WO2013077701A1 - 오가노폴리실록산의 제조 방법 - Google Patents

오가노폴리실록산의 제조 방법 Download PDF

Info

Publication number
WO2013077701A1
WO2013077701A1 PCT/KR2012/010064 KR2012010064W WO2013077701A1 WO 2013077701 A1 WO2013077701 A1 WO 2013077701A1 KR 2012010064 W KR2012010064 W KR 2012010064W WO 2013077701 A1 WO2013077701 A1 WO 2013077701A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
organopolysiloxane
carbon atoms
group
sio
Prior art date
Application number
PCT/KR2012/010064
Other languages
English (en)
French (fr)
Inventor
최범규
고민진
문명선
정재호
강대호
김민균
조병규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280067981.0A priority Critical patent/CN104066771B/zh
Priority to EP12851452.8A priority patent/EP2784105B1/en
Publication of WO2013077701A1 publication Critical patent/WO2013077701A1/ko
Priority to US14/276,772 priority patent/US9023968B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present application relates to a method for producing organopolysiloxane.
  • a typical method for producing the organopolysiloxane is a method of dehydrating and condensing an organosilane or an organosiloxane having a hydrolyzable group such as an alkoxy group.
  • Patent Document 1 discloses a method for producing organopolysiloxane by dehydrating a disiloxane, a dialkoxydiorganosilane, a trialkoxyorganosilane, or the like, and then condensing it again. Is starting.
  • Patent Document 1 U.S. Patent # 4046795
  • the present application provides a method for preparing organopolysiloxane.
  • Exemplary methods of preparation may include reacting a mixture comprising a cyclic siloxane compound with an organopolysiloxane comprising a cage structure, a partial cage structure, or trifunctional siloxane units.
  • the mixture comprises all of the ring structured siloxane compound, the organopolysiloxane of the cage structure, the organopolysiloxane of the partial cage structure and the trifunctional siloxane unit, or comprises the ring structured siloxane compound, It may comprise one or two or more of the remaining ingredients.
  • the reaction of the mixture may be a ring-opening polymerization reaction.
  • siloxane compound having the ring structure a compound represented by the following Formula 1 may be exemplified.
  • examples of the organopolysiloxane including the cage structure, the partial cage structure, or the trifunctional siloxane unit may be exemplified by an organopolysiloxane represented by the following formula (2) or (3).
  • R a is a C2 or higher monovalent hydrocarbon group
  • R b is an alkyl group having 1 to 4 carbon atoms
  • R c to R e are each independently an alkyl group having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms.
  • the organopolysiloxane is represented by a predetermined average compositional formula, wherein the organopolysiloxane is a single component represented by the predetermined average compositional formula, or the organopolysiloxane is a mixture or reactant of two or more components and the mixture Or the average of the composition of each component in the reactant is represented by the predetermined average composition formula, and the like.
  • Organopolysiloxanes can be synthesized.
  • a functional group such as an alkoxy group or a hydroxyl group bonded to a silicon atom in the synthesized organopolysiloxane is minimized, and thus a desired object having excellent physical properties is obtained. It can manufacture.
  • the term monovalent hydrocarbon group may refer to a monovalent moiety derived from an organic compound composed of carbon and hydrogen or a derivative thereof.
  • the monovalent hydrocarbon group includes one or two or more carbons, and in another example, the monovalent hydrocarbon group may be a monovalent hydrocarbon group having 1 to 25 carbon atoms or 2 to 25 carbon atoms.
  • a monovalent hydrocarbon group an alkyl group, an alkenyl group, an aryl group, etc. can be illustrated, for example.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may have a linear, branched or cyclic structure, and may be optionally substituted with one or more substituents.
  • alkenyl group may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms.
  • the alkenyl group may have a linear, branched or cyclic structure, and may be optionally substituted with one or more substituents.
  • aryl group may refer to a monovalent moiety derived from a compound having a benzene ring or a compound having a structure in which two or more benzene rings are linked or condensed, or a derivative thereof. That is, the term aryl group may include a so-called aralkyl group or an arylalkyl group as well as an aryl group commonly referred to as an aryl group.
  • Such an aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms, and examples thereof include a phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, Phenylpropyl group, benzyl group, tolyl group, xylyl group (xylyl group) or naphthyl group, etc. can be illustrated, for example, a phenyl group can be illustrated.
  • the lower limit of the carbon number in each case may be 2.
  • the alkyl group having 1 to 4 carbon atoms may be a linear, branched or cyclic alkyl group, and the alkyl group may be optionally substituted with one or more substituents.
  • R b may be, for example, a methyl group.
  • substituents that may be optionally substituted with a monovalent hydrocarbon group, an alkyl group, an alkenyl or an aryl group, and the like include a halogen, an epoxy group, an acryloyl group, a methacryloyl group, an isocyanate group, a thiol group or the above-mentioned monovalent group.
  • Hydrocarbon groups including those having 1 carbon may be exemplified, but is not limited thereto.
  • specific types of monovalent hydrocarbon groups and alkyl groups having 1 to 4 carbon atoms and values of o, p, and q may be determined according to, for example, specific types of organopolysiloxanes to be produced.
  • R c and R d in Formula 1 may be an aryl group.
  • the aryl group may be optionally substituted with one or more substituents.
  • R e may be an aryl group.
  • the aryl group may be optionally substituted with one or more substituents.
  • a phenyl group, tolyl group, xylyl group or naphthyl group and the like can be exemplified, and in general, a phenyl group can be used, but is not limited thereto.
  • the mixture is 1 part by weight to 80 parts by weight, 1 part by weight to 70 parts by weight of an organopolysiloxane having the cage and / or partial cage structure or trifunctional siloxane units, relative to 100 parts by weight of the siloxane compound having a ring structure. , 1 part by weight to 60 parts by weight, 1 part by weight to 50 parts by weight, 1 part by weight to 40 parts by weight or 1 to 30 parts by weight.
  • the ratio is only one example, and the ratio may be changed in consideration of, for example, the structure of the desired organopolysiloxane. Unless otherwise specified herein, the unit weight part represents the ratio of the weight between each component.
  • the compound of Formula 1 which is a siloxane compound having a ring structure
  • a mixture of a compound of Formula 4 and a compound of Formula 5 may be used.
  • the use of such compounds allows the effective preparation of organopolysiloxanes of desired structures.
  • R f and R g are each independently an alkyl group having 1 to 20 carbon atoms
  • R h and R i are each independently an aryl group having 6 to 25 carbon atoms
  • p is a number of 3 to 10
  • the use ratio of the compounds of the formulas (4) and (5) is not particularly limited and may be selected in consideration of reactivity, the structure of the desired organopolysiloxane, and the like.
  • the mixture may further include a compound represented by Chemical Formula 6 as a reactant.
  • R a is a monovalent hydrocarbon group having 2 or more carbon atoms
  • R b is an alkyl group having 1 to 4 carbon atoms.
  • the compound of Formula 6 is 1 part by weight to 70 parts by weight, 1 part by weight to 60 parts by weight, 1 part by weight to 50 parts by weight, 1 part by weight to 40 parts by weight, 1 part by weight based on 100 parts by weight of the siloxane compound having a ring structure. It may be included in the mixture in the ratio of 30 parts by weight or 1 part by weight to 20 parts by weight. The ratio is exemplary and may be changed, for example, in consideration of the structure of the desired organopolysiloxane.
  • reaction of the mixture may be carried out in the presence of a catalyst.
  • a base catalyst can be used as the catalyst.
  • Suitable base catalysts include metal hydroxides such as KOH, NaOH or CsOH; Metal silanolate or tetramethylammonium hydroxide containing an alkali metal compound and siloxane, tetraethylammonium hydroxide or tetrapropylammonium hydroxide, and the like. Quaternary ammonium compounds and the like can be exemplified, but are not limited thereto.
  • the amount of the catalyst to be used may be appropriately selected in consideration of the desired reactivity and the like.
  • the catalyst is 0.01 to 30 parts by weight, 0.01 to 25 parts by weight, 0.01 to 20 parts by weight, 0.01 to 15 parts by weight, 0.01 parts by weight to 100 parts by weight of the mixture. 10 parts by weight or 0.03 parts by weight to 5 parts by weight may be used, but is not limited thereto.
  • the reaction of the mixture may proceed to a neat reaction and, if necessary, may be carried out in the presence of a suitable solvent.
  • a suitable solvent the said mixture, a catalyst, etc. can be mixed suitably, and any kind can be used as long as it does not interfere with reactivity.
  • the solvent examples include aliphatic hydrocarbon solvents such as n-pentane, i-pentane, n-hexane, i-hexane, 2,2,4-trimethylpentane, cyclohexane or methylcyclohexane; Aromatic solvents such as benzene, toluene, xylene, trimethylbenzene, ethyl benzene or methylethyl benzene, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, cyclohexanone, Ketone solvents such as methylcyclohexanone or acetylacetone; Tetrahydrofuran, 2-methyl tetrahydrofuran, ethyl ether, n-propyl ether, isopropyl ether, diglyme,
  • the reaction can be prepared, for example, by adding and reacting a catalyst to the mixture as needed.
  • the reaction temperature may be, for example, in the range of 0 ° C to 150 ° C or 30 ° C to 130 ° C.
  • the reaction time may be adjusted, for example, within the range of 1 hour to 72 hours, but is not limited thereto.
  • the method may be a method for preparing a crosslinked organopolysiloxane.
  • crosslinked organopolysiloxane is represented by so-called trifunctional siloxane units (hereinafter, may be referred to as "T units") that may be represented by (RSiO 3/2 ) or represented by (SiO 2 ). It may mean an organopolysiloxane necessarily containing so-called tetrafunctional siloxane units (hereinafter, may be referred to as "Q units").
  • the crosslinked organopolysiloxane may have an average composition formula of the following Formula 7.
  • R 1 is a C2 or higher monovalent hydrocarbon group
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • R 3 and R 4 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms Or an aryl group having 6 to 25 carbon atoms
  • R 5 is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 25 carbon atoms
  • at least one of R 1 , R 3 and R 4 is an alkenyl group
  • a is a positive number
  • B is zero or a positive number
  • c is a positive number
  • d is a zero or positive number
  • b / a is at least 5
  • b / c is at least 5.
  • a to d represent the molar ratio of each siloxane unit, and when the sum (a + b + c) is converted to 1, a is 0.01 to 0.20, and b is 0 to 1.8 or 0 to 0. 0.98, c is 0.01 to 0.30, and d may be 0 to 0.15.
  • the organopolysiloxane having an average composition formula of the general formula (7) is commonly referred to as (R 3 SiO 1/2 ), so-called monofunctional siloxane units (hereinafter referred to as "M unit”), (R 2 SiO 2/2 ), so-called bifunctional siloxane units (hereinafter, may be referred to as "D units”), and T units and / or Q units.
  • the organopolysiloxane is a linear derived from a D unit while having a structure derived from a T unit or a Q unit, preferably a T unit (hereinafter, referred to as a "crosslinked or branched structure").
  • the structure may be a sufficiently long structure.
  • Exemplary organopolysiloxanes may have a b / c of at least 5, at least 7, at least 8, or at least 10 in the average formula of Formula 7.
  • b / a in the average composition formula may be 5 or more, 8 or more or 10 or more.
  • the upper limit of b / c in the above is not particularly limited, but may be, for example, 70, 60, 50, 40, 30, or 25.
  • the upper limit of b / a is not particularly limited, but may be, for example, 110, 100, 90, 80, 70, 60, 50, or 40.
  • B / (a + b + c + d) in Formula 7 may be, for example, 0.5 or more, 0.6 or more, or 0.7 or more.
  • the upper limit of b / (a + b + c + d) is not particularly limited, but may be less than 1 or 0.98 or less.
  • b / (b + c) may be, for example, 0.5 or more, 0.6 or more, or 0.7 or more.
  • the upper limit of b / (b + c) is not particularly limited, but may be less than 1 or 0.98 or less. If the organopolysiloxane has such a structure, it may exhibit suitable physical properties depending on the application.
  • R 1 , R 3, and R 4 is an alkenyl group.
  • the alkenyl group is an amount such that the molar ratio (Ak / Si) of the alkenyl group (Ak) to the total silicon atoms (Si) included in the organopolysiloxane of Formula 7 is 0.02 to 0.2 or 0.02 to 0.15. May exist.
  • the molar ratio (Ak / Si) to 0.02 or more, for example, the reactivity with other components in the addition curing reaction can be properly maintained, and the phenomenon in which the unreacted components bleed to the surface of the cured product can be prevented.
  • the molar ratio (Ak / Si) to 0.2 or less, it is possible to maintain excellent crack resistance of the cured product using the component.
  • the organopolysiloxane having an average composition formula of Formula 7 may include one or more aryl groups bonded to silicon atoms.
  • the molar ratio (Ar / Si) of the aryl group (Ar) bonded to the silicon atom relative to the total silicon atoms (Si) included in the organopolysiloxane is 0.3 or more, 0.5 or more or 0.7. It may be abnormal.
  • the upper limit of the molar ratio (Ar / Si) may be, for example, 1.5 or 1.3.
  • One or more of the aryl groups bonded to the silicon atom of the organopolysiloxane having the average compositional formula of Formula 7 may be bonded to the silicon atom of the D unit. That is, an exemplary organopolysiloxane includes at least one aryl group bonded to a silicon atom of the D unit, and an aryl group bonded to the silicon atom of the D unit with respect to all silicon atoms (Si) of the organopolysiloxane.
  • the molar ratio (Ar-D / Si) of (Ar-D) may be 0.2 or more, 0.4 or more, or 0.6 or more. In the above example, the upper limit of the molar ratio (Ar-D / Si) is not particularly limited, and may be, for example, 1.8 or 1.5.
  • One or more of the aryl groups bonded to the silicon atom of the organopolysiloxane having the average compositional formula of Formula 7 may be bonded to the silicon atom of the T unit.
  • the organopolysiloxane of Chemical Formula 7 may have an average composition formula of the following Chemical Formula 8.
  • R 1 , R 2 and R 5 are as defined in Formula 7, R 6 is an aryl group having 6 to 25 carbon atoms, and R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 20 carbon atoms.
  • a, l, m and c represent the molar ratio of each siloxane unit, and when the sum (a + l + m + c) is converted to 1, a is 0.01 to 0.10, and l is 0 to 0.90, m is 0 to 0.90, and c is 0.01 to 0.30.
  • a, l, m and c may be numerically adjusted to satisfy the molar ratio mentioned in the item of Formula 7.
  • (l + m) / c may be 5 or more, 7 or more, 8 or more, or 10 or more.
  • (l + m) / a in the average composition formula may be 5 or more, 8 or more or 10 or more.
  • the upper limit of (l + m) / c is not particularly limited, but may be, for example, 70, 60, 50, 40, 30, or 25.
  • the upper limit of (l + m) / a is not particularly limited, but may be 110, 100, 90, 80, 70, 60, 50 or 40, for example.
  • (l + m) / (a + l + m + c) may be, for example, 0.5 or more, 0.6 or more, or 0.7 or more.
  • the upper limit of the (l + m) / (a + l + m + c) is not particularly limited, but may be less than 1 or 0.98 or less.
  • (l + m) / (l + m + c) may be, for example, 0.5 or more, 0.6 or more, or 0.7 or more.
  • the upper limit of (l + m) / (l + m + c) is not particularly limited, but may be less than 1 or 0.98 or less. If the organopolysiloxane has such a structure, it may exhibit suitable physical properties depending on the application.
  • l and m in the average composition formula of Formula 8 may not be all 0.
  • l / m may be in the range of 0.4 to 2.0, 0.4 to 1.5 or 0.5 to 1 when both l and m are not zero.
  • the organopolysiloxane having an average composition formula of Formula 7 or Formula 8 may include a unit of Formula 9 or 10 below.
  • R 1 to R 8 are each independently an alkyl group of 1 to 20, an alkenyl group of 2 to 20 carbon atoms, or an aryl group of 6 to 25 carbon atoms, o is 0 to 300, and p is 0 to 300. .
  • R 6 to R 8 may be, for example, aryl groups.
  • Exemplary organopolysiloxanes may include one or more units of Formula 9 or 10.
  • the unit of the formula (9) or (10) is a unit in which the silicon atom of the D unit and the silicon atom of the T unit are directly bonded via an oxygen atom among the siloxane units forming the organopolysiloxane.
  • the organopolysiloxane is a mixture of two or more components and the average of the composition of each component is represented by the average composition formula of Formula 7 or Formula 8, the organopolysiloxane is represented by Formula 9 Or at least one single component having a unit of 10.
  • the organopolysiloxane having an average composition formula of Formula (7) or Formula (8) is an alkoxy bonded to a silicon atom versus an area (Ak) liberated from an alkenyl group bonded to a silicon atom in a spectrum determined by 1 H NMR measurement.
  • the ratio (OR / Ak) of the area (OR) of the peak derived from the group may be 0.05 or less, 0.03 or less, 0.01 or less, 0.005 or less, or 0. While exhibiting suitable viscosity properties in the above range, other physical properties can be maintained excellently.
  • the spectrum by 1 H NMR measurement in the above is specifically calculated
  • the organopolysiloxane having an average composition formula of Formula 7 or Formula 8 has an acid value of 0.05 mgKOH / g or less, 0.03 mgKOH / g or less, 0.01 mgKOH / g or less, or 0 mgKOH / g. While exhibiting suitable viscosity properties in the above range, other physical properties can be maintained excellently.
  • the acid value by KOH titration above is specifically calculated
  • the organopolysiloxane having an average composition formula of Formula 7 or Formula 8 has a viscosity at 25 ° C. of at least 2,000 cP, at least 3,000 cP, at least 4,000 cP, at least 5,000 cP, at least 7,000 cP, at least 9,000 cP or at 9,500 may be greater than or equal to cP. Within this range, the processability and hardness characteristics of the organopolysiloxane can be properly maintained.
  • the upper limit of the viscosity is not particularly limited, but for example, the viscosity may be 100,000 cP or less, 90,000 cP or less, 80,000 cP or less, 70,000 cP or less, or 65,000 cP or less.
  • the organopolysiloxane having an average composition formula of Formula 7 or Formula 8 may have a weight average molecular weight (Mw) of 1,500 or more, 2,000 or more, 3,000 or more, 4,000 or more, or 5,000 or more.
  • weight average molecular weight refers to a conversion value for standard polystyrene measured by Gel Permeation Chromatograph (GPC).
  • GPC Gel Permeation Chromatograph
  • the term molecular weight may mean a weight average molecular weight. In this range, the moldability, hardness and strength characteristics of the organopolysiloxane can be properly maintained. Meanwhile, the upper limit of the molecular weight is not particularly limited, but for example, the molecular weight may be 14,000 or less, 12,000 or less, or 10,000 or less.
  • the reactants formed by the reaction of the mixture may include a compound of Formula 11 below.
  • R f and R g are each independently an alkyl group having 1 to 20 carbon atoms
  • R h and R i are each independently an aryl group having 6 to 25 carbon atoms
  • p is a number of 0 to 10 or 3 to 10
  • q is a number from 0 to 10 or from 3 to 10.
  • the compound of Formula 11 is a kind of low molecular weight component contained in the reactant.
  • the term low molecular weight component may mean a component having a molecular weight of 800 or less as a component included in the reactant.
  • the method comprises 30% by weight, 20% by weight, 10% by weight, 8% by weight or 6% by weight of a low molecular weight component, for example, a low molecular weight component comprising the compound of Formula 12 after the reaction. It may further comprise the step of adjusting to less than.
  • a product having excellent desired physical properties can be obtained.
  • the method for removing the low molecular weight component is not particularly limited, and may be performed, for example, through a conventional purification method known in the art.
  • An exemplary method of manufacturing a semiconductor device may include encapsulating a semiconductor device with a composition comprising an organopolysiloxane prepared by the method described above.
  • the composition comprises only the organopolysiloxane or, if necessary, additional components capable of curing the organopolysiloxane, for example, a hydrosilylation reaction catalyst such as a platinum-based catalyst or a silicon atom that can be used as a crosslinking agent. It may further comprise a siloxane compound comprising one or more bonded hydrogen atoms.
  • the composition may further include an adhesion imparting agent, for example, as a component capable of improving adhesion to a metal or an organic resin.
  • an adhesive imparting agent 1 or more types chosen from the group which consists of alkenyl groups, such as a vinyl group, a (meth) acryloyloxy group, a hydrosilyl group (SiH group), an epoxy group, an alkoxy group, an alkoxy silyl group, a carbonyl group, and a phenyl group Silanes having, for example, two or more functional groups; Or organosilicon compounds such as cyclic or linear siloxanes having 2 to 30, for example, 4 to 20 silicon atoms, and the like, but are not limited thereto.
  • composition is also, if necessary, 2-methyl-3-butyn-2-ol, 2-phenyl-3-1-butyn-2ol, 3-methyl-3-pentene-1-in, 3,5 Reaction inhibitors such as -dimethyl-3-hexene-1-yne, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane or ethynylcyclohexane; Inorganic fillers such as silica, alumina, zirconia or titania; Carbon functional silanes having an epoxy group and / or an alkoxysilyl group, partial hydrolysis condensates or siloxane compounds thereof; Thixotropy-imparting agents, such as fumed silica which can be used together with polyether etc .; Conductivity imparting agents such as metal powders such as silver, copper or aluminum, and various carbon materials; Color tone adjusters such as pigments or dyes; Additives, such as a fluorescent substance,
  • Examples of the semiconductor device encapsulated in the composition may include a diode, a transistor, a thyristor, a photocoupler, a CCD, a solid state image pickup device, an integrated IC, a hybrid IC, an LSI, a VLSI, a light emitting diode (LED), and the like.
  • the semiconductor device may be a light emitting diode
  • the manufacturing method may be a method of manufacturing a light emitting diode including encapsulating the light emitting device with the composition.
  • a light emitting diode formed by stacking a semiconductor material on a substrate may be exemplified.
  • the semiconductor material may include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, or SiC, but are not limited thereto.
  • the substrate sapphire, spinel, SiC, Si, ZnO, or GaN single crystal may be exemplified.
  • a buffer layer may be formed between the substrate and the semiconductor material as necessary.
  • GaN or AlN may be used.
  • the method of laminating the semiconductor material on the substrate is not particularly limited, and for example, the MOCVD method, the HDVPE method, or the liquid phase growth method can be used.
  • the structure of the light emitting diode may be, for example, a monojunction having a MIS junction, a PN junction, a PIN junction, a heterojunction, a double heterojunction, or the like.
  • the light emitting diode may be formed in a single or multiple quantum well structure.
  • the emission wavelength of the light emitting diode may be, for example, 250 nm to 550 nm, for example, 300 nm to 500 nm or 330 nm to 470 nm.
  • the emission wavelength may mean a main emission peak wavelength.
  • the method of encapsulating the semiconductor element or the light emitting element using the composition is not particularly limited.
  • the composition is pre-injected into a mold form die, and after immersing a lead frame in which the device is fixed therein, if necessary.
  • the method of hardening a composition the method of inject
  • injection by a dispenser, transfer molding or injection molding may be exemplified.
  • the composition is added dropwise onto the device, applied by means of stencil printing, screen printing or a mask, and cured as necessary, the composition is injected into a cup or the like having the device disposed on the bottom by a dispenser or the like. If necessary, a method of curing may be used.
  • the curing method is not particularly limited, and for example, the composition may be maintained by maintaining the composition for 10 minutes to 5 hours at a temperature of 60 ° C to 200 ° C, or at an appropriate temperature and time. It is also possible to proceed a step-by-step curing process through two or more steps of.
  • the shape of the sealing material is not particularly limited, and can be formed, for example, in the form of a shell lens, a plate or a thin film.
  • the encapsulation process may be performed using only the composition, or other encapsulation materials may be used in combination with the composition as necessary.
  • you may seal with the other sealing material you may seal with the other sealing material first, and then you may seal around with the said composition.
  • an epoxy resin, a silicone resin, an acrylic resin, a urea resin, an imide resin, or a glass may be exemplified, but is not limited thereto.
  • another process may be performed to further improve the performance of the semiconductor device or the light emitting diode according to a conventionally known method.
  • a method of improving the performance as described above for example, a light reflecting layer or a light collecting layer is provided on the back surface of the light emitting diode, a method of forming a complementary color portion at the bottom, and a layer that absorbs light having a shorter wavelength than the main light emission peak.
  • the light emitting diode may be, for example, a backlight of a liquid crystal display (LCD), a light source, a light source of various sensors, a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, a display device, a light source of an area light emitting body, and the like. It can be effectively applied to display, decoration or various lights.
  • LCD liquid crystal display
  • a light source a light source of various sensors
  • printer a printer
  • a copier a vehicle instrument light source
  • a signal lamp an indicator light
  • a display device a light source of an area light emitting body, and the like. It can be effectively applied to display, decoration or various lights.
  • an organopolysiloxane having a branched or crosslinked structure derived from a trifunctional siloxane unit and a linear structure derived from a bifunctional siloxane unit in a molecular structure and having a sufficiently long linear structure can be effectively produced.
  • the organopolysiloxane can be synthesized at a sufficient molecular weight, and the target compound exhibiting excellent physical properties can be effectively prepared by minimizing the ratio of functional groups such as alkoxy groups or hydroxy groups in the synthesized organopolysiloxane.
  • the symbol Vi represents a vinyl group
  • the symbol Ph represents a phenyl group
  • the symbol Me represents a methyl group.
  • Pulse width 45 degree pulse (8.10 usec)
  • a solvent for measurement was prepared by combining 500 mL of toluene, 495 mL of isopropyl alcohol (IPA), and 5 mL of distilled water.
  • IPA isopropyl alcohol
  • a KOH solution solvent: isopropyl alcohol (IPA)
  • IPA isopropyl alcohol
  • alpha-naphtholbenzein pH: 0.8 to 0.8
  • 8.2 yellow, 10.0 blue green was prepared.
  • about 1-2 g of the sample was taken, dissolved in 6 g of the solvent for measurement, and then titrated with a base solvent after adding a marker.
  • the acid value was determined in mg KOH / g by the amount of the base solvent used at the time of completion of the titration.
  • the viscosity at 25 ° C. of the polysiloxane was 21,000 cP and molecular weight was about 6,400.
  • no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was determined to be about 0.006 mg KOH / g.
  • Polysiloxane was synthesize
  • the polysiloxane was represented by the following general formula (B) and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 58,600 cP and molecular weight was about 9,700.
  • no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was determined to be about 0.009 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 1, except that the compounding amounts of octaphenyl-POSS and divinyltetramethyldisiloxane were changed to 34.88 g and 15.72 g, respectively.
  • the polysiloxane was represented by the following general formula (C) and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 33,200 cP and a molecular weight was about 4,600. Also, no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was measured to be about 0.008 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 1, except that the compounding amounts of octamethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, and divinyltetramethyldisiloxane were changed to 55.00 g, 120.34 g, and 18.85 g, respectively.
  • the polysiloxane was represented by the following general formula (D) and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 24,400 cP and a molecular weight was about 4,200.
  • no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was measured to be about 0.008 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 4, except that the compounding amount of divinyl tetramethyldisiloxane was changed to 12.56 g.
  • the polysiloxane was represented by the following formula (E) and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 47,000 cP and molecular weight was about 5,500.
  • the acid value was determined to be about 0.007 mg KOH / g.
  • polysiloxane was synthesized in the same manner as in Example 1.
  • the polysiloxane was represented by the following formula F and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 19,800 cP and molecular weight was about 4,800.
  • no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was measured to be about 0.008 mg KOH / g.
  • the viscosity at 25 ° C. of the polysiloxane was 21,100 cP and a molecular weight was about 6,100.
  • no peak derived from the alkoxy group was observed on the 1 H-NMR spectrum, and the acid value was measured at about 0.01 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 7, except that the compounding amount of octaphenyl-POSS was changed to 4.4 g.
  • the polysiloxane was represented by the following chemical formula H and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 10,200 cP and molecular weight was about 5,600.
  • no peak derived from the alkoxy group was observed on the 1 H-NMR spectrum, and the acid value was determined to be about 0.009 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 7, except that the compounding amount of divinyl tetramethyldisiloxane was changed to 9.4 g.
  • the polysiloxane was represented by the following formula (I) and was in the form of a clear oil.
  • the viscosity at 25 ° C. of the polysiloxane was 12,200 cP and a molecular weight was about 4,700. Also, no peak derived from the alkoxy group was observed on the spectrum measured by 1 H-NMR, and the acid value was measured to be about 0.008 mg KOH / g.
  • Polysiloxane was synthesized in the same manner as in Example 7, except that the compounding amounts of octamethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, and divinyltetramethyldisiloxane were changed to 27.5 g, 60.2 g, and 7.9 g, respectively.
  • the polysiloxane was represented by the following formula (J) and was in the form of a transparent oil.
  • the viscosity at 25 ° C. of the polysiloxane was 33,200 cP and a molecular weight was about 4,600.
  • the acid value was determined to be about 0.007 mg KOH / g.
  • the reaction solution was neutralized with AcOH (Acetyl hydroxide), washed until neutral with water, and then the solvent was removed by distillation under reduced pressure to obtain polysiloxane.
  • the obtained polysiloxane was in the form of an oil without transparency, contained a large amount of low molecular weight substances in a ring structure, and it was difficult to separate the polysiloxane because the polysiloxane had a molecular weight similar to that of the low molecular weight substance.
  • the ratio (OMe / Vi) of the area (Vi) of the peak derived from the vinyl group to the area (OMe) of the peak derived from the methoxy group on the 1 H-NMR spectrum is about 0.1, so that a large amount of methoxy groups exist in the structure. It was confirmed that.
  • the acid value was measured to be about 0.063.
  • the viscosity at 25 ° C. of the reaction solution was very low, 1,300 cP.
  • Polysiloxane was synthesized in the same manner as in Example 1, except that octaphenyl-POSS was not used and 26.8 g of phenyltrimethoxysilane was used instead.
  • the synthesized polysiloxane contained a large amount of low molecular weight material of the ring structure, and it was difficult to separate the polysiloxane because the polysiloxane had a molecular weight similar to that of the low molecular weight material.
  • the ratio (OMe / Vi) of the area (Vi) of the peak derived from the vinyl group to the area (OMe) of the peak derived from the methoxy group on the 1 H-NMR spectrum is about 0.8 so that a large amount of methoxy groups exist in the structure. It was confirmed that.
  • the acid value was measured to be about 0.347.
  • the viscosity at 25 ° C. of the reaction solution was very low, 3,100 cP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은, 오가노폴리실록산의 제조 방법에 관한 것이다. 본 출원의 예시적인 방법에 따르면, 분자 구조 중에서 삼관능성 실록산 단위로부터 유래하는 분지 내지는 가교 구조와 이관능성 실록산 단위로부터 유래하는 선형 구조를 동시에 가지고, 또한 상기 선형 구조가 충분히 장쇄인 오가노폴리실록산을 효과적으로 제조할 수 있다. 상기 예시적인 방법에 따르면, 상기 오가노폴리실록산을 충분한 분자량으로 합성할 수 있고, 합성된 오가노폴리실록산 내에 알콕시기 또는 히드록시기 등과 같은 관능기의 비율을 최소화하여 우수한 물성을 나타내는 목적물을 효과적으로 제조할 수 있다.

Description

오가노폴리실록산의 제조 방법
본 출원은, 오가노폴리실록산의 제조 방법에 관한 것이다.
오가노폴리실록산을 제조하는 대표적인 방법은, 알콕시기 등과 같은 가수분해성기를 가지는 오가노실란 또는 오가노 실록산을 탈수 및 축합시키는 방법이다. 예를 들어, 특허문헌 1에서는, 디실록산(disiloxane), 디알콕시디오가노실란(dialkoxydiorganosilane) 및 트리알콕시오가노 실란(trialkoxyorganosilane) 등을 탈수 반응시키고, 다시 축합시키는 방식으로 오가노폴리실록산을 제조하는 방법을 개시하고 있다.
그렇지만, 상기 방식으로는 목적하는 구조의 오가노폴리실록산을 효과적으로 제조하기 어렵다. 예를 들면, 상기 방식으로는 소위 이관능성 실록산 단위로 구성되는 선형 구조가 충분한 길이를 가지는 폴리실록산을 제조하는 것이 곤란하다. 또한, 상기 방식으로는 이관능성 실록산 단위의 규소 원자와 삼관능성 실록산 단위의 규소 원자가 산소 원자를 매개로 직접 연결되어 있는 구조를 구현하는 것도 용이하지 않다.
또한, 상기 방식에서는, 제조된 오가노폴리실록산에서 탈수 및 축합 반응에 관여한 관능기인 알콕시기 등과 같은 가수분해성 관능기와 히드록시기 등이 잔존하지 않도록 하는 것이 곤란하다. 그런데, 상기와 같이 잔존하는 관능기는 제조된 오가노폴리실록산의 물성에 악영향을 미친다. .
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국 특허 제4046795호
본 출원은 오가노폴리실록산의 제조 방법을 제공한다.
예시적인 제조 방법은, 고리 구조의 실록산 화합물을 케이지(cage) 구조, 부분 케이지(partial cage) 구조 또는 삼관능성 실록산 단위를 포함하는 오가노폴리실록산과 함께 포함하는 혼합물을 반응시키는 것을 포함할 수 있다. 상기에서 혼합물은, 고리 구조의 실록산 화합물, 케이지 구조의 오가노폴리실록산, 부분 케이지 구조의 오가노 및 삼관능성 실록산 단위를 포함하는 오가노폴리실록산을 모두 포함하거나, 혹은 고리 구조의 실록산 화합물을 포함하고, 나머지 성분들 중 하나 또는 2개 이상의 성분을 포함할 수 있다. 하나의 예시에서 상기 혼합물의 반응은 개환 중합 반응일 수 있다.
상기 고리 구조의 실록산 화합물로는, 하기 화학식 1로 표시되는 화합물이 예시될 수 있다. 또한, 상기 케이지 구조, 부분 케이지 구조 또는 삼관능성 실록산 단위를 포함하는 오가노폴리실록산으로는, 하기 화학식 2 또는 3의 평균 조성식으로 표시되는 오가노폴리실록산이 예시될 수 있다.
[화학식 1]
Figure PCTKR2012010064-appb-I000001
[화학식 2]
[ReSiO3/2]
[화학식 3]
[RaRb 2SiO1/2] p[ReSiO3/2]q
화학식 1 내지 3에서, Ra는 탄소수 2 이상의 1가 탄화수소기이고, Rb는 탄소수 1 내지 4의 알킬기이며, Rc 내지 Re는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이고, o는 3 내지 6이며, p는 1 내지 3이고, q는 1 내지 10이다.
본 명세서에서 오가노폴리실록산이 소정의 평균 조성식으로 표시된다는 것은, 그 오가노폴리실록산이 그 소정의 평균 조성식으로 표시되는 단일의 성분이거나, 그 오가노폴리실록산이 2개 이상의 성분의 혼합물 또는 반응물이면서 상기 혼합물 또는 반응물 내의 각 성분의 조성의 평균이, 그 소정의 평균 조성식으로 표시되는 경우 등을 포함한다.
고리 구조의 실록산 화합물과 케이지(cage) 구조, 부분 케이지(partial cage) 구조 및/또는 T 단위를 포함하는 오가노폴리실록산을 반응시키면, 목적 구조를 가지면서 분자량 등의 다른 물성도 목적 범위로 조절된 오가노폴리실록산을 합성할 수 있다. 또한, 상기 방법에 따르면, 오가노폴리실록산을 형성하는 단량체 성분들이 축합성 관능기를 포함하지 않아서, 합성된 오가노폴리실록산에 규소 원자에 결합한 알콕시기나 히드록시기와 같은 관능기를 최소화하여, 우수한 물성을 가지는 목적물을 제조할 수 있다.
본 명세서에서 용어 1가 탄화수소기는 탄소 및 수소로 이루어진 유기 화합물 또는 그 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 상기 1가 탄화수소기는 1개 또는 2개 이상의 탄소를 포함하고, 다른 예시에서는 탄소수 1 내지 25 또는 2 내지 25의 1가 탄화수소기일 수 있다. 1가 탄화수소기로는, 예를 들면, 알킬기, 알케닐기 또는 아릴기 등이 예시될 수 있다.
본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다.
본 명세서에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 벤젠 고리를 가지거나, 2개 이상의 벤젠 고리가 연결 또는 축합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 즉, 상기 용어 아릴기의 범위에는 통상적으로 아릴기로 호칭되고 있는 아릴기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 상기와 같은 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있으며, 그 예로는, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있으며, 예를 들면 페닐기가 예시될 수 있다.
상기 알킬기의 정의가 탄소수 2 이상의 1가 탄화수소기에 적용될 경우에는, 각각의 경우의 탄소수의 하한은 2일 수 있다.
화학식 3에서 탄소수 1 내지 4의 알킬기는, 직쇄형, 분지쇄형 또는 고리형의 알킬기일 수 있고, 상기 알킬기는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 상기 화학식 3의 평균 조성식에서 Rb는, 예를 들면, 메틸기일 수 있다.
본 명세서에서 1가 탄화수소기, 알킬기, 알케닐 또는 아릴기 등에 임의적으로 치환되어 있을 수 있는 치환기로는, 할로겐, 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 상기한 1가 탄화수소기(탄소수가 1인 경우도 포함) 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 1 내지 3에서 1가 탄화수소기 및 탄소수 1 내지 4의 알킬기의 구체적인 종류와 및 o, p 및 q의 수치는, 예를 들면, 제조하고자 하는 오가노폴리실록산의 구체적인 종류에 따라서 정해질 수 있다.
하나의 예시에서 화학식 1에서 Rc 및 Rd 중 적어도 하나는 아릴기일 수 있다. 상기 아릴기는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 하나의 예시에서 상기 화학식 2 또는 3에서 Re는 아릴기일 수 있다. 상기 아릴기는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. Rc, Rd 및 Re의 아릴기로는, 예를 들면, 페닐기, 톨릴기, 크실릴기 또는 나프틸기 등이 예시될 수 있고, 일반적으로는 페닐기가 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기 혼합물은, 상기 고리 구조의 실록산 화합물 100 중량부 대비 상기 케이지 및/또는 부분 케이지 구조이거나, 삼관능성 실록산 단위를 포함하는 오가노폴리실록산을 1 중량부 내지 80 중량부, 1 중량부 내지 70 중량부, 1 중량부 내지 60 중량부, 1 중량부 내지 50 중량부, 1 중량부 내지 40 중량부 또는 1 중량부 내지 30 중량부의 중량 비율로 포함할 수 있다. 상기 비율은 하나의 예시에 불과하며, 상기 비율은, 예를 들면, 목적하는 오가노폴리실록산의 구조 등을 고려하여 변경될 수 있다. 본 명세서에서 특별히 달리 규정하지 않는 한, 단위 중량부는 각 성분간의 중량의 비율을 나타낸다.
하나의 예시에서 고리 구조의 실록산 화합물인 상기 화학식 1의 화합물로는, 하기 화학식 4의 화합물과 하기 화학식 5의 화합물의 혼합물을 사용할 수 있다. 이러한 화합물의 사용을 통해 목적하는 구조의 오가노폴리실록산을 효과적으로 제조할 수 있다.
[화학식 4]
Figure PCTKR2012010064-appb-I000002
[화학식 5]
Figure PCTKR2012010064-appb-I000003
화학식 4 및 5에서 Rf 및 Rg는 각각 독립적으로 탄소수 1 내지 20의 알킬기이고, Rh 및 Ri는 각각 독립적으로 탄소수 6 내지 25의 아릴기이며, p는 3 내지 10의 수이고, q는 3 내지 10의 수이다.
화학식 4 및 5의 화합물의 사용 비율은 특별히 제한되지 않고, 반응성이나 목적 오가노폴리실록산의 구조 등을 고려하여 선택할 수 있다.
하나의 예시에서 상기 혼합물은 반응물로서 하기 화학식 6으로 표시되는 화합물을 추가로 포함할 수 있다.
[화학식 6]
(RaRb 2Si)2O
화학식 6에서, Ra는 탄소수 2 이상의 1가 탄화수소기이고, Rb는 탄소수 1 내지 4의 알킬기이다.
화학식 6에서 1가 탄화수소기 및 탄소수 1 내지 4의 알킬기의 구체적인 예는, 화학식 1 내지 3의 항목에서 기술한 바와 같고, Ra 및/또는 Rb의 구체적인 종류는, 예를 들면, 목적하는 오가노폴리실록산의 구조에 따라서 정해질 수 있다.
화학식 6의 화합물은, 상기 고리 구조의 실록산 화합물 100 중량부 대비 1 중량부 내지 70 중량부, 1 중량부 내지 60 중량부, 1 중량부 내지 50 중량부, 1 중량부 내지 40 중량부, 1 중량부 내지 30 중량부 또는 1 중량부 내지 20 중량부의 비율로 혼합물에 포함될 수 있다. 상기 비율은 예시적인 것이고, 예를 들면, 목적하는 오가노폴리실록산의 구조 등을 고려하여 변경될 수 있다.
하나의 예시에서 상기 혼합물의 반응은 촉매의 존재 하에서 수행될 수 있다.
촉매로는, 예를 들면, 염기 촉매가 사용될 수 있다. 적절한 염기 촉매로는, KOH, NaOH 또는 CsOH 등과 같은 금속 수산화물; 알칼리 금속 화합물과 실록산을 포함하는 금속 실라롤레이트(metal silanolate) 또는 테트라메틸암모늄 히드록시드(tetramethylammonium hydroxide), 테트라에틸암모늄 히드록시드(tetraethylammonium hydroxide) 또는 테트라프로필암모늄 히드록시드(tetrapropylammonium hydroxide) 등과 같은 4급 암모늄 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
촉매의 사용량은, 목적하는 반응성 등을 고려하여 적절히 선택될 수 있다. 하나의 예시에서 촉매는, 상기 혼합물 100 중량부에 대하여 0.01 중량부 내지 30 중량부, 0.01 중량부 내지 25 중량부, 0.01 중량부 내지 20 중량부, 0.01 중량부 내지 15 중량부, 0.01 중량부 내지 10 중량부 또는 0.03 중량부 내지 5 중량부의 비율로 사용될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서, 상기 혼합물의 반응은, 니트(neat) 반응으로 진행될 수도 있고, 필요에 따라서는, 적절한 용매의 존재 하에 수행될 수도 있다. 용매로는, 상기 혼합물 및 촉매 등이 적절히 혼합될 수 있고, 반응성에 큰 지장을 주지 않는 것이라면 어떠한 종류도 사용될 수 있다. 용매로는, n-펜탄, i-펜탄, n-헥산, i-헥산, 2,2,4-트리메틸펜탄, 시클로헥산 또는 메틸시클로헥산 등의 지방족 탄화수소계 용매; 벤젠, 톨루엔, 크실렌, 트리메틸벤젠, 에틸 벤젠 또는 메틸에틸 벤젠 등의 방향족계 용매, 메틸에틸케톤, 메틸이소부틸케톤, 디에틸케톤, 메틸 n-프로필 케톤, 메틸 n-부틸 케톤, 시클로헥사논, 메틸시클로헥사논 또는 아세틸아세톤 등의 케톤계 용매; 테트라히드로푸란, 2-메틸 테트라히드로푸란, 에틸 에테르, n-프로필 에테르, 이소프로필 에테르, 디글라임, 디옥신, 디메틸 디옥신, 에틸렌글리콜 모노 메틸 에테르, 에틸렌글리콜 디메틸 에테르, 에틸렌글리콜디에틸 에테르, 프로필렌글리콜 모노 메틸 에테르 또는 프로필렌글리콜 디메틸 에테르 등의 에테르계 용매; 디에틸 카보네이트, 메틸 아세테이트, 에틸 아세테이트, 에틸 락테이트, 에틸렌글리콜 모노 메틸 에테르 아세테이트, 프로필렌글리콜 모노 메틸 에테르 아세테이트 또는 에틸렌글리콜 디아세테이트 등의 에스테르계 용매; N-메틸 피롤리돈, 포름아미드, N-메틸 포름아미드, N-에틸 포름아미드, N,N-디메틸 아세트아미드 또는 N,N-디에틸아세트아미드 등의 아미드계 용매가 예시될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서 상기 반응은, 예를 들면, 상기 혼합물에 필요에 따라서 촉매를 첨가하고 반응시켜서 제조될 수 있다. 반응 온도는 예를 들면, 0℃ 내지 150℃ 또는 30℃ 내지 130℃의 범위 내일 수 있다. 또한, 반응 시간은 예를 들면, 1시간 내지 72 시간의 범위 내에서 조절될 수 있으나, 이에 제한되는 것은 아니다.
하나의 예시에서 상기 방법은 가교형 오가노폴리실록산을 제조하기 위한 방법일 수 있다. 본 명세서에서 용어 가교형 오가노폴리실록산은, (RSiO3/2)로 표시되는 경우가 있는 소위 3관능성 실록산 단위(이하, 「T 단위」라 칭할 수 있다.) 또는 (SiO2)로 표시되는 경우가 있는 소위 4관능성 실록산 단위(이하, 「Q 단위」라 칭할 수 있다.)를 반드시 포함하는 오가노폴리실록산을 의미할 수 있다.
하나의 예시에서 상기 가교형 오가노폴리실록산은, 하기 화학식 7의 평균 조성식을 가질 수 있다.
[화학식 7]
(R1R2 2SiO1/2)a(R3R4SiO2/2)b(R5SiO3/2)c(SiO2)d
화학식 7에서 R1은, 탄소수 2 이상의 1가 탄화수소기이고, R2는 탄소수 1 내지 4의 알킬기이며, R3 및 R4는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이고, R5는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 25의 아릴기이며, R1, R3 및 R4 중 적어도 하나는 알케닐기이고, a는 양의 수이며, b는 0 또는 양의 수이고, c는 양의 수이고, d는 0 또는 양의 수이며, b/a는 5 이상이고, b/c는 5 이상이다.
화학식 7의 평균 조성식에서 a 내지 d는 각 실록산 단위의 몰 비율을 나타내고, 그 총합(a+b+c)을 1로 환산하는 경우, a는 0.01 내지 0.20이고, b는 0 내지 1.8 또는 0 내지 0.98이며, c는 0.01 내지 0.30이고, d는 0 내지 0.15일 수 있다.
화학식 7의 평균 조성식을 가지는 오가노폴리실록산은, 통상적으로 (R3SiO1/2)으로 표시되는 경우가 있는 소위 일관능성 실록산 단위(이하, 「M 단위」라 칭할 수 있다.), (R2SiO2/2)로 표시되는 경우가 있는 소위 2관능성 실록산 단위(이하, 「D 단위」라 칭할 수 있다.), T 단위 및/또는 Q 단위를 포함할 수 있다.
하나의 예시에서 오가노폴리실록산은, 구조 중에서 T 단위 또는 Q 단위, 적절하게는 T 단위로부터 유래하는 구조(이하, 「가교 또는 분지 구조」라 칭할 수 있다.)를 가지면서 D 단위로부터 유래하는 선형 구조가 충분히 긴 구조일 수 있다. 예시적인 오가노폴리실록산은 화학식 7의 평균 조성식에서 b/c가 5 이상, 7 이상, 8 이상 또는 10 이상일 수 있다. 또한, 상기 평균 조성식에서 b/a는 5 이상, 8 이상 또는 10 이상일 수 있다. 상기에서 b/c의 상한은 특별히 제한되는 것은 아니지만, 예를 들면, 70, 60, 50, 40, 30 또는 25일 수 있다. 또한, b/a의 상한도 특별히 제한되는 것은 아니지만, 예를 들면, 110, 100, 90, 80, 70, 60, 50 또는 40일 수 있다. 화학식 7에서 b/(a+b+c+d)는 예를 들면, 0.5 이상, 0.6 이상 또는 0.7 이상일 수 있다. 상기 b/(a+b+c+d)의 상한은 특별히 제한되지 않으나, 상기는 1 미만 또는 0.98 이하일 수 있다. 화학식 7에서 b/(b+c)는 예를 들면, 0.5 이상, 0.6 이상 또는 0.7 이상일 수 있다. 상기 b/(b+c)의 상한은 특별히 제한되지 않으나, 상기는 1 미만 또는 0.98 이하일 수 있다. 오가노폴리실록산이 상기와 같은 구조를 가지면, 적용 용도에 따라서 적합한 물성을 나타낼 수 있다.
화학식 7에서 R1, R3 및 R4 중 적어도 하나는 알케닐기이다. 하나의 예시에서 상기 알케닐기는, 화학식 7의 오가노폴리실록산에 포함되는 전체 규소 원자(Si)에 대한 상기 알케닐기(Ak)의 몰비(Ak/Si)가 0.02 내지 0.2 또는 0.02 내지 0.15가 되는 양으로 존재할 수 있다. 상기 몰비(Ak/Si)를 0.02 이상으로 조절하여, 예를 들면, 부가 경화 반응에서 타 성분과의 반응성을 적절하게 유지하고, 미반응 성분이 경화물의 표면으로 배어나오는 현상을 방지할 수 있다. 또한, 상기 몰비(Ak/Si)를 0.2 이하로 조절하여, 상기 성분을 사용한 경화물의 균열 내성을 우수하게 유지할 수 있다.
하나의 예시에서 화학식 7의 평균 조성식을 가지는 오가노폴리실록산은, 규소 원자에 결합되어 있는 아릴기를 1개 이상 포함할 수 있다. 예시적인 상기 오가노폴리실록산에서는, 상기 오가노폴리실록산에 포함되는 전체 규소 원자(Si)에 대한 상기 규소 원자에 결합되어 있는 아릴기(Ar)의 몰비(Ar/Si)가 0.3 이상, 0.5 이상 또는 0.7 이상일 수 있다. 상기 몰비(Ar/Si)의 상한은, 예를 들면, 1.5 또는 1.3일 수 있다.
화학식 7의 평균 조성식을 가지는 오가노폴리실록산의 규소 원자에 결합되어 있는 아릴기의 하나 이상은 D 단위의 규소 원자에 결합되어 있을 수 있다. 즉, 예시적인 오가노폴리실록산은, D 단위의 규소 원자에 결합되어 있는 아릴기를 하나 이상 포함하고, 상기 오가노폴리실록산의 전체 규소 원자(Si)에 대한 상기 D 단위의 규소 원자에 결합되어 있는 아릴기(Ar-D)의 몰비(Ar-D/Si)가 0.2 이상, 0.4 이상 또는 0.6 이상일 수 있다. 상기 예시에서 상기 몰비(Ar-D/Si)의 상한은, 특별히 제한되지 않으며, 예를 들면, 1.8 또는 1.5일 수 있다.
화학식 7의 평균 조성식을 가지는 오가노폴리실록산의 규소 원자에 결합되어 있는 아릴기의 하나 이상은 T 단위의 규소 원자에 결합되어 있을 수 있다.
화학식 7의 평균 조성식을 가지는 오가노폴리실록산의 규소 원자에 결합되어 있는 아릴기는 모두 D 및/또는 T 단위의 규소 원자에 결합되어 있으면서, 상기 기술한 몰비(Ar/Si 및/또는 Ar-D/Si)를 만족할 수 있다.
하나의 예시에서 상기 화학식 7의 오가노폴리실록산은 하기 화학식 8의 평균 조성식을 가질 수 있다.
[화학식 8]
(R1R2 2SiO1/2)a(R6R7SiO2/2)l(R8R9SiO2/2)m(R5SiO3/2)c
화학식 8에서 R1, R2 및 R5는 화학식 7에서 정의한 바와 같고, R6는, 탄소수 6 내지 25의 아릴기이고, R7, R8 및 R9은 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이며, R1, R7, R8 및 R9 중 적어도 하나는 알케닐기이며, a+l+m+c을 1로 환산하였을 때에 a는 0.01 내지 0.10이고, l은 0 내지 0.90이며, m은 0 내지 0.90이고, c은 0.01 내지 0.30이고, (l+m)/a는 5 이상이고, (l+m)/c는 5 이상이다.
화학식 8의 평균 조성식에서 a, l, m 및 c는 각 실록산 단위의 몰 비율을 나타내고, 그 총합(a+l+m+c)을 1로 환산하는 경우, a는 0.01 내지 0.10이고, l은 0 내지 0.90이며, m은 0 내지 0.90이고, c은 0.01 내지 0.30이다. 또한, 상기에서 l 및 m의 합을 화학식 7의 조성식의 b로 하였을 경우에, a, l, m 및 c는 화학식 7의 항목에서 언급한 몰 비율을 만족하도록 수치가 조절될 수 있다. 예를 들면, 화학식 8에서 (l+m)/c가 5 이상, 7 이상, 8 이상 또는 10 이상일 수 있다. 또한, 상기 평균 조성식에서 (l+m)/a는 5 이상, 8 이상 또는 10 이상일 수 있다. 상기에서 (l+m)/c의 상한은 특별히 제한되는 것은 아니지만, 예를 들면, 70, 60, 50, 40, 30 또는 25일 수 있다. 또한, (l+m)/a의 상한도 특별히 제한되는 것은 아니지만, 예를 들면, 110, 100, 90, 80, 70, 60, 50 또는 40일 수 있다. 화학식 7에서 (l+m)/(a+l+m+c)는 예를 들면, 0.5 이상, 0.6 이상 또는 0.7 이상일 수 있다. 상기 (l+m)/(a+l+m+c)의 상한은 특별히 제한되지 않으나, 상기는 1 미만 또는 0.98 이하일 수 있다. 화학식 9에서 (l+m)/(l+m+c)는 예를 들면, 0.5 이상, 0.6 이상 또는 0.7 이상일 수 있다. 상기 (l+m)/(l+m+c)의 상한은 특별히 제한되지 않으나, 상기는 1 미만 또는 0.98 이하일 수 있다. 오가노폴리실록산이 상기와 같은 구조를 가지면, 적용 용도에 따라서 적합한 물성을 나타낼 수 있다.
또한, 화학식 8의 평균 조성식에서 l 및 m은 모두 0이 아닐 수 있다. l 및 m이 모두 0이 아닌 경우에 l/m은 0.4 내지 2.0, 0.4 내지 1.5 또는 0.5 내지 1의 범위 내에 있을 수 있다.
하나의 예시에서, 화학식 7 또는 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은, 하기 화학식 9 또는 10의 단위를 포함할 수 있다.
[화학식 9]
Figure PCTKR2012010064-appb-I000004
[화학식 10]
Figure PCTKR2012010064-appb-I000005
화학식 9 및 10에서 R1 내지 R8은 각각 독립적으로 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이고, o는 0 내지 300이며, p는 0 내지 300이다.
화학식 9 및 10에서 R6 내지 R8은, 예를 들면, 아릴기일 수 있다.
예시적인 오가노폴리실록산은, 화학식 9 또는 10의 단위를 하나 이상 포함할 수 있다. 화학식 9 또는 10의 단위는, 오가노폴리실록산을 형성하는 실록산 단위 중에서 D 단위의 규소 원자와 T 단위의 규소 원자가 산소 원자를 매개로 직접 결합되어 있는 형태의 단위이다. 하나의 예시에서 전술한 바와 같이, 상기 오가노폴리실록산이 2개 이상의 성분의 혼합물이면서 상기 각 성분의 조성의 평균이, 화학식 7 또는 화학식 8의 평균 조성식으로 표시되는 경우에도 상기 오가노폴리실록산은 화학식 9 또는 10의 단위를 가지는 단일의 성분을 적어도 하나 포함할 수 있다.
하나의 예시에서 화학식 7 또는 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은, 1H NMR 측정에 의해 구해지는 스펙트럼에서 규소 원자에 결합된 알케닐기로부터 유리되는 면적(Ak) 대비 규소 원자에 결합된 알콕시기로부터 유래하는 피크의 면적(OR)의 비율(OR/Ak)이 0.05 이하, 0.03 이하, 0.01 이하, 0.005 이하 또는 0일 수 있다. 상기 범위에서 적절한 점도 특성을 나타내면서, 다른 물성도 우수하게 유지될 수 있다. 또한, 상기에서 1H NMR 측정에 의한 스펙트럼은 구체적으로는 하기 실시예에서 기재하는 방식에 따라 구해진다.
또한, 하나의 예시에서 화학식 7 또는 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은 KOH 적정에 의해 구해지는 산가(acid value)가 0.05 mgKOH/g 이하, 0.03 mgKOH/g 이하, 0.01 mgKOH/g 이하 또는 0 mgKOH/g일 수 있다. 상기 범위에서 적절한 점도 특성을 나타내면서, 다른 물성도 우수하게 유지될 수 있다. 또한, 상기에서 KOH 적정에 의한 산가는 구체적으로는 하기 실시예에서 기재하는 방식에 따라 구해진다.
하나의 예시에서 화학식 7 또는 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은, 25℃에서의 점도가 2,000 cP 이상, 3,000 cP 이상, 4,000 cP 이상, 5,000 cP 이상, 7,000 cP 이상, 9,000 cP 이상 또는 9,500 cP 이상일 수 있다. 이러한 범위에서 상기 오가노폴리실록산의 가공성 및 경도 특성 등이 적절하게 유지될 수 있다. 한편, 상기 점도의 상한은 특별히 제한되는 것은 아니지만, 예를 들면, 상기 점도는, 100,000 cP 이하, 90,000 cP 이하, 80,000 cP 이하, 70,000 cP 이하 또는 65,000 cP 이하일 수 있다.
하나의 예시에서 화학식 7 또는 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은, 중량평균분자량(Mw: Weight Average Molecular Weight)이 1,500 이상, 2,000 이상, 3,000 이상, 4,000 이상 또는 5,000 이상일 수 있다. 본 명세서에서 용어 중량평균분자량은 GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다. 또한, 본 명세서에서 특별하게 달리 규정하지 않는 한, 용어 분자량은 중량평균분자량을 의미할 수 있다. 이러한 범위에서 상기 오가노폴리실록산의 성형성, 경도 및 강도 특성 등이 적절하게 유지될 수 있다. 한편, 상기 분자량의 상한은 특별히 제한되는 것은 아니지만, 예를 들면, 상기 분자량은, 14,000 이하, 12,000 이하 또는 10,000 이하일 수 있다.
하나의 예시에서 상기 혼합물의 반응에 의해 형성된 반응물은 하기 화학식 11의 화합물을 포함할 수 있다.
[화학식 11]
Figure PCTKR2012010064-appb-I000006
상기 화학식 11에서 Rf 및 Rg는 각각 독립적으로 탄소수 1 내지 20의 알킬기이고, Rh 및 Ri는 각각 독립적으로 탄소수 6 내지 25의 아릴기이며, p는 0 내지 10 또는 3 내지 10의 수이고, q는 0 내지 10 또는 3 내지 10의 수이다.
상기 화학식 11의 화합물은, 반응물에 포함되는 저분자량 성분의 일종이다. 본 명세서에서 용어 저분자량 성분은 상기 반응물 내에 포함되어 있는 성분으로서 분자량이 800 이하인 성분을 의미할 수 있다.
상기 방법은 상기 반응 후에 저분자량 성분, 예를 들면, 상기 화학식 12의 화합물을 포함하는 저분자량 성분의 비율을 30 중량% 이하, 20 중량% 이하, 10 중량% 이하, 8 중량% 이하 또는 6 중량% 이하로 조절하는 단계를 추가로 포함할 수 있다. 이러한 저분자량 성분의 제거 단계를 통해 목적하는 물성이 우수한 제품을 얻을 수 있다. 상기 저분자량 성분을 제거하는 방법은 특별히 제한되지 않으며, 예를 들면 이 분야에서 공지되어 있는 통상의 정제 방법을 통해 수행할 수 있다.
본 출원은, 반도체 장치의 제조 방법에 관한 것이다. 예시적인 반도체 장치의 제조 방법은, 상기 기술한 방법으로 제조된 오가노폴리실록산을 포함하는 조성물로 반도체 소자를 봉지하는 것을 포함할 수 있다.
상기 조성물은 상기 오가노폴리실록산만을 포함하거나, 필요에 따라서 상기 오가노폴리실록산을 경화시킬 수 있는 추가적인 성분, 예를 들면, 백금계 촉매와 같은 히드실릴화 반응 촉매나, 가교제로서 사용될 수 있는 규소 원자에 결합된 수소 원자를 하나 이상 포함하는 실록산 화합물을 추가로 포함할 수도 있다.
상기 조성물은 또한, 예를 들면, 금속이나, 유기 수지 등에 대한 접착성을 개선할 수 있는 성분으로서, 접착성 부여제를 추가로 포함할 수 있다. 접착성 부여제로는, 비닐기 등의 알케닐기, (메타)아크릴로일옥시기, 히드로실릴기(SiH기), 에폭시기, 알콕시기, 알콕시실릴기, 카르보닐기 및 페닐기로 이루어진 군으로부터 선택되는 1종 이상, 예를 들면 2종 이상의 관능기를 가지는 실란; 또는 2 내지 30, 예를 들면 4 내지 20개의 규소 원자를 가지는 환상 또는 직쇄상 실록산 등의 유기 규소 화합물 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 조성물은, 또한, 필요에 따라서, 2-메틸-3-부틴-2-올, 2-페닐-3-1-부틴-2올, 3-메틸-3-펜텐-1-인, 3,5-디메틸-3-헥센-1-인, 1,3,5,7-테트라메틸-1,3,5,7-테트라헥세닐시클로테트라실록산 또는 에티닐시클로헥산 등의 반응 억제제; 실리카, 알루미나, 지르코니아 또는 티타니아 등의 무기 충전제; 에폭시기 및/또는 알콕시실릴기를 가지는 탄소 관능성 실란, 그의 부분 가수분해 축합물 또는 실록산 화합물; 폴리에테르 등과 병용될 수 있는 연무상 실리카 등의 요변성 부여제; 은, 구리 또는 알루미늄 등의 금속 분말이나, 각종 카본 소재 등과 같은 도전성 부여제; 안료 또는 염료 등의 색조 조정제; 형광체 등의 첨가제를 일종 또는 이종 이상을 추가로 포함할 수 있다.
상기 조성물로 봉지되는 반도체 소자로는, 다이오드, 트랜지스터, 사이리스터, 포토커플러, CCD, 고체상 화상 픽업 소자, 일체식 IC, 혼성 IC, LSI, VLSI 및 LED(Light Emitting Diode) 등이 예시될 수 있다.
하나의 예시에서 상기 반도체 소자는, 발광 다이오드일 수 있고, 이 경우 상기 제조 방법은, 상기 조성물로 발광 소자를 봉지하는 것을 포함하는 발광 다이오드의 제조 방법일 수 있다.
상기 발광 다이오드로는, 예를 들면, 기판 상에 반도체 재료를 적층하여 형성한 발광 다이오드 등이 예시될 수 있다. 상기 반도체 재료로는, GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN 또는 SiC 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 기판으로는, 사파이어, 스핀넬, SiC, Si, ZnO 또는 GaN 단결정 등이 예시될 수 있다.
또한, 발광 다이오드의 제조 시에는 필요에 따라서, 기판과 반도체 재료의 사이에 버퍼층을 형성할 수도 있다. 버퍼층으로서는, GaN 또는 AlN 등이 사용될 수 있다. 기판상으로의 반도체 재료의 적층 방법은, 특별히 제한되지 않으며, 예를 들면, MOCVD법, HDVPE법 또는 액상성장법 등을 사용할 수 있다. 또한, 발광 다이오드의 구조는, 예를 들면, MIS 접합, PN 접합, PIN 접합을 가지는 모노접합, 헤테로접합, 이중 헤테로 접합 등일 수 있다. 또한, 단일 또는 다중양자우물구조로 상기 발광 다이오드를 형성할 수 있다.
하나의 예시에서, 상기 발광 다이오드의 발광 파장은, 예를 들면, 250 nm 내지 550 nm, 예를 들면 300 nm 내지 500 nm 또는 330 nm 내지 470 nm일 수 있다. 상기 발광 파장은, 주발광 피크 파장을 의미할 수 있다. 발광 다이오드의 발광파장을 상기 범위로 설정함으로써, 보다 긴 수명으로, 에너지 효율이 높고, 색재현성이 높은 백색 발광 다이오드를 얻을 수 있다.
상기 반도체 소자 또는 발광 소자를 상기 조성물을 사용하여 봉지하는 방법은 특별히 제한되지 않는다.
하나의 예시에서 상기 조성물로 반도체 소자 또는 발광 소자를 봉지하는 방법으로는, 예를 들면, 몰드형 거푸집에 상기 조성물을 미리 주입하고, 거기에 소자가 고정된 리드프레임 등을 침지시킨 후에, 필요에 따라서 조성물을 경화시키는 방법, 소자를 삽입한 거푸집에 조성물을 주입하고, 필요에 따라서 경화시키는 방법 등을 사용할 수 있다. 조성물의 주입 방법으로는, 디스펜서에 의한 주입, 트랜스퍼 성형 또는 사출성형 등이 예시될 수 있다.
또한, 그 외의 봉지 방법으로서는, 조성물을 소자 상에 적하, 공판 인쇄, 스크린 인쇄 또는 마스크를 매개로 도포하고, 필요에 따라서 경화시키는 방법, 저부에 소자를 배치한 컵 등에 조성물을 디스펜서 등에 의해 주입하고, 필요에 따라서 경화시키는 방법 등이 사용될 수 있다.
봉지 과정에서 상기 조성물의 경화가 필요한 경우, 경화 방법은 특별히 제한되지 않고, 예를 들면, 60℃ 내지 200℃의 온도에서 10분 내지 5시간 동안 상기 조성물을 유지하여 수행하거나, 적정 온도 및 시간에서의 2단계 이상의 과정을 거쳐 단계적인 경화 공정을 진행할 수도 있다.
봉지재의 형상은 특별히 한정되지 않으며, 예를 들면, 포탄형의 렌즈 형상, 판상 또는 박막상 등으로 구성할 수 있다.
상기 봉지 과정은, 상기 조성물만을 사용하여 수행하거나, 필요에 따라서 다른 봉지재를 상기 조성물과 병용하여 수행할 수 있다. 2종의 봉지재를 병용하는 경우, 상기 조성물을 사용한 봉지 후에, 그 주위를 다른 봉지재로 봉지할 수도 있고, 다른 봉지재로 먼저 봉지한 후, 그 주위를 상기 조성물로 봉지할 수도 있다. 다른 봉지재로는, 에폭시 수지, 실리콘 수지, 아크릴 수지, 우레아 수지, 이미드 수지 또는 유리 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 봉지 방법과 함께 종래의 공지에 방법에 따라 반도체 장치 또는 발광 다이오드의 추가적인 성능 향상을 도모할 수 있는 다른 공정이 수행될 수도 있다. 상기와 같은 성능 향상의 방법으로서는, 예를 들면, 발광 다이오드 배면에 광의 반사층 또는 집광층을 설치하는 방법, 보색 착색부를 저부에 형성하는 방법, 주발광 피크보다 단파장의 광을 흡수하는 층을 발광 다이오드 상에 설치하는 방법, 발광 다이오드를 봉지한 후 추가로 경질 재료로 몰딩하는 방법, 발광 다이오드를 관통홀에 삽입하여 고정하는 방법, 발광 다이오드를 플립칩 접속 등에 의해서 리드 부재 등과 접속하여 기판 방향으로부터 광을 취출하는 방법 등이 예시될 수 있다.
상기 발광 다이오드는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다.
예시적인 방법에 따르면, 분자 구조 중에서 삼관능성 실록산 단위로부터 유래하는 분지 내지는 가교 구조와 이관능성 실록산 단위로부터 유래하는 선형 구조를 동시에 가지고, 또한 상기 선형 구조가 충분히 장쇄인 오가노폴리실록산을 효과적으로 제조할 수 있다. 상기 예시적인 방법에 따르면, 상기 오가노폴리실록산을 충분한 분자량으로 합성할 수 있고, 합성된 오가노폴리실록산 내에 알콕시기 또는 히드록시기 등과 같은 관능기의 비율을 최소화하여 우수한 물성을 나타내는 목적물을 효과적으로 제조할 수 있다.
이하 실시예 및 비교예를 통하여 상기 내용을 보다 상세히 설명하나, 본 출원의 범위가 하기 실시예로 제한되는 것은 아니다.
이하에서, 부호 Vi는 비닐기를 나타내고, 부호 Ph는 페닐기를 나타내며, 부호 Me는 메틸기를 나타낸다.
또한, 이하에서 각 물성은 하기의 방식으로 측정한다.
1. 오가노폴리실록산에 대한 1H-NMR 측정
오가노폴리실록산에 대한 1H-NMR 분석은 다음의 조건에서 수행하였다.
<1H-NMR 분석 내용>
측정 기기: Varian Unity Inova 500MHz NMR
사용 용매: acetone-d6
측정 조건:
Pulse sequence: s2pul
Sweep width: 8012.8hz
Acquisition time: 2.045 sec
Delay time: 2 sec
Pulse width: 45 degree pulse (8.10 usec)
Number of scan: 16
2. 오가노폴리실록산에 대한 산가 측정
톨루엔 500 mL, 이소프로필알코올(IPA) 495 mL 및 물(distilled water) 5 mL를 배합하여 측정용 용매를 제조하였다. 또한, 베이스 용매(base solution)로서 0.1 N의 농도의 KOH 용액(용매: 이소프로필 알코올(IPA))을 준비하고, 표지자(indicator)로는 알파-나프톨벤제인(alpha-naphtholbenzein)(pH: 0.8 ~ 8.2 yellow, 10.0 blue green)을 준비하였다. 이어서, 시료 약 1 내지 2 g을 채취하여 측정용 용매 6 g에 녹인 후에 표지자를 첨가한 후에 베이스 용매로 적정하였다. 적정 완료 시점에서 사용된 베이스 용매의 양으로 산가(acid value)를 mg KOH/g의 단위로 구하였다.
실시예 1.
옥타메틸시클로테트라실록산(octamethylcyclotetrasiloxane) 60.00 g, 옥타페닐시클로테트라실록산(octaphenylcyclotetrasiloxane) 106.96 g, 옥타페닐-POSS(octaphenyl-polyhedral oligomeric silsesquioxane) 17.44 g 및 디비닐테트라메틸디실록산(divinyltetramethyldisiloxane) 12.56 g을 혼합하고, 상기 혼합물에 촉매로서 테트라메틸암모늄 히드록시드(TMAH; tetramethylammonium hydroxide) 0.63 mL를 배합하였다. 그 후, 상기 촉매가 배합된 혼합물을 115℃의 온도에서 약 20 시간 동안 반응시켜서, 하기 화학식 A로 표시되는 투명한 오일 형태의 폴리실록산을 수득하였다. 상기 폴리실록산의 25℃에서의 점도는 21,000 cP였고, 분자량은 약 6,400이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.006 mg KOH/g으로 측정되었다.
[화학식 A]
[ViMe2SiO1/2]2[Me2SiO2/2]22[Ph2SiO2/2]15[PhSiO3/2]5
실시예 2.
디비닐테트라메틸디실록산의 배합량을 6.28 g으로 변경한 것을 제외하고는, 실시예 1과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 B로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 58,600 cP였고, 분자량은 약 9,700이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.009 mg KOH/g으로 측정되었다.
[화학식 B]
[ViMe2SiO1/2]2[Me2SiO2/2]40[Ph2SiO2/2]27[PhSiO3/2]9
실시예 3.
옥타페닐-POSS 및 디비닐테트라메틸디실록산의 배합량을 각각 34.88 g 및 15.72 g으로 변경한 것을 제외하고는, 실시예 1과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 C로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 33,200 cP였고, 분자량은 약 4,600이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.008 mg KOH/g으로 측정되었다.
[화학식 C]
[ViMe2SiO1/2]2[Me2SiO2/2]19[Ph2SiO2/2]12[PhSiO3/2]6
실시예 4.
옥타메틸시클로테트라실록산, 옥타페닐시클로테트라실록산 및 디비닐테트라메틸디실록산의 배합량을 각각 55.00 g, 120.34 g 및 18.85 g으로 변경한 것을 제외하고는, 실시예 1과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 D로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 24,400 cP였고, 분자량은 약 4,200이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.008 mg KOH/g으로 측정되었다.
[화학식 D]
[ViMe2SiO1/2]2[Me2SiO2/2]14[Ph2SiO2/2]11[PhSiO3/2]3
실시예 5.
디비닐테트라메틸디실록산의 배합량을 12.56 g으로 변경한 것을 제외하고는, 실시예 4와 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 E로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 47,000 cP였고, 분자량은 약 5,500이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.007 mg KOH/g으로 측정되었다.
[화학식 E]
[ViMe2SiO1/2]2[Me2SiO2/2]21[Ph2SiO2/2]17[PhSiO3/2]4
실시예 6.
옥타메틸시클로테트라실록산 및 옥타페닐시클로테트라실록산을 사용하지 않고, 그 대신 테트라메틸테트라페닐시클로테트라실록산(tetramethyltetraphenylcyclotetrasiloxane) 183.71 g을 배합하고, 디비닐테트라메틸디실록산의 배합량을 12.10 g으로 변경한 것을 제외하고는, 실시예 1과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 F로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 19,800 cP였고, 분자량은 약 4,800이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.008 mg KOH/g으로 측정되었다.
[화학식 F]
[ViMe2SiO1/2]2[MePhSiO2/2]32[PhSiO3/2]4
실시예 7.
옥타메틸시클로테트라실록산 30.0 g, 옥타페닐시클로테트라실록산 53.5 g, 옥타페닐-POSS 8.7 g 및 디비닐테트라메틸디실록산 6.3 g을 혼합하고, 상기 혼합물에 촉매로 테트라메틸암모늄 히드록시드 0.3 mL를 배합하였다. 그 후, 상기 촉매가 배합된 혼합물을 115℃의 온도에서 약 20 시간 동안 반응시켰다. 반응 종료 후에 반응물로부터 저분자 물질을 제거하여, 하기 화학식 G로 표시되는 투명한 오일 형태의 폴리실록산을 수득하였다. 상기 폴리실록산의 25℃에서의 점도는 21,100 cP였고, 분자량은 약 6,100이었다. 또한, 1H-NMR 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.01 mg KOH/g으로 측정되었다.
[화학식 G]
[ViMe2SiO1/2]2[Me2SiO2/2]23[Ph2SiO2/2]15[PhSiO3/2]4
실시예 8.
옥타페닐-POSS의 배합량을 4.4 g으로 변경한 것을 제외하고는, 실시예 7과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 H로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 10,200 cP였고, 분자량은 약 5,600이었다. 또한, 1H-NMR 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.009 mg KOH/g으로 측정되었다.
[화학식 H]
[ViMe2SiO1/2]2[Me2SiO2/2]24[Ph2SiO2/2]16[PhSiO3/2]2
실시예 9.
디비닐테트라메틸디실록산의 배합량을 9.4 g으로 변경한 것을 제외하고는, 실시예 7과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 I로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 12,200 cP였고, 분자량은 약 4,700이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.008 mg KOH/g으로 측정되었다.
[화학식 I]
[ViMe2SiO1/2]2[Me2SiO2/2]17[Ph2SiO2/2]11[PhSiO3/2]4
실시예 10.
옥타메틸시클로테트라실록산, 옥타페닐시클로테트라실록산 및 디비닐테트라메틸디실록산의 배합량을 각각 27.5 g, 60.2 g 및 7.9 g으로 변경한 것을 제외하고는, 실시예 7과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 J로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 33,200 cP였고, 분자량은 약 4,600이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.007 mg KOH/g으로 측정되었다.
[화학식 J]
[ViMe2SiO1/2]2[Me2SiO2/2]18[Ph2SiO2/2]15[PhSiO3/2]2
실시예 11.
옥타페닐-POSS를 사용하지 않고, 그 대신 화학식 [ViMe2SiO1/2][PhSiO3/2]3.5로 표시되고, 분자량이 1,520인 폴리실록산 12.5 g을 사용하고, 디비닐테트라메틸디실록산의 배합량을 6.1 g으로 변경한 것을 제외하고는, 실시예 7과 동일한 방식으로 폴리실록산을 합성하였다. 상기 폴리실록산은, 하기 화학식 K로 표시되고, 투명한 오일 형태였다. 상기 폴리실록산의 25℃에서의 점도는 15,500 cP였고, 분자량은 약 5,300이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.012 mg KOH/g으로 측정되었다.
[화학식 K]
[ViMe2SiO1/2]2[Me2SiO2/2]20[Ph2SiO2/2]13[PhSiO3/2]4
실시예 12.
옥타메틸시클로테트라실록산(octamethylcyclotetrasiloxane) 75.00 g, 옥타페닐시클로테트라실록산(octaphenylcyclotetrasiloxane) 468 g, 및 (ViMe2SiO1/2)3(PhSiO3/2)의 평균 단위를 가지는 오가노폴리실록산 17.44 g을 혼합하고, 상기 혼합물에 촉매로서 테트라메틸암모늄 히드록시드(TMAH; tetramethylammonium hydroxide) 2 mL를 배합하였다. 그 후, 상기 촉매가 배합된 혼합물을 115℃의 온도에서 약 20 시간 동안 반응시켜서, 하기 화학식 L로 표시되는 투명한 오일 형태의 폴리실록산을 수득하였다. 상기 폴리실록산의 25℃에서의 점도는 20200 cP였고, 분자량은 약 1800이었다. 또한, 1H-NMR로 측정되는 스펙트럼 상에서 알콕시기로부터 유래되는 피크는 관찰되지 않았으며, 산가는 약 0.006 mg KOH/g으로 측정되었다.
[화학식 F]
[ViMe2SiO1/2]2[Me2SiO2/2]3[Ph2SiO2/2]7[PhSiO3/2]2
비교예 1.
디메톡시디메틸실란(dimethoxydimethylsilane) 97.2 g, 디메톡시디페닐실란(dimethoxydiphenylsilane) 131.8 g, 디비닐테트라메틸디실록산 12.6 g 및 페닐트리메톡시실란(phenyltrimethoxysilane) 26.6 g을 130 g의 톨루엔에 용해시킨 용액에 물 106.0 g 및 질산 8.6 mL를 추가로 배합하였다. 이어서, 상기 혼합물을 100℃의 온도에서 약 7 시간 동안 반응시켰다. 반응 종료 후에 반응 용액을 상온으로 냉각시키고, 물로 반응 용액이 중성이 될 때까지 세척하였다. 그 후, 용액에 KOH 0.2 g을 첨가하고, 탈수 축합 반응을 진행시켰다. 반응 후, AcOH(Acetyl hydroxide)를 이용하여 반응 용액을 중화시키고, 물로 중성이 될 때까지 세척한 후, 감압 증류를 통하여 용매를 제거하여 폴리실록산을 수득하였다. 수득된 폴리실록산은 투명도가 없는 오일 형태였고, 고리 구조의 저분자량 물질이 다량 포함되어 있었으며, 폴리실록산이 상기 저분자량 물질과 유사한 분자량을 나타내어 폴리실록산을 분리하는 것이 곤란하였다. 또한, 1H-NMR 스펙트럼 상에서 메톡시기로부터 유래되는 피크의 면적(OMe) 대비 비닐기로부터 유래되는 피크의 면적(Vi)의 비율(OMe/Vi)이 약 0.1이어서 구조 내에 다량의 메톡시기가 존재하는 것을 확인하였다. 또한, 산가는 약 0.063으로 측정되었다. 상기 반응 용액의 25℃에서의 점도는 1,300 cP로서 매우 낮은 수치를 나타내었다.
비교예 2.
옥타페닐-POSS를 사용하지 않고, 그 대신 페닐트리메톡시실란 26.8 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방식으로 폴리실록산을 합성하였다. 합성된 폴리실록산은 고리 구조의 저분자량 물질을 다량 포함하고 있었고, 폴리실록산이 상기 저분자량 물질과 유사한 분자량을 나타내어 폴리실록산을 분리하는 것이 곤란하였다. 또한, 1H-NMR 스펙트럼 상에서 메톡시기로부터 유래되는 피크의 면적(OMe) 대비 비닐기로부터 유래되는 피크의 면적(Vi)의 비율(OMe/Vi)이 약 0.8이어서 구조 내에 다량의 메톡시기가 존재하는 것을 확인하였다. 또한, 산가는 약 0.347으로 측정되었다. 상기 반응 용액의 25℃에서의 점도는 3,100 cP로서 매우 낮은 수치를 나타내었다.

Claims (17)

  1. 하기 화학식 1로 표시되는 화합물; 및 하기 화학식 2 또는 하기 화학식 3의 평균 조성식을 가지는 오가노폴리실록산을 포함하는 혼합물을 반응시키는 것을 포함하는 오가노폴리실록산의 제조 방법:
    [화학식 1]
    Figure PCTKR2012010064-appb-I000007
    [화학식 2]
    [ReSiO3/2]
    [화학식 3]
    [RaRb 2SiO1/2] p[ReSiO3/2]q
    상기 화학식 1 내지 3에서, Ra는 탄소수 2 이상의 1가 탄화수소기이고, Rb는 탄소수 1 내지 4의 알킬기이며, Rc 내지 Re는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이고, o는 3 내지 6이며, p는 1 내지 3이고, q는 1 내지 10이다.
  2. 제 1 항에 있어서, 1가 탄화수소기는 알킬기, 알케닐기 또는 아릴기인 오가노폴리실록산의 제조 방법.
  3. 제 1 항에 있어서, 화학식 1의 화합물은 하기 화학식 4의 화합물과 하기 화학식 5의 화합물의 혼합물인 오가노폴리실록산의 제조 방법:
    [화학식 4]
    Figure PCTKR2012010064-appb-I000008
    [화학식 5]
    Figure PCTKR2012010064-appb-I000009
    상기 화학식 4 및 5에서 Rf 및 Rg는 각각 독립적으로 탄소수 1 내지 20의 알킬기이고, Rh 및 Ri는 각각 독립적으로 탄소수 6 내지 25의 아릴기이며, p는 3 내지 10의 수이고, q는 3 내지 10의 수이다.
  4. 제 1 항에 있어서, 혼합물은 하기 화학식 6으로 표시되는 화합물을 추가로 포함하는 오가노폴리실록산의 제조 방법:
    [화학식 6]
    (RaRb 2Si)2O
    상기 화학식 6에서, Ra는 탄소수 2 이상의 1가 탄화수소기이고, Rb는 탄소수 1 내지 4의 알킬기이다.
  5. 제 1 항에 있어서, 혼합물의 반응은 염기 촉매의 존재 하에서 수행되는 오가노폴리실록산의 제조 방법.
  6. 제 5 항에 있어서, 염기 촉매는 금속 수산화물; 금속 실라롤레이트 또는 4급 암모늄 화합물인 오가노폴리실록산의 제조 방법.
  7. 제 1 항에 있어서, 혼합물의 반응은, 용매 내에서 수행되는 오가노폴리실록산의 제조 방법.
  8. 제 7 항에 있어서, 용매는, 지방족 탄화수소계 용매; 방향족계 용매; 케톤계 용매; 에테르계 용매; 에스테르계 용매; 또는 아미드계 용매인 오가노폴리실록산의 제조 방법.
  9. 제 1 항에 있어서, 혼합물의 반응은 0℃ 내지 150℃에서 수행되는 오가노폴리실록산의 제조 방법.
  10. 제 1 항에 있어서, 혼합물의 반응은 1시간 내지 72 시간 동안 수행되는 오가노폴리실록산의 제조 방법.
  11. 제 1 항에 있어서, 반응물은 하기 화학식 11의 화합물을 포함하는 오가노폴리실록산의 제조 방법:
    [화학식 11]
    Figure PCTKR2012010064-appb-I000010
    상기 화학식 11에서 Rf 및 Rg는 각각 독립적으로 탄소수 1 내지 20의 알킬기이고, Rh 및 Ri는 각각 독립적으로 탄소수 6 내지 25의 아릴기이며, p는 0 내지 10의 수이고, q는 0 내지 10의 수이다.
  12. 제 1 항에 있어서, 반응물에 포함되어 있는 중량평균분자량이 800 이하인 저분자량 물질의 비율을 30 중량% 이하로 조절하는 것을 추가로 포함하는 오가노폴리실록산의 제조 방법.
  13. 제 1 항에 있어서, 하기 화학식 7의 평균 조성식을 가지는 오가노폴리실록산을 제조하기 위한 방법:
    [화학식 7]
    (R1R2 2SiO1/2)a(R3R4SiO2/2)b(R5SiO3/2)c(SiO2)d
    상기 화학식 7에서 R1은, 탄소수 2 이상의 1가 탄화수소기이고, R2는 탄소수 1 내지 4의 알킬기이며, R3 및 R4는 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 또는 탄소수 6 내지 25의 아릴기이고, R5는 탄소수 1 내지 20의 알킬기 또는 탄소수 6 내지 25의 아릴기이며, R1, R3 및 R4 중 적어도 하나는 알케닐기이고, a는 양의 수이며, b는 0 또는 양의 수이고, c는 양의 수이고, d는 0 또는 양의 수이며, b/a는 5 이상이고, b/c는 5 이상이다.
  14. 제 13 항에 있어서, 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은 1H NMR 스펙트럼에서 규소에 결합된 알케닐기로부터 유래하는 피크의 면적 대비 규소에 결합된 알콕시기로부터 유래하는 피크의 면적이 0.05 이하인 오가노폴리실록산의 제조 방법.
  15. 제 13 항에 있어서, 화학식 8의 평균 조성식을 가지는 오가노폴리실록산은, KOH 적정에 의해 구해지는 산가가 0.05 mgKOH/g 이하인 오가노폴리실록산의 제조 방법.
  16. 제 1 항의 방법으로 제조된 오가노폴리실록산을 포함하는 조성물로 반도체 소자를 봉지하는 것을 포함하는 반도체 장치의 제조 방법.
  17. 제 1 항의 방법으로 제조된 오가노폴리실록산을 포함하는 조성물로 발광 소자를 봉지하는 것을 포함하는 발광 다이오드의 제조 방법.
PCT/KR2012/010064 2011-11-25 2012-11-26 오가노폴리실록산의 제조 방법 WO2013077701A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280067981.0A CN104066771B (zh) 2011-11-25 2012-11-26 制备有机聚硅氧烷的方法
EP12851452.8A EP2784105B1 (en) 2011-11-25 2012-11-26 Method for producing organopolysiloxane
US14/276,772 US9023968B2 (en) 2011-11-25 2014-05-13 Method for producing organopolysiloxane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110124658 2011-11-25
KR10-2011-0124658 2011-11-25
KR1020120134554A KR101460863B1 (ko) 2011-11-25 2012-11-26 오가노폴리실록산의 제조 방법
KR10-2012-0134554 2012-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/276,772 Continuation US9023968B2 (en) 2011-11-25 2014-05-13 Method for producing organopolysiloxane

Publications (1)

Publication Number Publication Date
WO2013077701A1 true WO2013077701A1 (ko) 2013-05-30

Family

ID=48857835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010064 WO2013077701A1 (ko) 2011-11-25 2012-11-26 오가노폴리실록산의 제조 방법

Country Status (6)

Country Link
US (1) US9023968B2 (ko)
EP (1) EP2784105B1 (ko)
KR (1) KR101460863B1 (ko)
CN (1) CN104066771B (ko)
TW (1) TWI473840B (ko)
WO (1) WO2013077701A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560119A (zh) * 2020-07-09 2020-08-21 威海新元化工有限公司 一种二甲基二苯基聚硅氧烷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046795A (en) * 1975-11-10 1977-09-06 Sws Silicones Corporation Process for preparing thiofunctional polysiloxane polymers
KR20060096429A (ko) * 2003-10-01 2006-09-11 다우 코닝 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물 및 반도체 장치
KR20110087244A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물
KR20110087243A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310616A (en) * 1992-03-13 1994-05-10 Dow Corning Toray Silicone Co., Ltd. Toner compositions for electrostatic developers with organo siloxane resin
JP3367964B2 (ja) * 1992-04-21 2003-01-20 東レ・ダウコーニング・シリコーン株式会社 硬化性樹脂組成物
US5661215A (en) * 1995-07-26 1997-08-26 Dow Corning Corporation Microemulsions of gel-free polymers
JP4009067B2 (ja) * 2001-03-06 2007-11-14 信越化学工業株式会社 付加硬化型シリコーン樹脂組成物
JP4040858B2 (ja) * 2001-10-19 2008-01-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP4409160B2 (ja) * 2002-10-28 2010-02-03 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
US7595113B2 (en) * 2002-11-29 2009-09-29 Shin-Etsu Chemical Co., Ltd. LED devices and silicone resin composition therefor
US7071244B2 (en) * 2002-12-03 2006-07-04 Staar Surgical Company High refractive index and optically clear copoly (carbosilane and siloxane) elastomers
JP2004359756A (ja) * 2003-06-03 2004-12-24 Wacker Asahikasei Silicone Co Ltd Led用封止剤組成物
FR2876695B1 (fr) * 2004-10-15 2006-12-08 Rhodia Chimie Sa Procede de preparation d'organopolysiloxane par polymerisation et rearrangement de siloxanes cycliques
JP5392805B2 (ja) * 2005-06-28 2014-01-22 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン樹脂組成物および光学部材
CN101389695B (zh) * 2006-02-24 2012-07-04 陶氏康宁公司 用硅氧烷包封的发光器件和用于制备该硅氧烷的可固化的硅氧烷组合物
JP5420141B2 (ja) * 2006-03-01 2014-02-19 東レ・ダウコーニング株式会社 硬化性シリコーンレジン組成物および硬化物
JP5202822B2 (ja) * 2006-06-23 2013-06-05 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
US8017246B2 (en) * 2007-11-08 2011-09-13 Philips Lumileds Lighting Company, Llc Silicone resin for protecting a light transmitting surface of an optoelectronic device
JP5972512B2 (ja) * 2008-06-18 2016-08-17 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物及び半導体装置
JP5578616B2 (ja) * 2009-12-21 2014-08-27 信越化学工業株式会社 シリコーン樹脂組成物及びその硬化物
DE202011110490U1 (de) * 2010-01-25 2014-04-15 Lg Chem, Ltd. Silikonharz

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046795A (en) * 1975-11-10 1977-09-06 Sws Silicones Corporation Process for preparing thiofunctional polysiloxane polymers
KR20060096429A (ko) * 2003-10-01 2006-09-11 다우 코닝 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물 및 반도체 장치
KR20110087244A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물
KR20110087243A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, H. ET AL.: "A novel and facile method for direct synthesis of cross-linked polysiloxanes by anionic ring-opening copolymerization with Ph12-POSS/D4/Ph8D4", POLYMER, vol. 46, 2005, pages 5317 - 5323, XP004924369 *
LI, H. ET AL.: "Direct synthesis and characterization of crosslinked polysiloxanes via anionic ring-opening copolymerization with octaisobutyl-polyhedral oligomeric silsesquioxane and octamethylcyclotetrasiloxane", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 102, 2006, pages 3848 - 3856, XP055069905 *
See also references of EP2784105A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560119A (zh) * 2020-07-09 2020-08-21 威海新元化工有限公司 一种二甲基二苯基聚硅氧烷的制备方法
CN111560119B (zh) * 2020-07-09 2022-11-29 新元化学(山东)股份有限公司 一种二甲基二苯基聚硅氧烷的制备方法

Also Published As

Publication number Publication date
TW201335242A (zh) 2013-09-01
CN104066771A (zh) 2014-09-24
EP2784105A4 (en) 2015-07-01
EP2784105A1 (en) 2014-10-01
CN104066771B (zh) 2016-12-28
EP2784105B1 (en) 2017-05-10
US9023968B2 (en) 2015-05-05
KR101460863B1 (ko) 2014-12-04
TWI473840B (zh) 2015-02-21
KR20130058642A (ko) 2013-06-04
US20140249288A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
WO2011090362A2 (ko) 실리콘 수지
WO2013077702A1 (ko) 경화성 조성물
WO2012093907A2 (ko) 경화성 조성물
WO2011090364A2 (ko) 경화성 조성물
WO2011090361A2 (ko) 경화성 조성물
WO2013015591A2 (ko) 경화성 조성물
WO2013077699A1 (ko) 경화성 조성물
WO2014017885A1 (ko) 경화성 조성물
WO2014084637A1 (ko) 발광 다이오드
WO2014017888A1 (ko) 경화성 조성물
WO2011081325A2 (ko) 봉지재용 투광성 수지 및 이를 포함하는 전자 소자
WO2012173460A2 (ko) 경화성 조성물
WO2012093910A2 (ko) 경화성 조성물
WO2013077703A1 (ko) 경화성 조성물
US9029493B2 (en) Organopolysiloxane
WO2012093909A2 (ko) 경화성 조성물
WO2013077708A1 (ko) 경화성 조성물
KR101204116B1 (ko) 경화성 조성물
WO2014163442A1 (ko) 경화성 조성물
WO2013077707A1 (ko) 경화성 조성물
WO2014017889A1 (ko) 경화성 조성물
WO2012093908A2 (ko) 경화성 조성물
WO2014017887A1 (ko) 경화성 조성물
WO2014017886A1 (ko) 경화성 조성물
WO2014163440A1 (ko) 경화성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851452

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012851452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012851452

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE