WO2014101807A1 - 一种显示电池电量的方法和终端 - Google Patents

一种显示电池电量的方法和终端 Download PDF

Info

Publication number
WO2014101807A1
WO2014101807A1 PCT/CN2013/090618 CN2013090618W WO2014101807A1 WO 2014101807 A1 WO2014101807 A1 WO 2014101807A1 CN 2013090618 W CN2013090618 W CN 2013090618W WO 2014101807 A1 WO2014101807 A1 WO 2014101807A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ocv
power
soc curve
terminal
Prior art date
Application number
PCT/CN2013/090618
Other languages
English (en)
French (fr)
Inventor
王光琳
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP13869005.2A priority Critical patent/EP2851700B1/en
Publication of WO2014101807A1 publication Critical patent/WO2014101807A1/zh
Priority to US14/569,843 priority patent/US10345382B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a method and terminal for displaying battery power.
  • Battery power is an important part of the smart terminal.
  • the battery will be aging, and the cell display is full.
  • Grid but can not use enough time, after the battery aging, the same battery voltage represents a change in the capacity of the battery, the corresponding battery capacity becomes lower, causing the displayed battery to differ greatly from the actual battery power, showing 20% or
  • the phone may automatically shut down. After the battery ages, the capacity of the battery itself becomes lower. The percentage of the capacity is still obtained according to the normal state table, which causes great trouble to the user experience.
  • Embodiments of the present invention provide a method for displaying battery power and related terminals for improving the correctness of battery power display.
  • the embodiment of the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a method for displaying battery power, including:
  • the battery power increase is obtained according to a preset time interval, and the battery has been discharged before entering the charging state;
  • the amount of electricity of the battery is displayed based on the generated OC V-SOC curve.
  • the open circuit voltage OCV of the battery includes:
  • the generating an open circuit voltage and a battery power according to the acquired power quantity of the battery and the OCV OCV-SOC curve including:
  • a mapping relationship is established between each power level and the OCV corresponding to each of the power levels to generate the OCV-SOC curve.
  • the method further includes: after the battery enters a charging state If the interruption is made midway or the charging time exceeds the charging time limit, the battery is displayed with the OCV-SOC curve stored in the terminal to which the battery belongs.
  • the method further includes: when the battery is in a charging process Obtaining a temperature parameter of the battery;
  • the embodiment of the present invention further provides a terminal for displaying a battery power, including:
  • a first obtaining unit configured to acquire, when the battery enters a charging state, increase the power of the battery according to a preset time interval, and the battery has been discharged before entering the charging state
  • a second obtaining unit configured to increase the amount of power of the battery acquired by the first acquiring unit When the preset threshold is reached, the amount of power stored in the battery and the open circuit voltage OCV are obtained;
  • a generating unit configured to generate an open circuit voltage-battery voltage OCV-SOC curve according to the amount of electricity stored in the battery acquired by the second acquiring unit and the OCV when the battery is charged;
  • the battery power is displayed in an OCV-SOC curve generated according to the generating unit.
  • the second acquiring unit includes:
  • a detecting subunit configured to detect a voltage and a current of the battery at a time when the obtained power increase of the battery reaches a preset threshold
  • a first calculating subunit configured to accumulate an increase in the amount of power of the battery acquired by the first acquiring unit, to obtain a quantity of power stored in the battery at this time;
  • a second calculating subunit configured to calculate an ocv of the battery at this time according to the voltage and current of the battery detected by the detecting subunit.
  • the generating unit includes:
  • a third calculating subunit configured to calculate a total capacity of the battery under current conditions according to the amount of power stored in the battery
  • a dividing subunit configured to divide the total capacity of the battery calculated by the third calculating subunit into a plurality of power levels
  • mapping subunit configured to establish a mapping relationship between each power level divided by the divided subunits and an OCV corresponding to each of the respective power levels, to generate the OCV-SOC curve.
  • the display unit is further configured to enter the charging If the state is interrupted or the charging time exceeds the charging time limit after the state, the battery is displayed with the OCV-SOC curve stored in the terminal to which the battery belongs.
  • the terminal further includes:
  • An obtaining unit configured to acquire a temperature parameter of the battery when the battery is in a charging process
  • a replacement unit configured to replace, by using an OCV-SOC curve generated by the generating unit, a saved in a terminal to which the battery belongs
  • the temperature parameter corresponds to an OCV-SOC curve.
  • the embodiments of the present invention have the following advantages:
  • the battery enters the charging state after the discharge is completed, until the charging is completed, and the battery power is increased according to the preset time interval during the process from when the battery is not stored until the battery is fully charged.
  • the power increase reaches the preset threshold, the battery charge and OCV are obtained, and after the charging is completed, an OCV-SOC curve for the current battery storage capacity is generated, and the generated OCV-SOC curve is used to display the battery power.
  • the OCV-SOC curve generated according to the current battery storage capacity can correctly display the current battery power without being affected by the battery aging. Causes a deviation in the display of the amount of electricity.
  • FIG. 1 is a block flow diagram of a method for displaying battery power according to an embodiment of the present invention
  • FIG. 2 is a block flow diagram of another method for displaying battery power according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another terminal for displaying battery power according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method and terminal for displaying battery power for improving the correctness of battery power display.
  • a method for displaying battery power according to an embodiment of the present invention includes the following steps:
  • the battery power is increased according to the preset time interval, and the power is increased.
  • the pool has been discharged before it enters the state of charge.
  • the battery is first fully discharged, and the discharge is completed within a predetermined period of time, and before the discharge is completed, do not insert a charger or a universal serial bus (USB, Universal Serial BUS) to prevent the battery from charging. status.
  • USB Universal Serial BUS
  • the discharge is complete, the battery is charged and the battery enters the charging state.
  • the battery's power increase is obtained according to the preset time interval, that is, by increasing the power increase of the battery during the preset time interval, by at a specific time (for example, from charging to the first preset)
  • the time at which the time interval arrives, or the time at which any preset time interval arrives before the completion of charging determines how much power the battery is charged. In actual applications, it can be triggered by a timer, and the charging is calculated every predetermined time interval. With the power, you can get the battery's power increase during the preset time interval.
  • the battery management module there is a task to monitor the status of the battery in real time. Timers can be added to the monitoring task. For example, the preset time interval is 3 seconds or less.
  • the timer can trigger a real-time calculation to calculate the amount of power charged at this time, thereby obtaining the increase in the amount of power of the battery. Calculating the amount of charge can be calculated by a coulomb counter to get the amount of charge that charges the battery.
  • the battery enters the charging state cannot be interrupted; otherwise, the terminal that displays the battery power cannot continue to perform the subsequent steps to generate the OCV- SOC curve.
  • the battery power is displayed by the OCV-SOC curve stored in the terminal to which the battery belongs, initially in the terminal.
  • the built-in OCV-SOC curve is the original open circuit voltage-battery power curve. It is the initial configuration of the terminal when it leaves the factory.
  • the charging time limit can usually be set flexibly, for example, set to 24 hours, or 36 hours, or 48 hours, and the like.
  • the OCV-SOC curve saved in the terminal (which may be the original OCV-SOC curve or the last generated OCV- The SOC curve) is used to display the battery level, and is also used for better compatibility with applications that cannot achieve full charging.
  • the power increase of the battery is obtained according to a preset time interval, and when the power increase of the battery reaches a preset threshold, the power stored in the battery at this time is obtained.
  • the preset threshold can be set to 3 mAh, 5 mAh, etc., that is, when the amount of charge increase reaches 3 mAh, the amount of power stored in the battery at this time and the OCV at this time can be obtained.
  • the amount of electricity and OCV stored in the battery is stored in a table. Among them, the increase in the amount of electricity of the battery refers to the increase in the amount of electricity stored in the battery when the battery is charged.
  • the power consumption of the obtained battery reaches a preset threshold, the amount of power stored in the battery and the OCV of the battery are obtained, which may include the following steps:
  • A2 accumulating the increase in the amount of power of the battery, and obtaining the amount of electricity stored in the battery at this time;
  • step A1 when the battery power increases to a preset threshold, the voltage and current of the battery are detected at this time, and the voltage signal value and the current signal value of the battery are obtained.
  • step A2 the battery can be used by the coulomb counter.
  • the power increase is calculated, the amount of power stored in the battery at this time can be obtained. For example, when the charge is increased by 3 mAh, the charge calculated in step 101 is superimposed, and the battery is charged at this time. .
  • step A3 after the voltage and current of the battery are obtained, the OCV is calculated based on the voltage and the corresponding current. For the implementation of step A3, it can be calculated as follows:
  • Vbat OCV+IxR
  • Vbat is the voltage detected by step A1
  • I is the current detected by step A1
  • two sets of voltages and currents are respectively detected by continuously performing step A1 twice: Vbatl and II, Vbat2 and 12, using the foregoing
  • the formula can be used to obtain the equations, so that the value of OCV and R can be solved, where R is the internal resistance of the battery.
  • the step 102 is performed repeatedly, and the step is performed as long as the battery power increase reaches the preset threshold, and the result of multiple calculations can be obtained after multiple executions.
  • the calculation results are saved in a table.
  • step 103 it is necessary to determine whether the battery has been charged, and if so, step 103 is performed.
  • the battery can be set to a predetermined voltage.
  • the predetermined voltage can be set to 4.2V. When the voltage of the mobile phone battery reaches 4.2V, it can indicate that the battery has been charged.
  • the predetermined voltage may be set according to the type of the terminal, for example, it is set to 3.5V, 10.8V, etc., and is only described herein and is not limited. It is also possible to set a predetermined amount of power for the battery, and the battery can be considered to have been charged as long as the amount of power stored in the battery reaches the predetermined amount.
  • the method provided by the embodiment of the present invention may further include: if the battery is not fully charged, it needs to be triggered multiple times when the battery power increases to a preset threshold. At this time, the amount of power stored in the battery and the OCV are executed, that is, when the battery charging is not completed, step 102 needs to be repeatedly performed to calculate the amount of power stored in the battery and the ocv corresponding to the amount of power stored each time.
  • the OCV-SOC curve can be generated according to the stored amount of electricity and the OCV of the obtained battery, and the amount of electricity stored in the battery calculated multiple times based on the foregoing steps is multiple times.
  • the corresponding OCV-SOC curve generated by the OCV can represent the amount of electricity stored in the battery under the current conditions, especially when the battery ages, which usually causes the battery capacity to decline and the internal resistance of the battery to increase, and the terminal saves
  • the OCV-SOC curve (which may be the original OCV-SOC curve, or the last generated OCV-SOC curve) may not necessarily represent the current storage capacity of the battery itself under the current conditions, according to the method provided by the embodiment of the present invention.
  • the generated OCV-SOC curve can represent the true capacity of the current battery.
  • the OCV-SOC curve is generated according to the stored amount of the battery and the OCV.
  • Bl according to the amount of electricity stored in the battery, calculate the total capacity of the battery under the current conditions
  • step B1 when the battery has been charged, the amount of power stored in the battery at this time is the total capacity of the battery under the current condition.
  • step B2 the total capacity of the battery is divided into a plurality of power levels, and the total battery capacity level is from 0% to 100%.
  • the battery capacity corresponding to each percentage point is different, and then according to The battery capacity corresponding to each percentage point, find the corresponding internal voltage of the OCV battery, you can generate the OCV-SOC curve. For example, if the total capacity of the battery is divided into 100 parts, then every 1% of the power can be a power level. After a new power point is determined, the new power will be determined according to the OCV-SOC curve saved in the terminal.
  • the point is compared with the original OCV-SOC curve to find the point where the new power point is closest to the original power value, and the OCV corresponding to the closest point is taken as the OCV corresponding to the new power point, thereby establishing a relationship between the two.
  • a new OCV-SOC curve can be generated.
  • the battery power is displayed.
  • the battery power is displayed according to the generated OCV-SOC curve, and the generated OCV-SOC curve is generated according to the total power stored in the battery under the current situation, which can represent the current battery.
  • the true capacity allows the terminal user to display the correct battery level.
  • the method provided in the embodiment of the present invention may further include the following steps: acquiring a temperature parameter of the battery when the battery is in the charging process;
  • the generated OCV-SOC curve is used to replace the OCV-SOC corresponding to the temperature parameter stored in the terminal to which the battery belongs. curve.
  • various OCV-SOC curves are set in the terminal according to the temperature of the terminal.
  • the temperature range may be 0 to 20 degrees
  • the range may be about 40 degrees) corresponding to another OCV-SOC curve or the like.
  • the newly generated OCV-SOC curve is replaced by the OCV-SOC curve stored in the terminal, it is necessary to consider that the terminal is newly generated.
  • the temperature parameter in the state of the OCV-SOC curve is then replaced with the newly generated OCV-SOC curve to replace the OCV-SOC curve corresponding to the temperature parameter stored in the terminal.
  • the battery enters the charging state after the discharge is completed, until the charging is completed, and the battery power is increased according to the preset time interval during the process from when the battery is not stored until the battery is fully charged.
  • the power increase reaches the preset threshold
  • the battery charge and OCV are obtained, and after the charging is completed, an OCV-SOC curve for the current battery storage capacity is generated, and the generated OCV-SOC curve is used to display the battery power.
  • the OCV-SOC curve generated according to the current battery storage capacity can correctly display the current battery power without being affected by the battery aging. Causes a deviation in the display of the amount of electricity.
  • the above embodiment describes a method for displaying battery power according to an embodiment of the present invention. The following is a detailed description of an actual application scenario. Referring to FIG. 2, the battery of the mobile phone terminal is taken as an example for description:
  • the terminal issues a calibration command.
  • the battery After starting calibration, the battery enters the charging state. During this process, the coulomb counter is always in the process of working, and the battery's charging power is increased at preset intervals.
  • Table 1 is a data collection table for obtaining battery power.
  • the internal resistance is calculated once every 30 times of recording, and the charging current is changed according to the formula calculated by the initial electric quantity Rl.
  • the newly obtained electricity value recalculate each 1% of the electricity according to the electricity division, and after determining the new electricity point, compare with the original OCV-SOC curve to find the nearest electricity value, and the nearest electricity value.
  • Corresponding OCV value is used as the OCV value corresponding to the new power point, and the new power point is mapped to the corresponding OCV value.
  • the OCV-SOV curve is obtained, and the temperature stored in the terminal is replaced according to the temperature information.
  • the accumulated battery power of the coulomb counter is the total capacity of the aged battery at this time.
  • the battery is charged from the completion of the discharge until the charging is completed.
  • the battery is increased in number of times, and when the battery reaches a preset threshold, the battery is obtained.
  • the stored capacity and OCV after the completion of charging, generates an OCV-SOC curve for the current battery's storage capacity, and uses the generated OCV-SOC curve to display the battery's power. Even after the battery ages, the generated OCV-SOC curve is correct.
  • the current battery level is displayed, and the display battery is not affected by the aging of the battery.
  • the above embodiment describes the method for displaying the battery power provided by the present invention.
  • the terminal for displaying the battery power provided by the embodiment of the present invention is introduced.
  • the terminal for displaying the battery power provided by the embodiment of the present invention may be specifically built in In the terminal or in the management module of the battery, the display battery power is realized by software or hardware integration.
  • a terminal corresponding to the method described in the foregoing method embodiment is introduced.
  • the terminal 300 displaying the battery power includes:
  • the first obtaining unit 301 is configured to acquire, when the battery enters the charging state, the power increase of the battery according to a preset time interval, and the battery has been discharged before entering the charging state;
  • the second obtaining unit 302 is configured to acquire, when the increase in the amount of power of the battery acquired by the first acquiring unit reaches a preset threshold, the amount of power stored in the battery and the open circuit voltage OCV;
  • a generating unit 303 configured to generate an open circuit voltage-battery power OCV-SOC curve according to the amount of power stored in the battery acquired by the second acquiring unit and the OCV when the battery is charged;
  • the display unit 304 is configured to display the battery power according to the OCV-SOC curve generated by the generating unit.
  • the second obtaining unit 302 as one of the implementable manners, specifically may include (not shown in FIG. 3):
  • a detecting subunit configured to detect a voltage and a current of the battery at a time when the obtained power increase of the battery reaches a preset threshold
  • a first calculating subunit configured to accumulate an increase in the amount of power of the battery acquired by the first acquiring unit, to obtain a quantity of power stored in the battery at this time;
  • a second calculating subunit configured to calculate an ocv of the battery at this time according to the voltage and current of the battery detected by the detecting subunit.
  • the specific may include (not shown in FIG. 3):
  • a third calculating subunit configured to calculate a total capacity of the battery under current conditions according to the amount of power stored in the battery
  • a dividing subunit configured to divide the total capacity of the battery calculated by the third calculating subunit into a plurality of power levels
  • mapping sub-unit configured to establish a mapping relationship between the respective power levels divided by the divided sub-units and the OCVs corresponding to the respective power levels, to generate an OCV-SOC curve.
  • the display unit 304 as one of the implementable modes, if the battery is interrupted or the charging time exceeds the charging time limit after entering the charging state, the battery belongs to The OCV-SOC curve saved in the terminal shows the amount of power of the battery.
  • the terminal 300 displaying the battery power may also include (not shown in FIG. 3):
  • An obtaining unit configured to acquire a temperature parameter of the battery when the battery is in a charging process
  • a replacement unit configured to replace, by using an OCV-SOC curve generated by the generating unit, a saved in a terminal to which the battery belongs
  • the temperature parameter corresponds to an OCV-SOC curve.
  • the battery enters the charging state after the discharge is completed, until the charging is completed, and the first obtaining unit acquires the power increase of the battery according to the preset time interval during the process from the time when the battery is not stored until the battery is fully charged.
  • the second obtaining unit acquires the amount of electricity and the OCV stored in the battery when the power increase of the obtained battery reaches a preset threshold, and the generating unit generates an OCV-SOC curve for the storage capacity of the current battery after the charging is completed, and displays The unit displays the battery level using the generated OCV-SOC curve.
  • the terminal power displayed by the terminal for displaying the battery power provided by the embodiment of the present invention even after the battery ages, the OCV-SOC curve generated according to the current battery storage capacity can correctly display the current battery power, and is not affected by the battery.
  • the effect of aging causes a deviation in the display of the amount of electricity.
  • another terminal for displaying the battery power provided by the embodiment of the present invention is introduced. Referring to FIG. 4, the terminal 400 for displaying the battery power includes:
  • the input terminal 401, the output terminal 402, the processor 403, and the memory 404 (wherein the number of the processors 403 in the display terminal 400 may be one or more, and one processor in Fig. 4 is taken as an example).
  • the input terminal 401, the output terminal 402, the processor 403, and the memory 404 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 403 is configured to: when the battery enters the charging state, acquire the power increase of the battery according to a preset time interval, and the battery has been discharged before entering the charging state; when the obtained battery is charged When the amplification reaches a preset threshold, the amount of electricity stored in the battery at this time and the open circuit voltage OCV of the battery are obtained; when the battery is charged, according to the obtained amount of electricity and the stored battery The OCV generates an open circuit voltage-battery charge OCV-SOC curve; the battery is displayed according to the generated OCV-SOC curve.
  • the obtained power consumption of the battery reaches a preset threshold
  • the power stored in the battery and the open circuit voltage OCV of the battery are obtained.
  • the processor 403 may generate an open circuit voltage-battery OCV-SOC curve according to the obtained amount of the battery and the OCV, which may include:
  • a mapping relationship is established between each power level and the OCV corresponding to each of the power levels to generate the OCV-SOC curve.
  • the processor 403 is further configured to: perform the following steps: if the battery is interrupted or the charging time exceeds the charging time limit after entering the charging state, the battery is saved in the terminal to which the battery belongs The OCV-SOC curve shows the amount of electricity in the battery.
  • the processor 403 may be further configured to: obtain a temperature parameter of the battery when the battery is in a charging process;
  • the battery enters the charging state after the discharge is completed, until the charging is completed, and the processor obtains the power increase of the battery according to the preset time interval during the process from when the battery is not stored until the battery is full.
  • the processor acquires the amount of power and OCV stored in the battery, and the processor generates an ocv-soc curve for the current battery storage capacity after the charging is completed, and the generated ocv is generated by the processor.
  • the -soc curve shows the battery level.
  • the ocv-soc curve generated according to the current battery storage capacity can correctly display the current battery power without being affected by the battery aging. Causes a deviation in the display of the amount of electricity.
  • the medium can be a read only memory, a magnetic disk or a compact disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种显示电池电量的方法和终端,用于提高电池电量显示的正确性。所述方法包括:当电池进入充电状态时,按照预定时间间隔获取所述电池的电量增幅,所述电池在进入充电状态之前已经放电完成(101);当获取的所述电池的电量增幅达到预置的阈值时,获取此时所述电池所蓄存的电量和所述电池的开路电压OCV(102);当所述电池充电完成时,根据获取的所述电池所蓄存的电量和所述OCV生成开路电压-电池电量OCV-SOC曲线(103);根据生成的所述OCV-SOC曲线显示所述电池的电量(104)。

Description

一种显示电池电量的方法和终端
技术领域
本发明涉及电子技术领域, 尤其涉及一种显示电池电量的方法和终端。
背景技术
随着电子信息技术的发展, 移动电话、 笔记本等便携式的终端大量出现。 人们更需要对终端的电池电量进行监测, 以便合理的管理电源能量。
电池电量显示在智能终端中是很重要的环节。 当前, 大多数终端都是通过 测量电池电压, 来估算相对应的电池剩余电量。 根据系统电池电压与容量对应 关系, 得到类似手机上常见的电量粗略显示的分格基准。 这种分格显示电量的 方式过于粗糙, 显示往往不准确, 特别是对于长时间使用的电池, 例如在循环 使用电池几百次以上之后, 电池会出现老化的情况, 分格显示电量显示是满格, 却不能使用足够的时间, 在电池老化后, 相同电池电压代表电池的容量发生了 变化, 对应的电池的容量变低了, 造成显示的电量与实际电池电量差别很大, 显示 20 %或者更多百分比电量时, 手机就可能自动关机了, 电池老化后, 电池 本身容量是变低了, 仍就根据正常状态的表格, 来获取容量百分比, 给用户使 用体验造成很大困扰。
发明内容
本发明实施例提供了一种显示电池电量的方法和相关终端, 用于提高电池 电量显示的正确性。
为解决上述技术问题, 本发明实施例提供以下技术方案:
一方面, 本发明实施例提供一种显示电池电量的方法, 包括:
当电池进入充电状态时, 按照预设时间间隔获取所述电池的电量增幅, 所 述电池在进入充电状态之前已经放电完成;
当获取的所述电池的电量增幅达到预置的阔值时, 获取此时所述电池所蓄 存的电量和所述电池的开路电压 OCV;
当所述电池充电完成时, 根据获取的所述电池所蓄存的电量和所述 OCV生 成开路电压-电池电量 ocv-soc曲线;
根据生成的所述 OC V-SOC曲线显示所述电池的电量。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述当获取的所 述电池的电量增幅达到预置的阔值时, 获取此时所述电池所蓄存的电量和所述 电池的开路电压 OCV, 包括:
当获取的所述电池的电量增幅达到预置的阔值时, 检测此时所述电池的电 压和电流;
对所述电池的电量增幅进行累计, 得到此时所述电池所蓄存的电量; 才艮据所述电池的电压和电流计算此时所述电池的 ocv。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述根据获取的所述电池所蓄存的电量和所述 OCV生成开路电压 -电池 电量 OCV-SOC曲线, 包括:
才艮据所述电池所蓄存的电量, 计算出当前状况下所述电池的总容量; 将所述电池的总容量划分为多个电量等级;
将各个电量等级和所述各个电量等级分别对应的 OCV建立映射关系, 生成 所述 OCV-SOC曲线。
结合第一方面或第一方面的第一种可能或第二种可能的实现方式, 在第一 方面的第三种可能的实现方式中, 所述方法还包括: 所述电池在进入充电状态 后若中途被打断或充电时间超过充电时限, 以所述电池所属的终端中保存的 OCV-SOC曲线显示所述电池的电量。
结合第一方面或第一方面的第一种可能或第二种可能的实现方式, 在第一 方面的第四种可能的实现方式中, 所述方法还包括: 在所述电池处于充电过程 中时, 获取所述电池的温度参数;
根据获取的所述电池所蓄存的电量和所述 OCV 生成开路电压-电池电量 OCV-SOC曲线之后, 使用生成的所述 OCV-SOC曲线替换所述电池所属的终端 中保存的与所述温度参数相对应的 OCV-SOC曲线。
第二方面, 本发明实施例还提供显示电池电量的终端, 包括:
第一获取单元, 用于当电池进入充电状态时, 按照预设时间间隔获取所述 电池的电量增幅, 所述电池在进入充电状态之前已经放电完成;
第二获取单元, 用于当所述第一获取单元获取到的所述电池的电量的增幅 达到预置的阔值时, 获取此时所述电池所蓄存的电量和开路电压 OCV;
生成单元, 用于当所述电池充电完成时, 根据所述第二获取单元获取到的 所述电池所蓄存的电量和所述 OCV生成开路电压-电池电量 OCV-SOC曲线; 显示单元,用于以根据所述生成单元生成的 OCV-SOC曲线显示所述电池电 量。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第二获取单 元, 包括;
检测子单元, 用于当获取的所述电池的电量增幅达到预置的阔值时, 检测 此时所述电池的电压和电流;
第一计算子单元, 用于对所述第一获取单元获取的所述电池的电量增幅进 行累计, 得到此时所述电池所蓄存的电量;
第二计算子单元, 用于根据所述检测子单元检测到的所述电池的电压和电 流计算此时所述电池的 ocv。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二种 可能的实现方式中, 所述生成单元, 包括:
第三计算子单元, 用于根据所述电池所蓄存的电量, 计算出当前状况下所 述电池的总容量;
划分子单元, 用于将所述第三计算子单元计算出的所述电池的总容量划分 为多个电量等级;
映射子单元, 用于将所述划分子单元划分出的各个电量等级和所述各个电 量等级分别对应的 OCV建立映射关系, 生成所述 OCV-SOC曲线。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式, 在第二 方面的第三种可能的实现方式中, 所述显示单元, 还用于所述电池在进入充电 状态后若中途被打断或充电时间超过充电时限, 以所述电池所属的终端中保存 的 OCV-SOC曲线显示所述电池的电量。
结合第二方面或第二方面的第一种可能或第二种可能的实现方式, 在第二 方面的第四种可能的实现方式中, 所述终端还包括:
获取单元, 用于在所述电池处于充电过程中时, 获取所述电池的温度参数; 替换单元,用于使用所述生成单元生成的 OCV-SOC曲线替换所述电池所属 的终端中保存的与所述温度参数相对应的 OCV-SOC曲线。
从以上技术方案可以看出, 本发明实施例具有以下优点: 在本发明提供的实施例中, 电池从放电完成之后进入充电状态, 直至充电 完成, 在电池从没有蓄存电量直至充满的过程中, 按照预设时间间隔获取电池 的电量增幅, 当获取的电池的电量增幅达到预置的阔值时, 获取电池所蓄存的 电量和 OCV,在充电完成之后生成针对当前电池的蓄存容量的 OCV-SOC曲线, 用生成的 OCV-SOC曲线显示电池电量。按照本发明实施例提供的显示电池电量 的方法, 即使电池发生老化后,根据当前电池的蓄存容量所生成的 OCV-SOC曲 线也能够正确显示当前电池的电量, 不会受到电池老化的影响而导致显示电量 出现的偏差。
附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域的技术人员来讲, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例提供的一种显示电池电量的方法的方框流程示意图; 图 2为本发明实施例提供的另一种显示电池电量的方法的方框流程示意图; 图 3为本发明实施例提供的一种显示电池电量的终端的结构示意图; 图 4为本发明实施例提供的另一种显示电池电量的终端的结构示意图。
具体实施方式
本发明实施例提供了一种显示电池电量的方法和终端, 用于提高电池电量 显示的正确性。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 下面所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。 基于本发明中的实施例, 本领域的技术人员所获得的所有其他实施例, 都属于 本发明保护的范围。
本发明实施例提供的一种显示电池电量的方法, 如图 1 所示, 包括如下步 骤:
101、 当电池进入充电状态时, 按照预设时间间隔获取电池的电量增幅, 电 池在进入充电状态之前已经放电完成。
在本发明实施例中, 电池首先进行充分的放电, 在一个预定的时间段内放 电完成,并且放电完成前,不要插入充电器或通用串行总线( USB , Universal Serial BUS ), 避免电池进入充电状态。 当放电完成之后, 对该电池进行充电, 此时电 池才会进入充电状态。
当电池进入充电状态时, 按照预设时间间隔获取电池的电量增幅, 即通过 获取在预设时间间隔内对电池充电的电量增幅, 通过在特定时刻 (例如, 从充 电开始到第一个预设时间间隔到达的时刻, 或者在充电完成前任一个预设时间 间隔到达的时刻)确定该电池充了多少的电量, 在实际应用中, 可以通过定时 器触发, 每间隔一预定时间间隔计算一次充电的电量, 就可以获取到在预设时 间间隔内电池的电量增幅。 在电池的管理模块中, 有一个任务能够实时监测电 池的状态, 在监测任务中可以添加定时器, 例如预设时间间隔为 3 秒或者更短 的时间, 以 3秒为例, 则每间隔 3秒, 定时器可以触发实时计算, 计算出此时 充电的电量, 从而获取到电池的电量增幅。 计算充电的电量具体可以由库仑计 进行计算, 以得到对电池充电的电量。
需要说明的是, 在本发明实施例中, 为了能够执行本发明实施例提供的方 法, 电池进入充电状态是不能被中断的, 否则, 显示电池电量的终端是无法继 续执行后续步骤以生成 OCV-SOC曲线。 较佳的, 为了能够继续显示电池电量, 电池在进入充电状态后若中途被打断或充电时间超过充电时限时, 以电池所属 的终端中保存的 OCV-SOC曲线来显示电池电量, 终端中最初内置的 OCV-SOC 曲线为原始的开路电压-电池电量曲线, 为终端出厂时的初始配置, 每次生成一 个新的 OCV-SOC曲线, 就会替换先前保存的 OCV-SOC曲线, 以此来保证显示 电池电量的准确性, 另外, 充电时限通常可以灵活设置, 例如设置为 24小时, 或者 36小时, 或者 48小时等等。 本发明实施例中, 在电池无法保证完成一次 从放电完成后到充电完成的过程时, 用终端中保存的 OCV-SOC曲线(可能是原 始 OCV-SOC曲线, 也可能是上次生成的 OCV-SOC曲线 )来显示电池电量, 也 是为了更好的兼容不能实现完整充电的应用场景。
102、 当获取的电池的电量增幅达到预置的阔值时, 获取此时电池所蓄存的 电量和开路电压 (OCV, Open Circuit Voltage )„
在本发明实施例中, 步骤 101 中按照预设时间间隔获取电池的电量增幅, 当电池的电量增幅达到预置的阔值这一条件时, 获取此时电池所蓄存的电量和 OCV, 例如, 将预置的阔值可以设置为 3mAh、 5mAh等, 即每当充电的电量增 幅达到 3mAh时获取计算此时的电池所蓄存的电量以及此时的 OCV, 可以将多 次获取的电池所蓄存的电量和 OCV保存在一个表格中。 其中, 电池的电量增幅 指的是对电池进行充电时电池所蓄存的电量所增加的幅度。
需要说明的是, 作为其中的一种可实现方式, 当获取的电池的电量增幅达 到预置的阔值时, 获取此时电池所蓄存的电量和电池的 OCV, 具体可以包括如 下步骤:
Al、 当获取的电池的电量增幅达到预置的阔值时, 检测此时该电池的电压 和电流;
A2、 对该电池的电量增幅进行累计, 得到此时电池所蓄存的电量;
A3、 才艮据电池的电压和电流计算此时电池的 OCV。
对于步骤 A1 , 当电池的电量增幅达到预置的阔值时, 对此时电池的电压和 电流进行检测, 得到电池的电压信号值和电流信号值, 步骤 A2中, 可以使用库 仑计对电池的电量增幅进行累加计算, 就可以得到此时电池所蓄存的电量, 例 如, 每当充电电量增加 3mAh时, 对步骤 101 中计算的充电电量进行叠加, 就 可以得到此时对电池充了多少电量。 步骤 A3中, 在获取到电池的电压和电流之 后, 根据该电压以及对应电流计算出 OCV。 对于步骤 A3的实现方式, 可以按 照如下方式来计算:
Vbat = OCV+IxR;
其中, Vbat是通过步骤 A1检测到的电压, I是通过步骤 A1检测到的电流, 通过连续执行步骤 A1 两次, 分别检测到两组电压和电流: Vbatl和 II、 Vbat2 和 12, 则使用前述公式就可以得到方程组, 从而就可以求解出 OCV的值和 R, 其中, R是电池的内阻。
需要说明的是, 本发明实施例中步骤 102是需要多次重复执行的, 只要满 足电池的电量增幅达到预置的阔值就会执行该步骤, 多次执行就可以得到多次 计算的结果, 其计算结果保存在一个表格中。
103、 当电池充电完成时, 根据获取的电池所蓄存的电量和 OCV生成开路 电压-电池电量(OCV-SOC, Open Circuit Voltage -State Of Charge ) 曲线。
在本发明实施例中, 需要判断电池是否已经充电完成, 若是, 步骤 103执 行。
需要说明的是, 判断电池是否已经充电完成可以有多种实现方式, 具体可 以包括:
判断电池的电压是否达到预定电压, 若达到, 则电池充电完成;
或, 判断电池所蓄存的电量是否达到预定电量, 若达到, 则电池充电完成。 需要说明的是, 可以为电池设置一个预定电压, 对于手机终端内的电池来 说, 通常可以设置的预定电压为 4.2V, 当手机电池的电压达到 4.2V时可以表示 电池已经充电完成, 在实际应用中具体可以根据终端的类型而设置预定电压, 例如设置为 3.5V、 10.8V等等, 此处仅作说明, 不作限定。 还可以为电池设置 一个预定电量, 只要电池内蓄存的电量达到该预定电量时就可以认为电池已经 充电完成。
需要说明的是, 在本发明实施例中, 优选的, 本发明实施例提供的方法还 可以包括: 若电池没有充电完成, 则需要多次触发当电池的电量增幅达到预置 的阔值时获取此时电池所蓄存的电量和 OCV执行, 即当电池充电没有完成时, 需要重复执行步骤 102,计算出多次的电池蓄存的电量和每次蓄存的电量所对应 的 ocv。
在本发明实施例中, 当电池充电完成之后, 根据获取的电池所蓄存的电量 和 OCV可以生成 OCV-SOC曲线, 则基于前述步骤获取的多次计算的电池所蓄 存的电量和多次分别对应的 OCV生成的 OCV-SOC曲线就能够代表当前状况下 电池所蓄存的电量, 尤其当电池出现老化后, 通常会导致电池的容量衰退和电 池的内阻的增加,而终端中保存的 OCV-SOC曲线(可能是原始 OCV-SOC曲线, 也可能是上次生成的 OCV-SOC曲线)就不一定能够真实的代表当前状况下电池 自身的蓄电容量,按照本发明实施例提供的方法所生成的 OCV-SOC曲线就能够 表示当前电池的真实容量。
需要说明的是, 作为其中一种可实现的方式, 根据获取的电池所蓄存的电 量和 OCV生成 OCV-SOC曲线, 具体可以包括:
Bl、 才艮据电池所蓄存的电量, 计算出当前状况下电池的总容量;
B2、 将电池的总容量划分为多个电量等级;
B3、将各个电量等级和各个电量等级分别对应的 OCV建立映射关系, 生成 OCV-SOC曲线。
对于步骤 B1 , 当电池已经完成了充电, 则此时电池内蓄存的电量就是当前 状况下电池的总容量。 步骤 B2中, 将电池的总容量进行划分为多个电量等级, 电池总容量等级是从 0%至 100%. 每一个百分点对应的电池容量不同,然后根据 各个百分点对应的电池容量, 找到对应的 OCV 电池内部电压, 就可以生成 OCV-SOC曲线了。 例如将电池的总容量划分为 100份, 则每 1%的电量就可以 是一个电量等级, 定出新的电量点之后, 对照于终端中保存的 OCV-SOC曲线, 将定出的新的电量点与原始 OCV-SOC曲线做比较,找出新电量点与原始的电量 值最接近的点, 将最接近的点对应的 OCV作为新定的电量点对应的 OCV, 从 而建立两者之间的映射关系, 就可以生成的新的 OCV-SOC曲线了。
104、 才艮据生成的 OCV-SOC曲线显示电池的电量。
在本发明实施例中,才艮据生成的 OCV-SOC曲线来显示电池的电量, 而生成 的 OCV-SOC曲线是根据当前状况下电池所蓄存的总电量生成的,这就能够表示 当前电池的真实容量, 从而能够向终端用户显示正确的电池电量。
需要说明的是, 在本发明实施例提供的方法还可以包括如下步骤: 在电池 处于充电过程中时, 获取电池的温度参数;
根据获取的电池所蓄存的电量和 OC V生成开路电压-电池电量 OCV-SOC曲 线之后,使用生成的 OCV-SOC曲线替换电池所属的终端中保存的与所述温度参 数相对应的 OCV-SOC曲线。
需要说明的是, 根据终端的温度不同在终端中设置有多种 OCV-SOC曲线, 例如对于常温(温度范围可以是 0度至 20度 )状态下对应有一种 OCV-SOC曲 线, 对于高温(温度范围可以 40度左右)对应另一种 OCV-SOC曲线等等, 在 本发明实施例中, 将最新生成的 OCV-SOC曲线替换终端内保存的 OCV-SOC曲 线时, 需要考虑该终端在最新生成 OCV-SOC曲线的状态下的温度参数, 然后使 用最新生成的 OCV-SOC 曲线替换在终端中保存的与该温度参数相对应的 OCV-SOC曲线。
在本发明提供的实施例中, 电池从放电完成之后进入充电状态, 直至充电 完成, 在电池从没有蓄存电量直至充满的过程中, 按照预设时间间隔获取电池 的电量增幅, 当获取的电池的电量增幅达到预置的阔值时, 获取电池所蓄存的 电量和 OCV,在充电完成之后生成针对当前电池的蓄存容量的 OCV-SOC曲线, 用生成的 OCV-SOC曲线显示电池电量。按照本发明实施例提供的显示电池电量 的方法, 即使电池发生老化后,根据当前电池的蓄存容量所生成的 OCV-SOC曲 线也能够正确显示当前电池的电量, 不会受到电池老化的影响而导致显示电量 出现的偏差。 以上实施例介绍了本发明实施例提供的一种显示电池电量的方法, 接下来 以一个实际的应用场景进行详细说明, 请参阅图 2 所示, 以手机终端的电池为 例进行说明:
1、 终端发出校准命令。
2、 执行以下操作内容: 1 )、 校准需要在电池放电完成后进行, 当确认进行 校准之后, 终端的电池已经放电完成; 2 )、 并且放电完成前, 不要插入充电器 或 USB, 避免进入充电状态; 3 )、 放电后完成后, 需要进行充电, 在 24小时内 完成电池充电, 如果中途被打断或超时, 则本次校准失败。
3、 开始校准后, 电池进入充电状态。 在此过程中, 库仑计是一直处在工作 过程中, 按照预设时间间隔获取电池的充电电量增幅。
4、 每当充电电量增加 3mAh时, 获取一次此时的电池所蓄存的电量, 保存 获取的结果, 例如得到如下表 1中的内容, 当充电电池电压达到 4.2V时, 表示 本次对电池的充电完成, 根据保存的数据, 计算出新的 OCV-SOC曲线。
表 1为获取电池电量的数据汇集表
Figure imgf000010_0001
Figure imgf000011_0001
其中, 内阻为每 30次的记录时单独计算一次, 更改充电电流按照初始电量 计算的公式进行计算 Rl。
根据新得到的电量值, 按照电量划分重新计算每 1%的电量, 定出新的电量 点后, 与原始 OCV-SOC曲线做比较, 找出里面最接近的电量值, 将该最近的电 量值对应的 OCV值作为新的电量点对应的 OCV值, 将新的电量点和对应的 OCV值建立映射关系, 对应起来, 就得到 OCV-SOV曲线, 根据温度信息, 替 换终端内保存的与该温度对应的 COV-SOC曲线。
5、 充电完成后, 库仑计累积的电池电量就是此时的老化电池的总容量。
6、 至此完成老化后的电池校准。 更新 OCV-SOC曲线参数, 以及电池容量 参数, 完成老化电池的显示校准。
可见, 电池从放电完成进入充电状态, 直至充电完成, 在电池从没有蓄存 电量直至充满的过程中, 获取了电池多次的电量增幅, 当电池的电量增幅达到 预置阔值时获取电池的蓄存电量和 OCV, 在充电完成之后生成针对当前电池的 蓄存容量的 OCV-SOC曲线, 用生成的 OCV-SOC曲线显示电池的电量, 即使电 池老化后, 生成的 OCV-SOC曲线也能够正确显示当前电池的电量, 不会受到电 池老化的影响而导致显示电量出现偏差。 以上实施例介绍了本发明提供的显示电池电量的方法, 接下来介绍本发明 实施例提供的显示电池电量的终端, 在实际应用中, 本发明实施例提供的显示 电池电量的终端具体可以内置于终端内或者电池的管理模块中, 通过软件或硬 件集成的方式来实现对显示电池电量的。 在本发明实施例中将介绍和上述方法 实施例中介绍的方法相对应的终端, 具体各单元的执行方法可参见上述方法实 施例, 在此仅描述相关单元的内容, 具体说明如图 3 所示, 显示电池电量的终 端 300, 包括:
第一获取单元 301 , 用于当电池进入充电状态时,按照预设时间间隔获取所 述电池的电量增幅, 所述电池在进入充电状态之前已经放电完成; 第二获取单元 302 ,用于当所述第一获取单元获取到的所述电池的电量的增 幅达到预置的阔值时, 获取此时所述电池所蓄存的电量和开路电压 OCV;
生成单元 303 , 用于当所述电池充电完成时, 根据第二获取单元获取到的所 述电池所蓄存的电量和所述 OCV生成开路电压-电池电量 OCV-SOC曲线;
显示单元 304 , 用于根据所述生成单元生成的 OCV-SOC曲线显示所述电池 电量。
需要说明的是, 对于第二获取单元 302而言, 作为其中的一种可实现方式, 具体可以包括(未在图 3中示出):
检测子单元, 用于当获取的所述电池的电量增幅达到预置的阔值时, 检测 此时所述电池的电压和电流;
第一计算子单元, 用于对所述第一获取单元获取的所述电池的电量增幅进 行累计, 得到此时所述电池所蓄存的电量;
第二计算子单元, 用于根据所述检测子单元检测到的所述电池的电压和电 流计算此时所述电池的 ocv。
需要说明的是, 对于生成单元 303 而言, 作为其中的一种可实现方式, 具 体可以包括(未在图 3中示出):
第三计算子单元, 用于根据所述电池所蓄存的电量, 计算出当前状况下所 述电池的总容量;
划分子单元, 用于将所述第三计算子单元计算出的所述电池的总容量划分 为多个电量等级;
映射子单元, 用于将所述划分子单元划分出的各个电量等级和所述各个电 量等级分别对应的 OCV建立映射关系, 生成 OCV-SOC曲线。
需要说明的是, 对于显示单元 304 而言, 作为其中的一种可实现方式, 还 用于所述电池在进入充电状态后若中途被打断或充电时间超过充电时限, 以所 述电池所属的终端中保存的 OCV-SOC曲线显示所述电池的电量。
需要说明的是, 对于显示电池电量的终端 300 而言, 作为其中的一种可实 现方式, 还可以包括(未在图 3中示出):
获取单元, 用于在所述电池处于充电过程中时, 获取所述电池的温度参数; 替换单元,用于使用所述生成单元生成的 OCV-SOC曲线替换所述电池所属 的终端中保存的与所述温度参数相对应的 OCV-SOC曲线。
需要说明的是, 上述终端各模块 /单元之间的信息交互、 执行过程等内容, 由于与本发明方法实施例基于同一构思, 其带来的技术效果与本发明方法实施 例相同, 具体内容可参见本发明如图 1和图 2所示的方法实施例中的叙述, 此 处不再赘述。
在本发明提供的实施例中, 电池从放电完成之后进入充电状态, 直至充电 完成, 在电池从没有蓄存电量直至充满的过程中, 第一获取单元按照预设时间 间隔获取电池的电量增幅, 第二获取单元当获取的电池的电量增幅达到预置的 阔值时, 获取电池所蓄存的电量和 OCV, 生成单元在充电完成之后生成针对当 前电池的蓄存容量的 OCV-SOC曲线, 显示单元用生成的 OCV-SOC曲线显示电 池电量。 本发明实施例提供的显示电池电量的终端所显示的终端电量, 即使电 池发生老化后,根据当前电池的蓄存容量所生成的 OCV-SOC曲线也能够正确显 示当前电池的电量, 不会受到电池老化的影响而导致显示电量出现的偏差。 接下来介绍本发明实施例提供的另一种显示电池电量的终端,请参阅如图 4 所示, 显示电池电量的终端 400, 包括:
输入终端 401、 输出终端 402、 处理器 403和存储器 404 (其中显示终端 400 中的处理器 403的数量可以一个或多个, 图 4中以一个处理器为例)。 在本发明 的一些实施例中, 输入终端 401、 输出终端 402、 处理器 403和存储器 404可通 过总线或其它方式连接, 其中, 图 4中以通过总线连接为例。
处理器 403 , 用于执行如下步骤: 当电池进入充电状态时, 按照预设时间间 隔获取所述电池的电量增幅, 所述电池在进入充电状态之前已经放电完成; 当获取的所述电池的电量增幅达到预置的阔值时, 获取此时所述电池所蓄 存的电量和所述电池的开路电压 OCV; 当所述电池充电完成时, 根据获取的所 述电池所蓄存的电量和所述 OCV生成开路电压-电池电量 OCV-SOC曲线;根据 生成的所述 OCV-SOC曲线显示所述电池的电量。
在本发明的一些实施例中, 当获取的所述电池的电量增幅达到预置的阔值 时, 获取此时所述电池所蓄存的电量和所述电池的开路电压 OCV, 具体可以包 括:
当获取的所述电池的电量增幅达到预置的阔值时, 检测此时所述电池的电 压和电流;
对所述电池的电量增幅进行累计, 得到此时所述电池所蓄存的电量; 才艮据所述电池的电压和电流计算此时所述电池的 ocv。 在本发明的一些实施例中, 处理器 403 才艮据获取的所述电池所蓄存的电量 和所述 OCV生成开路电压-电池电量 OCV-SOC曲线, 具体可以包括:
才艮据所述电池所蓄存的电量, 计算出当前状况下所述电池的总容量; 将所述电池的总容量划分为多个电量等级;
将各个电量等级和所述各个电量等级分别对应的 OCV建立映射关系, 生成 所述 OCV-SOC曲线。
在本发明的一些实施例中, 处理器 403, 还可以用于执行以下步骤: 所述电 池在进入充电状态后若中途被打断或充电时间超过充电时限, 以所述电池所属 的终端中保存的 OCV-SOC曲线显示所述电池的电量。
在本发明的一些实施例中, 处理器 403, 还可以用于执行以下步骤: 在所述 电池处于充电过程中时, 获取所述电池的温度参数;
根据获取的所述电池所蓄存的电量和所述 OCV 生成开路电压-电池电量 ocv-soc曲线之后, 使用生成的所述 ocv-soc曲线替换所述电池所属的终端 中保存的与所述温度参数相对应的 ocv-soc曲线。
在本发明提供的实施例中, 电池从放电完成之后进入充电状态, 直至充电 完成, 在电池从没有蓄存电量直至充满的过程中, 处理器按照预设时间间隔获 取电池的电量增幅, 当获取的电池的电量增幅达到预置的阔值时, 处理器获取 电池所蓄存的电量和 OCV, 处理器在充电完成之后生成针对当前电池的蓄存容 量的 ocv-soc曲线, 处理器用生成的 ocv-soc曲线显示电池电量。 按照本发 明实施例提供的显示电池电量的方法, 即使电池发生老化后, 根据当前电池的 蓄存容量所生成的 ocv-soc曲线也能够正确显示当前电池的电量,不会受到电 池老化的影响而导致显示电量出现的偏差。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是 可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读 存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种显示电池电量的方法和相关终端进行了详细介 绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式 及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权 利 要 求
1、 一种显示电池电量的方法, 其特征在于, 包括:
当电池进入充电状态时, 按照预设时间间隔获取所述电池的电量增幅, 所 述电池在进入充电状态之前已经放电完成;
当获取的所述电池的电量增幅达到预置的阔值时, 获取此时所述电池所蓄 存的电量和所述电池的开路电压 OCV;
当所述电池充电完成时,根据获取的所述电池所蓄存的电量和所述 OCV生 成开路电压-电池电量 OCV-SOC曲线;
才艮据生成的所述 OCV-SOC曲线显示所述电池的电量。
2、 根据权利要求 1所述的方法, 其特征在于, 所述当获取的所述电池的电 量增幅达到预置的阔值时, 获取此时所述电池所蓄存的电量和所述电池的开路 电压 OCV, 包括:
当获取的所述电池的电量增幅达到预置的阔值时, 检测此时所述电池的电 压和电流;
对所述电池的电量增幅进行累计, 得到此时所述电池所蓄存的电量; 才艮据所述电池的电压和电流计算此时所述电池的 ocv。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据获取的所述 电池所蓄存的电量和所述 OCV生成开路电压-电池电量 OCV-SOC曲线, 包括: 才艮据所述电池所蓄存的电量, 计算出当前状况下所述电池的总容量; 将所述电池的总容量划分为多个电量等级;
将各个电量等级和所述各个电量等级分别对应的 OCV建立映射关系, 生成 所述 OCV-SOC曲线。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述方法还包 括: 所述电池在进入充电状态后若中途被打断或充电时间超过充电时限, 以所 述电池所属的终端中保存的 OCV-SOC曲线显示所述电池的电量。
5、根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述方法还包括: 在所述电池处于充电过程中时, 获取所述电池的温度参数;
根据获取的所述电池所蓄存的电量和所述 OCV 生成开路电压-电池电量 OCV-SOC曲线之后, 使用生成的所述 OCV-SOC曲线替换所述电池所属的终端 中保存的与所述温度参数相对应的 OCV-SOC曲线。
6、 一种显示电池电量的终端, 其特征在于, 包括:
第一获取单元, 用于当电池进入充电状态时, 按照预设时间间隔获取所述 电池的电量增幅, 所述电池在进入充电状态之前已经放电完成;
第二获取单元, 用于当所述第一获取单元获取到的所述电池的电量的增幅 达到预置的阔值时, 获取此时所述电池所蓄存的电量和开路电压 OCV;
生成单元, 用于当所述电池充电完成时, 根据所述第二获取单元获取到的 所述电池所蓄存的电量和所述 OCV生成开路电压-电池电量 OCV-SOC曲线; 显示单元, 用于根据所述生成单元生成的 OCV-SOC 曲线显示所述电池电 量。
7、 根据权利要求 6所述的终端, 其特征在于, 所述第二获取单元, 包括; 检测子单元, 用于当获取的所述电池的电量增幅达到预置的阔值时, 检测 此时所述电池的电压和电流;
第一计算子单元, 用于对所述第一获取单元获取的所述电池的电量增幅进 行累计, 得到此时所述电池所蓄存的电量;
第二计算子单元, 用于根据所述检测子单元检测到的所述电池的电压和电 流计算此时所述电池的 ocv。
8、 根据权利要求 6或 7所述的终端, 其特征在于, 所述生成单元, 包括: 第三计算子单元, 用于根据所述电池所蓄存的电量, 计算出当前状况下所 述电池的总容量;
划分子单元, 用于将所述第三计算子单元计算出的所述电池的总容量划分 为多个电量等级;
映射子单元, 用于将所述划分子单元划分出的各个电量等级和所述各个电 量等级分别对应的 OCV建立映射关系, 生成所述 OCV-SOC曲线。
9、 根据权利要求 6至 8任一项所述的终端, 其特征在于, 所述显示单元, 还用于所述电池在进入充电状态后若中途被打断或充电时间超过充电时限, 以 所述电池所属的终端中保存的 OCV-SOC曲线显示所述电池的电量。
10、 根据权利要求 6至 8任一项所述的终端, 其特征在于, 所述终端还包 括:
获取单元, 用于在所述电池处于充电过程中时, 获取所述电池的温度参数; 替换单元,用于使用所述生成单元生成的 OCV-SOC曲线替换所述电池所属 的终端中保存的与所述温度参数相对应的 OCV-SOC曲线。
PCT/CN2013/090618 2012-12-28 2013-12-27 一种显示电池电量的方法和终端 WO2014101807A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13869005.2A EP2851700B1 (en) 2012-12-28 2013-12-27 Method and terminal for displaying capacity of battery
US14/569,843 US10345382B2 (en) 2012-12-28 2014-12-15 Method and terminal for displaying battery power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210587109.0A CN103901347B (zh) 2012-12-28 2012-12-28 一种显示电池电量的方法和终端
CN201210587109.0 2012-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/569,843 Continuation US10345382B2 (en) 2012-12-28 2014-12-15 Method and terminal for displaying battery power

Publications (1)

Publication Number Publication Date
WO2014101807A1 true WO2014101807A1 (zh) 2014-07-03

Family

ID=50992800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090618 WO2014101807A1 (zh) 2012-12-28 2013-12-27 一种显示电池电量的方法和终端

Country Status (4)

Country Link
US (1) US10345382B2 (zh)
EP (1) EP2851700B1 (zh)
CN (1) CN103901347B (zh)
WO (1) WO2014101807A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104635164B (zh) * 2015-01-26 2018-05-11 上海卓易科技股份有限公司 一种智能终端的电池充放电稳定性测试方法及智能终端
CN105021962B (zh) * 2015-07-22 2018-12-18 杰华特微电子(杭州)有限公司 电池电量显示设定方法和设定电路
CN105472135B (zh) * 2015-11-18 2019-03-08 Oppo广东移动通信有限公司 一种移动终端电量的显示方法和装置
CN107171380B (zh) * 2017-05-12 2020-02-14 华霆(合肥)动力技术有限公司 充电方法和装置
CN109683104A (zh) * 2017-10-12 2019-04-26 本田技研工业株式会社 电池状态推定方法以及电池状态推定装置
CN110687468B (zh) * 2018-06-19 2021-01-15 华为技术有限公司 一种电池荷电状态的估计方法及装置
CN108931738A (zh) * 2018-08-22 2018-12-04 中国电力科学研究院有限公司 一种评估锂电池的健康状态的方法和系统
CN109541492B (zh) * 2018-12-03 2021-11-09 郑州云海信息技术有限公司 电源的剩余电量确定方法、装置、设备及可读存储介质
CN110600823A (zh) * 2019-08-09 2019-12-20 深圳市云顶信息技术有限公司 电池电量的展示方法、装置、计算机设备及存储介质
CN110650394B (zh) * 2019-08-30 2020-08-28 广东思派康电子科技有限公司 计算机可读存储介质及无线耳机
CN110850313A (zh) * 2019-11-14 2020-02-28 宁波德晶元科技有限公司 一种锂电池充放电电量显示方法与系统
CN112213652B (zh) * 2020-01-20 2023-06-13 蜂巢能源科技有限公司 用于估算剩余电量的方法及系统
KR20210099939A (ko) * 2020-02-05 2021-08-13 주식회사 엘지에너지솔루션 리튬 플레이팅 검출 방법, 이를 이용한 배터리 관리 방법 및 장치
CN111781507B (zh) * 2020-06-04 2022-05-10 珠海格力电器股份有限公司 一种soc值显示方法、装置及储能系统
CN113933717A (zh) * 2020-07-14 2022-01-14 北京小米移动软件有限公司 获取电池电量的方法及装置、电池、电子设备
CN113791357B (zh) * 2021-11-16 2022-03-29 深圳维普创新科技有限公司 一种电池显示电量智能化修正的方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286818A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp バッテリ容量判定装置
CN1715944A (zh) * 2004-04-16 2006-01-04 美国凹凸微系有限公司 一种电池电量监测方法、用于该方法的电子装置和电路
CN101138142A (zh) * 2005-03-09 2008-03-05 Lg化学株式会社 利用ocv温度滞后设置电池的soc的初始值的方法
CN101153894A (zh) * 2006-09-26 2008-04-02 鸿富锦精密工业(深圳)有限公司 电量检测方法、使用此方法的电量检测系统及电子设备
KR20120082965A (ko) * 2011-01-16 2012-07-25 김득수 배터리 잔존 용량 측정 방법
CN102753985A (zh) * 2010-02-05 2012-10-24 大陆汽车有限责任公司 用于确定蓄电池特性曲线的区域的装置和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725784A (en) * 1983-09-16 1988-02-16 Ramot University Authority For Applied Research & Industrial Development Ltd. Method and apparatus for determining the state-of-charge of batteries particularly lithium batteries
JP2979939B2 (ja) * 1993-12-27 1999-11-22 株式会社日立製作所 二次電池システムの運転方法
US6586130B1 (en) * 2000-11-22 2003-07-01 Honeywell International Inc. Method and apparatus for determining the state of charge of a lithium-ion battery
US6366054B1 (en) * 2001-05-02 2002-04-02 Honeywell International Inc. Method for determining state of charge of a battery by measuring its open circuit voltage
US7429436B2 (en) * 2005-01-31 2008-09-30 Honeywell International Inc. Method for determining state of charge of lead-acid batteries of various specific gravities
US8198863B1 (en) * 2006-12-13 2012-06-12 Maxim Integrated Products, Inc. Model-based battery fuel gauges and methods
JP4997994B2 (ja) * 2007-01-31 2012-08-15 富士通株式会社 電池の残量予測装置
US8084996B2 (en) * 2008-06-27 2011-12-27 GM Global Technology Operations LLC Method for battery capacity estimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286818A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp バッテリ容量判定装置
CN1715944A (zh) * 2004-04-16 2006-01-04 美国凹凸微系有限公司 一种电池电量监测方法、用于该方法的电子装置和电路
CN101138142A (zh) * 2005-03-09 2008-03-05 Lg化学株式会社 利用ocv温度滞后设置电池的soc的初始值的方法
CN101153894A (zh) * 2006-09-26 2008-04-02 鸿富锦精密工业(深圳)有限公司 电量检测方法、使用此方法的电量检测系统及电子设备
CN102753985A (zh) * 2010-02-05 2012-10-24 大陆汽车有限责任公司 用于确定蓄电池特性曲线的区域的装置和方法
KR20120082965A (ko) * 2011-01-16 2012-07-25 김득수 배터리 잔존 용량 측정 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2851700A4 *

Also Published As

Publication number Publication date
CN103901347A (zh) 2014-07-02
EP2851700B1 (en) 2021-05-12
EP2851700A4 (en) 2015-07-01
US20150100261A1 (en) 2015-04-09
US10345382B2 (en) 2019-07-09
EP2851700A1 (en) 2015-03-25
CN103901347B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2014101807A1 (zh) 一种显示电池电量的方法和终端
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
CN106324508B (zh) 电池健康状态的检测装置及方法
WO2017016385A1 (zh) 电池荷电状态值的估算方法及装置
CN107436418B (zh) 校准电池电量衰减的方法、终端及装置
JP2017514127A (ja) バッテリの健全性を推定する方法
WO2015078200A1 (zh) 一种充电方法及装置
CN104765396B (zh) 基于移动终端的关机电压动态调整方法及调整系统
WO2013075420A1 (zh) 电池电量的计算方法及装置、终端
US20150372514A1 (en) Electric storage device and deterioration determination method
CN111679206B (zh) 电量检测方法和设备,及存储介质
WO2016145621A1 (zh) 一种电量估计方法及终端
JP2014025738A (ja) 残容量推定装置
TW201403105A (zh) 電池電量計算方法及系統
WO2018120769A1 (zh) 电池间容量差值的获取方法和装置
CN110244233A (zh) 一种电池的检测方法、电子设备以及计算机存储介质
CN104617344A (zh) 缩短充电时间的方法和设备
CN103616551B (zh) 能在充电时精确获取电池电压的终端及电池电压获取方法
CN110687458A (zh) 终端电池电量确定方法及装置
CN107994278A (zh) 一种电池均衡装置、方法及无人机
WO2022267825A1 (zh) 充电控制方法、充电控制装置与充电装置
CN112858938A (zh) 电量计算方法、装置、存储介质及电子设备
CN112541260A (zh) 一种电池均衡控制方法、系统、存储介质及电子设备
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
WO2021061267A1 (en) Techniques for software implemented gas-gauging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013869005

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE