenerative energy type power generation device is a regenerative energy type power generation device that generates power by using regenerative energy, and operates by being driven by the revolving energy and a rotating shaft that rotates with a rotating blade.
  • a hydraulic pump for boosting oil, a hydraulic motor driven by the hydraulic oil boosted by the hydraulic pump, a generator connected to the hydraulic motor, and a pitch drive mechanism for adjusting the pitch angle of the rotor blades A monitoring unit that acquires a state value indicating an operating state of the renewable energy power generation device, and a stop control unit that stops the renewable energy power generation device when an abnormal event occurs, When the deviation of the state value acquired by the monitoring unit with respect to the normal value that is the state value during operation is equal to or greater than a first threshold, the oil At least one of the transition to the idle state of the pump, the transition to the idle state of the hydraulic motor, and the transition of the pitch angle to the feather side by the pitch drive mechanism is performed by a hard wired circuit, and the deviation is the first When the second
  • the monitoring unit acquires a state value indicating the operating state of the renewable energy power generation device, and the stop control unit performs different stop control depending on the degree of deviation between the state value and the normal value. Yes. That is, when the deviation of the state value is equal to or greater than the first threshold, at least one of the transition to the idle state of the hydraulic pump, the transition to the idle state of the hydraulic motor, and the transition of the pitch angle to the feather side by the pitch drive mechanism is hard. Use a wired circuit. As described above, in the case of a particularly severe operation state among abnormal events, the regenerative energy type power generating device can be reliably stopped by performing stop control using the hard wired circuit.
  • the shift to the idle state of the hydraulic pump, the shift to the idle state of the hydraulic motor, and the pitch angle feather by the pitch drive mechanism All the transition to the side is performed by software control. In this way, stop control is performed using software control when the operating state is close to normal operation even during an abnormal event. As a result, a sudden stop operation can be avoided and the load applied to the device can be reduced.
  • stop control when stop control is performed by shifting the hydraulic pump to the idle state or by shifting the hydraulic motor to the idle state, it can be performed by the same control as during normal operation, thus preventing a decrease in the life of the hydraulic pump or hydraulic motor. be able to.
  • software control it is possible to perform control according to the sequence during normal operation, so after the cause of the abnormal event is removed, it can be restarted quickly and the operating rate is greatly increased. Decrease can be avoided.
  • it is not left until it becomes a serious situation where it is stopped by a hard-wired circuit, but before that, it is controlled by software control so that the regenerative energy generator can be installed without overloading the equipment. Can be stopped.
  • a hard wired circuit is a circuit configured to execute an instruction by physical connection.
  • the state value may be at least one of a rotation speed of the hydraulic pump, a rotation speed of the hydraulic motor, and an output of the generator.
  • the stop control unit feathers the pitch angle at a higher speed when the deviation is equal to or greater than the first threshold than when the deviation is equal to or greater than the second threshold and less than the first threshold. It is preferable to change to the side. As described above, when the deviation is equal to or more than the first threshold value, it is a particularly severe driving state among abnormal events, so that it is most prioritized to stop as quickly as possible. Therefore, the time to stop can be shortened by changing the pitch angle to the feather side at high speed and applying the pitch brake.
  • the hydraulic pump includes a plurality of working chambers surrounded by a cylinder and a piston and filled with the hydraulic oil, and the pistons of each working chamber are disposed between a top dead center and a bottom dead center. And a cam that moves up and down with a phase difference between each other, and when the deviation is equal to or greater than the first threshold, the stop control unit simultaneously switches all the working chambers to a non-operating state and immediately stops the hydraulic pump.
  • the working chambers are sequentially switched to the non-operating state at the timing when the piston of each working chamber is located at the top dead center or the bottom dead center. It is preferable to stop the hydraulic pump.
  • the working chambers are deactivated at the timing when the piston of each working chamber is located at the top dead center or the bottom dead center. Switch sequentially. Thereby, it is possible to prevent an unexpected load from being applied to the component parts, and thus to prevent the life of the hydraulic pump and the hydraulic motor from being reduced.
  • the stop control unit shifts the one of the hydraulic pump and the hydraulic motor to an idle state, It is preferable to maintain the other of the hydraulic pump and the hydraulic motor in an operating state for at least a predetermined time even after the transition.
  • one of the hydraulic pumps and hydraulic motors where an abnormal event has occurred is stopped. Since it is not always necessary to stop the other in which the abnormal event has not occurred, the other is maintained in an operating state for at least a predetermined time. For example, when the hydraulic motor is maintained in an operating state for a predetermined time, the hydraulic motor performs work for the residual energy of the high-pressure oil line as long as the generator is connected to the power system. Then, as time elapses, the hydraulic pressure decreases, the hydraulic motor enters an idle state, and the output of the generator also decreases. That is, the hydraulic motor continues to drive the generator until it enters the idle state, and the power generation efficiency is improved. On the other hand, since the hydraulic pump is maintained in the operating state for a predetermined time, the control force (torque) by the hydraulic pump can be applied to the rotor during that time to assist the pitch brake.
  • the state value is the number of rotations of one of the hydraulic pump and the hydraulic motor, and the state value of the hydraulic pump and the hydraulic motor is equal to or less than the second threshold value.
  • the pitch angle is shifted to the feather side by the pitch driving mechanism, and the one of the hydraulic pump and the hydraulic motor is shifted to an idle state.
  • stop control is performed if an abnormal event occurs. That is, in addition to stop control by a hard-wired circuit that is greater than or equal to the first threshold value and stop control by software control that is greater than or equal to the second threshold value and less than the first threshold value, it is stopped according to an abnormal event even if the state value does not reach the second threshold The control is performed, and the three-stage stop control is performed. Thereby, the reliability of stop control can be improved.
  • the stop control unit preferably shifts the hydraulic motor to an idle state and disconnects the generator from the power system.
  • the stop control unit idles the hydraulic motor connected to the generator. Transition to the state and disconnect the generator from the power system. Thereby, it becomes possible to prevent the generator from over-rotating.
  • the stop control unit shifts the hydraulic motor to an idle state and drives the pitch driving device to shift the pitch angle to the feather side.
  • the hydraulic pump may be maintained in an operating state even after the transition.
  • the hydraulic motor is shifted to the idle state to protect the hydraulic motor and the generator, and the pitch driving device operates the pitch brake to stop the rotation of the rotor. By doing so, safety can be ensured.
  • the control force (torque) by the hydraulic pump can be applied to the rotor during that time to assist the pitch brake.
  • the regenerative energy power generator further includes a high-pressure oil line connecting a discharge port of the hydraulic pump and a suction port of the hydraulic motor, and the stop control unit is in a state where the pressure of the high-pressure oil line is lower than a set lower limit value
  • the pitch driving device is driven to shift the pitch angle to the feather side, and the hydraulic pump and the hydraulic motor are shifted to an idle state.
  • the pressure in the high-pressure oil line is lower than the set lower limit for a predetermined period of time, it is considered that hydraulic fluid piping has broken and hydraulic fluid has leaked.
  • Part of the hydraulic oil is supplied to the bearings of the hydraulic pump and hydraulic motor and may act as lubricating oil, and there is a concern that the oil supply to the bearings may be cut off when leakage of hydraulic oil becomes significant . Therefore, in order to protect the bearing, stop control of the regenerative energy type power generation device is performed, the pitch angle is shifted to the feather side, and finally the hydraulic pump and the hydraulic motor are also in an idle state. Stop.
  • the state value is the number of revolutions of the hydraulic motor
  • the first threshold value is expected when an abnormality occurs when the generator under rated load operation is disconnected from the power system. It is preferable that the value is set to a value lower than the rotational speed of the hydraulic motor corresponding to the maximum rotational speed of the generator.
  • the regenerative energy type power generator comprises a high pressure oil line connecting a discharge port of the hydraulic pump and a suction port of the hydraulic motor, a low pressure oil line connecting a suction port of the hydraulic pump and a discharge port of the hydraulic motor, A high-pressure accumulator connected to the high-pressure oil line; a low-pressure accumulator connected to the low-pressure oil line; and a bypass line communicating from the high-pressure accumulator to the low-pressure accumulator; When the pressure becomes higher than a set value, it is preferable that the hydraulic oil is discharged from the high-pressure accumulator to the low-pressure accumulator via the bypass line.
  • the pressure of the high pressure accumulator is higher than the set value, the maximum allowable pressure specified by the high pressure accumulator may be exceeded. Therefore, in such a case, by releasing the high-pressure hydraulic fluid from the high-pressure accumulator to the low-pressure accumulator via the bypass line communicating with the low-pressure accumulator, the pressure of the high-pressure accumulator can be reduced to eliminate the abnormal event. .
  • the regenerative energy power generator further includes a sealed head tank that supplies lubricating oil to at least one bearing of an output shaft that connects the rotary shaft, the hydraulic motor, and the generator, and the stop control unit includes
  • the pitch driving device is driven to shift the pitch angle to the feather side, and the hydraulic pump and the hydraulic motor are idled. It is preferable to shift to a state.
  • the pitch drive device is driven to shift the pitch angle to the feather side, and the hydraulic pump and hydraulic motor are shifted to the idle state. To stop control. Thereby, before a bearing is damaged, a renewable energy type electric power generating apparatus can be stopped.
  • the renewable energy type power generation device may be a wind power generation device that generates electric power from wind that is one form of the renewable energy.
  • a rotary shaft that rotates together with the rotor blades by the regenerative energy
  • a hydraulic pump that is driven by the rotary shaft and boosts the operating oil, and the pressure boosted by the hydraulic pump
  • a control method of a regenerative energy type power generator comprising: a hydraulic motor driven by hydraulic oil; a generator coupled to the hydraulic motor; and a pitch drive mechanism for adjusting a pitch angle of the rotor blades,
  • a deviation of the state value acquired in the acquisition step with respect to a normal value that is a state value is greater than or equal to a first threshold value
  • the state value indicating the operating state of the renewable energy power generator is acquired, and different stop control is performed depending on the degree of deviation between the state value and the normal value. That is, when the deviation of the state value is equal to or more than the first threshold value and the driving state is particularly severe among abnormal events, the stop control is performed using the hard wired circuit. Thereby, a renewable energy type electric power generating apparatus can be stopped reliably.
  • stop control is performed using software control. I do.
  • stop control is performed by shifting the hydraulic pump to the idle state or by shifting the hydraulic motor to the idle state, it can be performed by the same control as during normal operation, thus preventing a decrease in the life of the hydraulic pump or hydraulic motor. be able to.
  • software control it is possible to perform control according to the sequence during normal operation, so after the cause of the abnormal event is removed, it can be restarted quickly and the operating rate is greatly increased. Decrease can be avoided.
  • a state value indicating the operating state of the renewable energy power generation apparatus is acquired, and different stop control is performed depending on the degree of deviation between the state value and the normal value. That is, when the deviation of the state value is equal to or more than the first threshold value and the driving state is particularly severe among abnormal events, the stop control is performed using the hard wired circuit. Thereby, a renewable energy type electric power generating apparatus can be stopped reliably.
  • stop control is performed using software control I do.
  • a sudden stop operation can be avoided and the load applied to the device can be reduced.
  • it is not left until it becomes a serious situation where it is stopped by a hard-wired circuit, but before that, it is controlled by software control so that the regenerative energy generator can be installed without overloading the equipment. Can be stopped.
  • FIG. 1 is a diagram showing an example of the overall configuration of a wind turbine generator.
  • FIG. 2 is a diagram illustrating a configuration of a hydraulic transmission and a stop control unit of the wind turbine generator.
  • FIG. 3 is a diagram illustrating a specific configuration example of the hydraulic pump.
  • FIG. 4 is a diagram showing a specific configuration example of the hydraulic motor.
  • the wind power generator 1 mainly includes a rotor 2 that rotates by receiving wind, a hydraulic transmission 10 that accelerates the rotation of the rotor 2, and a generator 20 that is linked to an electric power system 25.
  • Each control unit including a stop control unit 40 (see FIG. 2), and various measuring instruments including rotation speed meters 32 and 34.
  • the hydraulic transmission 10 and the generator 20 may be accommodated in the nacelle 22 or the tower 24 that supports the nacelle 22.
  • FIG. 1 shows the onshore wind power generation apparatus in which the tower 24 is erected on the ground, the wind power generation apparatus 1 may be installed at any place including the ocean.
  • the rotor 2 has a configuration in which a rotating shaft 8 is connected to a hub 6 to which a rotating blade 4 is attached. That is, the three rotary blades 4 extend radially around the hub 6, and each rotary blade 4 is attached to the hub 6 connected to the rotary shaft 8.
  • An actuator (pitch drive mechanism) 5 (see FIG. 2) for adjusting the pitch angle of the rotor blade 4 is attached to the rotor blade 4.
  • the actuator 5 is controlled by a control signal from the pitch control unit 33.
  • the entire rotor 2 is rotated by the wind force received by the rotor blades 4, and rotation is input to the hydraulic transmission 10 via the rotating shaft 8.
  • the hydraulic transmission 10 includes a variable displacement hydraulic pump 12 driven by a rotating shaft 8, a variable displacement hydraulic motor 14 having an output shaft 15 connected to a generator 20, A high pressure oil line 16 and a low pressure oil line 18 are provided between the pump 12 and the hydraulic motor 14.
  • the discharge side of the hydraulic pump 12 is connected to the suction side of the hydraulic motor 14 by a high-pressure oil line 16, and the suction side of the hydraulic pump 12 is connected to the discharge side of the hydraulic motor 14 by a low-pressure oil line 18.
  • the hydraulic oil (high pressure oil) discharged from the hydraulic pump 12 flows into the hydraulic motor 14 through the high pressure oil line 16 and drives the hydraulic motor 14.
  • the hydraulic oil (low-pressure oil) that has worked with the hydraulic motor 14 flows into the hydraulic pump 12 via the low-pressure oil line 18, is boosted by the hydraulic pump 12, and then again via the high-pressure oil line 16. 14 flows in.
  • the hydraulic pump 12 includes a plurality of working chambers (working chambers) 83 formed by a cylinder 80 and a piston 82, a ring cam 84 having a cam curved surface that engages with the piston 82, and each working chamber 83.
  • the high pressure valve 86 and the low pressure valve 88 may be provided.
  • the high pressure valve 86 is provided in the high pressure communication path 87 between each working chamber 83 and the high pressure oil line 16
  • the low pressure valve 88 is provided in the low pressure communication path 89 between each working chamber 83 and the low pressure oil line 18. It has been.
  • a check valve that allows only the flow of hydraulic oil from the hydraulic chamber 83 toward the high-pressure oil passage 16 can be used as the high-pressure valve 86, and an electromagnetic valve can be used as the low-pressure valve 88.
  • each working chamber 83 can be switched to an active state or an idle state by opening / closing control of the high pressure valve 86 and the low pressure valve 88.
  • the high pressure valve 86 When the working chamber 83 is in an active state, the high pressure valve 86 is closed in the suction process and the low pressure valve 88 is opened to allow the working oil to flow into the working chamber 83 from the low pressure oil line 18 and the high pressure valve 86 is opened in the pump process. By closing the low pressure valve 88, the hydraulic oil compressed from the working chamber 83 to the high pressure oil line 16 is sent out.
  • the working chamber 83 when the working chamber 83 is in the idle state, the high pressure valve 86 is closed and the low pressure valve 88 is opened in both the suction process and the pump process, and the working chamber 83 and the low pressure oil line 18 are maintained.
  • the hydraulic oil is reciprocated at (that is, the hydraulic oil is not sent to the high-pressure oil line 16).
  • the pump control unit 34 stops and controls the hydraulic pump 12 by opening and closing the high pressure valve 86 and the low pressure valve 88.
  • the hydraulic motor 14 has a plurality of working chambers 93 formed by cylinders 90 and pistons 92, an eccentric cam 94 having a cam curved surface that engages with the pistons 92, and each working chamber 93.
  • the high-pressure valve 96 and the low-pressure valve 98 provided may be used.
  • the high pressure valve 96 is provided in the high pressure communication passage 97 between each working chamber 93 and the high pressure oil line 16, and the low pressure valve 98 is provided in the low pressure communication passage 99 between each working chamber 93 and the low pressure oil line 18. It has been.
  • an electromagnetic valve can be used as the high pressure valve 96 and the low pressure valve 98.
  • the piston 92 During the operation of the hydraulic motor 14, the piston 92 periodically moves up and down due to the differential pressure between the high pressure oil line 16 and the low pressure oil line 18 created by the hydraulic pump 12, and the piston 92 moves from the top dead center to the bottom dead center. The heading motor process and the discharging process in which the piston 92 heads from the bottom dead center to the top dead center are repeated.
  • the volume of the working chamber 83 formed by the piston 82 and the inner wall surface of the cylinder 80 changes periodically.
  • the hydraulic motor 14 can switch each working chamber 83 to an active state or an idle state by opening / closing control of the high pressure valve 96 and the low pressure valve 98.
  • the high pressure valve 96 When the working chamber 93 is in the active state, the high pressure valve 96 is opened in the motor process and the low pressure valve 98 is closed to allow the working oil to flow into the working chamber 93 from the high pressure oil line 16 and in the discharge process, the high pressure valve 96 is closed. By opening the low pressure valve 98, the working oil that has worked in the working chamber 93 is sent out to the low pressure oil line 18.
  • the high pressure valve 96 is closed and the low pressure valve 98 is opened in both the motor process and the pump process, and the working chamber 93 and the low pressure oil line 18 are maintained.
  • the hydraulic oil is reciprocated at (that is, the high-pressure oil from the high-pressure oil line 16 is not received in the working chamber 93).
  • the motor control unit 35 may stop and control the hydraulic motor 14 by opening and closing the high pressure valve 96 and the low pressure valve 98.
  • a branch line 63 is connected to the high-pressure oil line 16, and a high-pressure accumulator 64 is connected to the branch line 63.
  • An electromagnetic valve 65 may be provided between the high pressure oil line 16 and the high pressure accumulator 64. Note that the pressure of the accumulator 64 is acquired by the pressure gauge 68.
  • a low-pressure accumulator 69 is connected to the low-pressure oil line 18 via a branch line.
  • An electromagnetic valve may be provided between the low pressure oil line 18 and the low pressure accumulator 69.
  • a bypass line 66 that communicates these accumulators 64 and 69 is provided.
  • the bypass line 66 is provided with a bypass valve 67. Then, by opening the bypass valve 67, at least part of the high-pressure oil stored in the high-pressure accumulator 64 can be supplied to the low-pressure accumulator 69.
  • a bypass line 60 that bypasses the hydraulic motor 14 is provided between the high-pressure oil line 16 and the low-pressure oil line 18.
  • the bypass line 60 is provided with a relief valve 62 that keeps the pressure of the hydraulic oil in the high-pressure oil line 16 below a set pressure.
  • the hydraulic transmission 10 is provided with an oil tank 70, a replenishment line 71, a boost pump 72, an oil filter 73, a return line 74, and a low pressure relief valve 75.
  • the oil tank 70 stores hydraulic oil for replenishment.
  • the replenishment line 71 connects the oil tank 70 to the low pressure oil line 18.
  • the boost pump 72 is provided in the replenishment line 71 and replenishes the hydraulic oil from the oil tank 70 to the low-pressure oil line 18.
  • the return line 74 is disposed between the oil tank 70 and the low pressure oil line 18.
  • the low-pressure relief valve 75 is provided in the return line 74 so as to keep the pressure in the low-pressure oil line 18 equal to or lower than the set pressure.
  • a head tank 78 in which lubricating oil is stored, and a bearing lubricating oil line 77 that supplies the lubricating oil in the head tank 78 to the bearings of the rotary shaft 8 and the output shaft 15 are provided.
  • the bearing lubricating oil line 77 is provided with a pump (not shown) for pumping the lubricating oil to the bearing (only the case of the rotating shaft 8 is shown in FIG. 2).
  • the lubricating oil is supplied from the head tank 78 to the bearings of the rotary shaft 8 and the output shaft 15 via the bearing lubricating oil line 77.
  • the lubricating oil in the head tank 78 may be supplied to other sliding portions of the constituent members of the wind power generator 1 in addition to the above-described bearings.
  • the head tank 78 may be sealed while maintaining a predetermined pressure.
  • a pressure sensor 79 (simply shown at the shaft position in FIG. 2) for measuring the supply pressure of the lubricant bearing is provided upstream of the bearing in the bearing lubricant line 77, and the pressure of the lubricant is detected by this pressure sensor 79. Is done.
  • a measuring instrument that directly measures the amount of lubricating oil such as a liquid level sensor, may be provided.
  • the bearing may be filled with grease, and in that case, the above-described configuration is not provided.
  • the wind power generator 1 is provided with tachometers 32 and 34 and pressure sensors 31, 68, and 79.
  • the rotation speed meter 32 measures the rotational speed of the rotary shaft 8.
  • the tachometer 34 measures the rotation speed of the output shaft 15 of the hydraulic motor 14.
  • the pressure gauge 31 measures the pressure of hydraulic oil (high pressure oil) in the high pressure oil line 16.
  • the pressure sensor 68 measures the pressure of the hydraulic oil in the high pressure accumulator 64.
  • the pressure sensor 79 measures the pressure of the lubricating oil.
  • stop control in the wind turbine generator 1 having the above-described configuration will be described in detail.
  • the device when an abnormal event different from the state during normal operation occurs, the device may be damaged, the service life may be reduced, or the performance may be deteriorated. In some cases, it is difficult to ensure safety. Since there is also a possibility, it is necessary to stop the wind power generator 1 depending on the content and the severity of the abnormal event. Therefore, in the wind turbine generator 1 of the present embodiment, the wind turbine generator 1 is appropriately stopped when an abnormal event occurs by the stop control unit 40 described below.
  • the stop control unit 40 detects an abnormal event from the state value indicating the operating state of the wind turbine generator 1 and performs stop control corresponding to the abnormal event.
  • the abnormal event here refers to the event which mainly arises in the site
  • the stop control unit 40 includes an operation state determination unit 41, a storage unit 45, a stop mode determination unit 50, a hard wired command output unit 51, a software command output unit 52, and a system state determination unit 49.
  • the storage unit 45 includes a threshold storage unit 46 and a stop mode storage unit 47, and stores various setting values and thresholds used by the stop control unit 40.
  • the threshold storage unit 46 stores a first threshold and a second threshold corresponding to the state value.
  • the first threshold value is a value that is larger than a normal value that is a state value during normal operation and is a boundary that requires an emergency stop beyond a state value that is permitted in normal operation.
  • the second threshold is a value larger than the normal value and smaller than the first threshold, that is, a value closer to the normal value than the first threshold.
  • the second threshold value and the first threshold value it is not always necessary to make an emergency stop, and the operation can be continued. However, if this state continues, the operation may be affected.
  • these threshold values are set corresponding to the state values and stored in the threshold storage unit 46.
  • the state value is, for example, the rotational speed of the hydraulic pump 12, the rotational speed of the hydraulic motor 14, the output of the generator 20, and the like.
  • the stop mode storage unit 47 stores a plurality of stop modes for each type of state value. Each stop mode is set by associating the control target with the content of the stop control. Also, for one type of state value, a two-step stop mode consisting of at least a first stop mode and a second stop mode is set corresponding to the magnitude of the difference between the normal value and the state value. ing.
  • the first stop mode is applied when the difference between the state value and the normal value is greater than or equal to the first threshold value, and the transition of the hydraulic pump 12 to the idle state, the transition of the hydraulic motor 14 to the idle state, and the pitch At least one of the shift of the pitch angle to the feather side by the drive mechanism 5 is performed by a hard wired circuit.
  • the second stop mode is applied when the difference between the state value and the normal value is greater than or equal to the second threshold value and less than the first threshold value, and the transition of the hydraulic pump 12 to the idle state and the idle state of the hydraulic motor 14 are performed. All of the transition of the pitch angle and the transition of the pitch angle to the feather side are performed by software control.
  • the operation state determination unit 41 determines whether or not the operation state of the wind turbine generator 1 is an abnormal event that needs to be stopped based on state values input from various measuring instruments.
  • the driving state determination unit 41 includes a deviation calculation unit 42 and a comparison unit 43.
  • the deviation calculation unit 42 calculates the deviation between the state value input from various measuring instruments and the normal value.
  • the comparison unit 43 compares the deviation calculated by the deviation calculation unit 42 with the first threshold value and the second threshold value stored in the threshold value storage unit 46.
  • the stop mode determination unit 50 determines a stop mode based on the comparison result of the comparison unit 43, and extracts a stop mode corresponding to the stop mode from the stop mode storage unit 47.
  • the hard-wired command output unit 51 outputs a command related to control by the hard-wired circuit among the control contents of the stop mode determined by the stop mode determination unit 50 to the corresponding control target.
  • the hard wired circuit is a circuit configured to execute instructions by physical connection by connecting hardware such as a relay and a switch with electric wires.
  • the software command output unit 52 outputs a command related to control by software control among the control contents of the stop mode determined by the stop mode determination unit 50 to the corresponding control target.
  • Software control is to execute instructions by executing program processing in an arithmetic processing unit.
  • the system state determination unit 49 acquires the system state of the power system 25 and determines whether the system state is an abnormal event. For example, you may determine with the system state determination part 49 having generated the power failure which is an abnormal event, when the voltage of the electric power grid
  • the voltage sensor which measures the voltage of the electric power grid
  • the stop mode determination unit 50 determines the stop mode, and from the hard wired command output unit 51 or the software command output unit 52, Outputs a command.
  • stop control for each control target are shown in FIGS.
  • the control target of the stop control is the pitch of the rotor blades 4, the hydraulic pump 12, and the hydraulic motor 14.
  • the control content of the control object other than these may be included.
  • FIG. 5 is a diagram illustrating stop control when the rotational speed of the hydraulic pump is set to a state value.
  • the rated rotational speed of the hydraulic pump 12 may be applied to the normal value.
  • the first threshold is a value larger than the normal value
  • the second threshold is a value larger than the normal value and smaller than the first threshold.
  • the first stop mode A1 is applied.
  • the control content for each control object is the transition to the feather side by the hardwired circuit for the pitch of the rotor blades 4, and the hydraulic pump 12 is immediately idle by the hardwired circuit.
  • the hydraulic motor 14 It is a transition to a state, and for the hydraulic motor 14, it is a transition to an immediate idle state by a hard wired circuit.
  • the second stop mode B1 is applied.
  • the control content for each control object is a shift to the feather side by software control for the pitch of the rotor blades 4, and a stop command by software control for the hydraulic pump 12.
  • the hydraulic motor 14 is a stop command by software control.
  • FIG. 6 is a diagram illustrating stop control when the rotational speed of the hydraulic motor is set to the state value.
  • the threshold setting and stop control are substantially the same as in the case of the hydraulic pump 12 shown in FIG. 5, and thus detailed description thereof is omitted.
  • the stop control is mainly performed by a hard wired circuit.
  • stop control is performed mainly by software control.
  • both the hydraulic pump 12 and the hydraulic motor 14 are set to be immediately stopped by the hardwired circuit when the threshold value is equal to or higher than the first threshold.
  • the hydraulic pump 12 and the hydraulic motor 14 are set.
  • the first threshold value is the maximum value of the generator 20 that is expected when an abnormality occurs when the generator 20 operating at the rated load is disconnected from the power system 25. It is preferably set to a value lower than the rotational speed of the hydraulic motor 14 corresponding to the rotational speed.
  • FIG. 7 is a diagram illustrating stop control when the output of the generator is set to a state value.
  • the rated output of the generator 20 may be applied to the normal value.
  • the first threshold is a value larger than the normal value
  • the second threshold is a value larger than the normal value and smaller than the first threshold. At this time, when the output of the generator 20 is equal to or greater than the first threshold, the first stop mode A3 is applied.
  • the control content for each control object is the transition to the feather side by the hard wired circuit for the pitch of the rotor blades 4, and the idle idle by the hard wired circuit for the hydraulic pump 12 It is a transition to a state, and for the hydraulic motor 14, it is a transition to an immediate idle state by a hard wired circuit.
  • the second stop mode B3 is applied.
  • the control content for each control object is a shift to the feather side by software control for the pitch of the rotor blades 4, and a stop command by software control for the hydraulic pump 12.
  • the hydraulic motor 14 is a stop command by software control.
  • the rotational speed of the hydraulic pump 12 is used as a state value indicating the operating state of the wind turbine generator 1.
  • step S ⁇ b> 1 the operating state determination unit 41 acquires the rotational speed of the hydraulic pump 12.
  • the rotational speed of the hydraulic pump 12 may be a measured value of the rotary shaft 8 measured by the rotational speed meter 32.
  • step S2 the deviation calculation unit 42 of the operation state determination unit 41 calculates a deviation between the rotation speed of the hydraulic pump 12 acquired in step S1 and a normal value that is the rotation speed during normal operation.
  • step S3 the comparison unit 43 compares the divergence with the first threshold value. If the divergence is equal to or greater than the first threshold value, the stop mode determination unit 50 determines the first stop mode with respect to the rotation speed of the hydraulic pump 12. A1 is selected, and the control target and control content corresponding to the first stop mode A1 are extracted from the stop mode storage unit 47.
  • step S4 stop control is performed according to the first stop mode A1. That is, in the control content of the first stop mode A1, stop control by the hardwired circuit outputs a command from the hardwired command output unit 51 to each control target control unit. On the other hand, in stop control by software control, a command is output from the software command output unit 52 to each control target control unit. For example, when the control object is the pitch angle of the rotor blade 4 and the control content is shifted to the feather side by the hard wired circuit, a command is transmitted from the hard wired command output unit 51 to the pitch control unit 33, and Based on this, the pitch controller 33 generates a control signal to control the pitch drive mechanism 5. When there are two types of pitch drive mechanisms 5 for high speed and for normal use, the pitch angle is controlled by the high speed pitch drive mechanism 5 in the first stop mode in order to perform stop control quickly. Is preferred.
  • step S3 If the difference is less than the first threshold value in the comparison result in step S3, the comparison unit 43 compares the difference with the second threshold value. At this time, if the deviation is equal to or greater than the second threshold value, the stop mode determination unit 50 selects the second stop mode B1 for the rotation speed of the hydraulic pump 12, and the stop mode storage unit 47 switches to the second stop mode B1. Extract the corresponding control target and control details. In step S6, stop control is performed in accordance with the second stop mode B1. At this time, similarly to the first stop mode A1, a command is output from the hardwired command output unit 51 or the software command output unit 52 to each control target control unit according to the control content.
  • FIG. 9 is a diagram showing the opening / closing timing of each valve of the hydraulic pump during stop control.
  • the piston 82 When the cam 84 rotates together with the rotating shaft 8, the piston 82 periodically moves up and down as shown in the piston cycle curve 110 shown in FIG. The pumping process toward the point and the suction process in which the piston 82 moves from the top dead center to the bottom dead center are repeated.
  • a piston cycle curve 110 is a curve showing a change with time of the position of the piston 82 with the horizontal axis as time t.
  • the high-pressure valve 86 is a check valve that opens and closes due to a pressure difference between the hydraulic chamber 83 and the high-pressure oil line 16, so that the opening / closing operation depends on the pressure in the hydraulic chamber 83. That is, as shown in the high pressure valve position 114, the high pressure valve 86 is automatically opened when the pressure in the hydraulic chamber 83 (see the pressure curve 120) rises in the pumping process and becomes higher than the pressure in the high pressure oil line 16. It is automatically closed at the end of the pumping process. On the other hand, as can be seen from the low pressure valve position 118, the low pressure valve 88 is closed immediately before the piston 82 reaches bottom dead center, and is opened immediately after the piston 82 reaches top dead center.
  • the dotted line part in a figure is a graph when a normal driving
  • the pump control unit 34 When an abnormal event is detected in the pump process and the first stop mode is applied, as shown in FIG. 9, when the stop command is received from the hardwired command output unit 51, the pump control unit 34 performs the low pressure valve 88. open. As a result, the pressure in the hydraulic chamber 83 decreases and the high-pressure valve 86 is closed. At this time, the low pressure valve 88 and the high pressure valve 85 may be forcibly closed by a hard wired circuit.
  • the pump control unit 34 when the second stop mode is applied, after receiving the stop command from the software command output unit 52, the pump control unit 34 maintains the low-pressure valve 88 in that state, and the piston 82 is next set to the bottom dead center. When it reaches, the low pressure valve 88 is opened (not shown).
  • the hydraulic pump 12 may be controlled to stop as follows.
  • the stop control unit 40 shifts the hydraulic pump 12 to an idle state, and after this transition, the hydraulic motor 14 For at least a predetermined time.
  • the generator 20 is continuously driven until the hydraulic motor 14 becomes idle by maintaining the hydraulic motor 14 in an operating state for a predetermined time. This improves power generation efficiency.
  • the hydraulic pump 12 is maintained in an operating state for a predetermined time. Thereby, while operating the hydraulic pump 12, the control force (torque) by the hydraulic pump 12 can be applied to the rotor 2 to assist the pitch brake.
  • step S5 after the comparison unit 43 determines that the state value is less than the second threshold, it is determined in step S7 whether there is another abnormal event. For example, if it is determined by the system state determination unit 49 that there is another abnormal event, such as when the power system 25 is determined to have a power failure, the stop mode determination unit 50 selects the third stop mode C. Then, the control target and the control content corresponding to the third stop mode C are extracted from the stop mode storage unit 47. In step S8, stop control is performed in accordance with the third stop mode C.
  • a command is output from the hardwired command output unit 51 or the software command output unit 52 to each control target control unit according to the control content.
  • stop control is performed in accordance with an abnormal event, and the configuration of performing the three-stage stop control can improve the reliability of the stop control. it can.
  • FIG. 10 is a diagram showing an application abnormal event and its stop control in the third stop mode.
  • the stop control unit 40 shifts the hydraulic motor 12 to the idle state and disconnects the generator 20 from the power system 25. Thereby, it is possible to prevent the generator 20 from over-rotating.
  • the hydraulic motor 14 is shifted to the idle state and the pitch driving device 5 is driven to shift the pitch angle to the feather side, and the hydraulic pump is maintained in the operating state even after the transition.
  • the hydraulic pump 12 may be gradually stopped and finally idled as the pressure of the high pressure oil line 16 increases due to the stop of the hydraulic motor 14.
  • the abnormal event is a pressure drop in the high-pressure oil line 16
  • the following control is performed. If the pressure in the high pressure oil line 16 continues for a predetermined time with the pressure lower than the set lower limit value, there is a possibility that hydraulic fluid has leaked, so the pitch drive device 5 is driven and the pitch angle is shifted to the feather side.
  • the hydraulic pump 12 is gradually stopped with a decrease in the input torque and the rotational speed due to the pitch brake, and finally enters an idle state.
  • the hydraulic motor 14 gradually approaches a stop state in response to a pressure drop in the high pressure oil line 16, and finally enters an idle state.
  • the pitch driving device 5 is driven to shift the pitch angle to the feather side, and the hydraulic pump 12 and the hydraulic motor 14 are set to the idle state. It is preferable to migrate. If the lubricating oil leaks from the head tank 78 or its piping, sufficient lubricating oil is not supplied to the bearings of the rotary shaft 8 and the output shaft 15, and the bearings may be damaged.
  • the pitch driving device 5 is driven to shift the pitch angle to the feather side, and the hydraulic pump 12 and the hydraulic motor 14 are turned on.
  • the stop control is performed by shifting to the idle state. Thereby, the wind power generator 1 can be stopped before the bearing is damaged.
  • the hydraulic pump 12 is gradually stopped with a decrease in the input torque and the rotational speed due to the pitch brake, and finally enters an idle state.
  • the hydraulic motor 14 gradually approaches a stop state in response to a pressure drop in the high pressure oil line 16, and finally enters an idle state.
  • the abnormal event is a decrease in the amount of lubricating oil in the head tank 78
  • the following control is performed.
  • the pressure of the high-pressure accumulator 64 becomes higher than the set value, it is preferable that hydraulic oil is discharged from the high-pressure accumulator 64 to the low-pressure accumulator 69 via the bypass line 66. Thereby, the pressure of the high-pressure accumulator can be reduced.
  • the generator 20, the hydraulic pump 12, or the hydraulic motor 14 may continue normal control.
  • a state value indicating the operating state of the wind turbine generator 1 is acquired, and different stop control is performed depending on the degree of deviation between the state value and the normal value. That is, when the deviation of the state value is equal to or more than the first threshold value and the driving state is particularly severe among abnormal events, the stop control is performed using the hard wired circuit. Thereby, the wind power generator 1 can be stopped reliably.
  • stop control is performed using software control I do.
  • a sudden stop operation can be avoided and the load applied to the device can be reduced.
  • the wind power generator 1 is stopped without applying an excessive load to the equipment by not stopping it until a serious situation such as stopping by a hard wired circuit, but by controlling the stop by software control before that. Can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

本発明は、回転シャフト8と、回転シャフト8によって駆動される油圧ポンプ12と、油圧ポンプ12で昇圧された作動油によって駆動される油圧モータ14と、発電機20と、ピッチ駆動機構5とを備える再生エネルギー型発電装置1に適用される。停止制御部40によって、異常事象の発生時に、再生エネルギー型発電装置1の運転状態を示す状態値と、通常運転時の状態値である正常値との乖離を算出し、この乖離が第1閾値以上の場合、油圧ポンプ12のアイドル状態への移行、油圧モータ14のアイドル状態への移行およびピッチ駆動機構5によるピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行い、前記乖離が第1閾値よりも正常値に近い第2閾値以上第1閾値未満の場合、油圧ポンプ12のアイドル状態への移行、油圧モータ14のアイドル状態への移行およびピッチ駆動機構5によるピッチ角のフェザー側への移行の全てをソフトウェア制御により行う。

Description

再生エネルギー型発電装置およびその制御方法
 本発明は、油圧ポンプおよび油圧モータを組み合わせた油圧トランスミッションを介して、ロータの回転エネルギーを発電機に伝達する再生エネルギー型発電装置およびその制御方法に関する。なお、再生エネルギー型発電装置は、風、潮流、海流、河流等の再生可能なエネルギーを利用した発電装置であり、例えば、風力発電装置、潮流発電装置、海流発 電装置、河流発電装置等を挙げることができる。
 近年、地球環境の保全の観点から、風力を利用した風力発電装置や、潮流、海流又は河流を利用した発電装置を含む再生エネルギー型発電装置の普及が進んでいる。再生エネルギー型発電装置では、風、潮流、海流又は河流の運動エネルギーをロータの回転エネルギーに変換し、さらにロータの回転エネルギーを発電機によって電力に変換する。
 このような再生エネルギー型発電装置においては、装置自体やその周辺機器に異常事象が発生した場合、機器の損傷や寿命低下、あるいは性能低下を防ぎ、さらに安全性を確保するために緊急停止させるようになっている。
 再生エネルギー型発電装置の停止方法として、例えば特許文献1には、機械式ブレーキを用いてロータを減速するようにした風力発電装置が記載されている。また、別の停止方法として、特許文献2には、ピッチ制御装置によりピッチ角をフェザー側に制御して回転翼を減速させる方法が記載されている。さらにこれらを組み合わせた方法として、特許文献3には、回転翼のピッチ角制御によるピッチブレーキに加えて、機械式ブレーキを併用する方法が記載されている。
 ところで、近年、油圧ポンプおよび油圧モータを組み合わせた油圧トランスミッションを採用した再生エネルギー型発電装置が注目を集めている。
 例えば、特許文献4には、ロータの回転により駆動される油圧ポンプと、発電機に接続された油圧モータとを組み合わせた油圧トランスミッションを備えた風力発電装置が記載されている。この風力発電装置では、油圧ポンプおよび油圧モータが作動油流路を介して互いに接続され、ロータの回転エネルギーが、油圧トランスミッションを介して発電機に伝わるようになっている。
米国特許出願公開第2007/0189900号明細書 特開2010-156318号公報 米国特許第6265785号明細書 米国特許出願公開第2010/0040470号明細書
 上記特許文献4等に記載される油圧トランスミッションにおいては、異常事象の発生時、ピッチブレーキ等によりロータの回転を停止させるとともに、油圧ポンプおよび油圧モータを停止させる必要がある。
 しかしながら、緊急停止を要する異常事象が発生してから急激にピッチブレーキをかけたり、油圧モータおよび油圧モータを急激にアイドル状態へ移行させたりすると、機器へ過大な負荷がかかり、耐久性が低下してしまうという問題があった。
 本発明は、上述の事情に鑑みてなされたものであり、異常事象の発生時に、運転状態に応じた停止制御を行うことができ、安全性を確保しながら停止制御による機器への負荷を軽減できる再生エネルギー型発電装置およびその制御方法を提供することを目的とする。
 本発明に係る再生エネルギー型発電装置は、再生エネルギーを利用して発電を行う再生エネルギー型発電装置であって、前記再生エネルギーによって回転翼とともに回転する回転シャフトと、前記回転シャフトによって駆動されて作動油を昇圧する油圧ポンプと、前記油圧ポンプで昇圧された前記作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記回転翼のピッチ角を調節するピッチ駆動機構と、前記再生エネルギー型発電装置の運転状態を示す状態値を取得する監視部と、異常事象の発生時に、前記再生エネルギー型発電装置を停止させる停止制御部とを備え、前記停止制御部は、通常運転時の前記状態値である正常値に対する前記監視部で取得された前記状態値の乖離が第1閾値以上の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行うとともに、前記乖離が前記第1閾値よりも前記正常値に近い第2閾値以上前記第1閾値未満の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の全てをソフトウェア制御により行うことを特徴とする。
 本発明によれば、監視部で再生エネルギー型発電装置の運転状態を示す状態値を取得し、停止制御部によって、この状態値と正常値との乖離の度合いによって異なる停止制御を行うようにしている。すなわち、状態値の乖離が第1閾値以上の場合、油圧ポンプのアイドル状態への移行、油圧モータのアイドル状態への移行およびピッチ駆動機構によるピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行う。このように、異常事象の中でも特に過酷な運転状態である場合には、ハードワイヤード回路を用いて停止制御を行うことによって、確実に再生エネルギー型発電装置を停止することができる。
 一方、乖離が第1閾値よりも正常値に近い第2閾値以上第1閾値未満の場合、油圧ポンプのアイドル状態への移行、油圧モータのアイドル状態への移行およびピッチ駆動機構によるピッチ角のフェザー側への移行の全てをソフトウェア制御により行う。このように、異常事象の中でも運転状態が通常運転時に近い場合には、ソフトウェア制御を用いて停止制御を行う。これにより、急激な停止動作を回避し、機器へ与えられる負荷を軽減できる。特に、油圧ポンプのアイドル状態への移行または油圧モータのアイドル状態への移行によって停止制御を行う場合、通常運転時と同様の制御によって行うことができるため、油圧ポンプまたは油圧モータの寿命低下を防ぐことができる。また、ソフトウェア制御を用いることで、通常運転時のシーケンスにのっとって制御を行うことができるので、異常事象の原因が取り除かれた後、迅速に再起動を行うことができ、稼働率の大幅な低下を回避できる。さらにまた、ハードワイヤード回路によって停止させるような深刻な状況になるまで放置するのではなく、その前にソフトウェア制御によって停止制御することで、機器に過大な負荷をかけずに再生エネルギー型発電装置を停止させることができる。
 なお、ハードワイヤード回路とは、物理的な結線により命令を実行するように構成された回路である。
 ここで、前記状態値は、前記油圧ポンプの回転数、前記油圧モータの回転数および前記発電機の出力の少なくとも一つであってもよい。
 上記再生エネルギー型発電装置において、前記停止制御部は、前記乖離が前記第1閾値以上の場合、前記乖離が前記第2閾値以上前記第1閾値未満の場合に比べて高速で前記ピッチ角をフェザー側に変更することが好ましい。
 このように、乖離が第1閾値以上の場合、異常事象の中でも特に過酷な運転状態であるので、できるだけ迅速に停止させることが最も優先される。したがって、高速でピッチ角をフェザー側に変更してピッチブレーキをかけることで、停止までの時間を短縮することができる。
 上記再生エネルギー型発電装置において、前記油圧ポンプは、シリンダおよびピストンで囲まれて前記作動油で満たされる複数の作動室と、各作動室の前記ピストンを上死点と下死点との間で互いに位相差を持たせて上下動させるカムとを含み、前記停止制御部は、前記乖離が前記第1閾値以上の場合、全作動室を同時に非作動状態に切り替えて前記油圧ポンプを即時停止させるとともに、前記乖離が前記第2閾値以上前記第1閾値未満の場合、各作動室の前記ピストンが前記上死点または前記下死点に位置するタイミングで前記作動室を非作動状態に順次切り替えて前記油圧ポンプを停止させることが好ましい。
 上述したように、乖離が第1閾値以上の場合、迅速に停止させることが最も優先されるので、油圧ポンプの全作動室を同時に非作動状態に切り替えることで即時停止させ、安全性を確保する。ところがこのとき、ピストンは位相差をもって上下動しているので、ピストンが上死点と下死点以外に位置するにもかかわらず非作動状態に切り替えられる作動室が発生する。このようなタイミングで切り替えられると、油圧ポンプの構成部品に予期せぬ荷重がかかってしまうことがある。そこで、必ずしも緊急停止を要さない、乖離が第2閾値以上第1閾値未満の場合には、各作動室のピストンが上死点または下死点に位置するタイミングで作動室を非作動状態に順次切り替える。これにより、構成部品に予期せぬ荷重がかかることを回避し、延いては、油圧ポンプや油圧モータの寿命低下を防止できる。
 上記再生エネルギー型発電装置において、前記停止制御部は、前記油圧ポンプおよび前記油圧モータの一方で前記異常事象が発生した場合、前記油圧ポンプおよび前記油圧モータの前記一方をアイドル状態に移行させ、これらの移行後も前記油圧ポンプおよび前記油圧モータの他方を少なくとも所定時間だけ稼働状態に維持させることが好ましい。
 このように、油圧ポンプおよび油圧モータのうち異常事象が発生した一方は停止させる。異常事象が発生していない他方は必ずしも停止させる必要はないので、少なくとも所定時間だけ稼働状態に維持させる。例えば、油圧モータを所定時間だけ稼働状態に維持させる場合、油圧モータは発電機が電力系統と繋がっている限り、高圧油ラインの残留エネルギー分の仕事を行う。そして、時間の経過に伴い油圧は低下し、油圧モータはアイドル状態となり、発電機の出力も低下する。つまり、油圧モータはアイドル状態になるまでの間、発電機を駆動し続けることとなり、発電効率が向上する。一方、油圧ポンプを所定時間だけ稼働状態に維持させるようにしたので、その間油圧ポンプによる制御力(トルク)をロータに付与して、ピッチブレーキを補助することができる。
 上記再生エネルギー型発電装置において、前記状態値が前記油圧ポンプおよび前記油圧モータの一方の回転数であり、該状態値が前記第2閾値未満であっても、前記油圧ポンプおよび前記油圧モータの前記一方で前記異常事象が発生した場合、前記ピッチ駆動機構により前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータの前記一方をアイドル状態に移行させることが好ましい。
 このように、状態値が第2閾値未満であっても、異常事象が発生したら停止制御を行う。すなわち、第1閾値以上のハードワイヤード回路による停止制御と、第2閾値以上第1閾値未満のソフトウェア制御による停止制御に加えて、状態値が第2閾値に満たなくても異常事象に応じて停止制御を行うようにし、3段階の停止制御を行う構成としている。これにより、停止制御の信頼性を向上させることができる。
 上記再生エネルギー型発電装置において、前記状態値が前記油圧モータの回転数であり、該状態値が前記第2閾値未満であっても、前記発電機を連系した電力系統が停電した場合、前記停止制御部は、前記油圧モータをアイドル状態に移行させるとともに前記発電機を前記電力系統から解列させることが好ましい。
 このように、状態値が第2閾値未満であっても、発電機を連系した電力系統が停電した場合は異常事象と認識し、停止制御部によって、発電機に連結される油圧モータをアイドル状態に移行させるとともに発電機を電力系統から解列させる。これにより、発電機の過回転を防止可能となる。
 ここで、上記したように電力系統が停電した場合、前記停止制御部は、前記油圧モータをアイドル状態に移行させるとともに前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させ、これらの移行後も前記油圧ポンプを稼働状態に維持させるようにしてもよい。
 このように、電力系統が停電した場合に、油圧モータをアイドル状態に移行させて油圧モータと発電機とを保護するとともに、ピッチ駆動装置によりピッチブレーキを作動してロータの回転を停止する制御を行うことで、安全性を確保することができる。このとき、これらの移行後も油圧ポンプを稼働状態に維持させるようにしたので、その間油圧ポンプによる制御力(トルク)をロータに付与して、ピッチブレーキを補助することができる。
 上記再生エネルギー型発電装置は、前記油圧ポンプの吐出口および前記油圧モータの吸入口を接続する高圧油ラインをさらに備え、前記停止制御部は、前記高圧油ラインの圧力が設定下限値より低い状態で所定時間継続した場合、前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータをアイドル状態に移行させることが好ましい。
 高圧油ラインの圧力が設定下限値より低い状態で所定時間継続した場合、油圧トランスミッションの配管が破損して作動油の漏れが発生していると考えられる。作動油は、その一部が油圧ポンプや油圧モータの軸受部へ供給されて潤滑油の役割を果たすこともあり、作動油の漏れが顕著になると軸受部への油供給が絶たれる懸念がある。そこで、軸受の保護を図るために再生エネルギー型発電装置の停止制御を行って、ピッチ角をフェザー側に移行させ、最終的に油圧ポンプと油圧モータもアイドル状態にして、再生エネルギー型発電装置を停止する。
 上記再生エネルギー型発電装置において、前記状態値が前記油圧モータの回転数であり、前記第1閾値は、定格負荷運転中の前記発電機が電力系統から解列した時に異常が発生した場合に予想される前記発電機の最大回転数に対応する前記油圧モータの回転数よりも低い値に設定されていることが好ましい。
 このように第1閾値を設定することで、発電機が電力系統から解列した場合であっても、発電機が最大回転数に到達する前に停止することができ、発電機の損傷を防止できる。
 上記再生エネルギー型発電装置は、前記油圧ポンプの吐出口および前記油圧モータの吸入口を接続する高圧油ラインと、前記油圧ポンプの吸入口および前記油圧モータの吐出口を接続する低圧油ラインと、前記高圧油ラインに接続される高圧アキュムレータと、前記低圧油ラインに接続される低圧アキュムレータと、前記高圧アキュムレータから前記低圧アキュムレータに連通するバイパスラインとをさらに備え、前記停止制御部は、前記高圧アキュムレータの圧力が設定値より高くなった場合、前記バイパスラインを介して、前記高圧アキュムレータから前記低圧アキュムレータへ前記作動油を放出させることが好ましい。
 高圧アキュムレータの圧力が設定値より高くなった場合、高圧アキュムレータで規定される最大許容圧力を超えてしまうおそれがある。そこで、このような場合に、高圧アキュムレータから低圧アキュムレータに連通するバイパスラインを介して低圧アキュムレータへ高圧の作動油を放出することによって、高圧アキュムレータの圧力を低下させて異常事象を解消することができる。
 上記再生エネルギー型発電装置は、前記回転シャフトおよび前記油圧モータと前記発電機とを連結する出力軸の少なくとも一方の軸受に潤滑油を供給する密閉されたヘッドタンクをさらに備え、前記停止制御部は、前記ヘッドタンクの潤滑油圧力および潤滑油量の一方が設定値より低下した場合、前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータをアイドル状態に移行させることが好ましい。
 ヘッドタンクやその配管から潤滑油が漏出すると、回転シャフトや出力軸の軸受に十分な潤滑油が供給されず、軸受が損傷してしまう可能性がある。そこで、ヘッドタンクの潤滑油圧力および潤滑油量の一方が設定値より低下した場合に、ピッチ駆動装置を駆動してピッチ角をフェザー側に移行させるとともに、油圧ポンプおよび油圧モータをアイドル状態に移行させて停止制御を行う。これにより、軸受が損傷してしまう前に再生エネルギー型発電装置を停止させることができる。
 さらにまた、再生エネルギー型発電装置は、前記再生エネルギーの一形態である風から電力を生成する風力発電装置であってもよい。
 本発明に係る再生エネルギー型発電装置の制御方法において、再生エネルギーによって回転翼とともに回転する回転シャフトと、前記回転シャフトによって駆動されて作動油を昇圧する油圧ポンプと、前記油圧ポンプで昇圧された前記作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記回転翼のピッチ角を調節するピッチ駆動機構とを備えた再生エネルギー型発電装置の制御方法であって、前記再生エネルギー型発電装置の運転状態を示す状態値を取得する取得ステップと、異常事象の発生時に、前記再生エネルギー型発電装置を停止させる停止ステップとを備え、前記停止ステップでは、通常運転時の前記状態値である正常値に対する前記取得ステップで取得された前記状態値の乖離が第1閾値以上の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行い、前記乖離が前記第1閾値よりも前記正常値に近い第2閾値以上前記第1閾値未満の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の全てをソフトウェア制御により行うことを特徴とする。
 本発明によれば、再生エネルギー型発電装置の運転状態を示す状態値を取得し、この状態値と正常値との乖離の度合いによって異なる停止制御を行うようにしている。すなわち、状態値の乖離が第1閾値以上であって、異常事象の中でも特に過酷な運転状態である場合には、ハードワイヤード回路を用いて停止制御を行う。これにより、確実に再生エネルギー型発電装置を停止することができる。
 一方、乖離が前記第1閾値よりも正常値に近い第2閾値以上第1閾値未満の場合であって、異常事象の中でも運転状態が通常運転時に近い場合には、ソフトウェア制御を用いて停止制御を行う。これにより、急激な停止動作を回避し、機器へ与えられる負荷を軽減できる。特に、油圧ポンプのアイドル状態への移行または油圧モータのアイドル状態への移行によって停止制御を行う場合、通常運転時と同様の制御によって行うことができるため、油圧ポンプまたは油圧モータの寿命低下を防ぐことができる。また、ソフトウェア制御を用いることで、通常運転時のシーケンスにのっとって制御を行うことができるので、異常事象の原因が取り除かれた後、迅速に再起動を行うことができ、稼働率の大幅な低下を回避できる。
 本発明では、再生エネルギー型発電装置の運転状態を示す状態値を取得し、この状態値と正常値との乖離の度合いによって異なる停止制御を行うようにしている。すなわち、状態値の乖離が第1閾値以上であって、異常事象の中でも特に過酷な運転状態である場合には、ハードワイヤード回路を用いて停止制御を行う。これにより、確実に再生エネルギー型発電装置を停止することができる。
 一方、乖離が前記第1閾値よりも正常値に近い第2閾値以上第1閾値未満の場合であって、異常事象の中でも運転状態が通常運転時に近い場合には、ソフトウェア制御を用いて停止制御を行う。これにより、急激な停止動作を回避し、機器へ与えられる負荷を軽減できる。さらにまた、ハードワイヤード回路によって停止させるような深刻な状況になるまで放置するのではなく、その前にソフトウェア制御によって停止制御することで、機器に過大な負荷をかけずに再生エネルギー型発電装置を停止させることができる。
風力発電装置の全体構成の一例を示す図である。 風力発電装置の油圧トランスミッションと停止制御部の構成を示す図である。 油圧ポンプの具体的な構成例を示す図である。 油圧モータの具体的な構成例を示す図である。 油圧ポンプの回転数を状態値とした場合の停止制御を示す図である。 油圧モータの回転数を状態値とした場合の停止制御を示す図である。 発電機の出力を状態値とした場合の停止制御を示す図である。 風力発電装置の停止制御の一例を示すフローチャートである。 停止制御時における油圧ポンプの各弁の開閉タイミングを示す図である。 第3の停止モードの適用異常事象とその停止制御を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は風力発電装置の全体構成の一例を示す図である。図2は風力発電装置の油圧トランスミッションと停止制御部の構成を示す図である。図3は油圧ポンプの具体的な構成例を示す図である。図4は油圧モータの具体的な構成例を示す図である。
 図1に示すように、風力発電装置1は、主として、風を受けて回転するロータ2と、ロータ2の回転を増速する油圧トランスミッション10と、電力系統25に連系された発電機20と、停止制御部40(図2参照)を含む各制御部と、回転数計32、34を含む各種計測器とを備える。
 油圧トランスミッション10および発電機20は、ナセル22又はこれを支持するタワー24の内部に収納されていてもよい。なお、図1には、タワー24が地上に立設された陸上風力発電装置を示したが、風力発電装置1は洋上を含む任意の場所に設置されていてもよい。
 ロータ2は、回転翼4が取り付けられたハブ6に回転シャフト8が連結された構成を有する。すなわち、3枚の回転翼4がハブ6を中心として放射状に延びており、それぞれの回転翼4が、回転シャフト8と連結されたハブ6に取り付けられている。回転翼4には、回転翼4のピッチ角を調節するためのアクチュエータ(ピッチ駆動機構)5(図2参照)が取り付けられている。アクチュエータ5は、ピッチ制御部33からの制御信号によって制御される。これにより、回転翼4が受けた風の力によってロータ2全体が回転し、回転シャフト8を介して油圧トランスミッション10に回転が入力される。
 油圧トランスミッション10は、図2に示すように、回転シャフト8によって駆動される可変容量型の油圧ポンプ12と、発電機20に接続される出力軸15を有する可変容量型の油圧モータ14と、油圧ポンプ12と油圧モータ14との間に設けられた高圧油ライン16および低圧油ライン18を有する。
 油圧ポンプ12の吐出側は、高圧油ライン16によって油圧モータ14の吸込側に接続されており、油圧ポンプ12の吸込側は、低圧油ライン18によって油圧モータ14の吐出側に接続されている。油圧ポンプ12から吐出された作動油(高圧油)は、高圧油ライン16を介して油圧モータ14に流入し、油圧モータ14を駆動する。油圧モータ14で仕事を行った作動油(低圧油)は、低圧油ライン18を介して油圧ポンプ12に流入して、油圧ポンプ12で昇圧された後、再び高圧油ライン16を介して油圧モータ14に流入する。
 図3および図4を用いて、油圧ポンプ12および油圧モータ14の具体的な構成例について説明する。
 油圧ポンプ12は、図3に示すように、シリンダ80およびピストン82により形成される複数の作動室(ワーキングチャンバ)83と、ピストン82に係合するカム曲面を有するリングカム84と、各作動室83に対して設けられる高圧弁86および低圧弁88とにより構成されてもよい。高圧弁86は、各作動室83と高圧油ライン16との間の高圧連通路87に設けられ、低圧弁88は、各作動室83と低圧油ライン18との間の低圧連通路89に設けられている。ここで、高圧弁86には、油圧室83から高圧油流路16に向かう作動油の流れのみを許容する逆止弁を用い、低圧弁88には電磁弁を用いることができる。
 油圧ポンプ12の運転時において、回転シャフト8とともにリングカム84が回転すると、カム曲線に合わせてピストン82が周期的に上下動し、ピストン82が下死点から上死点に向かうポンプ工程と、ピストン82が上死点から下死点に向かう吸入工程とが繰り返される。そのため、ピストン82とシリンダ80の内壁面によって形成される作動室83の容積は周期的に変化する。
 油圧ポンプ12では、高圧弁86および低圧弁88の開閉制御によって、各作動室83をアクティブ状態又はアイドル状態に切替えることができる。作動室83がアクティブ状態である場合、吸入工程において高圧弁86を閉じ低圧弁88を開くことで低圧油ライン18から作動室83内に作動油を流入させるとともに、ポンプ工程において高圧弁86を開き低圧弁88を閉じることで作動室83から高圧油ライン16に圧縮された作動油を送り出す。一方、作動室83がアイドル状態である場合、吸入工程およびポンプ工程の両方において、高圧弁86が閉じて低圧弁88が開いた状態を維持して、作動室83と低圧油ライン18との間で作動油を往復させる(すなわち、高圧油ライン16には作動油を送り出さない)。ポンプ制御部34は、高圧弁86および低圧弁88を開閉することによって油圧ポンプ12を停止制御する。
 油圧モータ14は、図4に示すように、シリンダ90およびピストン92により形成される複数の作動室93と、ピストン92に係合するカム曲面を有する偏心カム94と、各作動室93に対して設けられた高圧弁96および低圧弁98とにより構成されてもよい。高圧弁96は、各作動室93と高圧油ライン16との間の高圧連通路97に設けられ、低圧弁98は、各作動室93と低圧油ライン18との間の低圧連通路99に設けられている。ここで、高圧弁96および低圧弁98には、電磁弁を用いることができる。
 油圧モータ14の運転時において、油圧ポンプ12が作った高圧油ライン16と低圧油ライン18との差圧によって、ピストン92が周期的に上下動し、ピストン92が上死点から下死点に向かうモータ工程と、ピストン92が下死点から上死点に向かう排出工程とが繰り返される。油圧モータ14の運転中、ピストン82とシリンダ80の内壁面によって形成される作動室83の容積は周期的に変化する。
 油圧モータ14は、高圧弁96および低圧弁98の開閉制御によって、各作動室83をアクティブ状態又はアイドル状態に切替えることができる。作動室93がアクティブ状態である場合、モータ工程において高圧弁96を開き低圧弁98を閉じることで高圧油ライン16から作動室93内に作動油を流入させるとともに、排出工程において高圧弁96を閉じ低圧弁98を開くことで作動室93内で仕事をした作動油を低圧油ライン18に送り出す。一方、作動室93がアイドル状態である場合、モータ工程およびポンプ工程の両方において、高圧弁96が閉じて低圧弁98が開いた状態を維持して、作動室93と低圧油ライン18との間で作動油を往復させる(すなわち、高圧油ライン16からの高圧油を作動室93に受け入れない)。また、モータ制御部35は、高圧弁96および低圧弁98を開閉することによって油圧モータ14を停止制御することもある。
 図2に戻り、高圧油ライン16には分岐ライン63が接続され、この分岐ライン63に高圧アキュムレータ64が接続されている。高圧油ライン16と高圧アキュムレータ64との間には電磁弁65を設けてもよい。なお、アキュムレータ64の圧力は、圧力計68によって取得される。
 同様に、低圧油ライン18にも、分岐ラインを介して低圧アキュムレータ69が接続されている。低圧油ライン18と低圧アキュムレータ69との間には電磁弁を設けてもよい。これらの低圧アキュムレータ64、69は、蓄圧あるいは脈動防止などを目的として設置される。
 高圧アキュムレータ64と低圧アキュムレータ69との間には、これらのアキュムレータ64、69を連通するバイパスライン66が設けられている。このバイパスライン66にはバイパス弁67が設けらる。そして、バイパス弁67を開くことで、高圧アキュムレータ64に蓄えられた高圧油の少なくとも一部を低圧アキュムレータ69へ供給することができる。
 高圧油ライン16と低圧油ライン18との間には、油圧モータ14をバイパスするバイパスライン60が設けられている。そして、バイパスライン60には、高圧油ライン16の作動油の圧力を設定圧力以下に保持するリリーフ弁62が設けられている。
 また、油圧トランスミッション10には、オイルタンク70、補充ライン71、ブーストポンプ72、オイルフィルタ73、返送ライン74、低圧リリーフ弁75が設けられている。
 オイルタンク70は、補充用の作動油が貯留されている。補充ライン71は、オイルタンク70を低圧油ライン18に接続している。ブーストポンプ72は、補充ライン71に設けられ、オイルタンク70から低圧油ライン18に作動油を補充するようになっている。
 返送ライン74は、オイルタンク70と低圧油ライン18との間に配置されている。低圧リリーフ弁75は、返送ライン74に設けられており、低圧油ライン18内の圧力を設定圧力と同じ又はそれ以下に保持するようになっている。
 さらにまた、潤滑油が貯留されるヘッドタンク78と、ヘッドタンク78の潤滑油を回転シャフト8や出力軸15の軸受に供給する軸受潤滑油ライン77とが設けられている。軸受潤滑油ライン77には、潤滑油を軸受に圧送するポンプ(不図示)が設けられている(図2では回転シャフト8の場合のみを示している)。そして、この軸受潤滑油ライン77を介して、ヘッドタンク78から回転シャフト8や出力軸15の軸受に潤滑油が供給されるようになっている。なお、ヘッドタンク78の潤滑油は、上記した軸受の他にも、風力発電装置1の構成部材の他の摺動部へ供給されてもよい。また、ヘッドタンク78は所定圧力を維持した状態で密閉されていてもよい。軸受潤滑油ライン77の軸受上流には潤滑油軸受供給圧力を計測する圧力センサ79(図2では軸位置に簡易的に表示)が設けられており、この圧力センサ79によって潤滑油の圧力が検出される。なお、圧力センサ79の替わりに、液面レベルセンサ等のように潤滑油量を直接計測する計測器を設けてもよい。なお、軸受にはグリース封入の場合もあり、その場合は上記した構成を有していない。
 各種計測器として、風力発電装置1には、回転数計32および34と、圧力センサ31、68、79とが設けられている。回転数計32は回転シャフト8の回転速度を計測する。回転数計34は油圧モータ14の出力軸15の回転速度を計測する。圧力計31は、高圧油ライン16の作動油(高圧油)の圧力を計測する。圧力センサ68は高圧アキュムレータ64の作動油の圧力を計測する。圧力センサ79は潤滑油の圧力を計測する。
 ここで、上記構成の風力発電装置1における停止制御について、詳細に説明する。
 一般に、風力発電装置においては、通常運転時の状態とは異なる異常事象が発生した場合に、機器の損傷や寿命低下、あるいは性能低下等を引き起こしたり、場合によっては安全性の確保が困難となる可能性もあるので、異常事象の内容やその深刻度によっては風力発電装置1を停止させる必要がある。
 そこで、本実施形態の風力発電装置1では、以下に説明する停止制御部40によって、異常事象の発生時に適切に風力発電装置1を停止させるようにしている。
 この停止制御部40は、風力発電装置1の運転状態を示す状態値から異常事象を検知し、異常事象に対応した停止制御を行う。なお、ここでいう異常事象とは、主に風力発電装置1を構成する部位に生じる事象を指すが、例えば停電等のように、風力発電装置1の周辺装置の事象を含んでもよい。
 停止制御部40は、運転状態判定部41と、記憶部45と、停止モード決定部50と、ハードワイヤード指令出力部51と、ソフトウェア指令出力部52と、系統状態判定部49とを備える。
 記憶部45は、閾値格納部46と停止モード格納部47とを有しており、停止制御部40で用いられる各種の設定値や閾値などが格納されている。
 閾値格納部46は、状態値に対応した第1閾値と第2閾値とが格納されている。第1閾値は、通常運転時の状態値である正常値より大きく、通常運転で許容される状態値を超えて緊急停止が必要とされる境界となる値である。第2閾値は、正常値よりも大きく且つ第1閾値よりも小さい値であり、つまり第1閾値より正常値に近い値である。第2閾値と第1閾値との間では、必ずしも緊急停止する必要はなく、運転を続行できる状態ではあるが、この状態が継続することにより運転に影響が生じる可能性がある。これらの閾値は、例えば図5~図7に示すように、状態値に対応してそれぞれ設定されて、閾値格納部46に格納されている。なお、状態値とは、例えば、油圧ポンプ12の回転数、油圧モータ14の回転数、発電機20の出力等である。
 停止モード格納部47には、状態値の種類ごとに複数の停止モードが格納されている。各停止モードは、制御対象とその停止制御の内容とが紐付けられて設定されている。また、一つの種類の状態値に対して、正常値と状態値との乖離の大きさに対応して、少なくとも第1の停止モードおよび第2の停止モードからなる2段階の停止モードが設定されている。
 第1の停止モードは、状態値と正常値との乖離が第1閾値以上の場合に適用されるもので、油圧ポンプ12のアイドル状態への移行、油圧モータ14のアイドル状態への移行およびピッチ駆動機構5によるピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行う。
 第2の停止モードは、状態値と正常値との乖離が第2閾値以上第1閾値未満の場合に適用されるもので、油圧ポンプ12のアイドル状態への移行、油圧モータ14のアイドル状態への移行およびピッチ角のフェザー側への移行の全てをソフトウェア制御により行う。
 運転状態判定部41は、各種計測器から入力される状態値に基づいて、風力発電装置1の運転状態が、停止制御を行う必要のある異常事象か否かを判定する。ここで、運転状態判定部41は、乖離算出部42と比較部43とからなる。
 乖離算出部42は、各種計測器から入力される状態値と、正常値との乖離を算出する。
 比較部43は、乖離算出部42で算出される乖離と、閾値格納部46に格納される第1閾値および第2閾値とをそれぞれ比較する。
 停止モード決定部50は、比較部43の比較結果に基づいて停止モードを決定し、これに対応した停止モードを停止モード格納部47から抽出する。
 ハードワイヤード指令出力部51は、停止モード決定部50で決定された停止モードの制御内容のうち、ハードワイヤード回路による制御に関する指令を該当の制御対象に出力する。なお、ハードワイヤード回路とは、リレーやスイッチ等のハードウェアを電線で接続して、物理的な結線により命令を実行するように構成された回路である。
 ソフトウェア指令出力部52は、停止モード決定部50で決定された停止モードの制御内容のうち、ソフトウェア制御による制御に関する指令を該当の制御対象に出力する。なお、ソフトウェア制御とは、演算処理装置でプログラム処理を実行することによって命令を実行させるものである。
 系統状態判定部49は、電力系統25の系統状態を取得して、系統状態が異常事象か否かを判定する。例えば、系統状態判定部49により電力系統50の電圧が低下したときに異常事象である停電が発生したと判定してもよい。なお、系統状態判定部49は、電力系統25の電圧を計測する電圧センサを用いることが好ましいが、電圧センサに替えて、力率計又は無効電力計を用いて間接的に電力系統50の状態を判定してもよい。
 そして、運転状態判定部41と同様に、この系統状態判定部49による判定結果に基づいて、停止モード決定部50で停止モードを決定し、ハードワイヤード指令出力部51またはソフトウェア指令出力部52から各指令を出力する。
 各制御対象における停止制御の具体例を図5~図7に示す。なお、以下の例では、停止制御の制御対象を、回転翼4のピッチ、油圧ポンプ12および油圧モータ14としている。ただし、これら以外の制御対象の制御内容を含んでいてもよい。
 図5は油圧ポンプの回転数を状態値とした場合の停止制御を示す図である。同図に示すように、油圧ポンプ12の回転数を状態値とした場合、正常値には油圧ポンプ12の定格回転数を適用してもよい。さらに、第1閾値は正常値より大きい値とし、第2閾値は、正常値より大きく且つ第1閾値より小さい値とする。
 このとき、油圧ポンプ12の回転数が第1閾値以上である場合には、第1の停止モードA1が適用される。第1の停止モードA1では、各制御対象に対する制御内容が、回転翼4のピッチに対してはハードワイヤード回路によるフェザー側への移行であり、油圧ポンプ12に対してはハードワイヤード回路による即時アイドル状態への移行であり、油圧モータ14に対してはハードワイヤード回路による即時アイドル状態への移行である。
 一方、油圧ポンプ12の回転数が第2閾値以上第1閾値未満である場合には、第2の停止モードB1が適用される。第2の停止モードB1では、各制御対象に対する制御内容が、回転翼4のピッチに対してはソフトウェア制御によるフェザー側への移行であり、油圧ポンプ12に対してはソフトウェア制御による停止指令であり、油圧モータ14に対してはソフトウェア制御による停止指令である。
 図6は油圧モータの回転数を状態値とした場合の停止制御を示す図である。この閾値設定および停止制御は、図5に示した油圧ポンプ12の場合と略同一であるので、詳細な説明は省略するが、やはり第1の停止モードA2においては主にハードワイヤード回路により停止制御を行い、第2の停止モードB2においては主にソフトウェア制御により停止制御を行うようになっている。
 なお、図5および図6では、第1の停止モードにおいて、第1閾値以上で油圧ポンプ12および油圧モータ14の両方をハードワイヤード回路により即時停止する設定としたが、油圧ポンプ12および油圧モータ14のうち異常事象が発生していない方は、ソフトウェア制御により停止制御してもよいし、所定時間だけ通常運転を続行した後に停止制御してもよい。
 また、油圧モータの回転数を状態値とする場合、第1閾値は、定格負荷運転中の発電機20が電力系統25から解列した時に異常が発生した場合に予想される発電機20の最大回転数に対応する油圧モータ14の回転数よりも低い値に設定されていることが好ましい。これにより、発電機20が電力系統25から解列した場合であっても、発電機20が最大回転数に到達する前に停止することができ、発電機20の損傷を防止できる。
 図7は発電機の出力を状態値とした場合の停止制御を示す図である。同図に示すように、発電機20の出力を状態値とした場合、正常値には発電機20の定格出力を適用してもよい。さらに、第1閾値は正常値より大きい値とし、第2閾値は、正常値より大きく且つ第1閾値より小さい値とする。
 このとき、発電機20の出力が第1閾値以上である場合には、第1の停止モードA3が適用される。第1の停止モードA3では、各制御対象に対する制御内容が、回転翼4のピッチに対してはハードワイヤード回路によるフェザー側への移行であり、油圧ポンプ12に対してはハードワイヤード回路による即時アイドル状態への移行であり、油圧モータ14に対してはハードワイヤード回路による即時アイドル状態への移行である。
 一方、発電機20の出力が第2閾値以上第1閾値未満である場合には、第2の停止モードB3が適用される。第2の停止モードB3では、各制御対象に対する制御内容が、回転翼4のピッチに対してはソフトウェア制御によるフェザー側への移行であり、油圧ポンプ12に対してはソフトウェア制御による停止指令であり、油圧モータ14に対してはソフトウェア制御による停止指令である。
 次に、図8に示すフローチャートを参照して、風力発電装置1の停止制御の一例を説明する。ここでは、風力発電装置1の運転状態を示す状態値として、油圧ポンプ12の回転数を用いている。
 最初に、ステップS1において、運転状態判定部41は、油圧ポンプ12の回転数を取得する。油圧ポンプ12の回転数は、回転数計32で計測される回転シャフト8の計測値であってもよい。ステップS2で、運転状態判定部41の乖離算出部42は、ステップS1で取得した油圧ポンプ12の回転数と、通常運転時の回転数である正常値との乖離を算出する。
 次いで、ステップS3において、比較部43で上記乖離と第1閾値とを比較し、乖離が第1閾値以上である場合、停止モード決定部50で、油圧ポンプ12の回転数に対する第1の停止モードA1を選択し、停止モード格納部47から第1の停止モードA1に対応した制御対象および制御内容を抽出する。
 そして、ステップS4で、第1の停止モードA1に従って停止制御を行う。すなわち、第1の停止モードA1の制御内容のうちハードワイヤード回路による停止制御はハードワイヤード指令出力部51から各制御対象の制御部に指令を出力する。一方、ソフトウェア制御による停止制御はソフトウェア指令出力部52から各制御対象の制御部に指令を出力する。例えば、制御対象が回転翼4のピッチ角で、制御内容がハードワイヤード回路によりピッチ角をフェザー側に移行する場合、ハードワイヤード指令出力部51からピッチ制御部33に指令を送信し、この指令に基づいてピッチ制御部33で制御信号を生成してピッチ駆動機構5を制御する。なお、ピッチ駆動機構5が、高速用と通常用の2種類ある場合には、迅速に停止制御を行うために、第1の停止モードでは高速用のピッチ駆動機構5によってピッチ角を制御することが好ましい。
 ステップS3における比較結果で、乖離が第1閾値未満である場合、続いて比較部43で上記乖離と第2閾値とを比較する。このとき、乖離が第2閾値以上である場合、停止モード決定部50で、油圧ポンプ12の回転数に対する第2の停止モードB1を選択し、停止モード格納部47から第2の停止モードB1に対応した制御対象および制御内容を抽出する。
 そして、ステップS6で、第2の停止モードB1に従って停止制御を行う。このとき、第1の停止モードA1と同様に、制御内容に応じてハードワイヤード指令出力部51またはソフトウェア指令出力部52から各制御対象の制御部に指令を出力する。
 ここで、図9を用いて、油圧ポンプ12の停止制御における具体的な動作を説明する。図9は停止制御時における油圧ポンプの各弁の開閉タイミングを示す図である。図3に示す油圧ポンプ12において、回転シャフト8とともにカム84が回転すると、図9に示すピストンサイクル曲線110のように、ピストン82が周期的に上下動し、ピストン82が下死点から上死点に向かうポンプ工程と、ピストン82が上死点から下死点に向かう吸入工程とが繰り返される。なお、図9において、ピストンサイクル曲線110は、横軸を時刻tとして、ピストン82の位置の経時変化を示した曲線である。
 通常運転時、高圧弁86は油圧室83と高圧油ライン16との圧力差によって開閉する逆止弁であるので、その開閉動作は油圧室83の圧力に依存する。すなわち、高圧弁86は、高圧弁ポジション114に示すように、ポンプ工程において油圧室83内の圧力(圧力曲線120参照)が上昇し、高圧油ライン16の圧力よりも高くなると自動的に開かれ、ポンプ工程の終了とともに自動的に閉じられる。一方、低圧弁88は、低圧弁ポジション118から分かるように、ピストン82が下死点に達する直前に閉じられ、ピストン82が上死点に到達した直後に開かれる。これにより、吸入工程では油圧室83の圧力が低下し、ポンプ工程では油圧室83の圧力が上昇する。なお、図中の点線部分は、停止制御を行わずに通常運転を続行したときのグラフである。
 ポンプ工程で異常事象が検知され、第1の停止モードが適用される場合、図9に示すように、ハードワイヤード指令出力部51から停止指令を受けた時点で、ポンプ制御部34は低圧弁88を開く。これにより、油圧室83の圧力が低下して、高圧弁86が閉じられる。このとき、ハードワイヤード回路によって低圧弁88および高圧弁85を強制的に閉じるようにしてもよい。
 一方、第2の停止モードが適用される場合、ソフトウェア指令出力部52から停止指令を受けた後、ポンプ制御部34は低圧弁88をその状態に維持し、ピストン82が次に下死点に到達した時に低圧弁88を開く(不図示)。これにより油圧室83の圧力が低下して、高圧弁86が閉じられる。
 このように、第1の停止モードA1においては、油圧ポンプ12の全作動室を同時に非作動状態に切り替えることで即時停止させ、安全性を確保でき、第2の停止モードB1においては、作動室83を順次非作動状態に切り替えるようにしたので、予期せぬ荷重がかかることを回避し、延いては油圧ポンプ12の寿命低下を防止できる。
 なお、ステップS4およびステップS6の停止制御では、油圧ポンプ12を次のように停止制御してもよい。
 停止制御部40は、油圧ポンプ12で、第1の停止モードや第2の停止モードが適用される異常事象が発生した場合、油圧ポンプ12をアイドル状態に移行させ、この移行後も油圧モータ14を少なくとも所定時間だけ稼働状態に維持させる。
 このように、油圧ポンプ12に異常事象が発生した場合、油圧モータ14を所定時間だけ稼働状態に維持させることによって、油圧モータ14がアイドル状態になるまでの間、発電機20を駆動し続けることとなり発電効率が向上する。なお、油圧モータ14に異常事象が発生した場合は、油圧ポンプ12を所定時間だけ稼働状態に維持させる。これにより、油圧ポンプ12を稼働させている間油圧ポンプ12による制御力(トルク)をロータ2に付与して、ピッチブレーキを補助することができる。
 また、上記した状態値による停止制御に加えて、以下の停止制御を行うようにしてもよい。
 ステップS5において、比較部43で状態値が第2閾値未満であると判断された後、ステップS7で、他の異常事象があるか否かを判断する。例えば、系統状態判定部49により電力系統25が停電していると判定された場合のように、他の異常事象があると判定されたら、停止モード決定部50で第3の停止モードCを選択し、停止モード格納部47から第3の停止モードCに対応した制御対象と制御内容を抽出する。そして、ステップS8で、第3の停止モードCに従って停止制御を行う。このとき、第1および第2の停止モードと同様に、制御内容に応じてハードワイヤード指令出力部51またはソフトウェア指令出力部52から各制御対象の制御部に指令を出力する。
 このように、状態値が第2閾値に満たなくても異常事象に応じて停止制御を行うようにし、3段階の停止制御を行う構成とすることで、停止制御の信頼性を向上させることができる。
る。
 図10を用いて、第3の停止モードが適用される他の異常事象と、これに対応した制御対象および制御内容の具体例を説明する。ここで、図10は第3の停止モードの適用異常事象とその停止制御を示す図である。
 異常事象が電力系統35の停電である場合は次の制御を行う。
 発電機20を連系した電力系統25が停電した場合、停止制御部40は、油圧モータ12をアイドル状態に移行させるとともに発電機20を電力系統25から解列させる。これにより、発電機20の過回転を防止可能である。
 またこのとき、油圧モータ14をアイドル状態に移行させるとともにピッチ駆動装置5を駆動してピッチ角をフェザー側に移行させ、これらの移行後も前記油圧ポンプを稼働状態に維持させることが好ましい。このとき、油圧ポンプ12は、油圧モータ14の停止による高圧油ライン16の圧力上昇にしたがって、徐々に停止させ最終的にアイドル状態にしてもよい。このように、電力系統25が停電した場合に、油圧モータ14をアイドル状態に移行させて油圧モータ12と発電機20とを保護するとともに、ピッチ駆動装置5によりピッチブレーキを作動してロータ2の回転を停止する方向に制御することで安全性を確保する。このとき、これらの移行後も油圧ポンプ12を稼働状態に維持させるようにしたので、その間油圧ポンプ12による制御力をロータ2に付与して、ピッチブレーキを補助することができる。
 異常事象が高圧油ライン16の圧力低下である場合は次の制御を行う。
 高圧油ライン16の圧力が設定下限値より低い状態で所定時間継続した場合、作動油の漏れが発生している可能性があるので、ピッチ駆動装置5を駆動してピッチ角をフェザー側に移行させるとともに、油圧ポンプ12および油圧モータ14をアイドル状態に移行させることが好ましい。これにより、回転シャフト8や出力軸15等の軸受の保護が図れる。このとき、油圧ポンプ12は、ピッチブレーキによる入力トルク、回転数の減少にともなって徐々に停止させていき最終的にアイドル状態となる。一方、油圧モータ14は、高圧油ライン16の圧力低下に応じて徐々に停止状態に近づき、最終的にアイドル状態となる。
 異常事象がヘッドタンク78の潤滑油量の低下である場合は次の制御を行う。
 ヘッドタンク78の潤滑油圧力および潤滑油量の一方が設定値より低下した場合、ピッチ駆動装置5を駆動してピッチ角をフェザー側に移行させるとともに、油圧ポンプ12および油圧モータ14をアイドル状態に移行させることが好ましい。
 ヘッドタンク78やその配管から潤滑油が漏出すると、回転シャフト8や出力軸15の軸受に十分な潤滑油が供給されず、軸受が損傷してしまう可能性がある。そこで、ヘッドタンク78の潤滑油圧力および潤滑油量の一方が設定値より低下した場合に、ピッチ駆動装置5を駆動してピッチ角をフェザー側に移行させるとともに、油圧ポンプ12および油圧モータ14をアイドル状態に移行させて停止制御を行う。これにより、軸受が損傷してしまう前に風力発電装置1を停止させることができる。このとき、油圧ポンプ12は、ピッチブレーキによる入力トルク、回転数の減少にともなって徐々に停止させていき最終的にアイドル状態となる。一方、油圧モータ14は、高圧油ライン16の圧力低下に応じて徐々に停止状態に近づき、最終的にアイドル状態となる。
 異常事象がヘッドタンク78の潤滑油量の低下である場合は次の制御を行う。
 高圧アキュムレータ64の圧力が設定値より高くなった場合、バイパスライン66を介して、高圧アキュムレータ64から低圧アキュムレータ69へ作動油を放出させることが好ましい。これにより、高圧アキュムレータの圧力を低下させることができる。なお、この異常事象が発生した場合は、発電機20、油圧ポンプ12または油圧モータ14は、通常制御を継続してもよい。
 以上説明したように、本実施形態では、風力発電装置1の運転状態を示す状態値を取得し、この状態値と正常値との乖離の度合いによって異なる停止制御を行うようにしている。すなわち、状態値の乖離が第1閾値以上であって、異常事象の中でも特に過酷な運転状態である場合には、ハードワイヤード回路を用いて停止制御を行う。これにより、確実に風力発電装置1を停止することができる。
 一方、乖離が前記第1閾値よりも正常値に近い第2閾値以上第1閾値未満の場合であって、異常事象の中でも運転状態が通常運転時に近い場合には、ソフトウェア制御を用いて停止制御を行う。これにより、急激な停止動作を回避し、機器へ与えられる負荷を軽減できる。さらにまた、ハードワイヤード回路によって停止させるような深刻な状況になるまで放置するのではなく、その前にソフトウェア制御によって停止制御することで、機器に過大な負荷をかけずに風力発電装置1を停止させることができる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 なお、上述の実施形態では、主として油圧ポンプ12の回転数を状態値として用いた例を示したが、状態値はこれに限定されるものではなく、他にも、油圧モータ14の回転数、発電機20の出力等の他の状態値を用いてもよい。
 1      風力発電装置
 2      ロータ
 4      回転翼
 6      ハブ
 8      回転シャフト
 10     油圧トランスミッション
 12     油圧ポンプ
 14     油圧モータ
 16     高圧油ライン
 18     低圧油ライン
 20     発電機
 22     ナセル
 24     タワー
 25     電力系統
 31、68、79 圧力センサ
 32、34  回転数計
 33     ピッチ制御部
 34     ポンプ制御部
 35     モータ制御部
 40     停止制御部
 41     運転状態判定部
 42     乖離算出部
 43     比較部
 45     記憶部
 46     閾値格納部
 47     停止モード格納部
 49     系統状態判定部
 50     停止モード決定部
 51     ハードワイヤード指令出力部
 52     ソフトウェア指令出力部
 64     高圧アキュムレータ
 66     バイパスライン
 69     低圧アキュムレータ
 70     オイルタンク
 78     ヘッドタンク
 79     圧力センサ
 

Claims (14)

  1.  再生エネルギーを利用して発電を行う再生エネルギー型発電装置であって、
     前記再生エネルギーによって回転翼とともに回転する回転シャフトと、
     前記回転シャフトによって駆動されて作動油を昇圧する油圧ポンプと、
     前記油圧ポンプで昇圧された前記作動油によって駆動される油圧モータと、
     前記油圧モータに連結された発電機と、
     前記回転翼のピッチ角を調節するピッチ駆動機構と、
     前記再生エネルギー型発電装置の運転状態を示す状態値を取得する監視部と、
     異常事象の発生時に、前記再生エネルギー型発電装置を停止させる停止制御部とを備え、
     前記停止制御部は、通常運転時の前記状態値である正常値に対する前記監視部で取得された前記状態値の乖離が第1閾値以上の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行うとともに、前記乖離が前記第1閾値よりも前記正常値に近い第2閾値以上前記第1閾値未満の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の全てをソフトウェア制御により行うことを特徴とする再生エネルギー型発電装置。
  2.  前記状態値は、前記油圧ポンプの回転数、前記油圧モータの回転数および前記発電機の出力の少なくとも一つであることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  3.  前記停止制御部は、前記乖離が前記第1閾値以上の場合、前記乖離が前記第2閾値以上前記第1閾値未満の場合に比べて高速で前記ピッチ角をフェザー側に変更することを特徴とする請求項1に記載の再生エネルギー型発電装置。
  4.  前記油圧ポンプは、シリンダおよびピストンで囲まれて前記作動油で満たされる複数の作動室と、各作動室の前記ピストンを上死点と下死点との間で互いに位相差を持たせて上下動させるカムとを含み、
     前記停止制御部は、前記乖離が前記第1閾値以上の場合、全作動室を同時に非作動状態に切り替えて前記油圧ポンプを即時停止させるとともに、前記乖離が前記第2閾値以上前記第1閾値未満の場合、各作動室の前記ピストンが前記上死点または前記下死点に位置するタイミングで前記作動室を非作動状態に順次切り替えて前記油圧ポンプを停止させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  5.  前記停止制御部は、前記油圧ポンプおよび前記油圧モータの一方で前記異常事象が発生した場合、前記油圧ポンプおよび前記油圧モータの前記一方をアイドル状態に移行させ、これらの移行後も前記油圧ポンプおよび前記油圧モータの他方を少なくとも所定時間だけ稼働状態に維持させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  6.  前記状態値が前記油圧ポンプおよび前記油圧モータの一方の回転数であり、該状態値が前記第2閾値未満であっても、前記油圧ポンプおよび前記油圧モータの前記一方で前記異常事象が発生した場合、前記ピッチ駆動機構により前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータの前記一方をアイドル状態に移行させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  7.  前記状態値が前記油圧モータの回転数であり、該状態値が前記第2閾値未満であっても、前記発電機を連系した電力系統が停電した場合、前記停止制御部は、前記油圧モータをアイドル状態に移行させるとともに前記発電機を前記電力系統から解列させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  8.  前記電力系統が停電した場合、前記停止制御部は、前記油圧モータをアイドル状態に移行させるとともに前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させ、これらの移行後も前記油圧ポンプを稼働状態に維持させることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  9.  前記油圧ポンプの吐出口および前記油圧モータの吸入口を接続する高圧油ラインをさらに備え、
     前記停止制御部は、前記高圧油ラインの圧力が設定下限値より低い状態で所定時間継続した場合、前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータをアイドル状態に移行させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  10.  前記状態値が前記油圧モータの回転数であり、
     前記第1閾値は、定格負荷運転中の前記発電機が電力系統から解列した時に異常が発生した場合に予想される前記発電機の最大回転数に対応する前記油圧モータの回転数よりも低い値に設定されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  11.  前記油圧ポンプの吐出口および前記油圧モータの吸入口を接続する高圧油ラインと、
     前記油圧ポンプの吸入口および前記油圧モータの吐出口を接続する低圧油ラインと、
     前記高圧油ラインに接続される高圧アキュムレータと、
     前記低圧油ラインに接続される低圧アキュムレータと、
     前記高圧アキュムレータから前記低圧アキュムレータに連通するバイパスラインとをさらに備え、
     前記停止制御部は、前記高圧アキュムレータの圧力が設定値より高くなった場合、前記バイパスラインを介して、前記高圧アキュムレータから前記低圧アキュムレータへ前記作動油を放出させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  12.  前記回転シャフトおよび前記油圧モータと前記発電機とを連結する出力軸の少なくとも一方の軸受に潤滑油を供給するヘッドタンクをさらに備え、
     前記停止制御部は、前記ヘッドタンクの潤滑油圧力および潤滑油量の一方が設定値より低下した場合、前記ピッチ駆動装置を駆動して前記ピッチ角をフェザー側に移行させるとともに、前記油圧ポンプおよび前記油圧モータをアイドル状態に移行させることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  13.  前記再生エネルギー型発電装置は、前記再生エネルギーとしての風から電力を生成する風力発電装置であることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  14.  再生エネルギーによって回転翼とともに回転する回転シャフトと、前記回転シャフトによって駆動されて作動油を昇圧する油圧ポンプと、前記油圧ポンプで昇圧された前記作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記回転翼のピッチ角を調節するピッチ駆動機構とを備えた再生エネルギー型発電装置の制御方法であって、
     前記再生エネルギー型発電装置の運転状態を示す状態値を取得する取得ステップと、
     異常事象の発生時に、前記再生エネルギー型発電装置を停止させる停止ステップとを備え、
     前記停止ステップでは、通常運転時の前記状態値である正常値に対する前記取得ステップで取得された前記状態値の乖離が第1閾値以上の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の少なくとも一つをハードワイヤード回路により行い、
     前記乖離が前記第1閾値よりも前記正常値に近い第2閾値以上前記第1閾値未満の場合、前記油圧ポンプのアイドル状態への移行、前記油圧モータのアイドル状態への移行および前記ピッチ駆動機構による前記ピッチ角のフェザー側への移行の全てをソフトウェア制御により行うことを特徴とする再生エネルギー型発電装置の制御方法。
PCT/JP2011/077624 2011-11-30 2011-11-30 再生エネルギー型発電装置およびその制御方法 WO2013080321A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127033943A KR20130083392A (ko) 2011-11-30 2011-11-30 재생 에너지형 발전 장치 및 그 제어 방법
EP11817191.7A EP2626554B1 (en) 2011-11-30 2011-11-30 Regenerated energy type generating apparatus and method for producing same
PCT/JP2011/077624 WO2013080321A1 (ja) 2011-11-30 2011-11-30 再生エネルギー型発電装置およびその制御方法
CN201180022042XA CN102893026A (zh) 2011-11-30 2011-11-30 再生能量型发电装置及其控制方法
JP2012507524A JP5364842B1 (ja) 2011-11-30 2011-11-30 再生エネルギー型発電装置およびその制御方法
US13/398,525 US8502402B2 (en) 2011-11-30 2012-02-16 Power generating apparatus of renewable energy type and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077624 WO2013080321A1 (ja) 2011-11-30 2011-11-30 再生エネルギー型発電装置およびその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/398,525 Continuation US8502402B2 (en) 2011-11-30 2012-02-16 Power generating apparatus of renewable energy type and control method thereof

Publications (1)

Publication Number Publication Date
WO2013080321A1 true WO2013080321A1 (ja) 2013-06-06

Family

ID=47535594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077624 WO2013080321A1 (ja) 2011-11-30 2011-11-30 再生エネルギー型発電装置およびその制御方法

Country Status (6)

Country Link
US (1) US8502402B2 (ja)
EP (1) EP2626554B1 (ja)
JP (1) JP5364842B1 (ja)
KR (1) KR20130083392A (ja)
CN (1) CN102893026A (ja)
WO (1) WO2013080321A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127558A (ja) * 2013-12-27 2015-07-09 三菱重工業株式会社 油圧トランスミッション及び再生エネルギー型発電装置、並びにそれらの運転方法
JP2016094928A (ja) * 2014-11-17 2016-05-26 三菱重工業株式会社 風力発電装置の運転方法
JP2017002761A (ja) * 2015-06-08 2017-01-05 三菱重工業株式会社 再生エネルギー型発電装置及びモータコントローラ並びに再生エネルギー型発電装置の運転方法
JP2017150441A (ja) * 2016-02-26 2017-08-31 三菱重工業株式会社 油圧機械の診断方法及び診断システム、油圧機械並びに再生可能エネルギー型発電装置
CN109256992A (zh) * 2018-08-30 2019-01-22 泰豪科技股份有限公司 发电机控制装置及发电系统
WO2020195691A1 (ja) * 2019-03-28 2020-10-01 Ntn株式会社 状態監視システム
JP2020166834A (ja) * 2019-03-28 2020-10-08 Ntn株式会社 状態監視システム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443569B1 (en) * 2009-07-02 2019-10-15 Alfred Finnell Wind or water based power generating system
US10435145B1 (en) 2009-07-02 2019-10-08 Alfred Finnell Vehicle with tension wing assembly
US11021243B1 (en) 2009-07-02 2021-06-01 Alfred Finnell Tension airfoil assembly and implementation for power generation and aviation
JP5383715B2 (ja) * 2010-11-30 2014-01-08 三菱重工業株式会社 風力発電システム及びその運転制御方法
US8922039B2 (en) * 2011-01-24 2014-12-30 Vestas Wind Systems A/S Wind turbine and a method for powering one or more hydraulic pitch actuators
CN103052795A (zh) * 2011-07-06 2013-04-17 三菱重工业株式会社 具有发电机的能量提取装置以及操作能量提取装置发电机的方法
US20130028729A1 (en) * 2011-07-28 2013-01-31 Jones Jack A Power generation systems and methods
CN103248129B (zh) * 2013-04-17 2016-08-24 三一重机有限公司 能量转换装置及方法
EP3362683B1 (en) * 2015-10-14 2020-04-22 Vestas Wind Systems A/S Method for controlling hydraulic pitch force system
JP6234524B1 (ja) * 2016-08-26 2017-11-22 三菱重工業株式会社 油圧モータの運転方法及び運転制御システム並びに油圧トランスミッション及び再生可能エネルギー型発電装置
CN107269466B (zh) * 2017-07-03 2019-07-23 西安理工大学 一种变桨距液压传动的风力机及其控制方法
CN107152377B (zh) 2017-07-18 2019-04-09 北京金风科创风电设备有限公司 对风力发电机组的输出功率进行控制的方法和设备
JP6713438B2 (ja) * 2017-08-25 2020-06-24 三菱重工業株式会社 油圧ドライブトレイン及びその起動方法、並びに発電装置及びその起動方法
CN109958573B (zh) * 2017-12-22 2020-09-08 北京金风科创风电设备有限公司 风力发电机组的启停机控制方法和装置
KR101980612B1 (ko) * 2018-01-08 2019-05-21 박준규 회전체의 제동장치
CN108895043B (zh) * 2018-08-09 2020-07-31 江苏大学 一种液压泵恒压控制装置及控制方法
CN109488645B (zh) * 2018-12-03 2020-05-12 浙江中液机械设备有限公司 一种多缸圆锥破碎机液压润滑系统
CN113027677B (zh) * 2019-12-25 2023-02-28 新疆金风科技股份有限公司 风力发电机组的液压变桨控制方法和装置
CN111287917B (zh) * 2020-03-05 2021-12-07 江苏万基传动科技有限公司 一种自润滑风力风能发电机
DE102020004034A1 (de) 2020-07-03 2022-01-05 Siemens Gamesa Renewable Energy Service Gmbh Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102020004035A1 (de) 2020-07-03 2022-01-05 Siemens Gamesa Renewable Energy Service Gmbh Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
US11746748B2 (en) 2020-07-03 2023-09-05 Siemens Gamesa Renewable Energy Service Gmbh Wind energy installation and a method of operating a wind energy installation
CN113007028B (zh) * 2021-03-23 2022-05-20 上海电气风电集团股份有限公司 风力发电机组

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651808A (ja) * 1992-07-28 1994-02-25 Toshiba Corp プログラマブル制御装置
JPH10267194A (ja) * 1997-03-19 1998-10-09 Schneider Autom プログラマブルコントローラモジュール
US6265785B1 (en) 1998-11-30 2001-07-24 Zond Systems, Inc. Non-volatile over speed control system for wind turbines
JP2004118265A (ja) * 2002-09-24 2004-04-15 Toshiba Corp プラント保護装置
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置
JP2004266883A (ja) * 2003-02-06 2004-09-24 Saxa Inc 発電設備
JP2006155678A (ja) * 2000-04-28 2006-06-15 Hitachi Ltd 多重化制御システム及びその多重化方法
JP2007183285A (ja) * 1995-07-14 2007-07-19 General Electric Co <Ge> パラメータの監視に応動して安全動作を開始するための自己試験系、自己試験原子炉保護系及び方法
US20070189900A1 (en) 2004-07-28 2007-08-16 Peter Rogall Mechanical emergency brake for wind turbines and method for operating same
US20070216163A1 (en) 2006-03-16 2007-09-20 Guang Huang T Over speed control circuit for a wind turbine generator which maximizes the power exported from the generator over time
JP2009513882A (ja) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ タービン駆動式発電システム及びその制御方法
EP2151574A2 (en) 2008-08-08 2010-02-10 General Electric Company Wind turbine system
US20100040470A1 (en) 2008-08-13 2010-02-18 Jacob Johannes Nies Wind energy system with fluid-working machine with non-symmetric actuation
JP2010156318A (ja) 2009-01-05 2010-07-15 Mitsubishi Heavy Ind Ltd 風力発電装置及び風力発電装置の制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299298A (en) 1979-01-12 1981-11-10 Boart International Limited Down-the-hole drilling
US5621776A (en) * 1995-07-14 1997-04-15 General Electric Company Fault-tolerant reactor protection system
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
CN1249544C (zh) * 2000-04-28 2006-04-05 株式会社日立制作所 多路控制系统及其多路复用方法
US7292896B2 (en) 2000-04-28 2007-11-06 Hitachi, Ltd. Multiplexing control system and multiplexing method therefor
JP4340496B2 (ja) 2003-08-11 2009-10-07 富士重工業株式会社 水平軸風車及びその制御方法
NO323807B1 (no) * 2005-10-31 2007-07-09 Chapdrive As Fremgangsmate og system for hydraulisk overforing
US20110142596A1 (en) * 2010-06-29 2011-06-16 Jacob Johannes Nies Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651808A (ja) * 1992-07-28 1994-02-25 Toshiba Corp プログラマブル制御装置
JP2007183285A (ja) * 1995-07-14 2007-07-19 General Electric Co <Ge> パラメータの監視に応動して安全動作を開始するための自己試験系、自己試験原子炉保護系及び方法
JPH10267194A (ja) * 1997-03-19 1998-10-09 Schneider Autom プログラマブルコントローラモジュール
US6265785B1 (en) 1998-11-30 2001-07-24 Zond Systems, Inc. Non-volatile over speed control system for wind turbines
JP2006155678A (ja) * 2000-04-28 2006-06-15 Hitachi Ltd 多重化制御システム及びその多重化方法
JP2004118265A (ja) * 2002-09-24 2004-04-15 Toshiba Corp プラント保護装置
JP2004218436A (ja) * 2003-01-09 2004-08-05 National Maritime Research Institute 風力発電装置
JP2004266883A (ja) * 2003-02-06 2004-09-24 Saxa Inc 発電設備
US20070189900A1 (en) 2004-07-28 2007-08-16 Peter Rogall Mechanical emergency brake for wind turbines and method for operating same
JP2009513882A (ja) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ タービン駆動式発電システム及びその制御方法
US20070216163A1 (en) 2006-03-16 2007-09-20 Guang Huang T Over speed control circuit for a wind turbine generator which maximizes the power exported from the generator over time
EP2151574A2 (en) 2008-08-08 2010-02-10 General Electric Company Wind turbine system
US20100040470A1 (en) 2008-08-13 2010-02-18 Jacob Johannes Nies Wind energy system with fluid-working machine with non-symmetric actuation
JP2010156318A (ja) 2009-01-05 2010-07-15 Mitsubishi Heavy Ind Ltd 風力発電装置及び風力発電装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626554A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127558A (ja) * 2013-12-27 2015-07-09 三菱重工業株式会社 油圧トランスミッション及び再生エネルギー型発電装置、並びにそれらの運転方法
JP2016094928A (ja) * 2014-11-17 2016-05-26 三菱重工業株式会社 風力発電装置の運転方法
JP2017002761A (ja) * 2015-06-08 2017-01-05 三菱重工業株式会社 再生エネルギー型発電装置及びモータコントローラ並びに再生エネルギー型発電装置の運転方法
JP2017150441A (ja) * 2016-02-26 2017-08-31 三菱重工業株式会社 油圧機械の診断方法及び診断システム、油圧機械並びに再生可能エネルギー型発電装置
CN109256992A (zh) * 2018-08-30 2019-01-22 泰豪科技股份有限公司 发电机控制装置及发电系统
WO2020195691A1 (ja) * 2019-03-28 2020-10-01 Ntn株式会社 状態監視システム
JP2020166834A (ja) * 2019-03-28 2020-10-08 Ntn株式会社 状態監視システム
CN113631811A (zh) * 2019-03-28 2021-11-09 Ntn株式会社 状态监视系统
JP7419094B2 (ja) 2019-03-28 2024-01-22 Ntn株式会社 状態監視システム
US11939955B2 (en) 2019-03-28 2024-03-26 Ntn Corporation Condition monitoring system

Also Published As

Publication number Publication date
EP2626554B1 (en) 2014-11-19
US20130134708A1 (en) 2013-05-30
EP2626554A1 (en) 2013-08-14
US8502402B2 (en) 2013-08-06
CN102893026A (zh) 2013-01-23
KR20130083392A (ko) 2013-07-22
EP2626554A4 (en) 2013-11-06
JPWO2013080321A1 (ja) 2015-04-27
JP5364842B1 (ja) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5364842B1 (ja) 再生エネルギー型発電装置およびその制御方法
JP5774089B2 (ja) 送電網の機能不全に強い再生可能エネルギー抽出装置
JP5611326B2 (ja) 発電機を備えたエネルギー抽出装置および発電機を備えたエネルギー抽出装置の運転方法
US9103438B2 (en) Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
EP2486273B1 (en) Renewable energy extraction device such as a wind turbine with hydraulic transmission
US20110142596A1 (en) Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine
EP2577056A2 (en) Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
JP2013170566A (ja) 風力発電装置の監視方法及びシステム
JP5788079B2 (ja) 発電機駆動装置を交流電力ネットワークと同期させる方法
JP5583204B2 (ja) エネルギー抽出装置およびエネルギー抽出装置の運転方法
JP6259364B2 (ja) 油圧トランスミッション及び油圧トランスミッションの制御方法
WO2011067561A1 (en) Hydraulic transmission system
JP2015078739A (ja) 油圧トランスミッション及びこれを備えた風力発電装置並びに風力発電装置の運転制御方法
JP6203649B2 (ja) 油圧トランスミッション及び再生エネルギー型発電装置、並びにそれらの運転方法
EP3287636B1 (en) Operation method and operation control system for hydraulic motor, hydraulic transmission, and renewable-energy type power generating apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022042.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012507524

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011817191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127033943

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE