WO2013076954A1 - 静電容量検出回路 - Google Patents

静電容量検出回路 Download PDF

Info

Publication number
WO2013076954A1
WO2013076954A1 PCT/JP2012/007407 JP2012007407W WO2013076954A1 WO 2013076954 A1 WO2013076954 A1 WO 2013076954A1 JP 2012007407 W JP2012007407 W JP 2012007407W WO 2013076954 A1 WO2013076954 A1 WO 2013076954A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
operational amplifier
region
circuit
capacitance
Prior art date
Application number
PCT/JP2012/007407
Other languages
English (en)
French (fr)
Inventor
木代 雅巳
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to US14/350,808 priority Critical patent/US9664719B2/en
Priority to EP12850761.3A priority patent/EP2790025B1/en
Priority to CN201280049193.9A priority patent/CN103858016B/zh
Priority to JP2013545784A priority patent/JP5700138B2/ja
Publication of WO2013076954A1 publication Critical patent/WO2013076954A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0256Electrical insulation details, e.g. around high voltage areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09972Partitioned, e.g. portions of a PCB dedicated to different functions; Boundary lines therefore; Portions of a PCB being processed separately or differently
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention relates to a capacitance detection circuit that detects a capacitance between the movable electrode and the fixed electrode of a physical quantity sensor including a movable electrode and a fixed electrode that generate a capacitance change according to a physical quantity change.
  • MEMS Micro Electro Mechanical System
  • Patent Document 2 includes a resist ink composition in which electrical characteristics such as insulation resistance do not deteriorate even under high humidity, and a printed wiring board having a cured film thereof.
  • a solder resist ink composition containing a cyclic amine compound in a solder resist ink composition having a reactive resin, a reactive diluent, a polymerization initiator, and a filler, and a printed wiring board having a coating film thereof have been proposed. ing.
  • An object of the present invention is to provide a capacitance detection circuit capable of preventing an increase.
  • a capacitance detection circuit for detecting a minute capacitance between the movable electrode and the fixed electrode of a physical quantity sensor having a movable electrode and a fixed electrode that generate a capacitance change according to a change in the physical quantity. It is.
  • the capacitance detection circuit includes a bias voltage generation circuit that generates a bias voltage supplied to one of the movable electrode and the fixed electrode, the other of the movable electrode and the fixed electrode is input to one input terminal, and the other input And an operational amplifier grounded on the side, and a printed wiring board on which the physical quantity sensor, the bias voltage generation circuit, and the operational amplifier are mounted.
  • the insulation ensuring region on the printed wiring board including the connection pad connected to the side is defined as a moisture absorption reduction region.
  • the input side circuit component includes a capacitor and a resistor connected between the output terminal of the operational amplifier and one input terminal. Yes.
  • a third aspect of the capacitance detection circuit is a physical quantity sensor having a differential structure including a pair of electrode parts each including a movable electrode and a fixed electrode that generate a change in capacitance according to a change in physical quantity. It is an electrostatic capacitance detection circuit which detects the micro electrostatic capacitance of said pair of electrode part.
  • the capacitance detection circuit includes a bias voltage generation circuit that generates a bias voltage supplied to one of the movable electrode and the fixed electrode in the pair of electrode portions, and the other of the movable electrode and the fixed electrode in the pair of electrode portions as an input.
  • An operational amplifier for amplifying a difference in micro capacitance between the movable electrode and the fixed electrode in the pair of electrode portions that is input to the terminal, and a printed wiring board on which the physical quantity sensor, the bias voltage generation circuit, and the operational amplifier are mounted And at least. And an electrode connection portion connected to the operational amplifier of the pair of electrode portions, an input side connection portion of the operational amplifier, and an input side circuit component connected between the electrode connection portion and the input side connection portion.
  • region on the said printed wiring board containing the connection part connected to the said input side connection part among connection parts is made into the moisture absorption reduction area
  • the input circuit component is connected between one of the pair of electrode portions and one input terminal of the operational amplifier and the ground.
  • a parallel circuit of a third capacitor and a resistor connected between the input terminals.
  • the moisture absorption reduction region has a resist coating region coated with a resist so as to cover the insulation ensuring region, and the resist coating region is coated with a surrounding resist.
  • a strip-shaped separation region surrounding the insulation securing region is formed so as to be separated from the region, and the strip-shaped separation region is a resist non-application region and a silk printing non-print region.
  • the moisture absorption reduction area is a non-resist application area on the entire surface of the insulation ensuring area and a silk printing non-print area.
  • the bias voltage generation circuit is configured to generate a carrier signal having an AC waveform such as a sine wave or a square wave.
  • the bias voltage generation circuit is configured to generate a DC bias voltage.
  • region including the connection part connected with the said input side connection part of a side circuit component is made into the moisture absorption reduction area
  • the moisture absorption reduction region is a resist non-application region or a screen printing non-printing region, or a resist region that is separated and independent from other regions.
  • the insulation ensuring region including each connection portion of the input side circuit components on the input side of the operational amplifier of the printed circuit board as a moisture absorption reduction region, it is possible to reliably prevent deterioration of the insulation resistance due to moisture absorption. For this reason, without holding the printed wiring board in an airtight state, the insulation resistance can be prevented from deteriorating and the noise can be prevented from increasing, whereby a small capacitance value can be obtained with a simple and low-cost structure. Can be detected.
  • the resist region separate and independent from other regions as the moisture absorption reduction region, the wiring pattern can be protected from rust while reducing moisture absorption.
  • FIG. 1 It is the schematic diagram of the state which removed the upper side board
  • FIG. 5 (b) which shows the other example of the moisture absorption reduction area
  • FIG. 8 which shows the other example of the moisture absorption reduction area
  • FIG. 9 which shows the other example of the moisture absorption reduction area
  • FIG. 1 is a schematic view showing an example of an acceleration sensor to which the capacitance detection circuit according to the present invention can be applied.
  • FIG. 1 (a) is a plan view with an upper substrate removed, and FIG. It is sectional drawing on the AA line of Fig.1 (a).
  • reference numeral 1 denotes an acceleration sensor as a physical quantity sensor.
  • the acceleration sensor 1 is formed of an SOI (Silicon On Insulator) substrate 2.
  • the SOI substrate 2 includes a lower silicon support layer 2a, a silicon oxide layer 2b formed on the silicon support layer 2a, and an active silicon layer 2c formed on the silicon oxide layer 2b. .
  • each of the silicon support layer 2a and the silicon oxide layer 2b is formed in a rectangular frame shape on the outer peripheral portion, and a weight 7 described later is formed by dry etching the central portion in a square groove shape.
  • the active silicon layer 2c includes a rectangular movable electrode 4 supported on the silicon oxide layer 2b by spring material 3 at its four corners in the center, and a silicon oxide layer facing the two sides in the X direction of the movable electrode 4
  • a weight 7 is formed on the lower surface of the movable electrode 4.
  • the vertical direction of the SOI substrate 2 is covered with the glass substrates 8a and 8b.
  • a Z-axis fixed electrode 9 is formed at a position facing the movable electrode 4 of the glass substrate 8a.
  • These glass substrates 8a and 8b are formed with through-holes 10 for taking out signals of the X-axis fixed electrodes 5Xa and 5Xb, the Y-axis fixed electrodes 6Ya and 6Yb, the movable electrode 4 and the Z-axis fixed electrode 9 to the outside. Yes.
  • the capacitances Cxa and Cxb between the movable electrode 4 and the pair of left and right fixed electrodes 5Xa and 5Xb are symmetrical differentials in which one increases and the other decreases. It is structured.
  • the capacitances Cya and Cyb between the movable electrode 4 and the pair of front and rear fixed electrodes 5Ya and 5Yb have a longitudinally symmetrical differential structure in which when one increases, the other decreases. Has been.
  • the electrostatic force between the movable electrode 4 and the Z-axis fixed electrode 9 facing this from above is fixed. It has a non-target structure with only the capacitance Cz.
  • the movable electrode 4 that supports the weight 7 moves in the XYZ direction in accordance with the direction of the acceleration, and in accordance with this, the electrostatic capacitances Cxa and Cxb in the X-axis direction, The electrostatic capacitances Cya and Cyb in the Y-axis direction and the electrostatic capacitance Cz in the Z-axis direction change, and the acceleration can be measured by these capacitance changes.
  • an electrostatic capacitance can be detected by the electrostatic capacitance detection circuit 20 as shown in FIG. That is, the electrostatic capacitance Cz between the movable electrode 4 and the Z-axis fixed electrode 9 is expressed as an electrostatic variable capacitance Cm.
  • One electrode of the electrostatic variable capacitor Cm is connected to the carrier signal generation circuit 21 to supply a carrier signal.
  • the carrier signal has an AC waveform such as a sine wave or a rectangular wave at a higher frequency than the acceleration to be measured. This carrier signal is necessary to detect the capacitance from a low frequency such as 0 Hz or near 0 Hz.
  • the other electrode of the electrostatic variable capacitor Cm is connected to the inverting input terminal of the operational amplifier Q21, and the non-inverting input terminal of the operational amplifier Q21 is grounded.
  • the output terminal of the operational amplifier Q21 is fed back to the inverting input terminal through a parallel circuit of a resistor Rg and a capacitor Cg.
  • the output voltage Vo output from the output terminal of the operational amplifier Q21 is obtained when the output voltage of the carrier signal is the input voltage Vi.
  • Vo ⁇ (Cm / Cg) Vi (1) It is represented by
  • the output of the operational amplifier Q21 is supplied to the demodulation circuit 22 to which the carrier signal of the carrier signal generation circuit 21 is input, and the demodulation circuit 22 demodulates the output signal amplitude-modulated by the carrier signal obtained from the operational amplifier Q21. .
  • the demodulated signal output from the demodulating circuit 22 is subjected to noise removal by the low-pass filter 23, converted into a digital signal by the A / D conversion circuit 24, and output as an acceleration signal.
  • the acceleration sensor 1 and the capacitance detection circuit 20 are mounted on the printed wiring board 30 as shown in FIG.
  • a circuit pattern for connecting the operational amplifier Q21 and the acceleration sensor 1 of the printed wiring board 30 is formed as shown in FIG. That is, the Z-axis fixed electrode 9 of the acceleration sensor 1 is connected to a through hole 31 b as a connection portion formed on the printed wiring board 30.
  • connection pads 32a and 32b are formed. In front of these connection pads 32a and 32b, connection pads 33a and 33b are formed as connection portions for individually connecting the output terminal side and the inverting input terminal side of the operational amplifier Q21 of the resistor Rg of the capacitance detection circuit 20. .
  • connection pads 33a and 33b an input side connection pad 34a to which the non-inverting input terminal of the operational amplifier Q21 is connected and an input side connection pad 34b as a connection portion to which the inverting input terminal of the operational amplifier Q21 is connected. Is formed.
  • connection pads 32b, 33b and 34b are connected by the wiring pattern 35. Further, the connection pads 32a and 33a are connected by a wiring pattern 36, and are connected to an output side pad to which an output terminal of an operational amplifier Q21 (not shown) is connected. Further, the input side connection pad 34a is grounded.
  • the resist coating pattern of the printed wiring board 30 has an inverted L-shaped insulation securing area Ais surrounding the through hole 31b and the connection pads 32b, 33b, and 34b.
  • region A1 is formed so that this insulation ensuring area
  • the moisture absorption reduction area A1 is a resist application area A11 where a resist is applied so as to cover the insulation ensuring area Ais, and a non-resist application area where a narrow resist surrounding the resist application area A11 is not applied, and silk printing is performed. It is constituted by a strip-like separation area A12 which is a silk printing non-printing area which is not performed.
  • the moisture absorption reduction area A1 corresponds to the area surrounded by the dotted line in FIG.
  • the outside of the strip-like separation area A12 is a resist application area A13 where a resist is applied and silk printing is possible.
  • the operation of the first embodiment will be described.
  • the acceleration in the Z direction acting on the movable electrode 4 and the weight 7 of the acceleration sensor 1 is zero
  • the carrier signal output from the electrostatic variable capacitor Cm is supplied to the operational amplifier Q21. Therefore, when the acceleration in the Z direction applied to the movable electrode 4 and the weight 7 of the acceleration sensor 1 is zero, the input signal Vi input to the inverting input side of the operational amplifier Q21 is inverted and is demodulated as an output signal Vo. 22 and demodulated.
  • the demodulated signal output from the demodulating circuit 22 is subjected to noise removal by the low-pass filter 23, then converted to a digital signal by the A / D conversion circuit 24, and output as an acceleration signal.
  • the electrostatic variable capacitance Cm increases from a state in which the Z-direction acceleration is zero. For this reason, the input signal level inputted to the inverting input terminal of the operational amplifier Q21 increases in the positive direction, and the output voltage Vo of the operational amplifier Q21 also increases from the input voltage Vi and is inverted.
  • the output of the operational amplifier Q21 is demodulated by the demodulation circuit 22, noise is removed by the low-pass filter 23, converted to a digital value by the A / D conversion circuit 24, and output as a Z direction acceleration signal.
  • the electrostatic variable capacitance Cm decreases from the state in which the Z-direction acceleration is zero and is inverted. For this reason, the input signal level input to the inverting input terminal of the operational amplifier Q21 decreases in the negative direction, and the output voltage Vo of the operational amplifier Q21 decreases below the input voltage Vi and is inverted.
  • the output of the operational amplifier Q21 is demodulated by the demodulation circuit 22, noise is removed by the low-pass filter 23, converted to a digital value by the A / D conversion circuit 24, and output as a Z direction acceleration signal.
  • the insulation resistance of the printed wiring board 30 includes an insulation resistance Rs1 inserted in parallel with the feedback resistor Rg of the operational amplifier Q21, an inverting input side of the operational amplifier Q21 of the feedback resistor Rg, and the ground.
  • An insulation resistance Rs2 interposed between the two can be considered.
  • the resistance value of the insulation resistance Rs1 is 1 G ⁇ or more which is an ideal insulation resistance value in a normal state.
  • the resistance value of the insulation resistance Rs1 decreases to 100 M ⁇ or 10 M ⁇ .
  • the insulation resistance Rs1 When the insulation resistance Rs1 is equal to or higher than the ideal insulation resistance value of 1 G ⁇ , the noise generated by the insulation resistance Rs1 increases in the low frequency region as shown in FIG. When a relatively low frequency fs represented by Cg (Rg ⁇ Rs1 / (Rg + Rs1))) is exceeded, the amount of noise decreases with a linear characteristic line as the frequency increases, and the carrier demodulated by the demodulation circuit 22 At the frequency fc, the amount of noise is greatly reduced.
  • the resist when resist is applied to the entire surface of the printed wiring board 30 in order to protect the wiring pattern from rust and corrosion, the resist has a slight hygroscopicity. In addition, even when silk printing is performed, it has a slight hygroscopicity.
  • the amount of noise at the carrier frequency fc further increases as compared with the case where the insulation resistance Rs1 is 100 M ⁇ , as shown in FIG. For this reason, noise due to the insulation resistance Rs1 at the carrier frequency when demodulated by the demodulation circuit 22 increases, and an accurate capacitance cannot be detected.
  • the acceleration sensor 1 is configured using the SOI substrate 2 as described above, since the electrostatic variable capacitance Cm is a minute capacitance of about 1 aF to 100 aF, it is easily affected by noise. For this reason, it is difficult to obtain an accurate acceleration detection value.
  • the noise gain with respect to the input noise between the non-inverting input terminal and the inverting input terminal of the operational amplifier Q21 is represented by 1+ (Rg ⁇ Rs1 / (Rg + Rs1)) / Rs2. Therefore, as described above, when the resist is applied to the entire surface of the printed wiring board 30 and silk printing is performed on the wiring pattern, the hygroscopic property is high in the resist coating area and the silk printing printing area. At the same time, insulation deterioration occurs. Thereby, when the resistance value of the insulation resistance Rs2 is lowered, the noise gain is increased, and the noise is increased.
  • the insulation securing area Ais including the through hole 31b and the connection pads 32b, 33b and 34b connected to the input side circuit components on the input side of the operational amplifier Q21 and the surrounding area are hygroscopic.
  • the moisture absorption reduction area A1 is composed of a resist coating area A11 that covers the insulation ensuring area Ais and a narrow strip-shaped separation area A12 that surrounds the periphery of the resist coating area A11. Accordingly, the resist coating region A11 is separated and independent from the surrounding resist coating region A13 by the strip-shaped separation region A12.
  • the insulation resistance is high in the strip-like separation region A12, the resist coating regions A11 and A13 due to moisture absorption are compared with the case where the resist is applied so as to connect the resist coating regions A11 and A13 or silk printing is performed. A decrease in insulation resistance between the regions can be suppressed. For this reason, insulation resistance can be kept in a high state.
  • the insulation resistance between the resist coating areas A11 and A13 corresponds to the insulation resistances Rs1 and Rs2 in FIG.
  • the insulation resistance Rs1 it is necessary to maintain the ideal insulation resistance value of 1 G ⁇ or more as described above.
  • moisture absorption from the resist or silk printing region is required. This can be dealt with by separating the resist coating region A11 and the resist coating region A13 by the belt-like separation region A12 having low properties. The same applies to the insulation resistance Rs2.
  • the hygroscopicity is reduced by setting the insulation securing area Ais including the through hole 31b and the connection pads 32b, 33b, and 34b connected to the input side circuit components on the input side of the operational amplifier Q21 as the moisture absorption reducing area A1. And deterioration of the insulation resistances Rs1 and Rs2 can be suppressed. For this reason, since the increase in the noise amount at the carrier frequency fc due to the insulation resistance deterioration can be suppressed, the capacitance can be detected with high accuracy over a long period of time, and the reliability can be improved.
  • the wiring pattern 35, the through hole 31b, and the pad portions 32b, 33b, and 34b are rusted while suppressing a decrease in the insulation resistance. It can be reliably protected from such as.
  • the capacitance detection circuit 40 in this case represents the capacitance Cxa or Cya between the movable electrode 4 of the acceleration sensor 1 and the fixed electrode 5xa or 6ya as an electrostatic variable capacitance Cs1, as shown in FIG.
  • the electrostatic capacitance Cxb or Cyb between the movable electrode 4 and the fixed electrode 5xb or 6yb is expressed as an electrostatic variable capacitance Cs2.
  • One electrode of these electrostatic variable capacitors Cs1 and Cs2 is connected to the carrier signal generation circuit 21 similar to that of the first embodiment described above to supply a carrier signal.
  • capacitors C2 and C3 having the same capacity are connected between the other electrode of each of the electrostatic variable capacitors Cs1 and Cs2 and the ground, and a resistor R2 is connected in parallel to the capacitor C2.
  • the capacitor C2 is provided to quickly charge the electrostatic variable capacitor Cs1, and the capacitor C3 is connected to maintain the symmetry of the circuit.
  • the capacity of the capacitor C2 and the capacity of the capacitor C3 are set to be equal.
  • a connection point between the electrostatic variable capacitor Cs1 and the capacitor C2 is connected to a non-inverting input terminal of an operational amplifier Q41 having a differential amplifier configuration, and a connection point between the electrostatic variable capacitor Cs2 and the capacitor C3 is an inverting input terminal of the operational amplifier Q41. It is connected to the.
  • the output terminal of the operational amplifier Q41 is fed back to the inverting input terminal via a parallel circuit of a resistor R1 and a capacitor C4.
  • the output of the operational amplifier Q41 is supplied to the demodulation circuit 42 to which the carrier signal of the carrier signal generation circuit 21 is input, and the demodulation circuit 42 demodulates the output signal that is amplitude-modulated by the carrier signal obtained from the operational amplifier Q41. .
  • the demodulated signal output from the demodulator circuit 42 is denoised by the low-pass filter 43, converted into a digital signal by the A / D converter circuit 44, and output as an acceleration signal.
  • the acceleration sensor 1 and the capacitance detection circuit 40 are mounted on the printed wiring board 30 as shown in FIG.
  • the circuit pattern of the input circuit portion between the electrostatic variable capacitor Cs1 and the non-inverting input terminal of the operational amplifier Q41 is, as shown in FIG. 8, a connection portion to which, for example, the fixed electrode 5xa or 6ya of the acceleration sensor 1 is connected.
  • the electrode connection pad 51 is formed, and the electrode connected to the non-inverting input terminal of the operational amplifier Q41 of the capacitor C2 and the electrode connected to the ground are individually connected to the rear side of the electrode connection pad 51.
  • Connection pads 52a and 52b are formed.
  • the printed wiring board 30 has connection pads 53a and 52a as connection portions to which the output terminal side of the operational amplifier Q41 and the non-inverting input terminal side of the operational amplifier Q41 are individually connected to the left side of the connection pads 52a and 52b. 53b is formed. Further, the printed wiring board 30 is formed with an input side connection pad 54 as a connection portion to which the non-inverting input terminal of the operational amplifier Q41 is connected on the left side of the connection pad 53b.
  • the electrode connection pad 51, the connection pads 52b and 53b, and the input side connection pad 54 are connected by the wiring pattern 55.
  • the resist coating pattern of the printed wiring board 30 covers the inverted L-shaped insulation securing area Ais2a surrounding the electrode connection pad 51, the connection pads 52b and 53b, and the input side connection pad 54, as shown by hatching in FIG.
  • the moisture absorption reduction region A2a is formed.
  • the moisture absorption reduction area A2a includes a resist application area A21a in which a resist is applied to the surface of the insulation ensuring area Ais2a, and a narrow resist formed around the resist application area A21a.
  • the belt-shaped separation region A22a is a non-resist coating region where no coating is applied and a silk printing non-printing region where silk printing is not performed.
  • This moisture absorption reduction region A2a corresponds to a region A31 surrounded by a dotted line in FIG.
  • the circuit pattern of the input circuit section between the electrostatic variable capacitor Cs2 and the inverting input terminal of the operational amplifier Q41 is, for example, a connection section to which the fixed electrode 5xb or 6yb of the acceleration sensor 1 is connected.
  • the electrode connection pad 61 is formed, and on the left side of the electrode connection pad 61, an electrode connected to the inverting input terminal of the operational amplifier Q41 of the capacitor C3 and an electrode connected to the ground are connected as a connection part.
  • Pads 62b and 62a are formed.
  • the printed wiring board 30 has a connection part to which electrodes connected to the inverting input terminal of the operational amplifier Q41 of the capacitor C5 and an electrode connected to the ground are individually connected to the rear side of the connection pads 62a and 62b. Connection pads 63b and 63a are formed. Further, the printed wiring board 30 is formed with an input side connection pad 64 as a connection portion to which the inverting input terminal of the operational amplifier Q41 is connected behind the connection pads 63a and 63b.
  • connection pads 65a and 65b as connection portions are formed.
  • the electrode connection pad 61, the connection pads 62b and 63b, the input side connection pad 64, and the connection pads 65b and 66b are connected by the wiring pattern 67.
  • the resist coating pattern of the printed wiring board 30 is an L-shaped insulation surrounding the electrode connection pad 61, the connection pads 62b and 63b, the input side connection pad 64, and the connection pads 65b and 66b as shown by hatching in FIG.
  • Silk printing in which a resist is coated on the reserved area Ais2b and a non-resist coating area where no resist is applied to separate the resist coating area A21b from the surrounding resist coating area A23b.
  • the band-shaped separation area A22b is a non-printing area.
  • This moisture absorption reduction region A2b corresponds to a region A32 surrounded by a dotted line in FIG.
  • the electrostatic variable capacitors Cs1 and Cs2 have the same value, and therefore the output of the operational amplifier Q41 is It becomes zero.
  • the electrostatic variable capacitance Cs1 becomes larger than the value at zero acceleration
  • the electrostatic variable capacitance Cs2 becomes larger than the value at zero acceleration. Get smaller.
  • a positive differential output is output from the operational amplifier Q41, which is demodulated by the demodulation circuit 42, denoised by the low-pass filter 43, converted to a digital value by the A / D conversion circuit 44, and the acceleration signal is converted. Is output.
  • the electrostatic variable capacitance Cs1 becomes smaller than the value at zero acceleration, and the electrostatic variable capacitance Cs2 is the value at zero acceleration. Become bigger. Therefore, a negative differential output is output from the operational amplifier Q41, which is demodulated by the demodulator circuit 42, denoised by the low-pass filter 43, converted to a digital value by the A / D converter circuit 44, and the acceleration signal is converted. Is output. Therefore, a highly accurate acceleration signal corresponding to the acceleration applied to the acceleration sensor 1 from the capacitance detection circuit 40 can be obtained.
  • an insulation ensuring region including each connection pad 51, 52b, 53b, 54 connected between the fixed electrode 5xa or 6ya of the acceleration sensor 1 and the non-inverting input terminal of the operational amplifier Q41.
  • a moisture absorption reduction region A2a surrounding Ais2a is formed.
  • moisture absorption reduction surrounding the insulation securing area Ais2b including the connection pads 61, 62b, 63b, 64, 65b and 66b connected between the fixed electrode 5xb or 6yb of the acceleration sensor 1 and the inverting input terminal of the operational amplifier Q41.
  • Region A2b is formed.
  • the resist application areas A21a and A21b are separated and independent from the surrounding resist application areas A23a and A23b. Can be made.
  • the insulation resistances Rs1 and Rs2 can be suppressed. For this reason, since the increase in the noise amount at the carrier frequency fc due to the insulation resistance deterioration can be suppressed, the capacitance can be detected with high accuracy over a long period of time, and the reliability can be improved. Also in the second embodiment, since the insulation securing areas Ais2a and Ais2b are covered with the resist coating areas A21a and A21b, rusting of the pad portion can be prevented while suppressing a decrease in insulation resistance.
  • the present invention is not limited to the above configuration, and the resist coating areas A11, A21a and A21b and the strip-like separation areas A12, A22a and A22b are omitted as shown in FIGS.
  • all of the insulation securing areas Ais, Ais2a and Ais2b are resist non-application areas where no resist is applied, and moisture absorption reduction areas A3, A4a and A4b which are screen-printing non-printing areas where screen printing is not performed; You may make it do.
  • all of the insulation ensuring regions Ais, Ais2a, and Ais2b are the moisture absorption reduction regions A3, A4a, and A4b, a decrease in insulation resistance due to moisture absorption can be reliably suppressed. Deterioration of the insulation resistances Rs1 and Rs2 can be suppressed. For this reason, since the increase in the noise amount at the carrier frequency fc due to the insulation resistance deterioration can be suppressed, the capacitance can be detected with high accuracy over a long period of time, and the reliability can be improved.
  • the capacitance detection circuits 20 and 40 are applied has been described.
  • the capacitance detection circuit is not limited to the configuration of 20 and 40.
  • a configuration other than the above configuration can be applied as long as the minute capacitance can be detected.
  • the present invention is applied to an acceleration sensor as a physical quantity sensor.
  • the present invention is not limited to this, and a gyro sensor, a displacement sensor, a pressure sensor, etc.
  • the present invention can be applied to various sensors that detect a physical quantity by detecting capacitance.
  • the present invention is not limited to this, and a physical quantity such as a motor vibration measurement device is used.
  • the present invention can also be applied to a vibration measuring apparatus that measures vibrations.
  • This vibration measuring apparatus uses a vibration sensor having the same configuration as the acceleration sensor shown in FIGS. 1A and 1B in the first embodiment described above, and between the movable terminal and the Z-axis direction terminal of the vibration sensor. Is detected by a capacitance detection circuit 70 shown in FIG.
  • the capacitance detection circuit 70 uses a DC bias voltage generation circuit 71 that generates a DC bias voltage instead of the carrier signal generation circuit 21 in the configuration of FIG. 2 in the first embodiment described above, and a demodulation circuit. 42 is omitted and the output terminal of the operational amplifier Q21 is directly connected to the low-pass filter 23.
  • This DC bias voltage generation circuit 71 is connected to the electrode opposite to the electrode connected to the inverting input side of the operational amplifier Q21 of the movable electrode 4 and the Z-axis fixed electrode 9 constituting the electrostatic variable capacitor Cm. Yes.
  • Other configurations have the same configurations as those of the first embodiment described above, and portions corresponding to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the vibration from the vibration source to be measured is input to the vibration sensor by installing the vibration sensor in a vibration source having a measurement symmetry such as a motor.
  • the electrostatic capacitance between the movable electrode 4 and the Z-axis fixed electrode 9 changes due to vibration from the vibration source to be measured.
  • the relationship between the measurement vibration frequency of the vibration source to be measured and the noise generated by the insulation resistance Rs1 is the frequency of the carrier signal shown in FIG. 6 in the first embodiment described above. It has the same characteristics as the relationship with the noise generated by the insulation resistance Rs1.
  • the frequency of the vibration to be measured that is, the measurement frequency range is a high frequency band indicated by a one-dot chain line in FIG. 14, noise increases due to a decrease in the insulation resistance Rs1.
  • the high frequency band in this case must be higher than the frequency at which the noise of the characteristic line starts to decrease, which is defined by a relatively low frequency fs represented by 1 / 2 ⁇ (Cg (Rg ⁇ Rs1 / (Rg + Rs1))). Don't be. Therefore, when the insulation resistance Rs1 decreases, (1) noise in the measurement range increases. (2) If the minimum frequency in the measurement range is fmin, if fmin ⁇ fs, the frequency band between fmin and fs is Two problems occur: measurement is impossible.
  • the moisture absorption reduction region A1 is formed so as to surround the insulation ensuring region Ais and its periphery.
  • a resist application area A11 where a resist is applied so as to cover the insulation ensuring area Ais, and a narrow resist surrounding this resist application area A11 are not applied.
  • It is constituted by a strip-like separation region A12 which is a resist coating region and is a silk printing non-printing region where silk printing is not performed.
  • the moisture absorption reduction region A1 By forming the moisture absorption reduction region A1 so as to surround the insulation ensuring region Ais in this way, it is possible to suppress a decrease in the insulation resistance of the insulation ensuring region Ais due to moisture absorption, and to reduce the noise amount in the measurement frequency range due to insulation resistance deterioration. Since the increase can be suppressed, the capacitance can be detected with high accuracy over a long period of time, and the reliability can be improved.
  • the resist is applied to the surface of the insulation securing area Ais to form the resist application area, the wiring pattern 35, the through hole 31b, and the pad portions 32b, 33b, and 34b are rusted while suppressing a decrease in the insulation resistance. It can be reliably protected from such as.
  • all of the insulation ensuring area A is can be a resist non-application area and a moisture absorption reduction area that becomes a screen printing non-printing area.
  • the vibration sensor having the configuration of FIG. 1 detects vibrations in the XY directions, as shown in FIG. 15, the carrier signal generation circuit 21 of FIG. A capacitance detection circuit 80 that replaces the generation circuit 71 and omits the demodulation circuit 42 and connects the output terminal of the operational amplifier Q41 directly to the low-pass filter 43 may be applied.
  • Other configurations have the same configurations as those of the second embodiment described above, and the same reference numerals are given to corresponding portions to those in FIG. 7, and the detailed description thereof will be omitted.
  • a moisture absorption reduction region A2b is formed so as to cover it.
  • the moisture absorption reduction regions A2a and A2b so as to surround the insulation ensuring regions Ais2a and Ais2b, it is possible to suppress a decrease in insulation resistance of the insulation ensuring regions Ais2a and Ais2b due to moisture absorption, and measurement due to deterioration of insulation resistance Since an increase in the amount of noise in the frequency range can be suppressed, the capacitance can be detected with high accuracy over a long period of time, and the reliability can be improved.
  • the insulation securing areas Ais2a and Ais2b are covered with the resist coating areas A21a and A21b, rusting of the pad portion can be prevented while suppressing a decrease in insulation resistance. Also in this case, as shown in FIG. 11 and FIG. 12 described above, all of the insulation securing areas Ais2a and Ais2b can be used as resist non-application areas and also as moisture absorption reduction areas that become screen printing non-printing areas.
  • the present invention it is possible to provide a capacitance detection circuit capable of preventing an increase in noise by preventing a decrease in insulation resistance due to moisture absorption deterioration with a simple structure.
  • Electrostatic variable capacitance, C2, C3, C4, C5 ... Capacitor, R1, R2 ... Resistance, Q41 ... Operational amplifier , 42 ... demodulation circuit, 43 ... low pass filter, 44 ... A / D conversion circuit, A2a and A2b ... moisture absorption reduction region, 70 ... capacitance detection circuit, 71 ... DC bias voltage generation circuit, 80 ... capacitance detection circuit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 簡易な構成で吸湿劣化による絶縁抵抗の低下を防止する静電容量検出回路を提供する。前記可動電極及び固定電極の一方にキャリア信号を供給するキャリア信号生成回路(21)と、物理センサ(1)の可動電極及び固定電極の他方が一方の入力端子に入力され、他方の入力側が接地された演算増幅器(Q21)と、前記物理量センサ、前記キャリア信号生成回路、及び前記演算増幅器が実装されるプリント配線基板(30)とを少なくとも備えている。少なくとも前記物理量センサの電極接続部及び前記演算増幅器の入力側接続部と、前記電極接続部及び前記入力側接続部間に接続される入力側回路部品の接続部のうち前記演算増幅器の入力側に接続される接続部とを含む前記プリント配線基板上の絶縁確保領域(Ais)を吸湿低減領域(A1)とした。

Description

静電容量検出回路
 本発明は、物理量変化に応じた静電容量変化を生じる可動電極及び固定電極を備えた物理量センサの前記可動電極及び固定電極間の静電容量を検出する静電容量検出回路に関する。
 加速度センサ、ジャイロ、変位センサ、圧力センサ等の物理量変化を静電容量変化として検出する物理量センサでは、静電容量検出回路が高分解能を必要とする場合や、低コスト・小型化を狙ってMEMS(Micro Electro Mechanical System)センサと静電容量検出回路とを組み合わせる場合には、絶縁抵抗を確保して回路ノイズを低減させることが要求されている。
 このため、特許文献1に記載の従来例にあっては、吸湿性を有するソルダーマスクを用いたハンダレジストを必要とすることなく、かつ実装部における半田流れを防止するために、少なくとも有機樹脂を含む絶縁性基板の表面に、金属導体層を埋込んだ後、金属導体層における、例えば、電子部品の端子との半田による実装箇所の表面をエッチングして、絶縁性基板表面から0.5~30μmの深さで窪んだ凹部を形成したプリント配線基板の製造方法が記載されている。
 また、特許文献2に記載の従来例には、高湿度下においても絶縁抵抗等の電気特性が劣化しないレジストインキ組成物及びその硬化膜を有するプリント配線板を提供するために、着色剤、硬化性樹脂、反応性希釈剤、重合開始剤、および充填剤を有するソルダーレジストインキ組成物において、環状アミン系化合物を含有させたソルダーレジストインキ塑性物及びその被覆膜を有するプリント配線板が提案されている。
特開平10-173296号公報 特開2003-98660号公報
 しかしながら、上記特許文献1に記載の従来例では、絶縁性基板の表面に、金属導体層を埋め込んだ後金属導体層における電子部品の端子との半田による実装箇所の表面をエッチングして、絶縁性基板の表面から0.5~30μmの深さで窪んだ凹部を形成する必要があり、構造が複雑となるという未解決の課題がある。
 また、特許文献2に記載の従来例にあっては、特殊な組成を有するソルダーレジストインキ組成物を使用する必要があり、製造コストが嵩むという未解決の課題がある。
 そこで、本発明は、上記特許文献1及び2に記載された従来例の未解決の課題に着目してなされたものであり、簡易な構造で吸湿劣化による絶縁抵抗の低下を防止してノイズの増大を防ぐことのできる静電容量検出回路を提供することを目的としている。
 上記目的を達成するために、物理量変化に応じた静電容量変化を生じる可動電極及び固定電極を備えた物理量センサの前記可動電極及び固定電極間の微小静電容量を検出する静電容量検出回路である。この静電容量検出回路は、前記可動電極及び固定電極の一方に供給するバイアス電圧を生成するバイアス電圧生成回路と、前記可動電極及び固定電極の他方が一方の入力端子に入力され、他方の入力側が接地された演算増幅器と、前記物理量センサ、前記バイアス電圧生成回路、及び前記演算増幅器が実装されるプリント配線基板とを少なくとも備えている。そして、少なくとも前記物理量センサの電極接続パッド及び前記演算増幅器の入力側接続パッドと、前記電極接続パッド及び前記入力側接続パッド間に接続される入力側回路部品の接続パッドのうち前記演算増幅器の入力側に接続される接続パッドとを含む前記プリント配線基板上の絶縁確保領域を吸湿低減領域としている。
 また、本発明に係る静電容量検出回路の第2の態様は、前記入力側回路部品が、前記演算増幅器の出力端子と一方の入力端子との間に接続されたコンデンサ及び抵抗で構成されている。
 また、本発明に係る静電容量検出回路の第3の態様は、物理量変化に応じた静電容量変化を生じる可動電極及び固定電極で構成される電極部を一対備えた差動構造の物理量センサの前記一対の電極部の微小静電容量を検出する静電容量検出回路である。この静電容量検出回路は、前記一対の電極部における可動電極及び固定電極の一方に供給するバイアス電圧を生成するバイアス電圧生成回路と、前記一対の電極部における可動電極及び固定電極の他方が入力端子に入力されて前記一対の電極部における可動電極及び固定電極間の微小静電容量の差分を増幅する演算増幅器と、前記物理量センサ、前記バイアス電圧生成回路及び前記演算増幅器を実装するプリント配線基板とを少なくとも備えている。そして、前記一対の電極部の前記演算増幅器に接続される電極接続部と、前記演算増幅器の入力側接続部と、前記電極接続部及び前記入力側接続部間に接続された入力側回路部品の接続部のうち当該入力側接続部に接続される接続部とを含む前記プリント配線基板上の絶縁確保領域を吸湿低減領域としている。
 また、本発明に係る静電容量検出回路の第4の態様は、前記入力回路部品が、前記一対の電極部の一方及び前記演算増幅器の一方の入力端子間と接地との間に接続された第1のコンデンサ及び抵抗の並列回路と、前記一対の電極部の他方及び前記演算増幅器の他方の入力端子間と接地との間に接続された第2のコンデンサと前記演算増幅器の出力端子及他方の入力端子間に接続された第3のコンデンサ及び抵抗の並列回路とで構成されている。
 また、本発明に係る静電容量検出回路の第5の態様は、前記吸湿低減領域が、前記絶縁確保領域を覆うようにレジストを塗布したレジスト塗布領域と、該レジスト塗布領域を周囲のレジスト塗布領域から分離するように前記絶縁確保領域を囲む帯状分離領域とを形成し、前記帯状分離領域をレジスト非塗布領域とするとともにシルク印刷非印刷領域としている。
 また、本発明に係る静電容量検出回路の第6の態様は、前記吸湿低減領域が、前記絶縁確保領域の表面全体を非レジスト塗布領域とされるとともに、シルク印刷非印刷領域とされている。
 また、本発明に係る静電容量検出回路の第7の態様は、前記バイアス電圧生成回路は、正弦波、方形波等の交流波形のキャリア信号を生成するように構成されている。
 また、本発明に係る静電容量検出回路の第8の態様は、前記バイアス電圧生成回路が、直流バイアス電圧を生成するように構成されている。
 本発明によれば、物理量センサ、演算増幅器等を実装したプリント配線基板上の物理量センサの電極接続部及び演算増幅器の入力側接続部と、これら電極接続部及び入力側部間に接続された入力側回路部品の前記入力側接続部と接続される接続部とを含む絶縁確保領域を吸湿低減領域としている。この吸湿低減領域としては、レジスト非塗布領域やスクリーン印刷非印刷領域とするか、他の領域とは分離独立したレジスト領域とする。
 このようにプリント配線基板の演算増幅器の入力側の入力側回路部品の各接続部を含む絶縁確保領域を吸湿低減領域とすることにより、吸湿による絶縁抵抗の劣化を確実に防止することができる。このため、プリント配線基板を気密状態に保持することなく、絶縁抵抗の劣化を防止して、ノイズの増大を防ぐことができ、これにより、微小な静電容量値を簡単且つ低コストな構造で検出することができる。
 また、吸湿低減領域として、他の領域とは分離独立したレジスト領域とすることにより、吸湿低減を行いながら配線パターンを錆びから保護することができる。
本発明の第1の実施形態を示す加速度センサを示す上側基板を取り除いた状態の模式図であって、(a)は上部基板を取り外した状態の平面図、(b)は(a)のA-A線上の断面図である。 静電容量検出回路を示す回路図である。 図2の要部の拡大図である。 プリント配線基板の断面図である。 プリント配線基板上のレジスト塗布領域と、パターン形成領域とを示す図である。 キャリア周波数と絶縁抵抗により発生するノイズとの関係を示す特性線図である。 本発明の第2の実施形態における静電容量検出回路を示す回路図である。 第2の実施形態におけるプリント基板上のレジスト塗布領域を示す図である。 第2の実施形態におけるプリント基板上の他のレジスト塗布領域を示す図である。 プリント基板上の吸湿低減領域の他の例を示す図5(b)に対応する図である。 プリント基板上の吸湿低減領域の他の例を示す図8に対応する図である。 プリント基板上の吸湿低減領域の他の例を示す図9に対応する図である。 本発明の静電容量検出回路の他の例を示す回路図である。 測定周波数と絶縁抵抗により発生するノイズとの関係を示す特性線図である。 本発明の静電容量検出回路のさらに他の例を示す回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明に係る静電容量検出回路を適用し得る加速度センサの一例を示す模式図であって、図1(a)は上部基板を取り外した状態の平面図、図1(b)は図1(a)のA-A線上の断面図である。
 図中、1は物理量センサとしての加速度センサであって、この加速度センサ1は、SOI(Silicon On Insulator)基板2で形成されている。このSOI基板2は、下層のシリコン支持層2aと、このシリコン支持層2a上に形成された酸化シリコン層2bと、この酸化シリコン層2b上に形成された活性シリコン層2cとで構成されている。
 ここで、シリコン支持層2a及び酸化シリコン層2bは、外周部が方形枠状に形成され、その中央部が方形溝状にドライエッチングされて後述する重錘7が形成されている。
 活性シリコン層2cには、中央部に4隅をバネ材3で酸化シリコン層2b上に支持された方形の可動電極4と、この可動電極4のX方向の2辺と対向して酸化シリコン層2bに固定された一対のX軸用固定電極5Xa,5Xbと、可動電極4のY方向の2辺と対向して酸化シリコン層2bに固定された一対のY軸用固定電極6Ya,6Ybとが形成されている。可動電極4には下面に重錘7が形成されている。
 また、SOI基板2の上下方向がガラス基板8a及び8bによって覆われている。ガラス基板8aの可動電極4に対向する位置にZ軸用固定電極9が形成されている。これらガラス基板8a及び8bには、X軸用固定電極5Xa,5Xb、Y軸用固定電極6Ya,6Yb、可動電極4及びZ軸用固定電極9の信号を外部に取り出すスルーホール10が形成されている。
 したがって、加速度センサ1ではX方向では可動電極4と左右一対の固定電極5Xa,5Xbとの間の静電容量Cxa及びCxbが、一方が増加すると他方が減少する関係となる左右対称形の差動構造とされている。同様に、Y方向では、可動電極4と前後一対の固定電極5Ya,5Ybとの間の静電容量Cya及びCybが、一方が増加すると他方が減少する関係となる前後対称形の差動構造とされている。
 ところが、加速度センサ1のZ方向では、可動電極4の下面には重錘7が形成されている関係で、可動電極4とこれに上方から対向するZ軸用固定電極9との間の静電容量Czのみの非対象構造となっている。
 そして、加速度センサ1に加速度が加えられると、その加速度の方向に応じて重錘7を支持する可動電極4がXYZ方向へ移動し、これに応じてX軸方向の静電容量Cxa及びCxb、Y軸方向の静電容量Cya,Cyb、Z軸方向の静電容量Czが変化し、これらの静電容量変化により、加速度を測定することができる。
 そして、Z軸方向のように、非対称形の構造である場合には、図2に示すような静電容量検出回路20によって、静電容量を検出することができる。
 すなわち、可動電極4とZ軸用固定電極9との間の静電容量Czを静電可変容量Cmとして表す。
 この静電可変容量Cmの一方の電極をキャリア信号生成回路21に接続してキャリア信号を供給する。ここで、キャリア信号は、測定する加速度より高周波数で、正弦波や矩形波といった交流波形とされている。このキャリア信号は、0Hz或いは0Hz近傍といった低い周波数から静電容量を検出するために必要となる。
 そして、静電可変容量Cmの他方の電極が演算増幅器Q21の反転入力端子に接続され、この演算増幅器Q21の非反転入力端子が接地されている。また、演算増幅器Q21の出力端子は抵抗Rg及びコンデンサCgの並列回路を介して反転入力端子にフィードバックされている。
 この演算増幅器Q21の出力端子から出力される出力電圧Voは、キャリア信号の出力電圧を入力電圧Viとしたときに、
 Vo=-(Cm/Cg)Vi   ……(1)
で表される。
 したがって、コンデンサCgの容量を加速度が“0”であるときの静電可変容量Cmと等しく設定することにより、加速度センサ1に加えられるZ軸方向の加速度が零であるときに演算増幅器Q21から入力電圧Viが反転された出力電圧Voが出力される。そして、加速度センサ1の可動電極4及び重錘7に上方に向かう加速度が加えられると、Voの振幅がViの振幅より大きくなり、逆に加速度センサ1の可動電極4及び重錘7に下方に向かう加速度が加えられると、Voの振幅がViの振幅より小さくなる。
 そして、演算増幅器Q21の出力がキャリア信号生成回路21のキャリア信号が入力された復調回路22に供給され、この復調回路22で演算増幅器Q21から得られるキャリア信号によって振幅変調された出力信号を復調する。
 この復調回路22から出力される復調信号がローパスフィルタ23でノイズ除去され、A/D変換回路24でデジタル信号に変換されて加速度信号として出力される。
 そして、加速度センサ1と静電容量検出回路20とが図4に示すようにプリント配線基板30に実装されている。
 このプリント配線基板30の演算増幅器Q21及び加速度センサ1を接続する回路パターンは図5(a)に示すように形成されている。すなわち、プリント配線基板30に形成された接続部としてのスルーホール31bに加速度センサ1のZ軸用固定電極9が接続されている。
 また、プリント配線基板30には、スルーホール31bの右前方に、静電容量検出回路20のコンデンサCgの演算増幅器Q21の出力端子側電極及び反転入力端子側電極を個別に接続する接続部としての接続パッド32a及び32bが形成されている。これら接続パッド32a及び32bの前方に静電容量検出回路20の抵抗Rgの演算増幅器Q21の出力端子側及び反転入力端子側を個別に接続する接続部としての接続パッド33a及び33bが形成されている。さらに、接続パッド33a及び33bの前方に、演算増幅器Q21の非反転入力端子が接続された入力側接続パッド34aと演算増幅器Q21の反転入力端子が接続された接続部としての入力側接続パッド34bとが形成されている。
 そして、スルーホール31b、接続パッド32b、33b及び34bが配線パターン35で接続されている。また、接続パッド32a及び33aが配線パターン36で接続され、図示しない演算増幅器Q21の出力端子を接続した出力側パッドに接続されている。さらに、入力側接続パッド34aが接地されている。
 一方、プリント配線基板30のレジスト塗布パターンは、図5(b)に示すように、スルーホール31b、接続パッド32b、33b、34bを囲む逆L字状の絶縁確保領域Aisが形成されている。そして、この絶縁確保領域Ais及びその周囲を囲むように吸湿低減領域A1が形成されている。この吸湿低減領域A1は、絶縁確保領域Aisを覆うようにレジストを塗布したレジスト塗布領域A11と、このレジスト塗布領域A11を囲む幅狭のレジストを塗布しない非レジスト塗布領域とされ、且つシルク印刷を行わないシルク印刷非印刷領域とされた帯状分離領域A12とで構成されている。この吸湿低減領域A1は図2における点線で囲まれた領域に対応している。
 そして、帯状分離領域A12の外側はレジストを塗布し且つシルク印刷が可能なレジスト塗布領域A13とされている。
 次に、上記第1の実施形態の動作を説明する。
 今、加速度センサ1の可動電極4及び重錘7に作用するZ方向の加速度が零であるときに、静電可変容量Cmから出力されるキャリア信号が演算増幅器Q21に供給される。
 したがって、加速度センサ1の可動電極4及び重錘7に加えられるZ方向の加速度が零であるときには、演算増幅器Q21の反転入力側に入力される入力信号Viが反転されて出力信号Voとして復調回路22に供給されて復調される。この復調回路22から出力される復調信号は、ローパスフィルタ23でノイズ除去されてから、A/D変換回路24でデジタル信号に変換されて加速度信号として出力される。
 そして、加速度センサ1の可動電極4及び重錘7に上方に向かう加速度が加えられると、静電可変容量CmはZ方向加速度が零の状態から増加する。このため、演算増幅器Q21の反転入力端子に入力される入力信号レベルが正方向に増加し、この演算増幅器Q21の出力電圧Voも入力電圧Viより増加し且つ反転される。この演算増幅器Q21の出力が復調回路22で復調され、ローパスフィルタ23でノイズ除去されてからA/D変換回路24でデジタル値に変換されてZ方向加速度信号として出力される。
 逆に、加速度センサ1の可動電極4及び重錘7に下方に向かう加速度が加えられると、静電可変容量CmはZ方向加速度が零の状態から減少し且つ反転される。このため、演算増幅器Q21の反転入力端子に入力される入力信号レベルが負方向に減少し、この演算増幅器Q21の出力電圧Voが入力電圧Viよりも減少し且つ反転される。この演算増幅器Q21の出力が復調回路22で復調され、ローパスフィルタ23でノイズ除去されてからA/D変換回路24でデジタル値に変換されてZ方向加速度信号として出力される。
 一方、プリント配線基板30の絶縁抵抗は、図3に示すように、演算増幅器Q21の帰還抵抗Rgと並列に介挿される絶縁抵抗Rs1と、帰還抵抗Rgの演算増幅器Q21の反転入力側と接地との間に介挿される絶縁抵抗Rs2とが考えられる。
 ここで、絶縁抵抗Rs1の抵抗値は、正常な状態では理想絶縁抵抗値である1GΩ以上となるが、吸湿による絶縁抵抗の劣化が進むと絶縁抵抗Rs1の抵抗値が100MΩや10MΩに低下する。
 絶縁抵抗Rs1が理想絶縁抵抗値である1GΩ以上である場合には、絶縁抵抗Rs1により発生するノイズは図6に示すように、周波数が低い領域では、ノイズ量が多くなるが、1/2π(Cg(Rg×Rs1/(Rg+Rs1)))で表される比較的低い周波数fsを超えると周波数の増加に応じてノイズ量がリニアな特性線で減少して行き、復調回路22で復調されるキャリア周波数fcでは、ノイズ量が大幅に減少される。
 しかしながら、配線パターンを錆びや腐食から防御するために、プリント配線基板30の全面にレジストを塗布すると、このレジストには若干の吸湿性を持っている。また、シルク印刷を行う場合も若干の吸湿性を持っている。
 このため、レジスト塗布領域及びシルク印刷の印刷領域では吸湿性が高いので、時間の経過とともに、絶縁劣化が生じることになる。このように絶縁劣化が生じて、例えば絶縁抵抗Rs1が100MΩまで減少すると、図6に示すように、低周波数領域でノイズ量は理想絶縁状態に比較して減少するが、ノイズ量の減少が始まる1/2π(Cg(Rg×Rs1/(Rg+Rs1)))で表される周波数fsが理想状態に比較して高くなる。このことから、理想絶縁状態と同じ勾配で周波数の増加に伴ってノイズ量が減少する。このため、絶縁抵抗Rs1が100MΩである場合には、キャリア周波数fcでのノイズ量は図6に示すように理想状態に比較して増加することになる。
 さらに絶縁劣化が進行して、絶縁抵抗Rs1が10MΩまで減少すると、図6に示すように、キャリア周波数fcでのノイズ量は絶縁抵抗Rs1が100MΩである場合よりさらに増加する。
 このため、復調回路22で復調されるときの、キャリア周波数での絶縁抵抗Rs1によるノイズが増加することになり、正確な静電容量を検出できなくなる。
 特に、上述したようにSOI基板2を使用して加速度センサ1を構成した場合には、静電可変容量Cmは1aF~100aF程度の微小静電容量であるので、ノイズの影響を受け易い。このため、正確な加速度検出値を得ることが困難となる。
 一方、絶縁抵抗Rs2については、演算増幅器Q21の非反転入力端子及び反転入力端子間の入力ノイズに対するノイズゲインは1+(Rg×Rs1/(Rg+Rs1))/Rs2で表される。このため、上述したようにプリント配線基板30の全面にレジストを塗布するとともに、配線パターン上にシルク印刷を行うと、レジストの塗布領域及びシルク印刷の印刷領域では吸湿性が高いので、時間の経過とともに、絶縁劣化が生じることになる。これにより、絶縁抵抗Rs2の抵抗値が低下すると、ノイズゲインが増加することになり、結局ノイズが増加する。
 しかしながら、本実施形態では、図5に示すように、演算増幅器Q21の入力側の入力側回路部品を接続したスルーホール31bや接続パッド32b、33b及び34bを含む絶縁確保領域Aisとその周囲が吸湿低減領域A1とされている。この吸湿低減領域A1は、絶縁確保領域Aisを覆うレジスト塗布領域A11と、このレジスト塗布領域A11の周囲を囲む幅狭の帯状分離領域A12とで構成されている。したがって、レジスト塗布領域A11は、帯状分離領域A12によって、その周囲のレジスト塗布領域A13とは分離独立されている。このため、帯状分離領域A12では絶縁抵抗が高いので、レジスト塗布領域A11及びA13を連接するようにレジストを塗布したりシルク印刷を行ったりした場合に比較して、吸湿によるレジスト塗布領域A11及びA13の領域間の絶縁抵抗の低下を抑えることができる。このため、絶縁抵抗を高い状態で保持することができる。
 因みに、このレジスト塗布領域A11及びA13間の領域間の絶縁抵抗が図3の絶縁抵抗Rs1及びRs2に相当する。
 例えば絶縁抵抗Rs1についていえば、前述したように理想絶縁抵抗値である1GΩ以上に保持する必要があり、このような高抵抗を吸湿に対して保持するためには、レジストやシルク印刷領域より吸湿性の低い帯状分離領域A12によって、レジスト塗布領域A11とレジスト塗布領域A13とを分離独立させることで対応することができる。絶縁抵抗Rs2についても同様である。
 このように、演算増幅器Q21の入力側の入力側回路部品を接続したスルーホール31bや接続パッド32b、33b及び34bを含む絶縁確保領域Aisを吸湿低減領域A1とすることで、吸湿性を低減することができ、絶縁抵抗Rs1及びRs2の劣化を抑制することができる。このため、絶縁抵抗劣化によるキャリア周波数fcでのノイズ量の増加を抑制することができるので、長期に亘って静電容量を高精度で検出することができ、信頼性を向上させることができる。
 しかも、絶縁確保領域Aisの表面にはレジストが塗布されて、レジスト塗布領域とされているので、配線パターン35やスルーホール31b、パッド部32b、33b、34bを絶縁抵抗の低下を抑制しながら錆び等から確実に保護することができる。
 次に、本発明の第2の実施形態を図7~図9を伴って説明する。
 この第2の実施形態では、前述した加速度センサ1のX方向又はY方向の2つの固定電極で、一方の固定電極の静電容量が減少すると他方の固定電極の静電容量が増加する差動構造となっている場合の静電容量検出回路について説明する。
 この場合の静電容量検出回路40は、図7に示すように、加速度センサ1の可動電極4と固定電極5xa又は6yaとの間の静電容量Cxa又はCyaを静電可変容量Cs1として表し、可動電極4と固定電極5xb又は6ybとの間の静電容量Cxb又はCybを静電可変容量Cs2として表す。
 これら静電可変容量Cs1及びCs2の一方の電極を前述した第1の実施形態と同様のキャリア信号生成回路21に接続してキャリア信号を供給する。
 また、各静電可変容量Cs1及びCs2の他方の電極と接地間には、互いに等しい容量のコンデンサC2及びC3が接続され、コンデンサC2には抵抗R2が並列に接続されている。ここで、コンデンサC2は静電可変容量Cs1に電荷を速やかにチャージさせるために設けられ、コンデンサC3は回路の対称性を保つために接続される。一般に、コンデンサC2の容量とコンデンサC3の容量とは等しい容量に設定する。
 そして、静電可変容量Cs1及びコンデンサC2の接続点が差動増幅器構成の演算増幅器Q41の非反転入力端子に接続され、静電可変容量Cs2及びコンデンサC3の接続点が演算増幅器Q41の反転入力端子に接続されている。また、演算増幅器Q41の出力端子は抵抗R1及びコンデンサC4の並列回路を介して反転入力端子にフィードバックされている。ここで、コンデンサC4は、演算増幅器Q41のゲインA1を決定し、このゲインA1は、
 A1=(Cs1-Cs2)/C4  ……(2)
で表される。抵抗R1及びR2は、演算増幅器Q41の直流電位を安定させるために使用される。
 この演算増幅器Q41では、静電可変容量Cs1及びCs2の差分が出力される。このため、加速度センサ1に加えられる加速度が“0”であるときには、重錘7の変位が0となるので、Cs1=Cs2となり、演算増幅器Q41の出力は零となる。
 加速度が“0”でないときには、重錘7が変位することにより、静電可変容量はCs1≠Cs2となり、その差分が演算増幅器Q41から出力される。加速度センサ1に加えられる加速度が大きいほどその差が大きくなり、演算増幅器Q41の出力も大きくなる。
 そして、演算増幅器Q41の出力がキャリア信号生成回路21のキャリア信号が入力された復調回路42に供給され、この復調回路42で演算増幅器Q41から得られるキャリア信号によって振幅変調された出力信号を復調する。
 この復調回路42から出力される復調信号がローパスフィルタ43でノイズ除去され、A/D変換回路44でデジタル信号に変換されて加速度信号として出力される。
 そして、この第2の実施形態でも、加速度センサ1及び静電容量検出回路40が図4に示すように、プリント配線基板30に実装されている。
 そして、静電可変容量Cs1と演算増幅器Q41の非反転入力端子と間の入力回路部の回路パターンは、図8に示すように、加速度センサ1の例えば固定電極5xa又は6yaが接続された接続部としての電極接続パッド51が形成され、この電極接続パッド51の後方側にコンデンサC2の演算増幅器Q41の非反転入力端子に接続される電極及び接地に接続される電極が個別に接続される接続部としての接続パッド52a及び52bが形成されている。
 また、プリント配線基板30には、接続パッド52a及び52bの左側に抵抗R2の演算増幅器Q41の出力端子側及び演算増幅器Q41の非反転入力端子側が個別に接続される接続部としての接続パッド53a及び53bが形成されている。さらに、プリント配線基板30には、接続パッド53bの左側に演算増幅器Q41の非反転入力端子が接続された接続部としての入力側接続パッド54が形成されている。
 そして、電極接続パッド51、接続パッド52b、53b及び入力側接続パッド54が配線パターン55で接続されている。
 一方、プリント配線基板30のレジスト塗布パターンは、図8でハッチング図示のように、電極接続パッド51、接続パッド52b、53b及び入力側接続パッド54を囲む逆L字状の絶縁確保領域Ais2aを覆うように吸湿低減領域A2aが形成されている。この吸湿低減領域A2aは、前述した第1の実施形態と同様に、絶縁確保領域Ais2aの表面にレジストを塗布したレジスト塗布領域A21aと、このレジスト塗布領域A21aの周囲に形成された幅狭のレジストを塗布しない非レジスト塗布領域とされ、且つシルク印刷を行わないシルク印刷非印刷領域とされた帯状分離領域A22aとで構成されている。
 この吸湿低減領域A2aは図7における点線で囲まれた領域A31に対応している。
 また、静電可変容量Cs2と演算増幅器Q41の反転入力端子と間の入力回路部の回路パターンは、図9に示すように、加速度センサ1の例えば固定電極5xb又は6ybが接続された接続部としての電極接続パッド61が形成され、この電極接続パッド61の左側にコンデンサC3の演算増幅器Q41の反転入力端子に接続される電極及び接地に接続される電極が個別に接続される接続部としての接続パッド62b及び62aが形成されている。
 また、プリント配線基板30には、接続パッド62a及び62bの後方側にコンデンサC5の演算増幅器Q41の反転入力側端子に接続される電極及び接地に接続される電極が個別に接続される接続部としての接続パッド63b及び63aが形成されている。さらに、プリント配線基板30には、接続パッド63a及び63bの後方側に演算増幅器Q41の反転入力端子が接続される接続部としての入力側接続パッド64が形成されている。
 また、プリント配線基板30には、入力側接続パッド64の後方側に、コンデンサC4の演算増幅器Q41の出力端子に接続される電極及び演算増幅器の反転入力端子に接続される電極が個別に接続された接続部としての接続パッド65a及び65bが形成されている。さらに、プリント配線基板30には、接続パッド65a及び65bの後方側に、抵抗R1の演算増幅器Q41の出力端子側及び演算増幅器Q41の反転入力端子側が個別に接続される接続部としての接続パッド66a及び66bが形成されている。
 そして、電極接続パッド61、接続パッド62b、63b、入力側接続パッド64、接続パッド65b及び66bが配線パターン67で接続されている。
 一方、プリント配線基板30のレジスト塗布パターンは、図9でハッチング図示のように、電極接続パッド61、接続パッド62b、63b、入力側接続パッド64、接続パッド65b及び66bを囲むL字状の絶縁確保領域Ais2b上にレジストを塗布したレジスト塗布領域A21bと、このレジスト塗布領域A21bを周囲のレジスト塗布領域A23bから分離独立させるレジストを塗布しない非レジスト塗布領域とされ、且つシルク印刷を行わないシルク印刷非印刷領域とされた帯状分離領域A22bとで構成されている。この吸湿低減領域A2bは図7における点線で囲まれた領域A32に対応している。
 この第2の実施形態によると、加速度センサ1にX方向(又はY方向)の加速度が加えられていない状態では、静電可変容量Cs1及びCs2が等しい値となることから演算増幅器Q41の出力は零となる。
 しかしながら、加速度センサ1にX方向右側(又はY方向前方側)の加速度が加えられると、静電可変容量Cs1が加速度零時の値より大きくなり、静電可変容量Cs2が加速度零時の値より小さくなる。このため、演算増幅器Q41から正値の差分出力が出力され、これが復調回路42で復調され、ローパスフィルタ43でノイズ除去されてからA/D変換回路44でデジタル値に変換されて、加速度信号が出力される。
 逆に、加速度センサ1にX方向左側(又はY方向後方側)の加速度が加えられると、静電可変容量Cs1が加速度零時の値より小さくなり、静電可変容量Cs2が加速度零時の値より大きくなる。このため、演算増幅器Q41から負値の差分出力が出力され、これが復調回路42で復調され、ローパスフィルタ43でノイズ除去されてからA/D変換回路44でデジタル値に変換されて、加速度信号が出力される。
 したがって、静電容量検出回路40から加速度センサ1に加えられた加速度に応じた高精度な加速度信号を得ることができる。
 この第2の実施形態の場合も、加速度センサ1の固定電極5xa又は6yaと演算増幅器Q41の非反転入力端子との間に接続される各接続パッド51、52b、53b、54を含む絶縁確保領域Ais2aを囲む吸湿低減領域A2aが形成されている。また、加速度センサ1の固定電極5xb又は6ybと演算増幅器Q41の反転入力端子との間に接続される各接続パッド61、62b、63b、64、65b及び66bを含む絶縁確保領域Ais2bを囲む吸湿低減領域A2bが形成されている。
 これら吸湿低減領域A2a及びA2bでは、帯状分離領域A22a及びA22bがレジスト非塗布領域であり、シルク印刷非印刷領域であるので、レジスト塗布領域A21a及びA21bを周囲のレジスト塗布領域A23a及びA23bから分離独立させることができる。
 したがって、絶縁抵抗Rs1及びRs2の劣化を抑制することができる。このため、絶縁抵抗劣化によるキャリア周波数fcでのノイズ量の増加を抑制することができるので、長期に亘って静電容量を高精度で検出することができ、信頼性を向上させることができる。
 この第2の実施形態においても、絶縁確保領域Ais2a及びAis2bがレジスト塗布領域A21a及びA21bによって覆われているので、絶縁抵抗の低下を抑制しながらパッド部の錆び等を防止することができる。
 なお、上記第1及び第2の実施形態では、吸湿低減領域A1、A2a及びA2bをレジスト塗布領域A11、A21a及びA21bと、帯状分離領域A12、A22a及びA22bとで構成する場合について説明した。しかしながら、本願発明では、上記構成に限定されるものではなく、図10、図11及び図12に示すように、レジスト塗布領域A11、A21a及びA21bと帯状分離領域A12、A22a及びA22bとを省略し、これらに代えて、絶縁確保領域Ais、Ais2a及びAis2bの全てを、レジストを塗布しないレジスト非塗布領域とし、且つスクリーン印刷を行わないスクリーン印刷非印刷領域とする吸湿低減領域A3、A4a及びA4bとするようにしてもよい。この場合でも、絶縁確保領域Ais、Ais2a及びAis2bの全てが吸湿低減領域A3、A4a及びA4bとされているので、吸湿による絶縁抵抗の低下を確実に抑制することができる。絶縁抵抗Rs1及びRs2の劣化を抑制することができる。このため、絶縁抵抗劣化によるキャリア周波数fcでのノイズ量の増加を抑制することができるので、長期に亘って静電容量を高精度で検出することができ、信頼性を向上させることができる。
 また、上記第1及び第2の実施形態において、静電容量検出回路20及び40を適用した場合について説明したが、静電容量検出回路としては20及び40の構成に限定されるものではなく、微小静電容量を検出できれば上記構成以外の構成を適用することができる。
 さらに、上記第1及び第2の実施形態においては、物理量センサとして加速度センサに本発明を適用した場合について説明したが、これに限定されるものではなく、ジャイロセンサ、変位センサ、圧力センサ等の静電容量を検出して物理量を検出する各種センサに本発明を適用することができる。
 また、上記第1及び第2の実施形態においては、バイアス電圧生成回路としてキャリア信号生成回路21を適用した場合について説明したが、これに限定されるものではなく、モータの振動測定装置などの物理量としての振動を測定する振動測定装置にも適用することができる。この振動測定装置では、前述した第1の実施形態における図1(a)及び(b)に示す加速度センサと同一構成を有する振動センサを使用し、この振動センサの可動端子及びZ軸方向端子間の静電容量変化を図13に示す静電容量検出回路70で検出する。
 この静電容量検出回路70は、前述した第1の実施形態における図2の構成において、キャリア信号生成回路21に代えて直流バイアス電圧を発生する直流バイアス電圧生成回路71を適用し、且つ復調回路42を省略して演算増幅器Q21の出力端子を直接ローパスフィルタ23に接続している。この直流バイアス電圧生成回路71は、静電可変容量Cmを構成する可動電極4とZ軸用固定電極9の演算増幅器Q21の反転入力側に接続された電極とは反対側の電極に接続されている。その他の構成は、前述した第1の実施形態と同様の構成を有し、図2との対応部分には、同一符号を付し、その詳細説明はこれを省略する。
 この場合には、振動センサをモータ等の測定対称となる振動源に設置することにより、測定対象となる振動源からの振動が振動センサに入力される。このため、振動を測定する際には、測定対象となる振動源からの振動によって、可動電極4及びZ軸用固定電極9間の静電容量が変化することになる。
 このため、測定対象となる振動源の測定振動周波数と絶縁抵抗Rs1により発生するノイズとの関係は、図14に示すように、前述した第1の実施形態における図6に示すキャリア信号の周波数と絶縁抵抗Rs1により発生するノイズとの関係と同じ特性となる。
 このため、測定対象となる振動の周波数すなわち測定周波数範囲が図14において一点鎖線で示す高周波数帯域である場合には、絶縁抵抗Rs1の低下によって、ノイズが上昇することになる。
 この場合の高周波数帯域は、1/2π(Cg(Rg×Rs1/(Rg+Rs1)))で表される比較的低い周波数fsで規定される、特性線のノイズが減少開始する周波数より高くなければならない。そのため、絶縁抵抗Rs1が減少すると、(1)測定範囲のノイズが上昇する、(2)測定範囲の最小周波数をfminとすると、fmin<fsとなった場合、fminからfsの間の周波数帯域は測定不能となる、という2つの問題が発生する。
 このため、第1の実施形態と同様に、図13における点線で囲まれる領域に対応する図5(b)におけるプリント基板30のスルーホール31b、接続パッド32b、33b、34bを囲む逆L字状の領域を絶縁確保領域Aisとしたときに、この絶縁確保領域Ais及びその周囲を囲むように吸湿低減領域A1を形成する。この吸湿低減領域A1を、図5(b)に示すように、絶縁確保領域Aisを覆うようにレジストを塗布したレジスト塗布領域A11と、このレジスト塗布領域A11を囲む幅狭のレジストを塗布しない非レジスト塗布領域とされ、且つシルク印刷を行わないシルク印刷非印刷領域とされた帯状分離領域A12とで構成する。
 このように絶縁確保領域Aisを囲むように吸湿低減領域A1を形成することにより、絶縁確保領域Aisの絶縁抵抗の吸湿による低下を抑制することができ、絶縁抵抗劣化による測定周波数範囲におけるノイズ量の増加を抑制することができるので、長期に亘って静電容量を高精度で検出することができ、信頼性を向上させることができる。
 しかも、絶縁確保領域Aisの表面にはレジストが塗布されて、レジスト塗布領域とされているので、配線パターン35やスルーホール31b、パッド部32b、33b、34bを絶縁抵抗の低下を抑制しながら錆び等から確実に保護することができる。
 この場合にも、前述した図11に示すように、絶縁確保領域Aisの全てをレジスト非塗布領域とし、且つスクリーン印刷非印刷領域となる吸湿低減領域とすることもできる。
 同様に、図1の構成を有する振動センサでXY方向の振動を検出する場合には、図15に示すように、前述した第2の実施形態における図7のキャリア信号生成回路21を直流バイアス電圧生成回路71に置換し、且つ復調回路42を省略して、演算増幅器Q41の出力端子を直接ローパスフィルタ43に接続するようにした静電容量検出回路80を適用すればよい。その他の構成は、前述した第2の実施形態と同様の構成を有し、図7との対応部分には、同一符号を付し、その詳細説明はこれを省略する。
 この場合には、振動センサをモータ等の測定対象となる振動源に設置することにより、測定対象となる振動源からの振動が振動センサに入力される。このため、振動を測定する際には、測定対象となる振動源からの振動によって、可動電極4とXY軸用固定電極5xa,5xb及び6ya,6yb間の静電容量が変化することになる。
 このため、前述した第2の実施形態と同様に、図15における点線で囲まれる領域A51に対応する図8におけるプリント基板30の電極接続パッド51、接続パッド52b、53b及び入力側接続パッド54を囲む逆L字状の絶縁確保領域Ais2aを覆うように吸湿低減領域A2aが形成されている。
 また、図15における点線で囲まれる領域A52に対応する図9における電極接続パッド61、接続パッド62b、63b、入力側接続パッド64、接続パッド65b、66bを囲むL字状の絶縁確保領域Ais2bを覆うように吸湿低減領域A2bが形成されている。
 このように絶縁確保領域Ais2a及びAis2bを囲むように吸湿低減領域A2a及びA2bを形成することにより、絶縁確保領域Ais2a及びAis2bの絶縁抵抗の吸湿による低下を抑制することができ、絶縁抵抗劣化による測定周波数範囲におけるノイズ量の増加を抑制することができるので、長期に亘って静電容量を高精度で検出することができ、信頼性を向上させることができる。
 しかも、絶縁確保領域Ais2a及びAis2bがレジスト塗布領域A21a及びA21bによって覆われているので、絶縁抵抗の低下を抑制しながらパッド部の錆び等を防止することができる。
 この場合にも、前述した図11及び図12に示すように、絶縁確保領域Ais2a及びAis2bの全てをレジスト非塗布領域とし、且つスクリーン印刷非印刷領域となる吸湿低減領域とすることもできる。
 本発明によれば、簡易な構造で吸湿劣化による絶縁抵抗の低下を防止してノイズの増大を防ぐことのできる静電容量検出回路を提供することができる。
 1…加速度センサ、3…バネ材、4…可動電極、5xa,5xb…X軸用固定電極、6ya,6yb…Y軸用固定電極、7…重錘、9…Z軸用固定電極、20…静電容量検出回路、21…キャリア信号生成回路、Cm…静電可変容量、Cg…コンデンサ、Rg…抵抗、Q21…演算増幅器、22…復調回路、23…ローパスフィルタ、24…A/D変換回路、30…プリント配線基板、A1…吸湿低減領域、40…静電容量検出回路、Cs1,Cs2…静電可変容量、C2,C3,C4,C5…コンデンサ、R1,R2…抵抗、Q41…演算増幅器、42…復調回路、43…ローパスフィルタ、44…A/D変換回路、A2a及びA2b…吸湿低減領域、70…静電容量検出回路、71…直流バイアス電圧生成回路、80…静電容量検出回路

Claims (8)

  1.  物理量変化に応じた静電容量変化を生じる可動電極及び固定電極を備えた物理量センサの前記可動電極及び固定電極間の微小静電容量を検出する静電容量検出回路であって、
     前記可動電極及び固定電極の一方に供給するバイアス電圧を生成するバイアス電圧生成回路と、前記可動電極及び固定電極の他方が一方の入力端子に入力され、他方の入力側が接地された演算増幅器と、前記物理量センサ、前記バイアス電圧生成回路、及び前記演算増幅器が実装されるプリント配線基板とを少なくとも備え、
     少なくとも前記物理量センサの電極接続パッド及び前記演算増幅器の入力側接続パッドと、前記電極接続パッド及び前記入力側接続パッド間に接続される入力側回路部品の接続パッドのうち前記演算増幅器の入力側に接続される接続パッドとを含む前記プリント配線基板上の絶縁確保領域を吸湿低減領域としたことを特徴とする静電容量検出回路。
  2.  前記入力側回路部品は、前記演算増幅器の出力端子と一方の入力端子との間に接続されたコンデンサ及び抵抗であることを特徴とする請求項1に記載の静電容量検出回路。
  3.  物理量変化に応じた静電容量変化を生じる可動電極及び固定電極で構成される電極部を一対備えた差動構造の物理量センサの前記一対の電極部の微小静電容量を検出する静電容量検出回路であって、
     前記一対の電極部における可動電極及び固定電極の一方に供給するバイアス電圧を生成するバイアス電圧生成回路と、前記一対の電極部における可動電極及び固定電極の他方が入力端子に入力されて前記一対の電極部における可動電極及び固定電極間の微小静電容量の差分を増幅する演算増幅器と、前記物理量センサ、前記バイアス電圧生成回路及び前記演算増幅器を実装するプリント配線基板とを少なくとも備え、
     前記一対の電極部の前記演算増幅器に接続される電極接続部と、前記演算増幅器の入力側接続部と、前記電極接続部及び前記入力側接続部間に接続された入力側回路部品の接続部のうち当該入力側接続部に接続される接続部とを含む前記プリント配線基板上の絶縁確保領域を吸湿低減領域としたことを特徴とする静電容量検出回路。
  4.  前記入力回路部品は、前記一対の電極部の一方及び前記演算増幅器の一方の入力端子間と接地との間に接続された第1のコンデンサ及び抵抗の並列回路と、前記一対の電極部の他方及び前記演算増幅器の他方の入力端子間と接地との間に接続された第2のコンデンサと前記演算増幅器の出力端子及他方の入力端子間に接続された第3のコンデンサ及び抵抗の並列回路であることを特徴とする請求項3に記載の静電容量検出回路。
  5.  前記吸湿低減領域は、前記絶縁確保領域を覆うようにレジストを塗布したレジスト塗布領域と、該レジスト塗布領域を周囲のレジスト塗布領域から分離するように前記絶縁確保領域を囲む帯状分離領域とを形成し、前記帯状分離領域をレジスト非塗布領域とするとともにシルク印刷非印刷領域としたことを特徴とする請求項1乃至4の何れか1項に記載の静電容量検出回路。
  6.  前記吸湿低減領域は、前記絶縁確保領域の表面全体を非レジスト塗布領域とするとともに、シルク印刷非印刷領域としたことを特徴とする請求項1乃至4の何れか1項に記載の静電容量検出回路。
  7.  前記バイアス電圧生成回路は、正弦波、方形波等の交流波形のキャリア信号を生成するように構成されていることを特徴とする請求項1乃至6の何れか1項に記載の静電容量検出回路。
  8.  前記バイアス電圧生成回路は、直流バイアス電圧を生成するように構成されていることを特徴とする請求項1乃至6の何れか1項に記載の静電容量検出回路。
PCT/JP2012/007407 2011-11-22 2012-11-19 静電容量検出回路 WO2013076954A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/350,808 US9664719B2 (en) 2011-11-22 2012-11-19 Capacitance detection circuit
EP12850761.3A EP2790025B1 (en) 2011-11-22 2012-11-19 Capacitance detection circuit
CN201280049193.9A CN103858016B (zh) 2011-11-22 2012-11-19 静电电容检测电路
JP2013545784A JP5700138B2 (ja) 2011-11-22 2012-11-19 静電容量検出回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-255331 2011-11-22
JP2011255331 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013076954A1 true WO2013076954A1 (ja) 2013-05-30

Family

ID=48469421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007407 WO2013076954A1 (ja) 2011-11-22 2012-11-19 静電容量検出回路

Country Status (5)

Country Link
US (1) US9664719B2 (ja)
EP (1) EP2790025B1 (ja)
JP (1) JP5700138B2 (ja)
CN (1) CN103858016B (ja)
WO (1) WO2013076954A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499845B2 (en) * 2019-02-07 2022-11-15 Texas Instruments Incorporated Compensation of mechanical tolerance in a capacitive sensing control element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165114A (ja) * 1984-09-06 1986-04-03 Yokogawa Hokushin Electric Corp 容量式変換装置
JPS62252953A (ja) * 1986-04-25 1987-11-04 Mitsubishi Electric Corp 半導体装置
JPH10173296A (ja) 1996-12-11 1998-06-26 Kyocera Corp プリント配線基板の製造方法
JP2000234939A (ja) * 1998-12-18 2000-08-29 Yazaki Corp 静電容量−電圧変換装置
JP2002256060A (ja) * 2001-02-28 2002-09-11 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板
JP2003098660A (ja) 2001-09-25 2003-04-04 Tamura Kaken Co Ltd レジストインキ組成物及びプリント配線板
JP2006054111A (ja) * 2004-08-12 2006-02-23 Sony Corp 表示装置
JP2008102091A (ja) * 2006-10-20 2008-05-01 Toyota Motor Corp 容量型検出回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461916A (en) * 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
US5402075A (en) * 1992-09-29 1995-03-28 Prospects Corporation Capacitive moisture sensor
JP2002064947A (ja) 2000-08-18 2002-02-28 Japan Storage Battery Co Ltd 無停電直流電源装置
DE10052532C2 (de) * 2000-10-23 2002-11-14 Conducta Endress & Hauser Leiterplatte mit einer Eingangsschaltung zur Aufnahme und Verarbeitung eines elektrischen Signals sowie Verwendung der Leiterplatte
JP4207154B2 (ja) * 2003-07-25 2009-01-14 株式会社デンソー スティッキング検査機能を有する静電容量式センサ装置及び検査方法並びにエアバッグシステム
JP2007178420A (ja) * 2005-11-30 2007-07-12 Denso Corp 容量式物理量センサおよびその診断方法
US7578189B1 (en) * 2006-05-10 2009-08-25 Qualtre, Inc. Three-axis accelerometers
US20080128901A1 (en) * 2006-11-30 2008-06-05 Peter Zurcher Micro-electro-mechanical systems device and integrated circuit device integrated in a three-dimensional semiconductor structure
JP2009097932A (ja) * 2007-10-15 2009-05-07 Freescale Semiconductor Inc 容量型検出装置
JP2010061405A (ja) * 2008-09-03 2010-03-18 Rohm Co Ltd 静電容量センサ、その検出回路、入力装置および容量センサの制御方法
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
JP4888743B2 (ja) * 2009-07-09 2012-02-29 アイシン精機株式会社 静電容量検出装置
JP5649810B2 (ja) * 2009-10-29 2015-01-07 日立オートモティブシステムズ株式会社 静電容量式センサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165114A (ja) * 1984-09-06 1986-04-03 Yokogawa Hokushin Electric Corp 容量式変換装置
JPS62252953A (ja) * 1986-04-25 1987-11-04 Mitsubishi Electric Corp 半導体装置
JPH10173296A (ja) 1996-12-11 1998-06-26 Kyocera Corp プリント配線基板の製造方法
JP2000234939A (ja) * 1998-12-18 2000-08-29 Yazaki Corp 静電容量−電圧変換装置
JP2002256060A (ja) * 2001-02-28 2002-09-11 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板
JP2003098660A (ja) 2001-09-25 2003-04-04 Tamura Kaken Co Ltd レジストインキ組成物及びプリント配線板
JP2006054111A (ja) * 2004-08-12 2006-02-23 Sony Corp 表示装置
JP2008102091A (ja) * 2006-10-20 2008-05-01 Toyota Motor Corp 容量型検出回路

Also Published As

Publication number Publication date
CN103858016A (zh) 2014-06-11
US20140300375A1 (en) 2014-10-09
EP2790025B1 (en) 2019-08-14
JPWO2013076954A1 (ja) 2015-04-27
JP5700138B2 (ja) 2015-04-15
EP2790025A1 (en) 2014-10-15
US9664719B2 (en) 2017-05-30
CN103858016B (zh) 2016-06-29
EP2790025A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
JP6580804B2 (ja) Mems圧力センサとmems慣性センサの集積構造
JP5751341B2 (ja) 静電容量検出回路
JP5425824B2 (ja) 複合センサ
JP4931713B2 (ja) 力学量センサ
US20150301075A1 (en) Inertial Sensor
US8096180B2 (en) Inertial sensor
US10737935B2 (en) MEMS sensors, methods for providing same and method for operating a MEMS sensor
CN109579810B (zh) 物理量测量装置、电子设备和移动体
US20040187573A1 (en) Semiconductor dynamic quantity sensor
US9511993B2 (en) Semiconductor physical quantity detecting sensor
JP5700138B2 (ja) 静電容量検出回路
JP2009053164A (ja) 物理量センサ
JP5441027B2 (ja) 静電容量型加速度センサの検査方法及びその検査装置
JP5900398B2 (ja) 加速度センサ
US20160091526A1 (en) Sensor
JP2010122144A (ja) 加速度センサ及びそれを用いた半導体装置
JP2009068936A (ja) 物理量検出装置
JP5935333B2 (ja) 半導体センサ
JP2012247204A (ja) 加速度センサおよび加速度の測定方法
JP3107441B2 (ja) 静電容量形圧力センサ
JPH07280833A (ja) 加速度検出装置
JP2011242143A (ja) 物理量センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013545784

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350808

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE