WO2013075420A1 - 电池电量的计算方法及装置、终端 - Google Patents

电池电量的计算方法及装置、终端 Download PDF

Info

Publication number
WO2013075420A1
WO2013075420A1 PCT/CN2012/071542 CN2012071542W WO2013075420A1 WO 2013075420 A1 WO2013075420 A1 WO 2013075420A1 CN 2012071542 W CN2012071542 W CN 2012071542W WO 2013075420 A1 WO2013075420 A1 WO 2013075420A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
voltage
terminal
discharge data
Prior art date
Application number
PCT/CN2012/071542
Other languages
English (en)
French (fr)
Inventor
徐建邦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013075420A1 publication Critical patent/WO2013075420A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of communications, and in particular to a method, an apparatus, and a terminal for calculating a battery power.
  • a mobile phone is a very common electronic device, and its working power source usually comes from a mobile phone battery. With the development of science and technology, battery technology is constantly updating and improving. There are more and more types of mobile phone batteries. The more common mobile phone batteries include: lithium-ion batteries, nickel-cadmium batteries, and nickel-hydrogen batteries. At present, the most commonly used battery for mobile terminals such as mobile phones is a lithium ion battery.
  • the battery power is an important physical quantity of the mobile terminal, which can indicate the current power usage and the remaining power state of the mobile terminal, and can give the user an objective understanding of the remaining power.
  • the battery In the current battery products on the market, the battery is still calculated by the relationship between the battery voltage and the power. However, there is a large error in this method.
  • the voltage of the battery has a close relationship with the power, but it is not an absolute relationship.
  • the relationship between the voltage and the power of the lithium-ion battery is also related to the current discharge current.
  • the same battery The correspondence between voltage and remaining power is different.
  • using a single data model will lead to an increase in the calculation error of the power, and it is easy to provide the user with an incorrect prompt, resulting in insufficient power calculation accuracy, power threshold determination setting error, false alarm, or false shutdown. occur.
  • users With the advancement of technology, users have higher and higher requirements for measuring the battery power.
  • the existing method of calculating the battery power does not bring a better user experience to the user, thereby reducing user satisfaction.
  • a method for calculating a battery power including: acquiring a preset discharge data of a battery corresponding to a current working state of the terminal, wherein different working states of the terminal correspond to different discharge data, Corresponding relationship between the discharge data recording voltage and the battery power; obtaining the current voltage of the battery of the terminal, and calculating the current power of the battery according to the correspondence between the current voltage and the discharge data record.
  • presetting the discharge data of the battery corresponding to the current working state of the terminal comprising: selecting a fixed working current in each working state as a discharge current in the working state according to the plurality of working states of the terminal; In a working state, according to the discharge current in the working state, the voltage corresponding to the predetermined battery power when the battery operating in the working state is discharged in a fully charged state is tested; The voltage corresponding to the plurality of predetermined battery powers and the correspondence between each of the voltages and the corresponding battery power are stored as discharge data.
  • the operating current in each working state is selected according to the plurality of working states of the terminal as the discharging current in the working state, including: counting a plurality of operating currents of the terminal in each working state; The working current with the longest working time is selected as the fixed working current in the working state.
  • acquiring the preset discharge data of the battery corresponding to the current working state of the terminal comprising: determining a current working state of the terminal; and storing from the corresponding relationship between the preset working state and the discharge data in the working state
  • the discharge data corresponding to the current operating state is selected from the discharge data.
  • the current voltage of the battery of the terminal is obtained, and the current power of the battery is calculated according to the correspondence between the current voltage and the discharge data record, including: obtaining the current voltage of the terminal, and determining two voltages adjacent to the current voltage recorded in the discharge data. Value; Calculate the current battery power based on the relationship between the two adjacent voltage values and the voltage recorded in the discharge data and the battery power.
  • a battery power calculation device including: an acquisition module, configured to acquire a preset discharge data of a battery corresponding to a current working state of the terminal, wherein different working states of the terminal Corresponding to different discharge data, the corresponding relationship between the discharge data recording voltage and the battery power; the calculation module is configured to obtain the current voltage of the battery of the terminal, and calculate the current battery power according to the corresponding relationship between the current voltage and the discharge data record.
  • the obtaining module comprises: a determining unit, configured to determine a current working state of the terminal; and a selecting unit configured to select a corresponding one of the stored discharge data according to a corresponding relationship between the preset working state and the discharge data in the working state Discharge data for the current operating state.
  • the calculation module comprises: a determining unit configured to obtain a current voltage of the terminal, determining two voltage values recorded in the discharge data adjacent to the current voltage; and a calculating unit configured to be based on the adjacent two voltage values and discharging The current battery power is calculated by the correspondence between the voltage recorded in the data and the battery power.
  • the device further includes: a setting module configured to preset discharge data of the battery corresponding to a current working state of the terminal;
  • the setting module includes: a selected unit, configured to be selected according to multiple working states of the terminal
  • the fixed operating current in each working state is the discharging current in the working state;
  • the test unit is set to In each working state, according to the discharge current in the working state, the voltage corresponding to the predetermined battery power when the battery operating in the working state is discharged under full charge is tested;
  • the storage unit is set to be The voltage corresponding to the plurality of predetermined battery powers in each operating state, and the correspondence between each voltage and its corresponding battery power are stored as discharge data.
  • a terminal including: a terminal body and a battery, wherein the terminal body includes: the calculating device for the battery power.
  • a specific current state is used to determine the relationship between the discharge amount of the battery and the voltage, thereby creating a multivariate data model, and analyzing the current power of the battery from multiple angles, thereby solving the problem of insufficient power calculation accuracy in the prior art.
  • the accuracy of the power calculation can be greatly improved, and the user experience is improved.
  • FIG. 1 is a flow chart of a method for calculating battery power according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a corresponding relationship between battery voltage and battery power according to an embodiment of the present invention
  • FIG. 4 is a flow chart for calculating the battery power according to a preferred embodiment of the present invention
  • FIG. 5 is a battery power according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a battery power calculating device according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic structural view of a terminal according to an embodiment of the present invention.
  • Step S102 Acquire pre-set discharge data of the battery corresponding to the current working state of the terminal, wherein different working states of the terminal correspond to different discharge data, and the corresponding relationship between the discharge data recording voltage and the battery power.
  • Step S104 Obtain a current voltage of the battery of the terminal, and calculate a current battery power according to a correspondence between the current voltage and the discharge data record.
  • presetting the discharge data of the battery corresponding to the current working state of the terminal comprising: selecting a fixed working current in each working state according to the plurality of working states of the terminal as the working state Discharge current; in each working state, according to the discharge current in the working state, the voltage corresponding to the predetermined battery power when the battery operating in the working state is discharged under full charge is tested; The voltage corresponding to the plurality of predetermined battery powers in each working state, and the correspondence relationship between each voltage and its corresponding battery power are stored as discharge data.
  • the operating current in each working state is selected according to the plurality of working states of the terminal as the discharging current in the working state, including: counting a plurality of operating currents of the terminal in each working state; in the plurality of working currents The working current with the longest working time is selected as the fixed working current in the working state.
  • step S102 acquiring pre-set discharge data of the battery corresponding to the current working state of the terminal, including: determining a current working state of the terminal; and correspondingly according to the preset working state and the discharge data in the working state The discharge data corresponding to the current operating state is selected from the stored discharge data.
  • step S104 the current voltage of the battery of the terminal is obtained, and the current power of the battery is calculated according to the correspondence between the current voltage and the discharge data record, including: obtaining the current voltage of the terminal, and determining two adjacent to the current voltage recorded in the discharge data. Voltage value; Calculate the current battery power based on the relationship between the adjacent two voltage values and the voltage recorded in the discharge data and the battery power.
  • the above method will be described in detail below with reference to Figs. 2, 3, 4 and the following embodiments.
  • the method and standard for testing the discharge of the battery can be set first. For a particular mobile phone battery, the voltage and discharge amount of the battery are satisfied in a certain proportion during the discharge process. A fully charged battery whose voltage value decreases as the amount of discharge increases.
  • the voltage can be used to identify the current value of the battery.
  • the change of the voltage of the battery during the complete discharge process the change of the battery's electric quantity value can be reflected, and by converting the electric quantity into a percentage form, the value of the current electric quantity can be displayed to the user simply and clearly.
  • a lithium-ion battery with a nominal capacity of 1000mAH can achieve a better battery discharge curve by performing a complete charge and discharge test on the battery test instrument (eg MACCOR battery performance tester) (the abscissa is The amount of discharge, the ordinate is the voltage value).
  • the battery test instrument eg MACCOR battery performance tester
  • FIG. 2 it is: nominal capacity lOOm AH, nominal voltage 3.7V, charging limit voltage 4.2V
  • the discharge curve of the lithium ion battery, for the rigor and science of the test is the discharge curve obtained by the 10 cycle charge and discharge test, and the discharge voltage range is 4.2V---3.0V, The discharge current is 600 mA. It can be seen from Fig. 1 that the relationship between the discharge voltage and the discharge amount of the same battery during the same discharge state is extremely similar. The battery starts to discharge at 4.2V, the voltage drops slowly, and the power rises steadily. When it reaches 3.4V, the voltage drops sharply. At this time, the power is almost exhausted.
  • the battery of lOOOOmAH discharges about 1034mAH between 4.200V and 2.940V.
  • the X power can be divided into four equal parts, taking 25%, 50%, and 75% of the power value.
  • the point at which the voltage curve starts to drop rapidly can be set to 5% of the power point (this point)
  • the point is 3.43V).
  • the four points are perpendicular to the intersection of the X-axis and the curve, B, C, and D.
  • the voltage values corresponding to A, B, C, and D correspond to 75%, 50%, 25%, 5 respectively.
  • % battery value Connect two adjacent points, the voltage and the electric quantity are in a proportional relationship, connect A and B points, and the voltage is linear with the voltage when the voltage is between points A and B. Therefore, as long as the voltage of the battery is detected, the percentage value of the power can be clearly obtained.
  • Five key critical points can be defined in the power to create a voltage-electricity relationship table.
  • Table 1 The relationship between battery voltage and percentage of electricity (Table 1) is: Table 1
  • the electric quantity and the voltage can be roughly proportional to each other, and the battery power between the critical points is calculated by a differential algorithm: for example, the voltage X is at the voltages A and B.
  • the remaining battery power of any battery voltage point of the battery can be obtained.
  • the voltage of the battery is closely related to the current of the discharge.
  • the operating current of the terminal in four typical working states can be counted: Standby: 10 mA, common use: 150 mA, 2G network communication: 250mA, 3G network communication: 450mA.
  • FIG. 3 is a schematic diagram showing a correspondence relationship between battery voltage and battery power in a plurality of working modes of the terminal according to an embodiment of the present invention. As shown in FIG. 3, the four curves are 10 mA from top to bottom. The relationship between the voltage and the charge of the constant current discharge of 150mA, 250mA, and 450mA can be clearly seen from Figure 3: The same battery, different discharge currents, there is a significant difference in the discharge curve of the battery.
  • Q Q2+ ( XB ) ( ( AB ) I ( Q1-Q2 ) ) ;
  • Q1 is the power at point A of the 150 mA discharge curve
  • Q2 is the power at point B of the 150 mA discharge curve
  • A is the battery voltage at 75%
  • B is the battery voltage at 50%.
  • the battery data is calculated using the curve data of Capacity VS Voltage 150mA[].
  • the power consumption of the mobile phone will become larger, and the current state of the current or the mobile phone will be detected.
  • the relationship between the power and the voltage will be updated.
  • the phone changes the state to the 2G communication curve, and determines the power according to the current voltage to obtain a new power value.
  • the curve corrected is Capacity VS Voltage 250mA[].
  • Q' Q2'+ ( ⁇ - ⁇ ' ) ( ( ⁇ '- ⁇ ' ) I ( Ql '- Q2' ) ) ;
  • Q' is the current charge
  • Ql ' is the A' of the 250mA discharge curve Point power
  • Q2' is the B' point power of the 250mA discharge curve
  • A' is the battery voltage at 75%
  • B' is the battery voltage at 50%. Comparing Q' with Q, the displayed electric quantity value is gradually shifted from the sexual Q to Q', thereby correcting the real electric quantity value. Through the change of state or current, the more accurate discharge curve is adopted, so that the value of the real-time power of the mobile terminal is closer to the accurate value, and the purpose of improving the accuracy of the power is achieved.
  • FIG. 5 is a structural block diagram of a device for calculating a battery power according to an embodiment of the present invention, to implement a method for calculating a battery power provided by the above embodiment.
  • the calculation device of the pool power includes: an acquisition module and a calculation module.
  • the obtaining module 10 is configured to obtain a preset discharge data of the battery corresponding to the current working state of the terminal, where different working states of the terminal correspond to different discharge data, and the corresponding relationship between the discharge data recording voltage and the battery power;
  • the calculation module 20 is connected to the acquisition module 10, configured to obtain the current voltage of the battery of the terminal, and calculate the current power of the battery according to the correspondence between the current voltage and the discharge data record.
  • FIG. 6 is a structural block diagram of a battery power calculating apparatus according to a preferred embodiment of the present invention. As shown in FIG.
  • the obtaining module 10 may include: a determining unit 12 configured to determine a current working state of the terminal; and a selecting unit 14 connected to The determining unit 12 is configured to select discharge data corresponding to the current working state from the stored discharge data according to a correspondence relationship between the preset operating state and the discharge data in the operating state.
  • the calculating module 20 may include: a determining unit 22 configured to obtain a current voltage of the terminal, determining two voltage values recorded in the discharge data adjacent to the current voltage; and the calculating unit 24 is connected to the determining unit 22, and configured to The current battery power is calculated based on the relationship between the adjacent two voltage values and the voltage recorded in the discharge data and the battery power.
  • the battery power calculation device may further include: a setting module 30 configured to preset discharge data of the battery corresponding to a current working state of the terminal; wherein the setting module 30 may include: the selected unit 32 And being configured to select a fixed working current in each working state as a discharging current in the working state according to the plurality of working states of the terminal; the testing unit 34 is connected to the selected unit 32, and is set to be in each working state, According to the discharge current in the working state, the voltage corresponding to the predetermined battery power when the battery operating in the working state is discharged when fully charged is tested; the storage unit 36 is connected to the test unit 34, and is set to A voltage corresponding to a plurality of predetermined battery powers in each operating state, and a correspondence relationship between each voltage and its corresponding battery power are stored as discharge data.
  • the setting module 30 may include: the selected unit 32 And being configured to select a fixed working current in each working state as a discharging current in the working state according to the plurality of working states of the terminal; the testing unit 34 is
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 70 includes: a terminal body 72 and a battery (not shown), wherein the terminal body 72 includes: Battery power calculation device.
  • the terminal provided in the foregoing embodiment a battery with higher accuracy can be obtained, thereby providing a better user experience for the user.
  • the present invention achieves the following technical effects:
  • the physical properties of the battery itself can be considered, the chemical characteristics of the battery can be analyzed, and the specific current state can be used to determine the relationship between the discharge amount of the battery and the voltage, thereby creating
  • the multi-dimensional data model analyzes and calculates the current battery power from multiple angles, which can greatly improve the power accuracy and improve the user experience.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Abstract

本发明公开了一种电池电量的计算方法及装置、终端。其中,该方法包括:获取预先设定的与终端的当前工作状态对应的电池的放电数据,其中,终端的不同工作状态对应不同的放电数据,放电数据记录电压与电池电量的对应关系;获得终端的电池的当前电压,根据当前电压与放电数据记录的对应关系计算电池当前的电量。通过本发明,可以得到精确度较高的电池电量,从而为用户提供更好的用户体验。

Description

电池电量的计算方法及装置、 终端 技术领域 本发明涉及通信领域, 具体而言, 涉及一种电池电量的计算方法及装置、 终端。 背景技术 手机是一种很常见的电子设备, 它的工作电源通常来自手机电池。 随着科学技术 的发展, 电池技术也在不断更新进步, 手机电池的种类也越来越多, 比较常见的手机 电池包括: 锂离子电池、 镍镉电池, 以及镍氢电池。 目前, 针对手机等移动终端最常用的电池为锂离子电池。 在手机的使用过程中, 电池电量是移动终端的一个重要的物理量,它能够指示移动终端当前已经使用的电量、 剩余的电量状态, 可以给予用户一个对剩余电量比较客观的了解。 电量的计算物理公 式为: Q=I*T, 通常通过使用专门的仪器计算实时电流对时间的积分的方式来获取, 但传统的电池电量计算技术还是根据电池的电压来间接计算电量。 当前市场上的电池产品中, 仍旧是通过单一的电池电压与电量的关系来计算电量 的, 但是, 这种方式存在较大的误差。 电池的电压跟电量有比较紧密的关系, 但不是 绝对的对应关系, 锂离子电池的电压与电量的对比关系还与当前的放电电流有重要关 系,在放电电流不同的情况下, 同一个电池的电压与剩余电量的对应关系是不一样的。 在这种情况下, 采用单一的数据模型会导致电量的计算误差增大, 很容易给用户提供 错误的提示, 导致电量计算精度不够、 电量门限判断设置差错、 误报警、 或误关机等 情况的发生。 随着技术的进步, 用户对电池电量的测量精度的要求越来越高, 然而现有的计算 电池电量方法并不能为用户带来更好的用户体验, 从而降低了用户的满意度。 发明内容 本发明提供一种电池电量的计算方法及装置、 终端, 以至少解决上述问题。 根据本发明的一个方面, 提供了一种电池电量的计算方法, 包括: 获取预先设定 的与终端的当前工作状态对应的电池的放电数据, 其中, 终端的不同工作状态对应不 同的放电数据, 放电数据记录电压与电池电量的对应关系; 获得终端的电池的当前电 压, 根据当前电压与放电数据记录的对应关系计算电池当前的电量。 优选地, 预先设定与终端的当前工作状态对应的电池的放电数据, 包括: 根据终 端的多个工作状态选定每个工作状态下的固定工作电流作为该工作状态下的放电电 流; 在每个工作状态下, 根据该工作状态下的放电电流测试在该工作状态下工作的电 池在充满电的情况下进行放电时达到多个预定电池电量时所对应的电压; 将每个工作 状态下的多个预定电池电量对应的电压、 及每个电压与其对应的电池电量之间的对应 关系作为放电数据进行存储。 优选地, 根据终端的多个工作状态选定每个工作状态下的工作电流作该工作状态 下的放电电流, 包括: 统计终端在每个工作状态下的多个工作电流; 在多个工作电流 中选取工作时间最长的工作电流作为该工作状态下的固定工作电流。 优选地, 获取预先设定的与终端的当前工作状态对应的电池的放电数据, 包括: 判定终端的当前工作状态; 根据预先设定的工作状态和该工作状态下的放电数据的对 应关系从存储的放电数据中选取对应于当前工作状态的放电数据。 优选地, 获得终端的电池的当前电压, 根据当前电压与放电数据记录的对应关系 计算电池当前的电量, 包括: 获得终端的当前电压, 确定放电数据中记录的与当前电 压相邻的两个电压值; 根据相邻的两个电压值及放电数据中记录的电压与电池电量的 对应关系计算当前电池电量。 根据本发明的另一方面, 提供了一种电池电量的计算装置, 包括: 获取模块, 设 置为获取预先设定的与终端的当前工作状态对应的电池的放电数据, 其中, 终端的不 同工作状态对应不同的放电数据, 放电数据记录电压与电池电量的对应关系; 计算模 块, 设置为获得终端的电池的当前电压, 根据当前电压与放电数据记录的对应关系计 算电池当前的电量。 优选地, 获取模块包括: 判定单元, 设置为判定终端的当前工作状态; 选取单元, 设置为根据预先设定的工作状态和该工作状态下的放电数据的对应关系从存储的放电 数据中选取对应于当前工作状态的放电数据。 优选地, 计算模块包括: 确定单元, 设置为获得终端的当前电压, 确定放电数据 中记录的与当前电压相邻的两个电压值; 计算单元, 设置为根据相邻的两个电压值及 放电数据中记录的电压与电池电量的对应关系计算当前电池电量。 优选地, 该装置还包括: 设定模块, 设置为预先设定与终端的当前工作状态对应 的电池的放电数据; 设定模块包括: 选定单元, 设置为根据终端的多个工作状态选定 每个工作状态下的固定工作电流作为该工作状态下的放电电流; 测试单元, 设置为在 每个工作状态下, 根据该工作状态下的放电电流测试在该工作状态下工作的电池在充 满电的情况下进行放电时达到多个预定电池电量时所对应的电压; 存储单元, 设置为 将每个工作状态下的多个预定电池电量对应的电压、 及每个电压与其对应的电池电量 之间的对应关系作为放电数据进行存储。 根据本发明的又一方面, 提供了一种终端, 包括: 终端本体和电池, 其中, 终端 本体包括: 上述电池电量的计算装置。 通过本发明, 采用特定的电流状态来确定电池放电量与电压的关系, 进而创建多 元的数据模型, 从多角度分析计算电池的当前电量的方式, 解决了现有技术中电量计 算精度不够的问题, 进而达到了可以使电量计算精度得到较大的改善, 提高了用户体 验的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据本发明实施例的电池电量的计算方法的流程图; 图 2是根据本发明实施例的电池电压与电池电量的对应关系曲线示意图; 图 3是根据本发明实施例的在终端多个工作模式下工作的电池电压与电池电量的 对应关系曲线示意图; 图 4是根据本发明优选实施例的电池电量的计算流程图; 图 5是根据本发明实施例的电池电量的计算装置的结构框图; 图 6是根据本发明优选实施例的电池电量的计算装置的结构框图; 图 7是根据本发明实施例的终端的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的电池电量的计算方法的流程图, 如图 1所示, 该方法 主要包括以下步骤 (步骤 S102-步骤 S104)。 步骤 S102,获取预先设定的与终端的当前工作状态对应的电池的放电数据,其中, 终端的不同工作状态对应不同的放电数据,放电数据记录电压与电池电量的对应关系。 步骤 S104, 获得终端的电池的当前电压, 根据当前电压与放电数据记录的对应关 系计算电池当前的电量。 优选地,在步骤 S102之前,预先设定与终端的当前工作状态对应的电池的放电数 据, 包括: 根据终端的多个工作状态选定每个工作状态下的固定工作电流作为该工作 状态下的放电电流; 在每个工作状态下, 根据该工作状态下的放电电流测试在该工作 状态下工作的电池在充满电的情况下进行放电时达到多个预定电池电量时所对应的电 压; 将每个工作状态下的多个预定电池电量对应的电压、 及每个电压与其对应的电池 电量之间的对应关系作为放电数据进行存储。 其中, 根据终端的多个工作状态选定每个工作状态下的工作电流作该工作状态下 的放电电流, 包括: 统计终端在每个工作状态下的多个工作电流; 在多个工作电流中 选取工作时间最长的工作电流作为该工作状态下的固定工作电流。 在步骤 S102中, 获取预先设定的与终端的当前工作状态对应的电池的放电数据, 包括: 判定终端的当前工作状态; 根据预先设定的工作状态和该工作状态下的放电数 据的对应关系从存储的放电数据中选取对应于当前工作状态的放电数据。 在步骤 S104中,获得终端的电池的当前电压,根据当前电压与放电数据记录的对 应关系计算电池当前的电量, 包括: 获得终端的当前电压, 确定放电数据中记录的与 当前电压相邻的两个电压值; 根据相邻的两个电压值及放电数据中记录的电压与电池 电量的对应关系计算当前电池电量。 下面结合图 2、 图 3、 图 4及下述实施例对上述方法进行详细描述。 在实际应用中, 可以先设定测试电池放电的方法和标准, 对于一款特定的手机电 池, 在放电过程中, 其电压和放电量是满足一定的比例的。 一个充满电的电池, 其电 压值会随着放电量的增加而减少, 可以根据检测到的电池的放电曲线, 使用电压来标 识电池当前所包含的电量值。 通过电池在完整的放电过程中电压的变化, 可以体现电 池的电量值变化, 再通过将电量转换成百分比的形式, 可以简单明了的向用户显示当 前电量的值。 例如, 一款标称容量为 lOOOmAH 的锂离子电池, 通过在电池测试仪器 (如: MACCOR电池性能测试仪)对电池进行一个完整的充放电测试,可以获得较理想的电 池放电曲线 (横坐标为放电量, 纵坐标为电压值)。 请参考图 2, 图 2是根据本发明实施例的电池电压与电池电量的对应关系曲线示 意图, 如图 2所示, 即为: 标称容量 lOOOmAH, 标称电压 3.7V, 充电限制电压 4.2V 的锂离子电池的放电曲线, 为了测试的严谨和科学, 图 1所示的放电曲线为进行了 10 次循环充放电测试得到的放电曲线, 采用的放电电压范围为 4.2V---3.0V, 放电电流为 600mA。 由图 1可以看出, 同一款电池在相同的放电状态过程中, 其放电电压与所放 电量的关系曲线极其相似。 电池在 4.2V处开始放电, 电压缓慢下降, 电量稳步上升, 在到达 3.4V附近时, 电压急剧下降, 这时电量已经接近消耗尽, 到达 3.0V, 可以认 为放电结束, 在整个放电过程中, lOOOmAH的电池在 4.200V到 2.940V之间放出约 1034mAH的电量。 参考电池的容量, 可以将 X电量平均分为四等份, 取 25%, 50%, 75%的电量值, 另外, 可以将电压曲线开始快速下降的点设置为 5%的电量点 (该点为曲线的转折点, 在图 1中, 该点为 3.43V)。 将这四个点垂直 X轴与曲线相交点 、 B、 C、 D, 根据电 压和电量的对应关系, A、 B、 C、 D对应的电压值分别对应 75%, 50%, 25%, 5%电 量值。 连接相邻的两点, 电压和电量为正比关系, 连接 A、 B两点, 电压处于 A、 B 点间时, 电量与电压成线性关系。 因此, 只要检测到电池的电压, 就可以清楚的获得 电量所在的百分值。 可以在电量中分别定义五个关键的临界点, 从而创建电压一电量 关系表, 电池电压和电量百分比的关系表 (表 1 ) 为: 表 1
Figure imgf000006_0001
由放电曲线可以看出,在两个电压点之间, 电量与电压可以大致成正比例的关系, 电压在临界点之间的电池电量采用差分算法分别计算出来: 例如, 电压 X在电压 A 和 B之间时, A点的电量设置为 Ql, B点的电压值设置为 Q2, 则 X点的电量百分比 值 Q等于: Q=Q2+ ( X-B ) x ( ( A-B ) I ( Q1-Q2 ) ) , 按照这种算法, 可以获得该款电池任意 电池电压点时电池的剩余电量。 同时, 从电池的实际特性中分析, 在放电过程中, 电池的电压跟放电的电流有紧 密关系。 对于同一个电池, 在不同的恒流放电电流的情况下, 电压与电量的关系存在 较大的差异, 放电电流越大, 在同一个剩余电量百分比, 电池的电压越低。 按照以上分析, 可以创建一个更高精度的电池电压一电量数据模型, 针对移动终 端的使用状态, 可以统计终端在四种比较典型的工作状态中的工作电流: 待机: 10mA、普通使用: 150mA、 2G网络通讯: 250mA, 3G网络通讯: 450mA。 根据四种典型的工作状态, 选取典型的工作电流 10mA、 150mA、 250mA、 450mA 作为放电电流, 分别测试移动终端的电池在充满电的情况下的放电曲线。 请参考图 3, 图 3是根据本发明实施例的在终端多个工作模式下工作的电池电压 与电池电量的对应关系曲线示意图, 如图 3所示, 四条曲线由上至下分别为 10mA、 150mA、 250mA、 450mA的恒流放电的电压与电量的关系曲线, 从图 3中可以清晰地 看出: 同一个电池, 不同的放电电流, 电池的放电曲线存在明显的差别, 这个差别是 造成使用单一曲线模型引入较大数据误差的一个重要原因。 根据以上分析, 从实际需要出发, 参考实验中测试的数据, 可以创建不同放电电 流的数学模型, 如图 3所示, 根据四条曲线, 测试创建供参考使用的四条数据结构模 型:
Voltage VS Capacity 10mA[]=
4.200, 100% Al, 75% B l, 50% CI , 25% Dl, 5% Voltage VS Capacity 150mA[]
4.200, 100%
A2, 75%
B2, 50%
C2, 25%
D2, 5%
Voltage VS Capacity 250mA[]
4.200, 100%
A3 , 75%
B3, 50%
C3, 25%
D3, 5%
Voltage VS Capacity 450mA[]
4.200, 100%
A4, 75%
B4, 50%
C4, 25% D4, 5%
需要说明的是, 不同的电流使用状态, 有各自的电量与电压的关系数据模型, 可 为后面数据处理备用。 这里, 可以将前面测试记录的数据需要存储在存储器中, 由于 数据量不大, 考虑到数据调用方便, 可以直接放在系统数据存储的 FLASH中。 根据手机当前状态, 判断当前手机使用哪条合适的放电曲线, 选择合适的放电数 据, 计算出准确的当前电量值。 图 4是根据本发明优选实施例的电池电量的计算流程图, 如图 4所示, 该流程包 括以下步骤 ( S401- S407)。
S401 , 判断终端当前的工作状态。
S402, 如果为睡眠状态, 执行 S406, 否则, 执行 S403。
S403 , 判断终端当前的工作状态是否为 2G通讯状态, 如果是, 执行 S406, 否则, 执行 S404。
S404, 判断终端当前的工作状态是否为 3G通讯状态, 如果是, 执行 S406, 否则, 执行 S405。
S405 , 判断终端当前的工作状态是否为普通状态, 如果是, 执行 S406, 否则, 不 执行
S406, 将预先得到的实验室测试数据和曲线数据列表数作为参考数据计算电池电
S407, 更新电池电量。 具体地, 可以举例对上述流程进行说明。例如, 手机开机后停留在普通操作状态, 手机通过当前使用电流的判断或者手机应用状态的检测, 判断手机处于普通使用实际 状态, 在计算电池电量的时候, 选择普通使用的放电曲线数据 Capacity VS Voltage 150mA[], 请同时参考图 2的示例, 计算出当前的电量: 假设当前电压落在电压 A与 电压 B之间, 则当前电量 Q为:
Q=Q2+ ( X-B ) ( ( A-B ) I ( Q1-Q2 ) ) ; 在该公式中, Q1为 150mA放电曲线的 A点电量, Q2为 150mA放电曲线的 B点 电量, A为 75%时的电池电压, B为 50%时的电池电压。 如果手机一直处于这种普通状态,稳定的使用 Capacity VS Voltage 150mA[]的曲线 数据计算电池电量。 当手机开始拨打 2G 电话的时候, 手机的耗电会变大, 电流或者手机的当前状态 会被检测出来, 在计算电池电量时, 电量与电压的关系曲线将会更新。 手机更改状态 至 2G通讯的曲线, 根据当前的电压判断电量, 获得新的电量数值, 采用的曲线更正 为 Capacity VS Voltage 250mA[]。
Q'=Q2'+ ( Χ-Β' ) ( ( Α'-Β' ) I ( Ql '- Q2' ) ) ; 在该公式中, Q'为当前电量, Ql '为 250mA放电曲线的 A'点电量, Q2'为 250mA 放电曲线的 B'点电量, A'为 75%时的电池电压, B'为 50%时的电池电压。 比较 Q'与 Q, 使显示的电量值逐步由性 Q向 Q'偏移, 从而修正真实电量值。 通 过状态或者电流的变化, 采用更准确的放电曲线, 使移动终端实时电量的值更加接近 准确值, 达到提高电量精度的目的。 上述实施例提供的电池电量的计算方法能够重点考虑电池本身的物理性能, 分析 电池的化学特性, 采用特定的电流状态来确定电池放电量与电压的关系, 进而创建多 元的数据模型, 从多角度分析计算电池的当前电量, 从而可以使电量计算精度得到较 大的改善, 提高了用户体验。 图 5是根据本发明实施例的电池电量的计算装置的结构框图, 用以实现上述实施 例提供的电池电量的计算方法。 如图 5所示, 该池电量的计算装置包括: 获取模块和 计算模块。 其中, 获取模块 10, 设置为获取预先设定的与终端的当前工作状态对应的 电池的放电数据, 其中, 终端的不同工作状态对应不同的放电数据, 放电数据记录电 压与电池电量的对应关系; 计算模块 20, 连接至获取模块 10, 设置为获得终端的电池 的当前电压, 根据当前电压与放电数据记录的对应关系计算电池当前的电量。 图 6是根据本发明优选实施例的电池电量的计算装置的结构框图, 如图 6所示, 获取模块 10可以包括: 判定单元 12, 设置为判定终端的当前工作状态; 选取单元 14, 连接至判定单元 12, 设置为根据预先设定的工作状态和该工作状态下的放电数据的对 应关系从存储的放电数据中选取对应于当前工作状态的放电数据。 优选地, 计算模块 20可以包括: 确定单元 22, 设置为获得终端的当前电压, 确 定放电数据中记录的与当前电压相邻的两个电压值;计算单元 24,连接至确定单元 22, 设置为根据相邻的两个电压值及放电数据中记录的电压与电池电量的对应关系计算当 前电池电量。 优选地, 该电池电量的计算装置还可以包括: 设定模块 30, 设置为预先设定与终 端的当前工作状态对应的电池的放电数据; 其中, 该设定模块 30可以包括: 选定单元 32, 设置为根据终端的多个工作状态选定每个工作状态下的固定工作电流作为该工作 状态下的放电电流; 测试单元 34, 连接至选定单元 32, 设置为在每个工作状态下, 根 据该工作状态下的放电电流测试在该工作状态下工作的电池在充满电的情况下进行放 电时达到多个预定电池电量时所对应的电压; 存储单元 36, 连接至测试单元 34, 设置 为将每个工作状态下的多个预定电池电量对应的电压、 及每个电压与其对应的电池电 量之间的对应关系作为放电数据进行存储。 采用上述实施例提供的电池电量的计算装置, 可以得到精确度较高的电池电量, 从而为用户提供更好的用户体验。 图 7是根据本发明实施例的终端的结构示意图, 如图 7所示, 该终端 70包括: 终 端本体 72和电池(图中未示出), 其中, 终端本体 72包括: 上述实施例提供的电池电 量的计算装置。 采用上述实施例提供的终端, 可以得到精确度较高的电池电量, 从而为用户提供 更好的用户体验。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 能够重点考虑电池本 身的物理性能, 分析电池的化学特性, 采用特定的电流状态来确定电池放电量与电压 的关系, 进而创建多元的数据模型, 从多角度分析计算电池的当前电量, 从而可以使 电量精度得到较大的改善, 提高了用户体验。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种电池电量的计算方法, 包括:
获取预先设定的与终端的当前工作状态对应的电池的放电数据, 其中, 所 述终端的不同工作状态对应不同的放电数据, 所述放电数据记录电压与电池电 量的对应关系;
获得所述终端的电池的当前电压, 根据所述当前电压与所述放电数据记录 的所述对应关系计算所述电池当前的电量。
2. 根据权利要求 1所述的方法, 其中, 预先设定与终端的当前工作状态对应的电 池的放电数据, 包括:
根据所述终端的多个所述工作状态选定每个所述工作状态下的固定工作电 流作为该工作状态下的放电电流;
在每个所述工作状态下, 根据该工作状态下的所述放电电流测试在该工作 状态下工作的所述电池在充满电的情况下进行放电时达到多个预定电池电量时 所对应的电压;
将每个所述工作状态下的多个所述预定电池电量对应的电压、 及每个所述 电压与其对应的所述电池电量之间的对应关系作为放电数据进行存储。
3. 根据权利要求 2所述的方法, 其中, 根据终端的多个工作状态选定每个所述工 作状态下的工作电流作该工作状态下的放电电流, 包括:
统计所述终端在每个所述工作状态下的多个工作电流;
在所述多个工作电流中选取工作时间最长的所述工作电流作为该工作状态 下的固定工作电流。
4. 根据权利要求 1至 3中任一项所述的方法, 其中, 获取预先设定的与终端的当 前工作状态对应的电池的放电数据, 包括:
判定所述终端的所述当前工作状态;
根据预先设定的所述工作状态和该工作状态下的所述放电数据的所述对应 关系从存储的所述放电数据中选取对应于所述当前工作状态的所述放电数据。
5. 根据权利要求 4所述的方法, 其中, 获得所述终端的电池的当前电压, 根据所 述当前电压与所述放电数据记录的所述对应关系计算所述电池当前的电量, 包 括:
获得所述终端的当前电压, 确定所述放电数据中记录的与所述当前电压相 邻的两个电压值;
根据所述相邻的两个电压值及所述放电数据中记录的所述电压与所述电池 电量的对应关系计算当前电池电量。
6. 一种电池电量的计算装置, 包括:
获取模块, 设置为获取预先设定的与终端的当前工作状态对应的电池的放 电数据, 其中, 所述终端的不同工作状态对应不同的放电数据, 所述放电数据 记录电压与电池电量的对应关系;
计算模块, 设置为获得所述终端的电池的当前电压, 根据所述当前电压与 所述放电数据记录的所述对应关系计算所述电池当前的电量。
7. 根据权利要求 6所述的装置, 其中, 所述获取模块包括:
判定单元, 设置为判定所述终端的所述当前工作状态;
选取单元, 设置为根据预先设定的所述工作状态和该工作状态下的所述放 电数据的所述对应关系从存储的所述放电数据中选取对应于所述当前工作状态 的所述放电数据。
8. 根据权利要求 6或 7所述的装置, 其中, 所述计算模块包括: 确定单元, 设置为获得所述终端的当前电压, 确定所述放电数据中记录的 与所述当前电压相邻的两个电压值;
计算单元, 设置为根据所述相邻的两个电压值及所述放电数据中记录的所 述电压与所述电池电量的对应关系计算当前电池电量。
9. 根据权利要求 8所述的装置, 其中, 所述装置还包括: 设定模块,设置为预先设定与终端的当前工作状态对应的电池的放电数据; 所述设定模块包括:
选定单元, 设置为根据所述终端的多个所述工作状态选定每个所述工作状 态下的固定工作电流作为该工作状态下的放电电流; 测试单元, 设置为在每个所述工作状态下, 根据该工作状态下的所述放电 电流测试在该工作状态下工作的所述电池在充满电的情况下进行放电时达到多 个预定电池电量时所对应的电压;
存储单元, 设置为将每个所述工作状态下的多个所述预定电池电量对应的 电压、 及每个所述电压与其对应的所述电池电量之间的对应关系作为放电数据 进行存储。
10. 一种终端, 包括: 终端本体和电池,
所述终端本体包括:权利要求 6至 9中任一项所述的电池电量的计算装置。
PCT/CN2012/071542 2011-11-23 2012-02-23 电池电量的计算方法及装置、终端 WO2013075420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103763542A CN102508172A (zh) 2011-11-23 2011-11-23 电池电量的计算方法及装置、终端
CN201110376354.2 2011-11-23

Publications (1)

Publication Number Publication Date
WO2013075420A1 true WO2013075420A1 (zh) 2013-05-30

Family

ID=46220277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071542 WO2013075420A1 (zh) 2011-11-23 2012-02-23 电池电量的计算方法及装置、终端

Country Status (2)

Country Link
CN (1) CN102508172A (zh)
WO (1) WO2013075420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014749A (zh) * 2020-09-01 2020-12-01 珠海艾派克微电子有限公司 电池显示电量的确定方法、装置、芯片及存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884987B (zh) * 2012-12-19 2017-11-07 北京创智信科科技股份有限公司 蓄电池的检测方法
US9210662B1 (en) * 2014-05-29 2015-12-08 Apple Inc. Adaptive battery life extension
CN103974323B (zh) * 2014-05-30 2019-01-15 努比亚技术有限公司 移动终端及其信息上报方法
CN104991191B (zh) * 2015-05-06 2018-12-07 惠州Tcl移动通信有限公司 动态检测移动终端电池电量的系统及方法
CN105269583B (zh) * 2015-10-29 2022-05-10 青岛海尔智能家电科技有限公司 一种机器人运动控制方法、装置及机器人
CN105807696A (zh) * 2016-05-16 2016-07-27 深圳市瑞盛达技术有限公司 一种智能警用抓捕手套及其控制系统和方法
CN106249163A (zh) * 2016-08-19 2016-12-21 山东智洋电气股份有限公司 变电站蓄电池组可用时间的估算方法
CN106707187B (zh) * 2016-12-26 2020-06-23 宁德时代新能源科技股份有限公司 一种电池目标soc的确定方法及装置
CN106814330A (zh) * 2017-01-12 2017-06-09 珠海市魅族科技有限公司 电量计量方法及装置
CN106842055A (zh) * 2017-02-10 2017-06-13 郑州云海信息技术有限公司 一种检测电池电量的系统及方法
CN108957328A (zh) * 2017-05-19 2018-12-07 江苏猎吧科技有限公司 一种车用识别系统的电量负载均衡算法
CN107402356B (zh) * 2017-08-04 2020-03-20 南京南瑞继保电气有限公司 一种基于动态参数辨识的ekf估算铅酸电池soc方法
CN109149701B (zh) * 2018-09-17 2020-12-18 广东小天才科技有限公司 便携式设备回充电量的显示方法、装置、设备及存储介质
CN109596983B (zh) * 2018-11-19 2020-07-14 清华大学 一种电池老化过程中容量跳水的预测方法
CN112014752A (zh) * 2019-05-29 2020-12-01 苏州安靠电源有限公司 一种锂电池soc-ocv测试方法
CN112114265B (zh) * 2019-06-19 2024-03-08 深圳君正时代集成电路有限公司 一种获知电池容量的方法
CN110456281B (zh) * 2019-06-28 2023-03-24 卧安科技(深圳)有限公司 电池电量检测方法、电子设备以及存储介质
CN111487536A (zh) * 2020-05-21 2020-08-04 歌尔科技有限公司 耳机盒电池电量采集方法、装置、耳机盒及存储介质
WO2022047767A1 (zh) * 2020-09-07 2022-03-10 海能达通信股份有限公司 一种电池电量的检测方法、装置及便携式电子设备
CN114236405B (zh) * 2020-09-07 2024-01-12 海能达通信股份有限公司 一种电池电量的检测方法、装置及便携式电子设备
CN113608142A (zh) * 2021-07-21 2021-11-05 科华数据股份有限公司 剩余电量确定方法、装置和不间断电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431521A (zh) * 2003-01-16 2003-07-23 华南理工大学 锂离子电池电量的测量方法及其装置
KR20030068339A (ko) * 2002-02-15 2003-08-21 삼성전자주식회사 전자기기에서 배터리의 수명 계산과 기기이상 여부를판단하는방법
CN1889736A (zh) * 2006-08-08 2007-01-03 北京天碁科技有限公司 移动通信终端电池电量的测量方法
CN101728588A (zh) * 2008-10-10 2010-06-09 鸿富锦精密工业(深圳)有限公司 无线通信终端及其电池电量确定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112786A (ja) * 2004-10-12 2006-04-27 Sanyo Electric Co Ltd 電池の残容量検出方法及び電源装置
KR101134894B1 (ko) * 2006-06-28 2012-04-13 엘지전자 주식회사 배터리 잔량 검출과 표시를 위한 장치 및 방법
JP2009042183A (ja) * 2007-08-10 2009-02-26 Canon Inc 電子機器及びバッテリチェック方法
CN101587170B (zh) * 2008-05-23 2011-05-25 英华达股份有限公司 锂电池危险状态预警方法及其可携式电子装置
CN102147450A (zh) * 2010-12-22 2011-08-10 航天恒星科技有限公司 一种锂电池电量监测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068339A (ko) * 2002-02-15 2003-08-21 삼성전자주식회사 전자기기에서 배터리의 수명 계산과 기기이상 여부를판단하는방법
CN1431521A (zh) * 2003-01-16 2003-07-23 华南理工大学 锂离子电池电量的测量方法及其装置
CN1889736A (zh) * 2006-08-08 2007-01-03 北京天碁科技有限公司 移动通信终端电池电量的测量方法
CN101728588A (zh) * 2008-10-10 2010-06-09 鸿富锦精密工业(深圳)有限公司 无线通信终端及其电池电量确定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014749A (zh) * 2020-09-01 2020-12-01 珠海艾派克微电子有限公司 电池显示电量的确定方法、装置、芯片及存储介质
CN112014749B (zh) * 2020-09-01 2023-06-27 极海微电子股份有限公司 电池显示电量的确定方法、装置、芯片及存储介质

Also Published As

Publication number Publication date
CN102508172A (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2013075420A1 (zh) 电池电量的计算方法及装置、终端
CN106324508B (zh) 电池健康状态的检测装置及方法
CN106461732B (zh) 用于估计电池的健康状态的方法
CN102124354B (zh) 使用电池电压行为估计电池电阻特性的装置及方法
TWI420126B (zh) 電池容量預測裝置及其預測方法
CN110109030B (zh) 电池组一致性评价方法与电池组均衡策略
CN108603918B (zh) 测试电池单体的性能的装置和方法
WO2012152231A1 (zh) 动力电池包一致性评估方法和装置
CN104698388A (zh) 一种移动终端的电池老化检测方法及其装置
US20140306712A1 (en) Tracking aging effect on battery impedance and tracking battery state of health
WO2014101807A1 (zh) 一种显示电池电量的方法和终端
CN106249168B (zh) 一种电池曲线修正方法和装置
JP6881577B2 (ja) 二次電池の容量維持率を推定する装置及び方法
KR101665566B1 (ko) 배터리 용량 퇴화 추정 장치 및 방법
WO2021143592A1 (zh) 电池等效电路模型的建立方法、健康状态估算方法及装置
WO2014161325A1 (zh) 一种检测电池电量的方法、装置及终端
TW201403105A (zh) 電池電量計算方法及系統
TW200824169A (en) Method for predicting remaining capacity of a battery
CN113359044A (zh) 测量电池剩余容量的方法、装置及设备
WO2019140956A1 (zh) 电量计量精度检测方法、其装置及计算机存储介质
CN114035096B (zh) 电化学装置soh评估方法、电子设备及电池系统
US9759782B2 (en) Impedance-based battery state estimation method
CN113009360A (zh) 锂电池soc-ocv测试方法、装置及终端设备
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
KR100844040B1 (ko) 충전배터리 용량 검증방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851857

Country of ref document: EP

Kind code of ref document: A1