WO2013076802A1 - 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 - Google Patents
金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 Download PDFInfo
- Publication number
- WO2013076802A1 WO2013076802A1 PCT/JP2011/076858 JP2011076858W WO2013076802A1 WO 2013076802 A1 WO2013076802 A1 WO 2013076802A1 JP 2011076858 W JP2011076858 W JP 2011076858W WO 2013076802 A1 WO2013076802 A1 WO 2013076802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- electromagnetic shield
- wires
- fine
- bundle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/366—Electric or magnetic shields or screens made of ferromagnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/288—Shielding
- H01F27/2885—Shielding with shields or electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
Definitions
- the present invention relates to a method for manufacturing a metal fine wire electromagnetic shield, a metal fine wire electromagnetic shield, and a stationary induction device including the same.
- transformers which are the main equipment in power plants or substations, are required to reduce internal heat generation as the voltage is increased, the capacity is increased, and the manufacturing cost is reduced.
- One of the causes of internal heat generation in transformers is heat generation due to eddy currents generated by leakage magnetic flux from the coils entering the metal structure.
- an electromagnetic shield that shields the leakage magnetic flux from the coil is disposed inside the transformer.
- Patent Document 1 JP-A-58-181612 is a prior art document that discloses a method for producing a plastic molded product having electromagnetic shielding properties.
- a fluid plastic material is injected into a mold cavity filled with a conductive material, and the conductive material and the plastic material are integrated. It is solidified.
- the space factor of the conductive material In order to improve the magnetic flux shielding ability of the electromagnetic shield, it is necessary to increase the space factor of the conductive material.
- the space factor of the conductive material cannot be increased because the space factor of the plastic material is large.
- the present invention has been made in view of the above problems, and can increase the space factor of the conductive material to improve the magnetic flux shielding ability of the electromagnetic shield.
- An object of the present invention is to provide a stationary guidance device including the same.
- the method of manufacturing a metal fine wire electromagnetic shield according to the present invention includes a step of preparing a metal fine wire bundle in which a plurality of metal fine wires whose surfaces are coated with an insulating material are bundled together, and compressing the metal fine wire bundle by pressing. Forming.
- the space factor of the conductive material can be increased to improve the magnetic flux shielding ability of the electromagnetic shield.
- FIG. 1 is a flowchart showing a method for manufacturing a fine metal wire electromagnetic shield according to Embodiment 1 of the present invention.
- the manufacturing method of the metal fine wire electromagnetic shield which concerns on Embodiment 1 of this invention prepares the metal fine wire bundle which bundled and united the some metal fine wire which coat
- each step will be described.
- FIG. 2 is a perspective view showing a state in which a plurality of fine metal wires are stacked.
- each of the plurality of fine metal wires 10 includes a conductive material 11 made of, for example, soft iron, and an insulating material 12 that covers the surface of the conductive material 11.
- the insulating material 12 may be any material that can block an eddy current of an electromotive force of about several volts generated by the magnetic flux entering the conductive material 11.
- an insulating paint containing an epoxy resin can be used as the insulating material 12.
- the insulating material 12 is made of a hard material and thinly applied so that the metal wire bundle 20 can be compressed densely when it is compression-molded.
- the diameter is 0.8 mm or more and 1 mm or less, and the length is about 3 m.
- 300 or more and 500 or less metal fine wires 10 are used.
- FIG. 3 is a partial perspective view showing the configuration of the bundle of thin metal wires integrated in the present embodiment.
- the plurality of fine metal wires 10 are integrated by being twisted in a bundled state.
- a plurality of fine metal wires 10 are wound once every 1 m in length.
- both ends of the plurality of fine metal wires 10 may be twisted in opposite directions, or the other end may be twisted in the direction indicated by the arrow 21 with one end on the near side in FIG. Good.
- the plurality of fine metal wires 10 are twisted in a bundled state to be integrated into a thin metal wire bundle 20.
- the fine metal wire bundle 20 is compression-molded by press working to produce a fine metal wire electromagnetic shield 20a having a desired shape.
- FIG. 4 is a side view showing the configuration of a press machine for pressing a metal thin wire bundle.
- the press machine 1 includes a base 2 that holds a mold, a lower mold 3 that is fixed to the base 2, and an upper mold 4 that is held on the base 2 so as to be movable in the vertical direction. I have.
- a lower molding surface 3 a that is in contact with a part of the peripheral side surface of the thin metal wire bundle 20 is formed on the upper surface of the lower mold 3.
- an upper molding surface 4 a that is in contact with the remainder of the peripheral side surface of the thin metal wire bundle 20 is formed on the lower surface of the upper mold 4.
- the lower molding surface 3a and the upper molding surface 4a are formed corresponding to the desired shape of the fine metal wire electromagnetic shield 20a.
- the upper die 4 is moved downward with the metal wire bundle 20 placed on the lower die 3, and the metal wire bundle 20 is sandwiched between the lower molding surface 3a and the upper molding surface 4a and pressed. .
- FIG. 5 is a partial perspective view showing the appearance of a fine metal wire electromagnetic shield formed by compression molding by press working in the present embodiment.
- the metal fine wire electromagnetic shield 20a compression-molded by pressing has an outer shape that follows the lower molding surface 3a and the upper molding surface 4a.
- the gap between the metal fine wires 10 is reduced by compressing the metal fine wire electromagnetic shield 20a.
- the space factor of the conductive material 11 in the fine metal wire electromagnetic shield 20 a is higher than the space factor of the conductive material 11 in the metal wire bundle 20.
- the space factor of the conductive material 11 can be increased and the magnetic flux shielding ability of the metal fine wire electromagnetic shield 20a can be improved.
- FIG. 6 is a partial perspective view showing a configuration of an integrated bundle of fine metal wires in the second embodiment of the present invention.
- a plurality of fine metal wires 10 are bonded together by an adhesive.
- the plurality of fine metal wires 10 are integrated into a thin metal wire bundle 30 by an adhesive in a state before being completely solidified.
- an adhesive agent the thing whose viscosity is lower than resin is used so that the space factor of the adhesive agent in the metal fine wire bundle 30 may not become high.
- an adhesive that solidifies in two stages it is preferable to use an adhesive that solidifies in two stages.
- the bundle of thin metal wires 30 is integrated by solidification in the first stage, and the solidification of the second stage is performed after the thin metal wire bundle 30 is compression-molded by pressing as described later. By causing it to occur, it becomes possible to maintain the state in which the conductive material 11 has a high space factor.
- the upper die 4 is moved downward with the fine metal wire bundle 30 placed on the lower die 3, and the fine metal wire bundle 30 is moved between the lower molding surface 3a and the upper molding surface 4a. Press to process.
- FIG. 7 is a partial perspective view showing the appearance of a metal fine wire electromagnetic shield formed by compression molding by press working in the present embodiment.
- the metal fine wire electromagnetic shield 30a compression-molded by press working has an outer shape that follows the lower molding surface 3a and the upper molding surface 4a.
- the fine metal wire bundle 30 is compression-molded by press working to produce a fine metal wire electromagnetic shield 30a having a desired shape.
- the gap between the metal fine wires 10 is reduced by compressing the metal fine wire electromagnetic shield 30a.
- the space factor of the conductive material 11 in the metal fine wire electromagnetic shield 30 a is higher than the space factor of the conductive material 11 in the metal wire bundle 30.
- the space factor of the conductive material 11 can be increased and the magnetic flux shielding ability of the metal fine wire electromagnetic shield 30a can be improved.
- the thin metal wire bundle may not be integrated by twisting as in the first embodiment. In that case, it is effective to integrate the metal thin wire bundle using an adhesive as in this embodiment.
- a shell-type transformer according to Embodiment 3 including the above-described metal fine wire electromagnetic shield will be described.
- a transformer will be described as a static induction device.
- the static induction device is not limited to a transformer, and may be, for example, a reactor.
- FIG. 8 is a partial cross-sectional view illustrating a configuration of a shell-type transformer according to Embodiment 3 of the present invention.
- the outer iron type transformer is located between the iron core 50 in which a plurality of magnetic steel plates are laminated, the winding 60 wound around the iron core 50, and the iron core 50 and the winding 60.
- a thin metal wire electromagnetic shield 20a is provided.
- the electromagnetic shield 40 is formed by laminating the electromagnetic steel plates in an upright state between the inner peripheral surface of the winding 60 and the magnetic steel plate of the iron core 50 facing the inner peripheral surface. Yes. Thereby, the eddy current loss in the iron core 50 can be reduced.
- the electromagnetic steel sheets are stacked in a standing state is to suppress loss in consideration of the flow of magnetic flux. That is, the cross section through which the eddy current flows can be reduced by flowing the magnetic flux from the surface on which the thin electromagnetic steel plates are laminated. As a result, loss can be suppressed.
- the distance between the surface of the iron core 50 and the inner peripheral surface of the winding 60 is gradually shortened, so an electromagnetic steel plate having the same width as the other portions is disposed. I can't.
- the metal fine wire electromagnetic shield 20a is arranged so as to fit the curved surface portion of the winding 60. Since the fine metal wire electromagnetic shield 20a can be formed into a desired shape by pressing, it can be arranged in a narrow gap having a complicated shape.
- the metal fine wire electromagnetic shield 20a By arranging the metal fine wire electromagnetic shield 20a on the curved surface portion of the inner peripheral surface of the winding 60, the magnetic flux entering the iron core 50 can be effectively shielded.
- the metal fine wire electromagnetic shield 20a which concerns on Embodiment 1 was used, you may use the metal fine wire electromagnetic shield 30a which concerns on Embodiment 2 similarly.
- the electromagnetic shield may be composed entirely of the fine metal wire electromagnetic shield 20a or the fine metal wire electromagnetic shield 30a without using the electromagnetic shield 40.
- an inner iron type transformer according to Embodiment 4 including the above-described metal fine wire electromagnetic shield will be described. Since the inner iron type transformer according to the present embodiment is different from the outer iron type transformer according to the third embodiment only in that the electromagnetic shield 40 is not provided, the description of other configurations will not be repeated.
- FIG. 9 is a partial cross-sectional view showing the configuration of the inner iron transformer according to the fourth embodiment of the present invention.
- the inner iron type transformer is positioned between the iron core 70 in which a plurality of magnetic steel plates are laminated, the winding 80 wound around the iron core 70, and the iron core 70 and the winding 80.
- a thin metal wire electromagnetic shield 20b is a thin metal wire electromagnetic shield 20b.
- the metal fine wire electromagnetic shield 20b is disposed so as to fit the side surface of the iron core 70 and the curved surface portion of the winding 80.
- the fine metal wire electromagnetic shield 20b differs from the fine metal wire electromagnetic shield 20a only in shape.
- the thin metal wire electromagnetic shield 20b By arranging the thin metal wire electromagnetic shield 20b on the side surface of the iron core 70 and the curved surface portion of the inner peripheral surface of the winding 80, the magnetic flux entering the iron core 70 can be effectively shielded.
- the metal fine wire electromagnetic shield 20b which concerns on Embodiment 1 was used, you may use the metal fine wire electromagnetic shield 30b which concerns on Embodiment 2 similarly.
- the thin metal wire electromagnetic shield 30b differs from the thin metal wire electromagnetic shield 30a only in shape.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Textile Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
図1は、本発明の実施形態1に係る金属細線電磁シールドの製造方法を示すフロー図である。図1に示すように、本発明の実施形態1に係る金属細線電磁シールドの製造方法は、表面を絶縁性材料で被覆された複数の金属製細線を束ねて一体にした金属細線束を準備する工程(S100)と、金属細線束をプレス加工により圧縮成形する工程(S101)とを備える。以下、各工程について説明する。
図6は、本発明の実施形態2において、一体にされた金属細線束の構成を示す一部斜視図である。図6に示すように、本実施形態においては、複数の金属製細線10同士を接着剤で接着することにより一体にする。複数の金属製細線10は、完全に固化する前の状態の接着剤により一体となって金属細線束30となる。なお、接着剤としては、金属細線束30における接着剤の占積率が高くならないように、樹脂より粘度が低いものを用いる。
図8は、本発明の実施形態3に係る外鉄形変圧器の構成を示す一部断面図である。図8に示すように、外鉄形変圧器は、複数の磁性鋼板が積層された鉄心50と、鉄心50に巻き回された巻線60と、鉄心50と巻線60との間に位置する金属細線電磁シールド20aとを備える。
図9は、本発明の実施形態4に係る内鉄形変圧器の構成を示す一部断面図である。図9に示すように、内鉄形の変圧器は、複数の磁性鋼板が積層された鉄心70と、鉄心70に巻き回された巻線80と、鉄心70と巻線80との間に位置する金属細線電磁シールド20bとを備える。
Claims (9)
- 表面を絶縁性材料(12)で被覆された複数の金属製細線(10)を束ねて一体にした金属細線束(20,30)を準備する工程(S100)と、
前記金属細線束(20,30)をプレス加工により圧縮成形する工程(S101)と
を備える、金属細線電磁シールドの製造方法。 - 前記金属細線束(20)を準備する前記工程は、前記複数の金属製細線(10)を束ねた状態でねじることにより一体にする工程を含む、請求項1に記載の金属細線電磁シールドの製造方法。
- 前記金属細線束(30)を準備する前記工程は、前記複数の金属製細線(10)同士を接着剤で接着することにより一体にする工程を含む、請求項1に記載の金属細線電磁シールドの製造方法。
- 表面を絶縁性材料(12)で被覆された複数の金属製細線(10)が束ねられて一体にされた状態でプレス加工により圧縮成形された金属細線束(20,30)を備える、金属細線電磁シールド。
- 前記金属細線束(20)は、前記複数の金属製細線(10)が束ねられた状態でねじられることにより一体にされている、請求項4に記載の金属細線電磁シールド。
- 前記金属細線束(30)は、前記複数の金属製細線(10)同士が接着剤で接着されることにより一体にされている、請求項4に記載の金属細線電磁シールド。
- 鉄心(50,70)と
前記鉄心(50,70)に巻き回された巻線(60,80)と、
前記鉄心(50,70)と前記巻線(60,80)との間に位置する金属細線電磁シールド(20a,20b,30a,30b)と
を備え、
前記金属細線電磁シールド(20a,20b,30a,30b)は、表面を絶縁性材料(12)で被覆された複数の金属製細線(10)が束ねられて一体にされた状態でプレス加工により圧縮成形された金属細線束(20,30)を備える、静止誘導機器。 - 前記金属細線束(20)は、前記複数の金属製細線(10)が束ねられた状態でねじられることにより一体にされている、請求項7に記載の静止誘導機器。
- 前記金属細線束(30)は、前記複数の金属製細線(10)同士が接着剤で接着されることにより一体にされている、請求項7に記載の静止誘導機器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180074986.1A CN103947309A (zh) | 2011-11-22 | 2011-11-22 | 金属细线电磁屏蔽件的制造方法、金属细线电磁屏蔽件以及具备该金属细线电磁屏蔽件的静态感应设备 |
JP2013525073A JP5462416B2 (ja) | 2011-11-22 | 2011-11-22 | 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 |
US14/352,775 US20140240079A1 (en) | 2011-11-22 | 2011-11-22 | Method for manufacturing thin metal wire electromagnetic shield, thin metal wire electromagnetic shield, and stationary induction apparatus including the same |
PCT/JP2011/076858 WO2013076802A1 (ja) | 2011-11-22 | 2011-11-22 | 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/076858 WO2013076802A1 (ja) | 2011-11-22 | 2011-11-22 | 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013076802A1 true WO2013076802A1 (ja) | 2013-05-30 |
Family
ID=48469283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/076858 WO2013076802A1 (ja) | 2011-11-22 | 2011-11-22 | 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140240079A1 (ja) |
JP (1) | JP5462416B2 (ja) |
CN (1) | CN103947309A (ja) |
WO (1) | WO2013076802A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58181612A (ja) * | 1982-04-20 | 1983-10-24 | Asahi Glass Co Ltd | 電磁シ−ルド性を有するプラスチツク成形品の製法 |
JPS62296408A (ja) * | 1986-06-16 | 1987-12-23 | Nissin Electric Co Ltd | 電磁誘導機器 |
JPS6362107A (ja) * | 1981-12-30 | 1988-03-18 | エヌ・ヴイ・ベカルト・エス・エイ | 導電性ファイバ含有プラスチック成形品の製造方法 |
JPH0364996A (ja) * | 1989-08-02 | 1991-03-20 | Kitagawa Kogyo Kk | メッシュテープ |
JPH047899A (ja) * | 1990-04-25 | 1992-01-13 | Suzuki Sogyo Co Ltd | 電磁波シールド用シート成形体とその製造方法 |
JP2010205589A (ja) * | 2009-03-04 | 2010-09-16 | Tamura Seisakusho Co Ltd | ケーブル |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE748787C (de) * | 1939-01-18 | 1944-11-08 | Als Vierpol geschaltete Laufzeitspule | |
US4725804A (en) * | 1984-05-24 | 1988-02-16 | Square D Company | Electrostatic fork shield |
JPH0263515U (ja) * | 1988-11-01 | 1990-05-11 | ||
JPH0494198A (ja) * | 1990-08-09 | 1992-03-26 | Nippon Steel Corp | 電磁気シールド用材料 |
JPH0529198U (ja) * | 1991-09-24 | 1993-04-16 | ミツミ電機株式会社 | 複合回路基板 |
US5449861A (en) * | 1993-02-24 | 1995-09-12 | Vazaki Corporation | Wire for press-connecting terminal and method of producing the conductive wire |
US6268786B1 (en) * | 1998-11-30 | 2001-07-31 | Harrie R. Buswell | Shielded wire core inductive devices |
HU225073B1 (en) * | 1999-08-31 | 2006-06-28 | Belden Wire And Cable Company | High speed data cable having individually shielded twisted pairs |
US6885273B2 (en) * | 2000-03-30 | 2005-04-26 | Abb Ab | Induction devices with distributed air gaps |
JP2004119811A (ja) * | 2002-09-27 | 2004-04-15 | Toshiba Corp | 静止誘導電気機器 |
CN1266716C (zh) * | 2002-12-05 | 2006-07-26 | 台达电子工业股份有限公司 | 线圈模块及具有该线圈模块的变压器及其制作方法 |
JP2004193395A (ja) * | 2002-12-12 | 2004-07-08 | Okayama Giken:Kk | 高密度コイル |
US7084728B2 (en) * | 2003-12-15 | 2006-08-01 | Nokia Corporation | Electrically decoupled integrated transformer having at least one grounded electric shield |
TWM254706U (en) * | 2004-02-13 | 2005-01-01 | Kwan Chiu Radio Mfg Co Ltd | Insulation film structure of transformer |
US20070040645A1 (en) * | 2005-08-19 | 2007-02-22 | Sedio Stephen M | Transformer And Method Of Winding Same |
US8313346B2 (en) * | 2006-05-17 | 2012-11-20 | Leviton Manufacturing Co., Inc. | Communication cabling with shielding separator and discontinuous cable shield |
FR2901919A1 (fr) * | 2006-05-30 | 2007-12-07 | St Microelectronics Sa | Coupleur directif large bande |
US7709732B2 (en) * | 2006-12-12 | 2010-05-04 | Motorola, Inc. | Carbon nanotubes litz wire for low loss inductors and resonators |
US8279030B2 (en) * | 2008-09-27 | 2012-10-02 | Magnetic-Electrostatic Confinement (Mec) Corporation | Method and apparatus for electrical, mechanical and thermal isolation of superconductive magnets |
JP5520493B2 (ja) * | 2008-10-20 | 2014-06-11 | 古河電気工業株式会社 | 多層絶縁電線及びそれを用いた変圧器 |
JP2011035159A (ja) * | 2009-07-31 | 2011-02-17 | Tokyo Electric Power Co Inc:The | 静止誘導電器 |
-
2011
- 2011-11-22 CN CN201180074986.1A patent/CN103947309A/zh active Pending
- 2011-11-22 US US14/352,775 patent/US20140240079A1/en not_active Abandoned
- 2011-11-22 JP JP2013525073A patent/JP5462416B2/ja not_active Expired - Fee Related
- 2011-11-22 WO PCT/JP2011/076858 patent/WO2013076802A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362107A (ja) * | 1981-12-30 | 1988-03-18 | エヌ・ヴイ・ベカルト・エス・エイ | 導電性ファイバ含有プラスチック成形品の製造方法 |
JPS58181612A (ja) * | 1982-04-20 | 1983-10-24 | Asahi Glass Co Ltd | 電磁シ−ルド性を有するプラスチツク成形品の製法 |
JPS62296408A (ja) * | 1986-06-16 | 1987-12-23 | Nissin Electric Co Ltd | 電磁誘導機器 |
JPH0364996A (ja) * | 1989-08-02 | 1991-03-20 | Kitagawa Kogyo Kk | メッシュテープ |
JPH047899A (ja) * | 1990-04-25 | 1992-01-13 | Suzuki Sogyo Co Ltd | 電磁波シールド用シート成形体とその製造方法 |
JP2010205589A (ja) * | 2009-03-04 | 2010-09-16 | Tamura Seisakusho Co Ltd | ケーブル |
Also Published As
Publication number | Publication date |
---|---|
CN103947309A (zh) | 2014-07-23 |
JP5462416B2 (ja) | 2014-04-02 |
US20140240079A1 (en) | 2014-08-28 |
JPWO2013076802A1 (ja) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103050226B (zh) | 电抗器及其制造方法 | |
JP7262926B2 (ja) | ラジアルギャップ型回転電機 | |
JP5365745B1 (ja) | リアクトルの製造方法 | |
EP2584574B1 (en) | Reactor | |
US20200243241A1 (en) | Optimal inductor | |
CN101427329A (zh) | 电磁组件、形成该电磁组件的芯部件以及它们的制造方法 | |
EP2750151A1 (en) | Compressed powder compact | |
KR20130033424A (ko) | 외측 코어의 제조 방법, 외측 코어 및 리액터 | |
JP5172318B2 (ja) | コイル成形体の製造方法及びコイル成形体 | |
EP3035351B1 (en) | Method of manufacturing an amorphous magnetic core and amorphous magnetic core | |
CN114300249A (zh) | 一种大功率复合成型电感的制造方法 | |
JP6075678B2 (ja) | 複合磁心、リアクトルおよび電源装置 | |
JP5462416B2 (ja) | 金属細線電磁シールドの製造方法、金属細線電磁シールドおよびそれを備える静止誘導機器 | |
JP6557527B2 (ja) | リアクトル | |
CN111049287A (zh) | 一种新型轴向磁通双转子电机的定子铁芯 | |
JP2020053463A (ja) | リアクトル | |
JP2013098351A (ja) | アモルファス鉄心変圧器 | |
JP2010258201A (ja) | 磁気浮上式鉄道用地上コイルの製作方法 | |
CN101728057A (zh) | 分段模铸电感的制造方法 | |
JP7502058B2 (ja) | リアクトル | |
JP4211707B2 (ja) | 鉄心コイル、電機子、および、これらの製造方法 | |
JP6318083B2 (ja) | 静止誘導電器用巻鉄心 | |
CN107103983A (zh) | 一种圆环形立绕电感器及其制造方法 | |
JP6809440B2 (ja) | リアクトル | |
JP5305118B2 (ja) | リアクトル、及び昇圧コンバータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013525073 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876083 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14352775 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11876083 Country of ref document: EP Kind code of ref document: A1 |