WO2013080292A1 - 回転機の制御装置および回転機のインダクタンス測定方法 - Google Patents

回転機の制御装置および回転機のインダクタンス測定方法 Download PDF

Info

Publication number
WO2013080292A1
WO2013080292A1 PCT/JP2011/077473 JP2011077473W WO2013080292A1 WO 2013080292 A1 WO2013080292 A1 WO 2013080292A1 JP 2011077473 W JP2011077473 W JP 2011077473W WO 2013080292 A1 WO2013080292 A1 WO 2013080292A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating machine
voltage
inductance
voltage command
current
Prior art date
Application number
PCT/JP2011/077473
Other languages
English (en)
French (fr)
Inventor
陽祐 蜂矢
鉄也 小島
章二 足立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180075185.7A priority Critical patent/CN103959642B/zh
Priority to PCT/JP2011/077473 priority patent/WO2013080292A1/ja
Priority to US14/346,030 priority patent/US9231510B2/en
Priority to JP2013546873A priority patent/JP5634620B2/ja
Priority to TW101102139A priority patent/TWI462434B/zh
Publication of WO2013080292A1 publication Critical patent/WO2013080292A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant

Definitions

  • the present invention relates to an induction machine and a rotary machine of a synchronous machine, and more particularly, to a control device capable of measuring the inductance of a rotary machine and an inductance measurement method thereof.
  • a value of an electrical constant (resistance or inductance) of the rotating machine is required.
  • an AC power is applied and the inductance constant is measured in a state where the rotor of the rotating machine is fixed with a restraint or the like.
  • the rotating machine connected to the machine has problems such as damage to the connected machine when the rotating machine rotates for electrical constant measurement. There has been a need for a control device and an electrical constant measurement method.
  • each voltage command when a large and small two-level DC current is passed through the current control unit is stored, and the larger current level of the two levels of DC current
  • the voltage value based on the current value suddenly changes to the voltage value based on the smaller current level, and the time when the current change reaches the predetermined value of the current step width of the two levels is measured.
  • a method of calculating a d-axis inductance by dividing a measured value has been proposed (see, for example, Patent Document 1).
  • the q-axis current command and the d-axis current command are set to the first q-axis current command value and the first d-axis current command value, and a d-axis current step command having a predetermined height is given to the control device,
  • a voltage value obtained by subtracting a voltage drop corresponding to the primary resistance of the motor from a d-axis voltage command value generated corresponding to the deviation of the detected d-axis current value with respect to the step command is a first integration value determined in advance.
  • D-axis integral value is generated by time integration
  • d-axis change amount of d-axis current detection value at the end of integration is generated with respect to d-axis current detection value at the start of integration
  • similar calculation is performed for q-axis.
  • JP 2009-232573 A (paragraph [0007], FIG. 2) JP 2001-352800 A (paragraph [0015]) JP 2000-342000 A (paragraphs [0004] and [0013])
  • the present invention eliminates the need for a high-performance A / D converter or microcomputer for detecting a change in rotating machine current when a step voltage is applied at a high sampling period, and is performing constant measurement.
  • a control device and an inductance measuring method for a rotating machine that can suppress vibration and noise applied to the rotating machine and further measure the magnetic saturation characteristics of the inductance by shortening the time during which current flows to the rotating machine as much as possible. The purpose is to do. *
  • a control device for a rotating machine includes a voltage command generating unit that generates a voltage command, a voltage applying unit that applies a voltage to the rotating machine based on the voltage command, and a current detection that detects the rotating machine current of the rotating machine. And an inductance calculating unit that calculates the inductance of the rotating machine from the voltage command and the rotating machine current, the voltage command generating unit generates a voltage command of a plurality of constant DC voltages, and the voltage applying unit is based on the voltage command.
  • a voltage is applied to the rotating machine, and the inductance calculating unit calculates the inductance from the voltage command for measurement arbitrarily selected from the voltage commands and the rotating machine current detected by the current detecting unit before and after applying the measuring voltage command.
  • the inductance measuring method for a rotating machine includes a voltage command generating unit that generates a voltage command, a voltage applying unit that applies a voltage to the rotating machine based on the voltage command, and a current that detects a rotating machine current of the rotating machine.
  • a voltage command generation unit generates a voltage command of a plurality of constant DC voltages using a detection unit and a control device for the rotary machine including an inductance calculation unit that calculates the inductance of the rotary machine from the voltage command and the rotary machine current.
  • Step a step in which the voltage applying unit applies a voltage to the rotating machine based on the voltage command, a step in which the current detecting unit detects the rotating machine current, and a voltage for measurement arbitrarily selected from the voltage command by the inductance calculating unit It consists of a step of calculating the inductance from the rotating machine current detected by the current detection unit before and after the command and measurement voltage command application.
  • a control device for a rotating machine includes a voltage command generating unit that generates a voltage command, a voltage applying unit that applies a voltage to the rotating machine based on the voltage command, and a current detection that detects the rotating machine current of the rotating machine. And an inductance calculating unit that calculates the inductance of the rotating machine from the voltage command and the rotating machine current, the voltage command generating unit generates a voltage command of a plurality of constant DC voltages, and the voltage applying unit is based on the voltage command. Since the voltage is applied to the rotating machine, the inductance calculation unit calculates the inductance from the voltage command for measurement arbitrarily selected from the voltage commands and the rotating machine current detected by the current detection unit before and after the measurement voltage command is applied.
  • the inductance measuring method for a rotating machine includes a voltage command generating unit that generates a voltage command, a voltage applying unit that applies a voltage to the rotating machine based on the voltage command, and a current that detects a rotating machine current of the rotating machine.
  • a voltage command generation unit generates a voltage command of a plurality of constant DC voltages using a detection unit and a control device for the rotary machine including an inductance calculation unit that calculates the inductance of the rotary machine from the voltage command and the rotary machine current.
  • Step a step in which the voltage applying unit applies a voltage to the rotating machine based on the voltage command, a step in which the current detecting unit detects the rotating machine current, and a voltage for measurement arbitrarily selected from the voltage command by the inductance calculating unit Because it consists of a step to calculate inductance from the rotating machine current detected by the current detector before and after the command and measurement voltage command application, a high-performance A / D converter or Myco Therefore, it is possible to provide an inductance measuring method for a rotating machine that can reduce the time for passing an electric current to the rotating machine, can suppress vibration and noise of the rotating machine, and can measure the magnetic saturation characteristics of the inductance.
  • FIG. Embodiment 1 of the present invention will be described below with reference to the drawings.
  • 1 is a configuration diagram of a rotating machine control system 1 to which a rotating machine control device 2 according to Embodiment 1 of the present invention is applied
  • FIG. 2 is a configuration diagram of an inductance calculation unit 6
  • FIG. 3 is an inductance measurement processing procedure diagram
  • 4 is a diagram showing an example of an inductance measurement operation
  • FIG. 5 is a diagram showing a measurement result of the magnetic saturation characteristics of the inductance.
  • a rotating machine control system 1 to which a rotating machine control device 2 is applied includes a rotating machine control device 2, a rotating machine 3, and a current detection unit 4 that detects a current of the rotating machine 3.
  • the rotating machine 3 is a synchronous machine.
  • a synchronous machine using a permanent magnet will be described as an example.
  • the rotating machine control device 2 includes a voltage applying unit 5 corresponding to a power converter such as an inverter that applies a control voltage to the rotating machine 3, an inductance calculating unit 6 that calculates the inductance of the rotating machine 3, and driving the rotating machine 3. And a voltage command generation unit 7 for generating voltage commands for measurement and inductance measurement.
  • the saddle current detector 4 detects the currents of the three-phase currents Iu, Iv, and Iw of the rotating machine 3.
  • the current detection unit 4 will be described by detecting currents in all three phases.
  • the three-phase current is detected by utilizing the fact that the sum of the three-phase currents is zero by detecting two phases. You can ask for it.
  • a three-phase current can be calculated from the inverter bus current, the current flowing through the switching element, and the state of the switching element.
  • the voltage application unit 5 generates a voltage command (Vu *, Vv *, Vw *) based on the voltage command (Vd *, Vq *) from the voltage command generation unit 7, and sends the voltage command to the rotating machine 3 based on the voltage command. Apply voltage.
  • the voltage command generated by the voltage command generation unit 7 is composed of voltage commands Vd * and Vq * on rotating biaxial coordinates (hereinafter referred to as dq axes), and the voltage application unit 5 is generated by the voltage command generation unit 7.
  • a three-phase voltage command (Vu *, Vv *, Vw *) is generated by Equation (1), and a voltage is applied to the rotating machine 3 based on the voltage command.
  • the rotor position ⁇ of the rotating machine 3 is necessary for identifying the dq axis. If ⁇ is a rotating machine 3 equipped with a magnetic pole position detector, the detected value from the magnetic pole position detector may be used. For the rotating machine 3 not equipped with a position detector, Patent Document [Patent No. 4271397] Thus, the initial magnetic pole detection method can also be used.
  • the inductance calculation unit 6 receives the voltage commands Vd * and Vq * from the voltage command generation unit 7 and the three-phase current detection values Iu, Iv and Iw from the current detection unit 4.
  • the three-phase current values (Iu, Iv, Iw) are converted by the three-phase / two-phase converter 8 into currents Id and Iq on the dq axis according to equation (2).
  • the inductance calculator 9 uses the currents Id and Iq on the dq axis and the voltage commands Vd * and Vq * to calculate the inductance based on the calculation method described later.
  • FIG. 3 shows a procedure for measuring the inductance of the synchronous machine 3 according to the first embodiment.
  • the voltage command generation unit 7 When the inductance measurement process of the rotating machine 3 is started, the voltage command generation unit 7 generates a voltage command in step S101.
  • step S102 it is determined whether the voltage command is a measurement voltage command. If the voltage command is a measurement voltage command, the current of the rotating machine 3 is detected in step S103.
  • step S ⁇ b> 104 the voltage application unit 5 applies a voltage based on the voltage command to the rotating machine 3. After the application of the voltage command is completed, the current of the rotating machine 3 is detected in step S105.
  • step S106 the inductance calculator 6 calculates the inductance of the rotating machine 3 based on the rotating machine current detected in steps S103 and S105.
  • step S108 it is confirmed whether or not the first set of n voltage commands have been applied. If completed, the inductance measurement process is terminated. If not completed, the process returns to step S101.
  • step S102 when the voltage command is not a measurement voltage command, the process proceeds to step S107, the rotation machine current is not detected, only the voltage command is applied, and the process proceeds to step S108.
  • the voltage command generation unit 7 generates n (n ⁇ 2) voltage commands according to the procedure shown in the figure.
  • n takes an arbitrary positive value of 2 or more, and the voltage command can take a command value in an arbitrary vector direction on the dq axis.
  • a voltage is applied in the d-axis direction and the inductance of the rotating machine 3 is measured.
  • the inductance calculator 6 selects an arbitrary voltage command for measuring the inductance from the generated voltage commands (hereinafter referred to as a measurement voltage command), and the rotating machine before and after the voltage of the measurement voltage command is applied.
  • the inductance is calculated using the current value.
  • the number of voltage commands for measurement need not be one, and a plurality of voltage commands for measurement can be selected from the n voltage commands, and the inductance can be calculated for each.
  • FIG. 4 shows an example of the inductance measurement operation of the synchronous machine 3 according to the first embodiment at an arbitrary time during application of voltages based on n voltage commands.
  • the upper figure shows the time change of the d-axis current flowing through the rotating machine 3
  • the lower figure shows the time change of the d-axis voltage applied to the rotating machine 3.
  • the d-axis current value corresponding to the point I1 is represented as id1
  • the d-axis current value corresponding to the point I2 is represented as id2.
  • they are respectively expressed as Id1, Id2, and Vd * because they flow on the d-axis.
  • the d-axis current of the rotating machine 3 rises to id1 using a plurality of voltage commands, and the d-axis current of the rotating machine 3 rises to id2 by the measurement voltage applied next.
  • the calculated inductance is the inductance value at the current value of the midpoint (id1 + id2) / 2 of the currents id1 and id2.
  • the inductance value at any current value can be measured by changing the voltage command value and changing the current value of id1.
  • a voltage command for measurement may be given with the current value of id1 being increased.
  • the inductance at a plurality of current values can be measured.
  • FIG. 5 shows an example of the measurement result of current-inductance when the current value of id1 is changed and repeated in the first embodiment. It can be seen that when the current value increases, the inductance value decreases and the tendency of magnetic saturation can be observed.
  • the rotating machine 3 is a synchronous machine using a permanent magnet, and the following equations (3) and (4) are generally established as voltage equations on the dq axis.
  • vd R ⁇ id + PLd ⁇ id ⁇ r ⁇ Lq ⁇ iq (3)
  • vq R ⁇ iq + PLq ⁇ iq + ⁇ r ⁇ (Ld ⁇ id + ⁇ f) (4)
  • vd d-axis component of voltage of rotating machine 3
  • vq q-axis component of voltage of rotating machine 3
  • R winding resistance
  • d d-axis inductance
  • Lq of rotating machine 3 q-axis inductance ⁇ f of rotating machine 3 :
  • ⁇ r rotor angular velocity of rotating machine 3
  • Ld and Lq can be expressed as functions Ld (id) and Lq (iq) that change according to the current value.
  • PLd ⁇ id including the differential operator is expanded into the following equation (7).
  • Equation (6) PLq ⁇ iq in the second term on the right side of Equation (6) can be similarly developed, and Equations (5) and (6) are replaced by the following Equations (8) and (9).
  • vd R ⁇ id + L′ d (id) ⁇ (did / dt) (8)
  • vq R * iq + L'q (iq) * (diq / dt) (9)
  • id and iq are current values flowing through the rotating machine 3
  • current deviations ⁇ id and ⁇ iq before and after applying the measurement voltage are current change amounts of the rotating machine current when time ⁇ t advances. It is. Since the detection is performed for a short time, the inductance can be obtained by the following equations (14) and (15) while ignoring the winding resistance, but the equations (12), ( By calculating the inductance from 13), the inductance can be calculated with higher accuracy.
  • L′ d (id) ⁇ vd ⁇ ( ⁇ t / ⁇ id) (14)
  • L′ q (iq) ⁇ vq ⁇ ( ⁇ t / ⁇ iq) (15)
  • the current value can be sampled immediately before and after the measurement voltage is applied, the voltage drop error due to the winding resistance can be minimized, and high-precision inductance measurement can be performed. Can do.
  • the current can be detected by sampling in a control cycle such as a carrier cycle by the inverter device.
  • L ′ (i) can be calculated using the inductance L (i) of the voltage equation as shown in the equation (10).
  • L (i) is approximated by a function of current, and L (i) is expressed by an expression of L ′ (i).
  • L (i) a ⁇ i + b (a and b are arbitrary integers).
  • L ′ (i) for example, it is possible to calculate with an approximate function using the least square method or the like using the current-inductance measurement results obtained at a plurality of current points in FIG.
  • the function equation to be approximated is not limited to a linear function, and L (i) can be calculated as a quadratic function or a cubic function by the above-described method.
  • the control device 2 for the rotating machine applies a voltage based on the voltage command of a plurality of constant DC voltages on the d-axis of the rotating machine 3 to specify the current on the d-axis.
  • a voltage based on the voltage command for measurement is applied on the same axis, and the inductance is measured, whereby the inductance at a specific current value can be measured. That is, by changing the voltage command value and changing the current flowing through the rotating machine 3, it is possible to measure the inductance at a large current, and the magnetic saturation characteristic of the inductance of the rotating machine 3 can be measured. In this case, it is only necessary to detect the current value before and after applying the measurement voltage, so that a high-speed A / D converter and a microcomputer for monitoring the current change are not required.
  • the rotating machine 3 is described as an example of a synchronous machine using a permanent magnet.
  • the control apparatus for the rotating machine that measures the inductance of the rotating machine is a synchronous machine that does not use an induction motor and a permanent magnet. It can also be applied to.
  • the voltage command generating unit 7 generates a plurality of constant DC voltage voltage commands
  • the voltage applying unit 5 is based on the voltage command.
  • the inductance calculator 6 calculates the inductance from the voltage command for measurement arbitrarily selected from the voltage commands and the rotating machine current detected by the current detector before and after the measurement voltage command is applied.
  • An A / D converter and a microcomputer are not required, the time for supplying current to the rotating machine 3 can be shortened, vibration and noise of the rotating machine 3 can be suppressed, and the magnetic saturation characteristics of the inductance can be measured.
  • control device 2 for the rotating machine according to the first embodiment can improve the controllability of the rotating machine 3 by measuring the magnetic saturation characteristics.
  • the control device 2 for the rotating machine according to the first embodiment can improve the controllability of the rotating machine 3 by measuring the magnetic saturation characteristics.
  • magnetic saturation characteristics for example, by giving magnetic saturation characteristics to the inductance constant of the rotating machine 3 that is required in a control method such as current loop control or sensorless control in the rotating machine control, more accurate rotating machine control can be performed. A possible effect is obtained.
  • FIG. 6 is an inductance measurement processing procedure diagram
  • FIG. 7 is a diagram showing an example of inductance measurement operation.
  • the operation and function of the rotating machine control device 2 according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • the configuration of the rotating machine control device 2 according to the second embodiment is the same as that of the first embodiment, and the processes of the inductance calculating unit 6 and the voltage command generating unit 7 are different.
  • the inductance is measured for the d-axis where no rotational torque is generated even when a voltage is applied.
  • the inductance required for controlling the rotating machine 3 is the inductance in the d-axis and the q-axis.
  • a voltage is applied to the q-axis of the rotating machine 3 and the q-axis inductance is measured.
  • n 2
  • the time which an electric current flows into the rotary machine 3 can be made the shortest, generation
  • FIG. 6 shows a measurement processing procedure of the inductance of the synchronous machine 3 in the second embodiment.
  • the voltage applying unit 5 applies a voltage based on the first voltage command for the inductance measurement preparation generated by the voltage command generating unit 7 to the rotating machine 3 in step S201.
  • the current of the rotating machine 3 is detected.
  • the voltage application unit 5 applies a voltage based on the second voltage command for measurement to the rotating machine 3.
  • the current detection unit 4 detects the current of the rotating machine 3.
  • step S205 current circulation of the rotating machine 3 described later is performed.
  • step S206 based on the rotating machine current detected in steps S202 and S204, the inductance calculating unit 6 calculates the inductance of the rotating machine 3, and ends the inductance measurement process.
  • the voltage command generator 7 generates a first voltage command vq1 for preparing an inductance measurement and a second voltage command vq2 for measurement in the q-axis direction, and uses vq2 as a voltage command for measurement.
  • the calculation unit 6 calculates inductance. Further, immediately after the voltage for measurement is applied, the current flowing through the rotating machine 3 is set to 0 using means for circulating the current of the rotating machine 3 by, for example, shutting off the gate of the inverter. *
  • FIG. 1 An example of the inductance measuring operation of the synchronous machine 3 in the second embodiment is shown in FIG.
  • the upper figure shows the time change of the current flowing through the rotating machine 3
  • the lower figure shows the time change of the voltage applied to the rotating machine 3.
  • voltages based on two voltage commands for inductance measurement preparation and measurement are applied, and the voltage is circulated after application to set the current value of the rotating machine 3 to zero. Since the rotational torque of the rotating machine 3 is generated in proportion to the current, the time during which the current flows is minimized to prevent unnecessary torque from being applied to the rotor for a long time, and the generation of vibration and noise is suppressed.
  • the inductance at an arbitrary current value can be measured as in the first embodiment.
  • the inductance at a plurality of current magnitudes can be measured by changing the voltage command value of vq1 and repeating the inductance measurement process.
  • the voltage is applied to the q axis, but the axis to which the voltage is applied is not limited to the q axis.
  • a voltage based on two voltage commands for inductance measurement preparation and measurement is applied, and the current of the rotating machine 3 is circulated and rotated after the application. Since the current value of the machine 3 is set to 0, in addition to the effect of the first embodiment, it is possible to measure the inductance of the q axis that is the torque axis, and measure the inductance at an arbitrary magnitude of the q axis. Thus, an effect that the magnetic saturation characteristic can be measured is obtained.
  • FIG. 8 is a diagram illustrating an inductance measurement processing procedure
  • FIG. 9 is a diagram illustrating an example of an inductance measurement operation.
  • the operation and function of the rotary machine control device 2 according to Embodiment 3 of the present invention will be described with reference to FIGS.
  • the configuration of the rotating machine control device 2 according to the third embodiment is the same as that of the first embodiment, and the processes of the inductance calculating unit 6 and the voltage command generating unit 7 are different.
  • FIG. 8 shows a measurement processing procedure of the inductance of the synchronous machine 3 in the third embodiment.
  • a constant DC voltage is applied to the d-axis in step S301.
  • the rotor of the rotating machine 3 can be drawn in and stopped.
  • This constant DC voltage is applied until the end of the inductance measurement process, but the application is stopped during the circulation of the rotating machine current in steps S306 and S308.
  • step S ⁇ b> 302 the voltage application unit 5 applies a voltage based on the first voltage command for inductance measurement preparation generated by the voltage command generation unit 7 to the rotating machine 3.
  • the current detection unit 4 detects the current of the rotating machine 3.
  • step S ⁇ b> 304 the voltage application unit 5 applies a voltage based on the second voltage command for measurement to the rotating machine 3.
  • step S305 the current of the rotating machine 3 is detected.
  • step S306 current circulation of the rotating machine 3 is performed.
  • step S ⁇ b> 307 the voltage application unit 5 applies a voltage to the rotating machine 3 based on the reverse voltage command (vq ⁇ inv).
  • step S308 current circulation of the rotating machine 3 is performed.
  • step S309 based on the rotating machine current detected in steps S303 and S305, the inductance calculator 6 calculates the inductance of the rotating machine 3, and ends the inductance measurement process.
  • step S306 After the recirculation operation in step S306, a current equivalent to the current applied to the rotating machine 3 in order to suppress the rotation of the rotor of the rotating machine 3 in step S307 is allowed to flow.
  • Inv vq ⁇ inv -vq1-vq2 (16) It becomes.
  • step S307 a voltage based on the voltage command of Expression (16) is applied, and then in step S308, the current of the rotating machine 3 is set to 0 by the recirculation operation. Note that either one of the application of a constant DC voltage to the d-axis in step S301 and the application of a voltage based on the reverse voltage command (vq ⁇ inv) in step S307 may be performed.
  • FIG. 9 An example of the inductance measuring operation of the synchronous machine 3 in the third embodiment is shown in FIG.
  • the upper diagram shows the time change of the current flowing through the rotating machine 3
  • the lower diagram shows the time change of the voltage applied to the rotating machine 3.
  • a constant DC voltage is applied to the d-axis, the rotor of the rotating machine 3 is pulled in and stopped, and the inductance of the rotating machine 3 is measured. Since the rotational torque applied to the rotor can be reduced to zero by flowing a current equivalent to the q-axis current that flows sometimes in the opposite direction of the q-axis, the rotation of the rotating machine 3 is further increased. There is an effect to suppress.
  • FIG. 10 is a flowchart of the inductance measuring method for the rotating machine 3 according to the fourth embodiment of the present invention.
  • a method for measuring the inductance of the rotating machine 3 applied to the rotating machine control apparatus 2 of the first embodiment will be described.
  • the rotating machine control apparatus to be applied is not limited to this. Absent.
  • the software processing can be simplified by using dedicated hardware among the voltage application unit 5, the inductance calculation unit 6, and the voltage command generation unit 7.
  • a configuration may be considered in which the computer is replaced with a computer having voltage and current signal input / output circuits, leaving the portion.
  • step S401 the voltage command generator 7 generates a voltage command for inductance measurement preparation and measurement.
  • step S ⁇ b> 402 the voltage application unit 5 applies a voltage based on the first voltage command for inductance measurement preparation generated by the voltage command generation unit 7 to the rotating machine 3.
  • step S403 the current detection unit 4 detects the current of the rotating machine 3, and the inductance calculation unit 6 inputs this value.
  • step S ⁇ b> 404 the voltage application unit 5 applies a voltage based on the second voltage command for measurement generated by the voltage command generation unit 7 to the rotating machine 3.
  • step S405 the current of the rotating machine 3 is detected as in step S404, and the inductance calculation unit 6 inputs this value.
  • step S406 the inductance calculating unit 6 calculates the inductance of the rotating machine 3 based on the rotating machine current detected in steps S403 and S405 and the voltage command from the voltage command generating unit 7.
  • the basic method of the inductance measuring method for the rotating machine 3 has been described with reference to FIG. That is, in order to measure the d-axis inductance with respect to a predetermined rotating machine current value, two voltage commands (inductance measurement preparation command and measuring voltage command) are generated, and a voltage based on the voltage command is applied to the rotating machine 3.
  • the method of calculating the d-axis inductance by detecting the rotating machine current before and after the voltage application based on the measurement voltage command has been described.
  • the inductance measuring method of the rotating machine 3 corresponding to the first embodiment includes a step in which the voltage command generation unit 7 generates a plurality of constant DC voltage voltage commands, and a voltage application unit 5 that rotates based on the voltage commands.
  • a step of applying a voltage to the machine 3 a step of detecting a rotating machine current by the current detection unit, a voltage command for measurement arbitrarily selected from the voltage command by the inductance calculation unit 6, and a current detection before and after the measurement voltage command is applied It can comprise from the step which calculates an inductance from the rotary machine current detected by the part 4.
  • FIG. By this inductance measurement method, a plurality of voltage commands can be generated, and a saturation characteristic can be obtained by measuring inductances for a plurality of rotating machine currents in a series of processes.
  • the rotating machine current is recirculated, a voltage based on a constant DC voltage command is applied to the d-axis, the inductance
  • the rotation of the rotor of the rotating machine 3 can be further suppressed by adding a step of applying a voltage based on the reverse voltage command of the measurement voltage command.
  • the method of measuring the inductance of the rotating machine 3 generates two voltage commands for preparing and measuring the inductance, and applies a voltage to the rotating machine 3 based on the voltage commands. Therefore, the control device to which this inductance measurement method is applied does not require a high-performance A / D converter or microcomputer, because the inductance is calculated by detecting the rotating machine current before and after voltage application based on the voltage command for measurement.
  • the present invention relates to a control device for measuring an electrical constant of a rotating machine and an inductance measuring method, and can be widely applied to a control device for a rotating machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 回転機の制御装置(2)は電圧指令を生成する電圧指令生成部(7)と、電圧指令に基づいて回転機(3)に電圧を印加する電圧印加部(5)と、回転機(3)の回転機電流を検出する電流検出部(4)と、電圧指令と回転機電流から回転機(3)のインダクタンスを演算するインダクタンス演算部(6)とを備え、電圧指令生成部(7)は複数の一定の直流電圧の電圧指令を生成し、電圧印加部(5)は電圧指令に基づき回転機(3)に電圧を印加し、インダクタンス演算部(6)は電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部(4)で検出した回転機電流からインダクタンスを演算する。

Description

回転機の制御装置および回転機のインダクタンス測定方法
 この発明は、誘導機や同期機の回転機に係り、特に、回転機のインダクタンスを測定することができる制御装置およびそのインダクタンス測定方法に関する。
 回転機を駆動制御する制御装置においては、回転機の電気的定数(抵抗やインダクタンス)の値が必要となる。
 従来の回転機のインダクタンス定数の測定には、回転機の回転子を拘束具などで固定した状態で、交流電力を印加してインダクタンス定数を測定していた。しかし、機械に接続されている回転機は、電気的定数測定のために回転機が回転すると、接続された機械が損傷するなどの問題があり、無回転で電気的定数を測定できる回転機の制御装置および電気的定数測定方法が求められていた。 
 無回転での回転機の定数測定装置・方法として、大小2レベルの直流電流を電流制御部に流したときの各電圧指令をそれぞれ記憶し、2レベルの直流電流のうち、大きいほうの電流レベルに基づく電圧値から小さいほうの電流レベルに基づく電圧値へ急変し、そのときの電流変化が2レベルの電流ステップ幅の所定値に達するときの時間を計測し、この計測時間から巻線抵抗の計測値を除算してd軸インダクタンスを演算する方法が提案されている(例えば、特許文献1参照)。
  また、q軸電流指令、d軸電流指令を第1のq軸電流指令値、第1のd軸電流指令値に設定し、所定の高さをもつd軸電流ステップ指令を制御装置に与え、ステップ指令に対するd軸電流検出値の偏差に対応して生成されるd軸電圧指令値から電動機の一次抵抗による電圧降下分の電圧を減算して得られる電圧値を予め定められた第1の積分時間積分してd軸積分値を生成し、積分開始時点のd軸電流検出値に対する積分終了時のd軸電流検出値のd軸変化量を生成し、同様の計算をq軸について実行してq軸積分値とq軸変化量を生成し、インダクタンス比Kを、K=(q軸積分値/d軸積分値)×(d軸変化量/q軸変化量)と設定し、q軸インダクタンスを式Lq=K×Ldで算出する制御方法・装置が提案されている(例えば、特許文献2参照)。
  また、誘導電動機に直流励磁する為の電圧を印加し、誘導電動機を停止状態に維持し、直流励磁した二次磁束を周波数の低い正弦波や三角波やのこぎり波を用いて微少変化させる信号を電圧指令あるいは電流指令に重畳し、電流検出値と電圧指令または電圧検出値とに基づいて相互インダクタンスを演算する制御装置・方法が提案されている(例えば、特許文献3参照)。
特開2009-232573号公報(段落[0007]、図2) 特開2001-352800号公報(段落[0015]) 特開2000-342000号公報(段落[0004]、[0013])
  特許文献1の定数測定方法では、印加する電圧値を急変し、そのとき電流が特定の値に変化するまでの時間を測定する必要があるため、電流を常に監視するために十分早いサンプリングが可能なA/D変換器やマイコンなどの演算装置が必要となる課題がある。
 また、特許文献2のインダクタンス比を用いてインダクタンスを算出する方法・装置では、Lq=K×Ldによってq軸インダクタンスを算出するため、インダクタンス比およびd軸インダクタンスが必要であり、インダクタンス比がインダクタンスの磁気飽和によって変化する回転機には適用できないという課題がある。
 また、特許文献3の交流電流を用いたインダクタンスの演算装置・方法では、少なくとも交流電流を数周期にわたって回転機に流し続ける必要があり、測定時間中に回転機が微少に振動し、騒音が発生するという課題がある。さらに、インダクタンスの磁気飽和特性を測定するためには、交流電流の振幅を高くする必要があり、さらに大きな振動および騒音を引き起こす要因となる課題もある。  
 この発明は、上記のような課題を解決するため、ステップ電圧印加時の回転機電流の変化を高サンプリング周期で検出するための高性能なA/D変換器やマイコンを不要として、定数測定中に回転機へ電流が流れる時間をできる限り短くすることで、回転機にかかる振動および騒音を抑制し、さらにインダクタンスの磁気飽和特性を測定することができる回転機の制御装置およびインダクタンス測定方法を提供することを目的とする。  
 この発明に係る回転機の制御装置は、電圧指令を生成する電圧指令生成部と、電圧指令に基づいて回転機に電圧を印加する電圧印加部と、回転機の回転機電流を検出する電流検出部と、電圧指令と回転機電流から回転機のインダクタンスを演算するインダクタンス演算部とを備え、電圧指令生成部は複数の一定の直流電圧の電圧指令を生成し、電圧印加部は電圧指令に基づき回転機に電圧を印加し、インダクタンス演算部は電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部で検出した回転機電流からインダクタンスを演算するものである。 
  この発明に係る回転機のインダクタンス測定方法は、電圧指令を生成する電圧指令生成部と、電圧指令に基づいて回転機に電圧を印加する電圧印加部と、回転機の回転機電流を検出する電流検出部と、電圧指令と回転機電流から回転機のインダクタンスを演算するインダクタンス演算部とを備えた回転機の制御装置を用い、電圧指令生成部が複数の一定の直流電圧の電圧指令を生成するステップと、電圧印加部が電圧指令に基づき回転機に電圧を印加するステップと、電流検出部で回転機電流を検出するステップと、インダクタンス演算部が電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部で検出した回転機電流からインダクタンスを演算するステップからなるものである。
  この発明に係る回転機の制御装置は、電圧指令を生成する電圧指令生成部と、電圧指令に基づいて回転機に電圧を印加する電圧印加部と、回転機の回転機電流を検出する電流検出部と、電圧指令と回転機電流から回転機のインダクタンスを演算するインダクタンス演算部とを備え、電圧指令生成部は複数の一定の直流電圧の電圧指令を生成し、電圧印加部は電圧指令に基づき回転機に電圧を印加し、インダクタンス演算部は電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部で検出した回転機電流からインダクタンスを演算する構成であるため、高性能なA/D変換器やマイコンが不要であり、回転機に電流を流す時間を短くでき、回転機の振動、騒音を抑制できると共に、インダクタンスの磁気飽和特性を測定できる回転機の制御装置を提供することができる。
  この発明に係る回転機のインダクタンス測定方法は、電圧指令を生成する電圧指令生成部と、電圧指令に基づいて回転機に電圧を印加する電圧印加部と、回転機の回転機電流を検出する電流検出部と、電圧指令と回転機電流から回転機のインダクタンスを演算するインダクタンス演算部とを備えた回転機の制御装置を用い、電圧指令生成部が複数の一定の直流電圧の電圧指令を生成するステップと、電圧印加部が電圧指令に基づき回転機に電圧を印加するステップと、電流検出部で回転機電流を検出するステップと、インダクタンス演算部が電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部で検出した回転機電流からインダクタンスを演算するステップからなるため、高性能なA/D変換器やマイコンが不要であり、回転機に電流を流す時間を短くでき、回転機の振動、騒音を抑制できると共に、インダクタンスの磁気飽和特性を測定できる回転機のインダクタンス測定方法を提供することができる。
この発明の実施の形態1の回転機の制御装置に係るシステム構成図である。 この発明の実施の形態1の回転機の制御装置に係るインダクタンス演算部の構成図である。 この発明の実施の形態1の回転機の制御装置に係るインダクタンス測定処理手順を示す図である。 この発明の実施の形態1の回転機の制御装置に係るインダクタンス測定動作例を示す図である。 この発明の実施の形態1の回転機の制御装置に係るインダクタンスの磁気飽和特性の測定結果を示す図である。 この発明の実施の形態2の回転機の制御装置に係るインダクタンス測定処理手順を示す図である。 この発明の実施の形態2の回転機の制御装置に係るインダクタンス測定動作例を示す図である。 この発明の実施の形態3の回転機の制御装置に係るインダクタンス測定処理手順を示す図である。 この発明の実施の形態3の回転機の制御装置に係るインダクタンス測定動作例を示す図である。 この発明の実施の形態4の回転機のインダクタンス測定方法に係るフロー図である。
実施の形態1.
 以下、本願発明の実施の形態1について、図に基づいて説明する。
 図1は、この発明の実施の形態1に係る回転機の制御装置2を適用する回転機制御システム1の構成図、図2はインダクタンス演算部6の構成図、図3はインダクタンス測定処理手順図、図4はインダクタンス測定動作例を示す図、図5はインダクタンスの磁気飽和特性の測定結果を示す図である。
 以下、この発明の実施の形態1に係る回転機の制御装置2の構成、機能を中心に説明し、次に、本発明による具体的なインダクタンスの測定方法を説明する。
 この発明の実施の形態1に係る回転機の制御装置2の構成、機能を図1~5に基づいて説明する。
 図1において、回転機の制御装置2を適用する回転機制御システム1は、回転機の制御装置2、回転機3および回転機3の電流を検出する電流検出部4から構成される。
 回転機3は同期機であって、この実施の形態1では、永久磁石を用いた同期機を例として説明する。
 回転機の制御装置2は、回転機3に制御用電圧を印加するインバータ等の電力変換器が相当する電圧印加部5、回転機3のインダクタンスを演算するインダクタンス演算部6、および回転機3駆動用およびインダクタンス測定用の電圧指令を生成する電圧指令生成部7から構成される。
  電流検出部4は、回転機3の三相電流Iu,Iv,Iwの電流を検出する。実施の形態1においては、電流検出部4は電流を三相とも検出することで説明するが、2相分を検出して三相電流の和がゼロであることを利用して三相電流を求めることもできる。また、インバータ母線電流やスイッチング素子に流れる電流とスイッチング素子の状態から三相電流を演算することもできる。
 電圧印加部5は、電圧指令生成部7からの電圧指令(Vd*,Vq*)に基づき、電圧指令(Vu*,Vv*,Vw*)を生成し、この電圧指令に基づき回転機3に電圧を印加する。
 電圧指令生成部7によって生成される電圧指令は回転二軸座標(以降dq軸と称する)上の電圧指令Vd*とVq*で構成し、電圧印加部5は、電圧指令生成部7が生成する電圧指令を元に、式(1)によって三相電圧指令(Vu*,Vv*,Vw*)を生成し、この電圧指令に基づき回転機3に電圧を印加する。なお、dq軸の同定には回転機3の回転子位置θが必要である。θは磁極位置検出器を備えた回転機3であれば、磁極位置検出器からの検出値を用いればよく、位置検出器を備えていない回転機3には特許文献[特許第4271397号]のように初期磁極の検出方法を用いることもできる。 
Figure JPOXMLDOC01-appb-M000001
 インダクタンス演算部6の構成図を図2に示す。インダクタンス演算部6には、電圧指令生成部7からの電圧指令Vd*,Vq*および電流検出部4からの三相電流の検出値Iu,Iv,Iwが入力される。三相電流値(Iu,Iv,Iw)は三相・二相変換器8により、式(2)によってdq軸上の電流IdとIqに変換される。
 インダクタンス演算器9は、dq軸上の電流Id,Iqおよび電圧指令Vd*,Vq*を用い、後述する演算方法に基づいてインダクタンスの演算を行う。
Figure JPOXMLDOC01-appb-M000002
 実施の形態1における同期機3のインダクタンスの測定処理手順を図3に示す。
  回転機3のインダクタンス測定処理が開始されると、ステップS101において、電圧指令生成部7が電圧指令を生成する。次にステップS102において、電圧指令が測定用電圧指令か決定し、測定用電圧指令であれば、ステップS103において回転機3の電流を検出する。次にステップS104において、電圧印加部5は電圧指令に基づく電圧を回転機3に印加する。電圧指令の印加終了後、ステップS105において、回転機3の電流を検出する。次にステップS106において、ステップS103とS105で検出した回転機電流に基づき、インダクタンス演算部6が回転機3のインダクタンスの演算を行う。
  ステップS108において、最初に設定したn個の電圧指令の印加が終了したか確認し、終了していれば、インダクタンス測定処理を終了する。終了していなければ、ステップS101に戻る。
  ステップS102において、電圧指令が測定用電圧指令でない場合は、ステップS107へ進み、回転機電流の検出を行わず、電圧指令の印加のみを行い、ステップS108へ進む。
 電圧指令生成部7は、図の手順に従ってn(n≧2)個の電圧指令を生成する。nは2以上の任意の正の値を取り、電圧指令はdq軸上の任意のベクトル方向に指令値を取ることができる。実施の形態1では、d軸方向に電圧を印加して回転機3のインダクタンスを測定する。
 インダクタンス演算部6は、生成した電圧指令のうち、インダクタンスの測定用として任意の電圧指令を選択し(以下、測定用電圧指令と称する)、測定用電圧指令の電圧が印加される前後の回転機電流値を用いて、インダクタンスの演算を行う。測定用電圧指令は、一つである必要はなく、n個の電圧指令から測定用電圧指令を複数個選択して、夫々についてインダクタンスを演算することもできる。
 n個の電圧指令に基づく電圧を印加中の任意の時間における、実施の形態1の同期機3のインダクタンス測定動作の一例を図4に示す。図において、上の図は回転機3を流れるd軸電流の時間変化、下の図は回転機3に印加しているd軸電圧の時間変化を示している。ある時点において測定用電圧指令V*を印加する場合、測定用電圧を印加する前および測定用電圧を印加した後の夫々の点I1,I2において回転機電流を検出する。
 ここで、V*およびI1、I2は前述のとおり、dq軸にて表される。図4では、点I1に対応するd軸電流値をid1、点I2に対応するd軸電流値をid2と表している。
実施の形態1では、夫々d軸上に流すため、それぞれId1、Id2、Vd*と表す。
 図4において、複数回の電圧指令を用いて回転機3のd軸電流はid1まで上昇し、次に印加される測定用電圧により、回転機3のd軸電流はid2まで上昇する。インダクタンス演算手段は、測定用電圧指令Vd*とその電流偏差Δid=id2-id1を用いて、後述する式(12)、(13)からインダクタンスを演算する。演算されるインダクタンスは、電流id1、id2の中点(id1+id2)/2の電流値におけるインダクタンス値である。
 また、電圧指令値を変更し、id1の電流値を変化させることで任意の電流値におけるインダクタンス値を測定することができる。インダクタンスの磁気飽和特性を測定するにはid1の電流値を高くした状態で測定用電圧指令を与えればよい。実施の形態1では、n回の電圧を印加する間に複数の測定用電圧を印加し、回転機3のインダクタンスの演算処理を繰り返すことにより、複数の電流値におけるインダクタンスを測定することができる。
 実施の形態1において、id1の電流値を変えて繰り返した場合の電流―インダクタンスの測定結果の一例を図5に示す。図において電流値が上昇すると、インダクタンス値が減少し、磁気飽和の傾向が観測できることがわかる。
 次にインダクタンス演算部6の具体的な演算方法について説明する。
 実施の形態1において、回転機3は、永久磁石を用いた同期機であり、dq軸上の電圧方程式として一般的に次の式(3)、(4)が成り立つ。
 vd=R×id+PLd×id-ωr×Lq×iq       (3)
 vq=R×iq+PLq×iq+ωr×(Ld×id+φf)  (4)
 但し、
vd:回転機3の電圧のd軸成分
vq:回転機3の電圧のq軸成分
R:回転機3の巻線抵抗
Ld:回転機3のd軸インダクタンス
Lq:回転機3のq軸インダクタンス
φf:回転機3の回転子磁束振幅
P:微分演算子
ωr:回転機3の回転子角速度
 さらに、電圧指令を生成する前に、回転機3の回転子が停止状態であれば、回転機3に電圧を印加した直後は、回転子は回転しないため、式(3)、(4)における角速度ωを含む項は無視でき、以下の式(5)、(6)が成り立つ。
 vd=R×id+PLd×id                (5)
 vq=R×iq+PLq×iq                (6)
 この時、インダクタンスに磁気飽和特性があることを考慮すると、Ld、Lqは電流値によって変化する関数Ld(id)、Lq(iq)と表すことができ、式(5)の右辺第2項の微分演算子を含むPLd×idは以下の式(7)に展開される。
Figure JPOXMLDOC01-appb-M000003
 式(6)の右辺第2項のPLq×iqについても同様に展開でき、式(5)(6)は以下の式(8)、(9)で置き換えられる。
 vd=R×id+L′d(id)×(did/dt)      (8)
 vq=R×iq+L′q(iq)×(diq/dt)      (9)
 但し、 
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(8)(9)からL′d(id)、L′q(iq)を求める式は以下の式(12)、(13)で表される。
 L′d(id)=∫(vd-R×id)×(Δt/Δid)  (12)
 L′q(iq)=∫(vq-R×iq)×(Δt/Δiq)  (13)
 式(12)、(13)において、id、iqは回転機3に流れる電流値であり、測定用電圧印加前後の電流偏差ΔidおよびΔiqは、時間Δt進んだときの回転機電流の電流変化量である。短時間の検出であるから、巻線抵抗分を無視して、下記の式(14)、(15)でインダクタンスを求めることも可能であるが、巻線抵抗を用いて式(12)、(13)からインダクタンスを演算することで、さらに精度よくインダクタンスを演算することができる。
 L′d(id)=∫vd×(Δt/Δid)         (14)
 L′q(iq)=∫vq×(Δt/Δiq)         (15)
 電流値の検出時間は、測定用電圧を印加する直前および直後の電流値をサンプリングすることができれば、巻線抵抗による電圧降下の誤差を最小にすることができ、高精度なインダクタンス測定を行うことができる。また、簡易的にインバータ装置によるキャリア周期などの制御周期で電流をサンプリングして検出することもできる。
 このL′(i)は式(10)に示すように、電圧方程式のインダクタンスL(i)を用いて演算することができる。実際の演算方法は種々のものが考えられるが、インダクタンス演算部による計算を簡略化するため、L(i)を電流の関数で近似し、L(i)をL′(i)の式で表す。
 例えば、L(i)を電流に関する一次関数で表現すると、L(i)=a×i+b(a、bは任意の整数)で表すことができる。L′(i)は,式(10)から
L′(i)=a×i+b+a×i=2×a×i+bとなり、L(i)は、L′(i)の一次関数の傾きaを1/2倍にすることで表現できる。
 L′(i)を求めるには、例えば、図5の複数の電流点で求めた電流-インダクタンスの測定結果を用いて、最小二乗法などを用いて近似関数で計算することができる。もちろん、近似する関数式は一次関数に限らずとも上述の方法でL(i)を二次関数、三次関数として演算することができる。
 以上のように、実施の形態1の回転機の制御装置2は、回転機3のd軸上に複数の一定の直流電圧の電圧指令に基づく電圧を印加し、d軸上の電流を特定の値まで上昇させた後、測定用電圧指令に基づく電圧を同軸上に与えて、インダクタンスを測定することにより、特定の電流値におけるインダクタンスを測定できる。つまり、電圧指令値を変更し、回転機3に流れる電流を変えることで、大電流におけるインダクタンスを測定することが可能となり、回転機3のインダクタンスの磁気飽和特性を測定することができる。この場合、測定用電圧を印加する前後の電流値を検出すればよいので、電流変化を監視するための高速なA/D変換器やマイコンを必要としない。
 また、実施の形態1では回転機3は永久磁石を用いた同期機を例として説明したが、この回転機のインダクタンスを測定する回転機の制御装置は、誘導電動機および永久磁石を用いない同期機にも適用できる。
 上記で説明したように、実施の形態1の回転機の制御装置2では、電圧指令生成部7は複数の一定の直流電圧の電圧指令を生成し、電圧印加部5は電圧指令に基づき回転機3に電圧を印加し、インダクタンス演算部6は電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部で検出した回転機電流からインダクタンスを演算するため、高性能なA/D変換器やマイコンが不要であり、回転機3に電流を流す時間を短くでき、回転機3の振動、騒音を抑制できると共に、インダクタンスの磁気飽和特性を測定できる効果が得られる。
 さらに、実施の形態1の回転機の制御装置2は、磁気飽和特性を測定することにより、回転機3の制御性を向上することができる。これにより、例えば、回転機制御において電流ループ制御、センサレス制御などの制御方式で必要となる回転機3のインダクタンス定数に磁気飽和特性を持たせることにより、より高精度な回転機制御を行うことが可能となる効果が得られる。
 実施の形態2.
 以下、本願発明の実施の形態2について、図に基づいて説明する。図6はインダクタンス測定処理手順図、図7はインダクタンス測定動作例を示す図である。
 この発明の実施の形態2に係る回転機の制御装置2の動作、機能を図6、7に基づいて説明する。
 実施の形態2に係る回転機の制御装置2の構成は、実施の形態1と同様であり、インダクタンス演算部6と電圧指令生成部7の処理が異なる。 
  実施の形態1では、電圧を印加しても回転トルクの生じないd軸についてインダクタンスの測定を行ったが、一般に回転機3の制御に必要なインダクタンスはd軸およびq軸におけるインダクタンスである。
 実施の形態2では、回転機3のq軸に電圧を印加し、q軸のインダクタンスを測定する。実施の形態1で説明した要領でq軸に電圧を印加すると、トルク軸であるq軸に長時間電流が流れるため、回転子に回転トルクがかかり、振動および騒音が発生する恐れがある。そこで、実施の形態1において生成する電圧指令の数をn=2として、電圧印加時間を短縮し、回転トルクによる長時間の振動および騒音の発生を抑制する。
 これにより、実施の形態1に対して、回転機3に電流が流れる時間を最短にできることから、回転トルクによる振動および騒音の発生を最小限に抑制することができる。
 実施の形態2における同期機3のインダクタンスの測定処理手順を図6に示す。
  回転機3のインダクタンス測定処理が開始されると、ステップS201において、電圧指令生成部7が生成したインダクタンス測定準備用の第一の電圧指令に基づく電圧を電圧印加部5は回転機3に印加する。次にステップS202において、回転機3の電流を検出する。次にステップS203において、電圧印加部5は測定用の第二の電圧指令に基づく電圧を回転機3に印加する。次にステップS204において、電流検出部4は回転機3の電流を検出する。次にステップS205において、後述する回転機3の電流の環流を行う。次にステップS206において、ステップS202とS204で検出した回転機電流に基づき、インダクタンス演算部6が回転機3のインダクタンスの演算を行い、インダクタンス測定処理を終了する。
 実施の形態2において、電圧指令生成部7はq軸方向にインダクタンス測定準備用の第一の電圧指令vq1と測定用の第二の電圧指令vq2を生成し、vq2を測定用電圧指令として、インダクタンス演算部6はインダクタンスを演算する。さらに、測定用電圧を印加した直後に、例えばインバータのゲート遮断により回転機3の電流を環流する手段を用いて、回転機3に流れる電流を0にする。 
 実施の形態2における同期機3のインダクタンス測定動作の一例を図7に示す。図において、上の図は回転機3を流れる電流の時間変化、下の図は回転機3に印加している電圧の時間変化を示している。
 実施の形態2においては、インダクタンス測定準備用と測定用の2つの電圧指令に基づく電圧を印加し、印加後に環流して回転機3の電流値を0としている。回転機3の回転トルクは電流に比例して発生するため、電流の流れる時間を最短にして、不要なトルクが回転子に長時間かかることをさけ、振動や騒音の発生を抑制する。
 また、電圧指令vq1の指令値を変更することにより、実施の形態1と同様に任意の電流値におけるインダクタンスを測定することができる。実施の形態2では、vq1の電圧指令値を変更してインダクタンス測定処理を繰り返すことにより、複数の電流の大きさにおけるインダクタンスを測定できる。
 また、実施の形態2において、電圧をq軸に印加することで説明したが、電圧を印加する軸はq軸に限らない。
 以上で説明したように、実施の形態2の回転機の制御装置では、インダクタンス測定準備用と測定用の2つの電圧指令に基づく電圧を印加し、印加後に回転機3の電流を環流して回転機3の電流値を0としているため、実施の形態1の効果に加えて、さらにトルク軸であるq軸のインダクタンスを測定することができ、q軸の任意の電流の大きさにおけるインダクタンスを測定して、磁気飽和特性を測定することができるという効果が得られる。
 実施の形態3.
 以下、本願発明の実施の形態3について、図に基づいて説明する。 図8はインダクタンス測定処理手順図、図9はインダクタンス測定動作例を示す図である。 
 この発明の実施の形態3に係る回転機の制御装置2の動作、機能を図8、9に基づいて説明する。
 実施の形態3に係る回転機の制御装置2の構成は、実施の形態1と同様であり、インダクタンス演算部6と電圧指令生成部7の処理が異なる。 
 実施の形態2において、環流操作を行って回転機3の電流を0にすることで、長時間の振動や騒音を抑制できるが、回転機3の回転を抑えることができず、回転子が惰性で回転する可能性がある。そこで、実施の形態3では、実施の形態2に加えて、電圧指令生成部7が生成する電圧指令に、d軸に一定の直流電圧指令を重畳することで、回転子が回転したときに元の軸に戻す力をかけて回転機3の回転をなくす。
 また、電圧指令生成部7が生成した電圧指令のベクトルと逆方向に電圧指令のベクトルを印加し、インダクタンスの測定のために回転子にかかったトルクを打ち消し、回転子の回転を抑制する。
 これにより、実施の形態2に対して、さらに回転機3の回転を抑えて、インダクタンスを測定することができる。
 実施の形態3における同期機3のインダクタンスの測定処理手順を図8に示す。
 回転機3のインダクタンス測定処理が開始されると、ステップS301において、d軸に一定の直流電圧を印加する。これにより、回転機3の回転子を引き込んで停止させることができる。この一定の直流電圧はインダクタンス測定処理終了まで印加するが、ステップS306とS308における回転機電流の環流中は印加を停止する。
 次に、ステップS302において、電圧指令生成部7が生成したインダクタンス測定準備用の第一の電圧指令に基づく電圧を電圧印加部5が回転機3に印加する。次にステップS303において、電流検出部4は回転機3の電流を検出する。次にステップS304において、測定用の第二の電圧指令に基づく電圧を電圧印加部5が回転機3に印加する。次にステップS305において、回転機3の電流を検出する。次にステップS306において、回転機3の電流の環流を行う。次にステップS307において、逆方向電圧指令(vq・inv)に基づき電圧を電圧印加部5が回転機3に印加する。次にステップS308において、回転機3の電流の環流を行う。次にステップS309において、ステップS303とS305で検出した回転機電流に基づき、インダクタンス演算部6が回転機3のインダクタンスの演算を行い、インダクタンス測定処理を終了する。
 ステップS306の環流操作の後、ステップS307において回転機3の回転子の回転を抑制するために回転機3に印加した電流と逆方向に同等の電流を流すが、そのために必要な電圧指令をvq・invとすると、
vq・inv=-vq1-vq2               (16)
となる。
 ステップS307において、式(16)の電圧指令に基づく電圧を印加し、その後、ステップS308において環流操作によって回転機3の電流を0にする。
 なお、ステップS301のd軸に一定の直流電圧の印加、およびステップS307の逆電圧指令(vq・inv)に基づく電圧の印加は、どちらか一方でもよい。
 実施の形態3における同期機3のインダクタンス測定動作の一例を図9に示す。図9において、上の図は回転機3を流れる電流の時間変化、下の図は回転機3に印加している電圧の時間変化を示している。
 q軸電流を流して、インダクタンスを測定した後、逆方向に同等の電圧を印加することにより、インダクタンスの測定時に流れた電流と同等の電流を逆方向に流すことができ、回転子にかかる回転トルクを相殺することができ、回転子の回転を抑制することができる。
 以上で説明したように、実施の形態3の回転機の制御装置では、d軸に一定の直流電圧を印加し、回転機3の回転子を引き込んで停止させ、また、回転機3のインダクタンス測定時に流れるq軸電流と同等の電流をq軸の逆方向に流すことにより回転子にかかる回転トルクを0にすることができるため、実施の形態2の効果に加えて、さらに回転機3の回転を抑制する効果がある。
  なお、回転機の制御装置に係る本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 実施の形態4.
 以下、本願発明の実施の形態4について、図に基づいて説明する。図10は、この発明の実施の形態4に係る回転機3のインダクタンス測定方法のフロー図である。
 実施の形態4の説明では、実施の形態1の回転機の制御装置2に適用して 、回転機3のインダクタンスを測定する方法を説明するが、適用する回転機の制御装置はこれに限られない。
 例えば実施の形態1の図1における回転機の制御装置2において、電圧印加部5、インダクタンス演算部6および電圧指令生成部7の内、専用ハードウエアとした方がソフトウエアの処理が簡素化できる部分を残して、電圧、電流信号用入出力回路を備えた計算機に置き換えた構成が考えられる。
 この発明の実施の形態4に係る回転機3のインダクタンス測定方法を図10に基づいて説明する。  
 回転機3のインダクタンス測定処理は、以下のステップで行われる。
 ステップS401において、電圧指令生成部7がインダクタンス測定準備用および測定用の電圧指令を生成する。
 次にステップS402において、電圧印加部5は電圧指令生成部7が生成したインダクタンス測定準備用の第一の電圧指令に基づく電圧を回転機3に印加する。
 次にステップS403において、電流検出部4が回転機3の電流を検出し、インダクタンス演算部6はこの値を入力する。
 次にステップS404において、電圧印加部5は電圧指令生成部7が生成した測定用の第二の電圧指令に基づく電圧を回転機3に印加する。
 次にステップS405において、ステップS404と同様に回転機3の電流を検出し、インダクタンス演算部6はこの値を入力する。
 次にステップS406において、ステップS403とS405で検出した回転機電流および電圧指令生成部7からの電圧指令に基づき、インダクタンス演算部6が回転機3のインダクタンスの演算を行う。
  実施の形態4では、図10において、回転機3のインダクタンス測定方法の基本となる方法を説明した。すなわち、所定の回転機電流値に対するd軸インダクタンスを測定するために、2つの電圧指令(インダクタンス測定準備用および測定用の電圧指令)を生成し、この電圧指令に基づく電圧を回転機3に印加して、測定用電圧指令に基づく電圧印加前後の回転機電流を検出して、d軸インダクタンスを演算する方法を説明した。
 実施の形態1に対応する一般的な回転機3のインダクタンス測定方法は、電圧指令生成部7が複数の一定の直流電圧の電圧指令を生成するステップと、電圧印加部5が電圧指令に基づき回転機3に電圧を印加するステップと、電流検出部で回転機電流を検出するステップと、インダクタンス演算部6が電圧指令のうちから任意に選択した測定用電圧指令と測定電圧指令印加前後の電流検出部4で検出した回転機電流からインダクタンスを演算するステップから構成することができる。このインダクタンス測定方法により、複数の電圧指令を生成し、一連の処理で複数の回転機電流に対するインダクタンスを測定して飽和特性を得ることができる。
 また、実施の形態2、3に対応するように、q軸インダクタンスを測定するために、回転機電流の環流処置を行ったり、d軸に一定の直流電圧指令に基づく電圧を印加したり、インダクタンス測定用電圧指令の逆電圧指令に基づく電圧を印加したりするステップを追加することで、回転機3の回転子の回転をさらに抑制することができる。
 以上で説明したように、実施の形態4の回転機3のインダクタンス測定方法は、インダクタンス測定準備用および測定用の2つの電圧指令を生成し、この電圧指令に基づき回転機3に電圧を印加して、測定用電圧指令に基づく電圧印加前後の回転機電流を検出して、インダクタンスを演算するため、この インダクタンス測定方法を適用する制御装置には高性能なA/D変換器やマイコンが不要であり、回転機に電流を流す時間を短くでき、回転機の振動、騒音を抑制できると共に、インダクタンスの磁気飽和特性を測定できる回転機のインダクタンス測定方法を提供することができる。
  なお、回転機のインダクタンス測定方法に係る本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 この発明は、回転機の電気的定数を測定する制御装置およびインダクタンス測定方法に関するものであり、回転機の制御装置に広く適用できる。  

Claims (8)

  1. 電圧指令を生成する電圧指令生成部と、前記電圧指令に基づいて回転機に電圧を印加する電圧印加部と、前記回転機の回転機電流を検出する電流検出部と、前記電圧指令と前記回転機電流から前記回転機のインダクタンスを演算するインダクタンス演算部とを備え、
    前記電圧指令生成部は複数の一定の直流電圧の電圧指令を生成し、前記電圧印加部は前記電圧指令に基づき前記回転機に電圧を印加し、前記インダクタンス演算部は前記電圧指令のうちから任意に選択した測定用電圧指令と前記測定電圧指令印加前後の前記電流検出部で検出した前記回転機電流からインダクタンスを演算する回転機の制御装置。
  2. 前記インダクタンス演算部は、前記回転機の巻線抵抗を用いてインダクタンスを演算する請求項1に記載の回転機の制御装置。
  3. 前記電圧指令は第1および第2の電圧指令で構成し、第2の電圧指令を前記測定用電圧指令として、前記回転機のインダクタンスを演算する請求項1または請求項2に記載の回転機の制御装置。
  4. 前記電圧指令生成部は前記電圧指令を出力した後、この電圧指令と逆の方向に同じ大きさの電圧指令を出力する請求項1または請求項2に記載の回転機の制御装置。
  5. 前記電圧指令生成部は、前記電圧指令に加えて、回転機のd軸方向に一定の直流電圧の電圧指令を重畳する請求項1または請求項2に記載の回転機の制御装置。
  6. 前記電圧指令生成部が生成した前記電圧指令に基づく電圧を前記電圧印加部は前記回転機のd軸またはq軸方向に印加し、前記インダクタンス演算部はd軸またはq軸のインダクタンスを演算する請求項1または請求項2に記載の回転機の制御装置。
  7. 前記電圧指令生成部が生成した前記電圧指令に基づく電圧を前記電圧印加部は前記回転機のd軸またはq軸方向に順次与え、前記インダクタンス演算部はd軸およびq軸インダクタンスを順次演算する請求項1または請求項2に記載の回転機の制御装置。
  8. 電圧指令を生成する電圧指令生成部と、前記電圧指令に基づいて回転機に電圧を印加する電圧印加部と、前記回転機の回転機電流を検出する電流検出部と、前記電圧指令と前記回転機電流から回転機のインダクタンスを演算するインダクタンス演算部とを備えた回転機の制御装置を用い、
    前記電圧指令生成部が複数の一定の直流電圧の電圧指令を生成するステップと、前記電圧印加部が前記電圧指令に基づき前記回転機に電圧を印加するステップと、前記電流検出部で前記回転機電流を検出するステップと、前記インダクタンス演算部が前記電圧指令のうちから任意に選択した測定用電圧指令と前記測定電圧指令印加前後の前記電流検出部で検出した前記回転機電流からインダクタンスを演算するステップからなる回転機のインダクタンス測定方法。
PCT/JP2011/077473 2011-11-29 2011-11-29 回転機の制御装置および回転機のインダクタンス測定方法 WO2013080292A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180075185.7A CN103959642B (zh) 2011-11-29 2011-11-29 旋转机的控制装置及旋转机的电感测定方法
PCT/JP2011/077473 WO2013080292A1 (ja) 2011-11-29 2011-11-29 回転機の制御装置および回転機のインダクタンス測定方法
US14/346,030 US9231510B2 (en) 2011-11-29 2011-11-29 Control device for rotary machine and inductance measurement method for rotary machine
JP2013546873A JP5634620B2 (ja) 2011-11-29 2011-11-29 回転機の制御装置および回転機のインダクタンス測定方法
TW101102139A TWI462434B (zh) 2011-11-29 2012-01-19 旋轉機器之控制裝置及旋轉機器之電感測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077473 WO2013080292A1 (ja) 2011-11-29 2011-11-29 回転機の制御装置および回転機のインダクタンス測定方法

Publications (1)

Publication Number Publication Date
WO2013080292A1 true WO2013080292A1 (ja) 2013-06-06

Family

ID=48534819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077473 WO2013080292A1 (ja) 2011-11-29 2011-11-29 回転機の制御装置および回転機のインダクタンス測定方法

Country Status (5)

Country Link
US (1) US9231510B2 (ja)
JP (1) JP5634620B2 (ja)
CN (1) CN103959642B (ja)
TW (1) TWI462434B (ja)
WO (1) WO2013080292A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046469A (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 センサレスブラシレスモータの制御方法及び画像形成装置
CN107703365A (zh) * 2016-08-08 2018-02-16 联合汽车电子有限公司 功率电感动态等效电感值测试系统及其测试方法
WO2021166550A1 (ja) * 2020-02-21 2021-08-26 株式会社豊田自動織機 電動機の制御装置及び制御方法
JP7546818B1 (ja) 2024-01-24 2024-09-06 三菱電機株式会社 インダクタンス計測装置およびインダクタンス計測方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753431B (zh) * 2015-04-23 2017-06-30 南车株洲电力机车研究所有限公司 永磁同步电机电感参数检测方法及系统
DE102016102635A1 (de) 2016-02-15 2017-08-17 Wittenstein Se Verfahren und Vorrichtung zum Bestimmen mindestens eines Maschinenparameters
FR3060908B1 (fr) * 2016-12-21 2019-05-24 Valeo Systemes De Controle Moteur Procede de determination d'une inductance directe et d'une inductance en quadrature d'une machine electrique, programme d'ordinateur et dispositif correspondants
US11515821B2 (en) * 2017-03-27 2022-11-29 Mitsubishi Electric Corporation Control device for rotating electrical machine
US10944346B2 (en) * 2018-05-15 2021-03-09 Vacon Oy Device and a method for estimating inductances of an electric machine
CN110875701B (zh) * 2018-08-31 2022-03-04 广东威灵汽车部件有限公司 一种永磁同步电机电感计算方法、电感计算装置
CN109951125A (zh) * 2019-04-16 2019-06-28 江苏力信电气技术有限公司 新能源车用永磁同步电机交直轴电感的估算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359691A (ja) * 1991-03-22 1992-12-11 Fuji Electric Co Ltd ブラシレスモータの回転子位置検出装置
WO1998040964A1 (fr) * 1997-03-11 1998-09-17 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande de moteur asynchrone
JP2007325397A (ja) * 2006-05-31 2007-12-13 Honda Motor Co Ltd 電動機の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271397A (ja) 1991-02-27 1992-09-28 Sanyo Electric Co Ltd 音声認識装置
CN1186379A (zh) * 1997-11-03 1998-07-01 胡正林 一种控制交流电机的方法
JP2000342000A (ja) 1999-03-24 2000-12-08 Yaskawa Electric Corp 誘導電動機の制御装置およびその制御方法
JP4271397B2 (ja) 1999-09-20 2009-06-03 三菱電機株式会社 同期電動機の磁極位置検出装置
JP2001352800A (ja) 2000-06-08 2001-12-21 Yaskawa Electric Corp 同期電動機の定数同定方法および同期電動機の定数同定機能付き制御装置
JP4816838B2 (ja) * 2000-07-13 2011-11-16 株式会社安川電機 誘導電動機のベクトル制御装置
JP4566906B2 (ja) * 2003-06-06 2010-10-20 三菱電機株式会社 回転機の定数測定装置
JP4519864B2 (ja) * 2007-01-29 2010-08-04 三菱電機株式会社 交流回転機の電気的定数測定方法およびこの測定方法の実施に使用する交流回転機の制御装置
EP2197104B1 (en) * 2007-09-27 2018-01-10 Mitsubishi Electric Corporation Controller of rotary electric machine
TWI340532B (en) 2007-12-06 2011-04-11 Delta Electronics Inc Static measuring method for electrical references of three-phase permanent magnet synchronous motor
JP5130980B2 (ja) 2008-03-24 2013-01-30 株式会社明電舎 Pmモータのインダクタンス計測方法
JP4751435B2 (ja) * 2008-10-09 2011-08-17 株式会社東芝 モータ磁極位置検出装置,モータ制御装置,モータ駆動システム及び洗濯機
JP5465269B2 (ja) * 2012-03-29 2014-04-09 三菱電機株式会社 故障検出回路を備えた電動機駆動装置および電動機駆動装置の故障検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359691A (ja) * 1991-03-22 1992-12-11 Fuji Electric Co Ltd ブラシレスモータの回転子位置検出装置
WO1998040964A1 (fr) * 1997-03-11 1998-09-17 Mitsubishi Denki Kabushiki Kaisha Dispositif de commande de moteur asynchrone
JP2007325397A (ja) * 2006-05-31 2007-12-13 Honda Motor Co Ltd 電動機の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046469A (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 センサレスブラシレスモータの制御方法及び画像形成装置
CN107703365A (zh) * 2016-08-08 2018-02-16 联合汽车电子有限公司 功率电感动态等效电感值测试系统及其测试方法
WO2021166550A1 (ja) * 2020-02-21 2021-08-26 株式会社豊田自動織機 電動機の制御装置及び制御方法
JP2021132512A (ja) * 2020-02-21 2021-09-09 株式会社豊田自動織機 電動機の制御装置及び制御方法
JP7287310B2 (ja) 2020-02-21 2023-06-06 株式会社豊田自動織機 電動機の制御装置及び制御方法
JP7546818B1 (ja) 2024-01-24 2024-09-06 三菱電機株式会社 インダクタンス計測装置およびインダクタンス計測方法

Also Published As

Publication number Publication date
TWI462434B (zh) 2014-11-21
US9231510B2 (en) 2016-01-05
CN103959642B (zh) 2016-08-17
US20140232314A1 (en) 2014-08-21
CN103959642A (zh) 2014-07-30
JPWO2013080292A1 (ja) 2015-04-27
TW201322602A (zh) 2013-06-01
JP5634620B2 (ja) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5634620B2 (ja) 回転機の制御装置および回転機のインダクタンス測定方法
KR102108911B1 (ko) 드라이브 시스템 및 인버터 장치
JP4519864B2 (ja) 交流回転機の電気的定数測定方法およびこの測定方法の実施に使用する交流回転機の制御装置
JP6008264B2 (ja) 永久磁石型同期電動機の磁極位置検出装置
US20170264227A1 (en) Inverter control device and motor drive system
JP2010051078A (ja) モータ制御装置
US8754603B2 (en) Methods, systems and apparatus for reducing power loss in an electric motor drive system
JP2009268268A (ja) モータ制御装置及び発電機制御装置
JP2009261103A (ja) モータ制御装置
JP2013031256A (ja) 同期電動機の駆動装置
JP2004032907A (ja) 永久磁石式同期モータの制御装置
EP3540935B1 (en) Device for controlling rotating machine, and electric power steering device provided with said device for controlling rotating machine
CN104836507A (zh) 永磁同步电机交、直轴电感参数离线辨识方法及系统
JP2008206330A (ja) 同期電動機の磁極位置推定装置および磁極位置推定方法
JP5791848B2 (ja) 永久磁石型モータの制御装置
JP4996847B2 (ja) サーボモータにおける電流制御方法,電流制御プログラム,記録媒体,サーボモータ
US20220352837A1 (en) Rotary machine control device
JP5082216B2 (ja) 電動機付ターボチャージャ用回転検出装置及び電動機付ターボチャージャの回転検出方法
JP6591794B2 (ja) 誘導機の電力変換装置と二次時定数測定方法及び速度制御方法
JP2014117092A (ja) 同期電動機制御装置
JP5456873B1 (ja) 同期機制御装置
JP5854057B2 (ja) 脱調検出装置および電動機駆動システム
JP6089608B2 (ja) 同期電動機の制御方法
JPH07274600A (ja) 誘導電動機の加減速制御方法及び制御装置
JP2009100600A (ja) インバータ制御装置とその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876720

Country of ref document: EP

Kind code of ref document: A1