WO2017016385A1 - 电池荷电状态值的估算方法及装置 - Google Patents

电池荷电状态值的估算方法及装置 Download PDF

Info

Publication number
WO2017016385A1
WO2017016385A1 PCT/CN2016/089688 CN2016089688W WO2017016385A1 WO 2017016385 A1 WO2017016385 A1 WO 2017016385A1 CN 2016089688 W CN2016089688 W CN 2016089688W WO 2017016385 A1 WO2017016385 A1 WO 2017016385A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
open circuit
circuit voltage
value
soc
Prior art date
Application number
PCT/CN2016/089688
Other languages
English (en)
French (fr)
Inventor
叶彦宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017016385A1 publication Critical patent/WO2017016385A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the present application relates to, but is not limited to, the field of communications, and relates to a method and apparatus for estimating a state of charge (SOC) of a battery.
  • SOC state of charge
  • the communication power source is a device that supplies energy to a communication device such as a communication base station or a communication room, and the battery is an important component of the communication power source, and can provide backup power for the communication device.
  • a communication device such as a communication base station or a communication room
  • the battery is an important component of the communication power source, and can provide backup power for the communication device.
  • LiFePO 4 lithium iron phosphate
  • Lithium iron phosphate battery has advantages such as long cycle life, high temperature performance, large capacity, no memory effect, light weight and environmental protection. It has been rapidly promoted and well in many fields. Use, for example, communication power storage devices, new energy storage devices, large electric vehicles, medical instruments, etc.
  • the battery management system With the promotion of the application of lithium iron phosphate battery, the battery management system has also been widely used, in order to give full play to the power performance of the battery, improve the safety of its use, prevent overcharge and overdischarge of the battery, extend the service life of the battery, and improve As a performance of energy storage equipment, the battery management system needs to accurately estimate the state-of-charge (SOC) of the battery.
  • SOC state-of-charge
  • the SOC of the battery is related to many factors, such as temperature, current, life, electrochemical effects, etc., and has a strong nonlinear relationship, which brings great difficulties to real-time online estimation of SOC.
  • the estimation methods of battery SOC in the related art mainly include: an hour integration method, an open circuit voltage method, a Kalman filter method, an internal resistance method, an artificial neural network method, and the like.
  • the artificial neural network method and the Kalman filter method are not widely used due to the complicated system setting and the high hardware configuration requirements in the battery management system; the internal resistance method has the difficulty of estimating the internal resistance, on the hardware. It is difficult to achieve; the open circuit voltage method needs to use the open circuit voltage, and the battery pack needs to be left for a long time. Generally, the system does not have a static condition.
  • ampere-time integration method is often used because it is simple and effective, but the ampere-time integration method may only consider the integration of current versus time, or may combine the dynamic discharge curve to correct the capacity, but the dynamic curve is subject to temperature and current. , life expectancy and other factors, so it is estimated The battery SOC is also not accurate.
  • Embodiments of the present invention provide a method and apparatus for estimating a state of charge (SOC) of a battery to at least solve the problem that the SOC accuracy estimated by the battery SOC estimation method in the related art is not high.
  • SOC state of charge
  • a method for estimating a state of charge (SOC) of a battery includes: detecting whether a battery is in a charged state or a discharging state; and in a case where the battery is in a charged state or a discharged state, The ampere-time integral method determines the SOC value of the battery; when the battery is not in the charging state and the discharging state, and in the case where the charging circuit of the battery is disconnected or the discharging circuit is disconnected, the correspondence relationship between the battery open circuit voltage and the SOC value of the battery is determined. SOC value.
  • the battery is detected whether the battery is in a charging state or a discharging state by detecting whether the current of the battery is greater than a predetermined threshold; and in the case where the current is greater than a predetermined threshold, the battery is in a charging state or a discharging state.
  • the corresponding relationship in a case where the charging circuit of the battery is disconnected, the corresponding relationship is a charging open circuit voltage curve for indicating a correspondence relationship between the charging open circuit voltage and the SOC value of the battery; when the discharging circuit of the battery is disconnected Next, the correspondence relationship is a discharge open circuit voltage curve for indicating a correspondence relationship between the discharge open circuit voltage of the battery and the SOC value.
  • the charging open circuit voltage curve is obtained by: during the charging process of the battery, recording a set of SOC values and a charge open circuit voltage value of the battery every first predetermined time period, wherein the two phases are Between the first predetermined time periods of the neighbors, a rest period of time for stopping charging the battery is set; according to the recorded plurality of sets of SOC values and the charging open circuit voltage value of the battery, the charging open circuit voltage curve is fitted; the discharge open circuit voltage curve is passed Obtained in the following manner: during a complete discharge of the battery, a set of SOC values and a discharge open circuit voltage value of the battery are recorded every second predetermined time period, wherein a stop is set between two adjacent second predetermined time periods a period of time during which the battery is discharged; The discharge open circuit voltage curve is fitted according to the recorded plurality of sets of SOC values and the discharge open circuit voltage value of the battery.
  • the method further includes: correcting the charging open circuit voltage curve or the discharging open circuit voltage curve according to the following method: correcting the charging open circuit voltage curve or discharging the open circuit voltage curve according to the power consumption of the device connected to the battery Make corrections.
  • determining the SOC value according to the correspondence between the battery open circuit voltage and the SOC value of the battery includes: searching for the charging open circuit voltage curve on which the current voltage value of the battery falls The first value interval; the two groups of SOC values corresponding to the two points corresponding to the first value interval and the open circuit voltage of the battery are calculated by a linear difference algorithm to calculate the SOC value corresponding to the current voltage value;
  • determining the SOC value according to the correspondence between the battery open circuit voltage and the SOC value of the battery includes: searching for a second value interval on the discharge open circuit voltage curve in which the current voltage value of the battery falls; for the second value interval The two sets of SOC values corresponding to the two points and the open circuit voltage of the battery are calculated by a linear difference algorithm to calculate the SOC value corresponding to the current voltage value.
  • the method further includes: after the third predetermined time period, if the charging circuit is still disconnected, according to the charging open circuit voltage curve The SOC value is corrected every fourth predetermined time period; or, after the fifth predetermined time period, if the discharge circuit is still open, the SOC value is corrected every sixth predetermined time period according to the discharge open circuit voltage curve.
  • an apparatus for estimating a SOC value of a battery comprising: a detecting module configured to detect whether a battery is in a charging state or a discharging state; and a first determining module configured to be in the battery
  • the SOC value of the battery is determined by an ampere-hour integration method
  • the second determination module is set to be in a state in which the battery is not in a state of charge and a state of discharge, and the charging circuit of the battery is disconnected or the discharge circuit is disconnected
  • the SOC value is determined according to the correspondence relationship between the battery open circuit voltage and the SOC value of the battery.
  • the detecting module is configured to detect whether the battery is in a charging state or a discharging state by detecting whether the current of the battery is greater than a predetermined threshold; and in the case that the current is greater than a predetermined threshold, the battery is in a charging state or a discharging state.
  • the corresponding relationship in a case where the charging circuit of the battery is disconnected, the corresponding relationship is a charging open circuit voltage curve for indicating a correspondence relationship between the charging open circuit voltage and the SOC value of the battery; In the case where the discharge circuit is disconnected, the correspondence relationship is a discharge open circuit voltage curve for indicating the correspondence relationship between the discharge open circuit voltage of the battery and the SOC value.
  • the charging open circuit voltage curve is obtained by: during the charging process of the battery, recording a set of SOC values and a charge open circuit voltage value of the battery every first predetermined time period, wherein the two phases are Between the first predetermined time periods of the neighbors, a rest period of time for stopping charging the battery is set; according to the recorded plurality of sets of SOC values and the charging open circuit voltage value of the battery, the charging open circuit voltage curve is fitted; the discharge open circuit voltage curve is passed Obtained in the following manner: during a complete discharge of the battery, a set of SOC values and a discharge open circuit voltage value of the battery are recorded every second predetermined time period, wherein a stop is set between two adjacent second predetermined time periods A resting period for discharging the battery; fitting a discharge open circuit voltage curve according to the recorded plurality of sets of SOC values and the discharge open circuit voltage value of the battery.
  • the apparatus further includes: a first correction module configured to: correct the charging open circuit voltage curve or the discharge open circuit voltage curve according to the following manner: performing the charging open circuit voltage curve according to the power consumption of the device connected to the battery Correct or correct the open circuit voltage curve.
  • a first correction module configured to: correct the charging open circuit voltage curve or the discharge open circuit voltage curve according to the following manner: performing the charging open circuit voltage curve according to the power consumption of the device connected to the battery Correct or correct the open circuit voltage curve.
  • the second determining module includes: a first searching unit configured to search for a first value on the charging open circuit voltage curve in which the current voltage value of the battery falls when the charging circuit of the battery is disconnected
  • the first calculation unit is configured to calculate the SOC value corresponding to the current voltage value by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the first value interval and the open circuit voltage of the battery
  • the module further includes: a second searching unit configured to search for a second value interval on the open circuit voltage curve of the current voltage value of the battery when the discharge circuit of the battery is disconnected; the second calculating unit is configured to The SOC value corresponding to the current voltage value is calculated by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the second value interval and the open circuit voltage of the battery.
  • the apparatus further includes a second correction module, configured to: after the second determining module determines the SOC value according to a correspondence between a battery open circuit voltage of the battery and the SOC value, in a third predetermined After the time period, if the charging circuit is still disconnected, the SOC value is corrected every fourth predetermined time period according to the charging open circuit voltage curve; or, after the fifth predetermined time period, if the discharging circuit is still When disconnected, the SOC value is corrected every sixth predetermined time period according to the discharge open circuit voltage curve.
  • a second correction module configured to: after the second determining module determines the SOC value according to a correspondence between a battery open circuit voltage of the battery and the SOC value, in a third predetermined After the time period, if the charging circuit is still disconnected, the SOC value is corrected every fourth predetermined time period according to the charging open circuit voltage curve; or, after the fifth predetermined time period, if the discharging circuit is still When disconnected, the SOC value is corrected every sixth predetermined time period according to the discharge open circuit
  • an embodiment of the present invention further provides a computer readable storage medium, where a computer can be stored.
  • the method of estimating the battery SOC value described above is implemented when the computer executable instructions are executed.
  • the SOC value of the battery is determined by the integration method, and the charging circuit of the battery is disconnected or the discharging circuit is disconnected.
  • the SOC value is determined according to the correspondence between the battery open circuit voltage of the battery and the SOC value, and the SOC is determined by combining the ampere-hour integration method and the open circuit voltage method, thereby increasing the SOC correction opportunity and solving the problem.
  • the problem that the SOC accuracy estimated by the battery SOC estimation method in the related art is not high is improved, and the estimation accuracy of the SOC is improved.
  • SOC state of charge
  • FIG. 2 is a structural block diagram 1 of an apparatus for estimating a SOC value of a battery according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram 2 of an apparatus for estimating a SOC value of a battery according to an embodiment of the present invention
  • FIG. 4a is a schematic diagram of a discharge open curve OCV-SOC dischg 1 according to an alternative embodiment of the present application;
  • 4b is a schematic diagram of a charge open curve OCV-SOC chg 1 in accordance with an alternative embodiment of the present application;
  • FIG. 5a is a schematic diagram of a discharge open curve OCV-SOC dischg in accordance with an alternative embodiment of the present application
  • Figure 5b is a schematic diagram of a charge open curve OCV-SOC chg in accordance with an alternative embodiment of the present application
  • FIG. 6 is a flow chart of SOC estimation of a lithium iron phosphate battery by an FBMS in accordance with an alternative embodiment of the present application.
  • FIG. 1 is a flowchart of a method for estimating a SOC value of a battery according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 detecting whether the battery is in a charging state or a discharging state
  • Step S104 in the case that the battery is in a charging state or a discharging state, determining the SOC value of the battery by the ampere-time integration method
  • step S106 when the battery is not in the charging state and the discharging state, and the charging circuit of the battery is disconnected or the discharging circuit is disconnected, the SOC value is determined according to the correspondence relationship between the battery open circuit voltage and the SOC value of the battery.
  • the SOC value of the battery is determined by the ampere-time integration method, and the charging circuit of the battery is disconnected or the discharge circuit is disconnected.
  • the SOC value is determined according to the correspondence between the battery open circuit voltage of the battery and the SOC value, and the SOC is determined by combining the ampere-hour integration method and the open circuit voltage method, thereby increasing the SOC correction opportunity and solving the correlation.
  • the SOC estimation method estimated by the battery SOC estimation method is not high, and the estimation accuracy of the SOC is improved.
  • the execution body of the above method may be a battery management system, and may be a third party device other than the battery and battery management system.
  • whether the battery is in a charging state or a discharging state can be detected by detecting whether the current of the battery is greater than a predetermined threshold; and in a case where the current is greater than a predetermined threshold, the battery is in a charging state or a discharging state. It is also possible to judge whether the battery is in a charging state or a discharging state by other means, for example, detecting the voltage of the battery to judge.
  • whether the battery is in a normal charging and discharging state is determined by detecting whether the current of the battery is greater than a predetermined threshold value, so as to determine whether the SOC value is estimated by using the ampere-hour integration method, the determination condition does not distinguish the battery. Is it in a normal state of charge or a normal state of discharge?
  • the corresponding relationship may be a correspondence table between the battery open circuit voltage and the SOC value, or may be a curve indicating a correspondence between the battery open circuit voltage and the SOC value.
  • the corresponding relationship when the corresponding relationship is In the case of a curve corresponding to the open circuit voltage and the SOC value, in the case where the charging circuit of the battery is disconnected, the corresponding relationship is a charging open circuit voltage curve for indicating the correspondence relationship between the charging open circuit voltage and the SOC value of the battery; In the case where the loop is broken, the correspondence relationship is a discharge open circuit voltage curve for indicating the correspondence relationship between the discharge open circuit voltage of the battery and the SOC value.
  • the charging open circuit voltage curve is obtained by: during the charging process of the battery, recording a set of SOC values and a charge open circuit voltage value of the battery every first predetermined time period, wherein the two phases are Between the first predetermined time periods of the neighbors, a rest period of time for stopping charging the battery is set; according to the recorded plurality of sets of SOC values and the charging open circuit voltage value of the battery, the charging open circuit voltage curve is fitted; the discharge open circuit voltage curve is passed Obtained in the following manner: during a complete discharge of the battery, a set of SOC values and a discharge open circuit voltage value of the battery are recorded every second predetermined time period, wherein a stop is set between two adjacent second predetermined time periods A resting period for discharging the battery; fitting a discharge open circuit voltage curve according to the recorded plurality of sets of SOC values and the discharge open circuit voltage value of the battery.
  • the charging open circuit voltage curve obtained by the correspondence between the SOC value of the battery after standing and the charging open circuit voltage value of the battery is considered, and the correspondence between the SOC value of the battery after standing and the discharge open circuit voltage value of the battery is considered.
  • the open circuit voltage curve is relatively accurate, which in turn improves the accuracy of the SOC estimation.
  • the method further includes: correcting the charging open circuit voltage curve or the discharging open circuit voltage curve according to the following manner: according to the work of the device connected to the battery The charge is corrected for the open circuit voltage curve or the open circuit voltage curve is corrected.
  • the loss of the access device is considered, such as the power consumption of the single board or the protection circuit of the battery management system, and the charging open circuit voltage curve or the open circuit voltage curve which is more in line with the actual working condition is obtained, thereby improving the SOC estimation. Accuracy.
  • determining the SOC value according to the corresponding relationship between the battery open circuit voltage and the SOC value of the battery includes: searching for the current voltage value of the battery Entering the first value interval on the charging open circuit voltage curve; calculating the SOC corresponding to the current voltage value by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the first value interval and the open circuit voltage of the battery Value; in the case that the discharge circuit of the battery is disconnected, determining the SOC value according to the correspondence between the battery open circuit voltage and the SOC value of the battery includes: finding a second value interval on the discharge open circuit voltage curve in which the current voltage value of the battery falls The SOC value corresponding to the current voltage value is calculated by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the second value interval and the open circuit voltage of the battery.
  • the present invention may be in a certain order (such as a chronological order or a sequence of voltage values from small to large, etc.) to find out in which interval the current voltage falls on the charging open circuit voltage curve or the discharge open circuit voltage curve, The two points in the interval are linearly differenced, and the SOC value corresponding to the current voltage value is calculated. It should be noted that two points of the interval may take two endpoints of the interval, or two points in the interval may be taken according to a certain rule, or two points in the interval may be randomly taken.
  • the method further includes: after the third predetermined time period, if the charging circuit is still disconnected, according to the charging open circuit voltage curve The SOC value is corrected every fourth predetermined time period; or, after the fifth predetermined time period, if the discharge circuit is still open, the SOC value is corrected every sixth predetermined time period according to the discharge open circuit voltage curve.
  • third predetermined time period and the fifth predetermined time period may be the same or different, and the fourth predetermined time period and the sixth predetermined time period may be the same or different.
  • a device for estimating the SOC value of the battery is also provided.
  • the device is used to implement the above-mentioned embodiments and optional embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a block diagram showing the structure of an apparatus for estimating a SOC value of a battery according to an embodiment of the present invention, as shown in FIG. As shown in 2, the device includes:
  • the detecting module 22 is configured to: detect whether the battery is in a charging state or a discharging state;
  • the first determining module 24 is connected to the detecting module 22, and is configured to determine the SOC value of the battery by the ampere-hour integration method when the battery is in a charging state or a discharging state;
  • the second determining module 26 is connected to the detecting module 22, and is configured to set the battery open circuit voltage and the SOC value according to the battery when the battery is not in the charging state and the discharging state, and when the charging circuit of the battery is disconnected or the discharging circuit is disconnected. The correspondence determines the SOC value.
  • the SOC value of the battery is determined by the ampere-time integration method, and the charging circuit of the battery is disconnected or the discharge circuit is disconnected.
  • the SOC value is determined according to the correspondence between the battery open circuit voltage of the battery and the SOC value, that is, the device combines the ampere-hour integration method and the open circuit voltage method to determine the SOC, thereby increasing the SOC correction opportunity.
  • the problem that the SOC accuracy estimated by the battery SOC estimation method in the related art is not high is solved, and the estimation accuracy of the SOC is improved.
  • the detecting module 22 is configured to detect whether the battery is in a charging state or a discharging state by detecting whether the current of the battery is greater than a predetermined threshold; if the current is greater than a predetermined threshold, the battery is in a charging state or discharging status. It should be noted that, in this embodiment, the detecting module 22 determines whether the battery is in a normal charging and discharging state by detecting whether the current of the battery is greater than a predetermined threshold, so as to determine whether the SOC value is estimated by using the ampere-time integration method. It does not distinguish whether the battery is in a normal state of charge or a normal state of discharge.
  • the corresponding relationship may be a correspondence table between the battery open circuit voltage and the SOC value, or may be a curve indicating a correspondence between the battery open circuit voltage and the SOC value.
  • the corresponding relationship when the corresponding relationship is In the case of a curve corresponding to the open circuit voltage and the SOC value, in the case where the charging circuit of the battery is disconnected, the corresponding relationship is a charging open circuit voltage curve for indicating the correspondence relationship between the charging open circuit voltage and the SOC value of the battery; In the case where the loop is broken, the correspondence relationship is a discharge open circuit voltage curve for indicating the correspondence relationship between the discharge open circuit voltage of the battery and the SOC value.
  • the charging open circuit voltage curve is obtained by: during the charging process of the battery, recording a set of SOC values and a charge open circuit voltage value of the battery every first predetermined time period, wherein the two phases are Between the first predetermined time period of the neighbor is set to stop the charging of the battery Set the time period; fit the charging open circuit voltage curve according to the recorded multiple sets of SOC values and the battery open circuit voltage value; the open circuit voltage curve is obtained by: in the complete discharge process of the battery, every second predetermined The time period records a set of SOC values and a discharge open circuit voltage value of the battery, wherein between two adjacent second predetermined time periods, a rest period of time for stopping discharging the battery is set; according to the recorded plurality of sets of SOC values and The discharge open circuit voltage value of the battery is fitted to a discharge open circuit voltage curve.
  • the charging open circuit voltage curve obtained by the correspondence between the SOC value of the battery after standing and the charging open circuit voltage value of the battery is considered, and the correspondence between the SOC value of the battery after standing and the discharge open circuit voltage value of the battery is considered.
  • the open circuit voltage curve is relatively accurate, which in turn improves the accuracy of the SOC estimation.
  • FIG. 3 is a structural block diagram 2 of the apparatus for estimating the SOC value of the state of charge of the battery according to the embodiment of the present invention.
  • the device includes the In addition to all the modules shown, the first correction module 32 is configured to correct the charging open circuit voltage curve or the discharge open circuit voltage curve according to the following method: correcting the charging open circuit voltage curve according to the power consumption of the device connected to the battery or Correct the open circuit voltage curve.
  • the loss of the access device is considered, such as the power consumption of the single board or the protection circuit of the battery management system, and the charging open circuit voltage curve or the open circuit voltage curve which is more in line with the actual working condition is obtained, thereby improving the SOC estimation. Accuracy.
  • the second determining module 26 includes: a first searching unit, configured to search for the first take on the charging open circuit voltage curve of the current voltage value of the battery when the charging circuit of the battery is disconnected a value interval; the first calculating unit is configured to calculate a SOC value corresponding to the current voltage value by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the first value interval and the open circuit voltage of the battery; The determining module 26 further includes: a second searching unit configured to search for a second value interval on the open circuit voltage curve of the current voltage value of the battery when the discharge circuit of the battery is disconnected; the second calculating unit, The SOC value corresponding to the current voltage value is calculated by using a linear difference algorithm for the two sets of SOC values corresponding to the two points corresponding to the second value interval and the discharge open circuit voltage of the battery.
  • the first searching unit and the second searching unit may be the same searching unit, or may be different searching units
  • the present invention may be in a certain order (such as a chronological order or a sequence of voltage values from small to large, etc.) to find out in which interval the current voltage falls on the charging open circuit voltage curve or the discharge open circuit voltage curve, The two points in the interval are linearly differenced, and the SOC value corresponding to the current voltage value is calculated. It should be noted that two points of the interval may take two endpoints of the interval, or two points in the interval may be taken according to a certain rule, or two points in the interval may be randomly taken.
  • the device further includes a second correction module, configured to be in the third after the second determining module 26 determines the SOC value according to the correspondence between the battery open circuit voltage of the battery and the SOC value.
  • the SOC value is corrected every fourth predetermined time period according to the charging open circuit voltage curve; or, after the fifth predetermined time period, if the discharging circuit Still disconnected, the SOC value is corrected every sixth predetermined time period according to the discharge open circuit voltage curve.
  • the loop After determining the SOC value, after the third predetermined time period or the fifth predetermined time period, the loop is still disconnected, and then the SOC correction is performed every fourth predetermined time period or sixth predetermined time period, by determining the determined SOC The increase in the number of corrections makes the estimated SOC more accurate.
  • third predetermined time period and the fifth predetermined time period may be the same or different, and the fourth predetermined time period and the sixth predetermined time period may be the same or different.
  • modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are respectively located in multiple processes. In the device.
  • Embodiments of the present invention provide an optional method for estimating a SOC value of a battery, including the following steps:
  • FBMS Lithium Iron Phosphate Battery Management System
  • the lithium iron phosphate battery When the charging switch is turned off, the lithium iron phosphate battery is equivalent to being in an open state of charging. According to the corresponding charging open circuit voltage curve, the SOC estimated value of the corresponding lithium iron phosphate battery can be obtained by the table fitting method. Similarly, when the discharge switch is turned off, the lithium iron phosphate battery is equivalent to the discharge open state, and according to the corresponding discharge open circuit voltage curve, the SOC estimated value of the corresponding lithium iron phosphate battery in the open state of the discharge can be obtained. Thereby, the correction of the SOC in the open state is realized, and the estimation of the capacity is more accurate.
  • the optional embodiment of the present application is based on a lithium iron phosphate battery management system (FBMS).
  • FBMS lithium iron phosphate battery management system
  • the FBMS is mainly to realize the fine management of the lithium iron phosphate battery, real-time monitoring of the single information of the battery, and prevention by corresponding control.
  • the battery is overcharged or overdischarged to protect the battery.
  • battery management systems have been used more and more. Due to the power consumption of battery management system factors such as single board or protection circuit, these are factors that are not considered in the use of conventional open circuit voltage method.
  • the reason why the charge and discharge separately consider the open circuit voltage is because the influence of the power consumption loss on the open circuit voltage curve of the system is taken into account, so that the open circuit voltage curve is weighted to obtain the charging and discharging more in line with the actual working conditions.
  • the open circuit voltage curve therefore, the embodiment of the present invention is closer to the actual application, so that the SOC estimation is more accurate, and a more accurate SOC correction method is provided for other battery management systems.
  • the above FBMS needs to have the following conditions: (1) can monitor the monomer information of the lithium iron phosphate battery in real time; (2) can realize the charging or discharging protection of the lithium iron phosphate battery.
  • FBMS can charge or discharge the lithium iron phosphate battery.
  • charging protection the charging switch is cut off, the charging circuit is in the off state, and the battery stops charging.
  • the discharge switch is cut off and the discharge circuit is in the off state. The discharge is stopped, thereby protecting the battery.
  • the charging circuit is disconnected or the discharging switch is turned off, the battery is in an open state, no current flows, and the battery is equivalent to an open state. Therefore, the FBMS has a battery pack resting condition, so as to be adopted in the alternative embodiment of the present application.
  • the open circuit voltage method independently considered by charge and discharge lays the foundation for the correction method of SOC of lithium iron phosphate battery.
  • An embodiment of the present invention provides another optional method for estimating a SOC value of a battery, including the following steps:
  • step (4) determine whether the charging circuit of the FBMS is disconnected, if it is disconnected, proceed to step (5), otherwise enter step (6);
  • the SOC is corrected by the charge and discharge independent OCV (Open Circuit Voltage)-SOC curve, and the step (3) shows that the normal charge and discharge are used.
  • the integration method is used to estimate the SOC.
  • step (1) On the basis of the step (1), the battery is charged with a small current, and the sampling and recording interval is determined by the SOC value in the discharge open curve, and the charging is allowed to stand for one hour, and the corresponding battery voltage value is recorded. Until the battery is fully charged. All (U ocv , SOC ) points recorded during this process are fitted to the charge open curve OCV-SOC chg 1 as shown in Figure 4b;
  • An alternative embodiment of the present application combines an open circuit voltage method independently considered by charge and discharge and an ampere-hour integration method to estimate the SOC of a lithium iron phosphate battery, in particular, an open circuit voltage method independently considered by charge and discharge to correct a SOC of a lithium iron phosphate battery.
  • the SOC correction opportunity is greatly increased, and the estimation accuracy of the SOC is improved, which is easy to implement and popularize. Since the embodiment of the present invention proposes an open circuit voltage method that is independently considered for charging and discharging, in the case of charging protection or discharge protection, the SOC can be corrected to improve the SOC estimation accuracy under this condition.
  • the embodiment of the invention provides another optional method for estimating the SOC value of the battery, comprising the following steps:
  • Lithium iron phosphate battery management system can collect battery cell voltage, temperature and battery The collection of analog and state quantities such as current can realize charging or discharging protection for lithium iron phosphate battery.
  • charging protection the charging switch is cut off, the charging circuit is in the off state, the battery stops charging; when the discharge is protected, the discharge switch is cut off. The discharge circuit is in the off state and the battery stops discharging.
  • the optional embodiment of the present application is further explained by combining the charging open curve OCV-SOC chg shown in FIG. 5b and the discharge open circuit voltage curve OCV-SOC dischg shown in FIG. 5a.
  • the two sets of curves pass through the collection point (U).
  • the coordinate mode of ocv , SOC (each curve contains 13 coordinate points) is mapped into a two-dimensional array and written into the FBMS to be used.
  • FIG. 6 is a flow chart of SOC estimation of a lithium iron phosphate battery according to an alternative embodiment of the present application, and the implementation steps of the SOC estimation are described as follows:
  • step S602 an initial value of the SOC is estimated.
  • FBMS After start-up operation, to obtain a voltage value U ini battery according to the collected real-time data, then the look-up table, to see if the voltage U ini the charging open circuit voltage is less than a point in the curve of the OCV-SOC chg i, it is considered that the voltage The point falls within the interval of (U i , SOC i ) and (U i-1 , SOC i-1 ), and then the corresponding initial value SOC ini of the lithium iron phosphate battery is obtained according to a linear interpolation algorithm:
  • Step S604 periodically determining that if the absolute value of the battery current exceeds I min (2 ampere (A)), at this time, it is considered that the current is normally charged or discharged, and the SOC value is estimated by using the ampere-hour integration method, that is, Otherwise go to the next step;
  • Step S606 it is determined whether the charging circuit of the FBMS is disconnected, if it is disconnected, then proceeds to step S608, otherwise proceeds to step S610;
  • Step S608 starting a timer (ie, wBatCutTime1), when the timing time reaches one hour, the SOC is corrected according to the charging open circuit voltage curve OCV-SOC chg , mainly based on the battery voltage value after the standing, using an incremental search method. Finding which interval of the current voltage value falls into the OCV-SOC chg , and then linearly interpolating the two points of the interval, and calculating the SOC value corresponding to the current voltage value, wherein the calculation method refers to the formula in step S602 (a ); if the state of the charging circuit becomes closed, the timer is cleared to exit the correction process;
  • step S610 it is determined whether the discharge circuit is disconnected. If it is disconnected, the timer (ie, wBatCutTime2) is started. When the time is up to one hour, the SOC is corrected according to the open circuit voltage curve OCV-SOC dischg , mainly according to the static state.
  • the voltage value of the battery pack is determined by an incremental search method, and the current voltage value is found in which interval of the OCV-SOC dischg , and then the two points of the interval are linearly interpolated to calculate the SOC value corresponding to the current voltage value, wherein
  • the calculation method refers to the formula (a) in step S602; if the discharge loop state becomes closed, the timer is cleared to exit the correction process;
  • the cycle is performed in steps S602 to S610.
  • the embodiment of the invention further provides a computer readable storage medium.
  • the computer readable storage medium may be configured to store program code for performing the following steps:
  • Step S1 detecting whether the battery is in a charging state or a discharging state
  • Step S2 in the case that the battery is in a charged state or a discharged state, the SOC value of the battery is determined by an ampere-hour integration method
  • step S3 when the battery is not in the charging state and the discharging state, and the charging circuit of the battery is disconnected or the discharging circuit is disconnected, the SOC value is determined according to the correspondence relationship between the battery open circuit voltage and the SOC value of the battery.
  • the computer readable storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), and a mobile device.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present application can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. They may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than that illustrated herein. Or describing the steps, or making them into a single integrated circuit module, or making multiple modules or steps into a single integration The circuit module is implemented. Thus, the application is not limited to any particular combination of hardware and software.
  • the embodiment of the invention provides a method and a device for estimating the SOC value of a battery, and combines the ampere-hour integration method and the open-circuit voltage method to determine the SOC, increases the SOC correction opportunity, and solves the estimation of the battery SOC estimation method in the related art.
  • the problem that the SOC accuracy is not high improves the estimation accuracy of the SOC.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池荷电状态SOC值的估算方法,包括:检测电池是否处于充电状态或者放电状态;在电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。通过上述方法,解决了相关技术中电池SOC估算方法估算的SOC准确度不高的问题,提高了SOC的估算精度。

Description

电池荷电状态值的估算方法及装置 技术领域
本申请涉及但不限于通信领域,涉及一种电池荷电状态(SOC)值的估算方法及装置。
背景技术
通信电源是为通信基站或者通信机房等通信设备提供能量的设备,而蓄电池是通信电源的重要组成部分,能够为通信设备提供备用电源。近年来,随着各个国家对节能减排和发展低碳经济越来越重视,磷酸铁锂(LiFePO4)电池以其独特的优点得到了越来越广泛的应用。磷酸铁锂电池相比之前一直广泛应用的铅酸电池,具有循环寿命长、高温性能好、大容量、无记忆效应、重量轻、环保等优势,因此,在多个领域得到快速的推广和良好使用,例如通信电源储能设备、新能源储能设备、大型电动车、医疗仪器等。
随着磷酸铁锂电池应用的推广,电池管理系统也得到了广泛的应用,为了充分发挥电池的动力性能、提高其使用的安全性、防止电池过充和过放、延长电池的使用寿命、提高其作为储能设备的使用性能,电池管理系统需要对电池的荷电状态(State-of-Charge,简称SOC)进行准确估算,SOC是用来描述电池使用过程中可充入和放出容量的重要参考因素。电池的SOC和很多因素有关,如温度、电流、寿命、电化学效应等,且具有很强的非线性关系,给SOC实时在线估算带来很大的困难。
相关技术中的电池SOC的估算方法主要有:安时积分法、开路电压法、卡尔曼滤波法、内阻法、人工神经网络法等。其中,人工神经网络法、卡尔曼滤波法由于系统设置复杂,而且在电池管理系统中对硬件配置要求较高,并未得到广泛的应用;内阻法存在着估算内阻的困难,在硬件上难以实现;开路电压法需要使用到开路电压,需要电池组的长时间静置,一般系统不具备静置条件。相比较而言,安时积分法由于简单有效而常被采用,但安时积分法由于可能只考虑电流对时间的积分,或者可能结合动态放电曲线对容量进行修正,但动态曲线受到温度、电流、寿命等因素的影响,因此预估出来 的电池SOC也不准确。
针对相关技术中的电池SOC估算方法估算的SOC准确度不高的问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种电池荷电状态(SOC)值的估算方法及装置,以至少解决相关技术中电池SOC估算方法估算的SOC准确度不高的问题。
根据本发明实施例的一个方面,提供了一种电池荷电状态(SOC)值的估算方法,包括:检测电池是否处于充电状态或者放电状态;在电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。
在本发明实施例中,通过以下方式检测电池是否处于充电状态或者放电状态:检测电池的电流是否大于预定阈值;在电流大于预定阈值的情况下,电池处于充电状态或者放电状态。
在本发明实施例中,在电池的充电回路断开的情况下,对应关系为用于指示电池的充电开路电压和SOC值的对应关系的充电开路电压曲线;在电池的放电回路断开的情况下,对应关系为用于指示电池的放电开路电压和SOC值的对应关系的放电开路电压曲线。
在本发明实施例中,充电开路电压曲线是通过以下方式获取的:在电池的充电过程中,每隔第一预定时间段记录一组SOC值和电池的充电开路电压值,其中,两个相邻的第一预定时间段之间设置有停止对电池进行充电的静置时间段;根据记录的多组SOC值和电池的充电开路电压值拟合成充电开路电压曲线;放电开路电压曲线是通过以下方式获取的:在电池的完全放电过程中,每隔第二预定时间段记录一组SOC值和电池的放电开路电压值,其中,两个相邻的第二预定时间段之间设置有停止对电池进行放电的静置时间段; 根据记录的多组SOC值和电池的放电开路电压值拟合成放电开路电压曲线。
在本发明实施例中,该方法还包括:按照以下方式对充电开路电压曲线或放电开路电压曲线进行修正:根据电池所接入设备的功耗对充电开路电压曲线进行修正或者对放电开路电压曲线进行修正。
在本发明实施例中,在电池的充电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值包括:查找电池的当前电压值落入的充电开路电压曲线上的第一取值区间;对第一取值区间所对应的两点所对应的两组SOC值和电池的充电开路电压采用线性差值算法计算当前电压值对应的SOC值;在电池的放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值包括:查找电池的当前电压值落入的放电开路电压曲线上的第二取值区间;对第二取值区间所对应的两点所对应的两组SOC值和电池的放电开路电压采用线性差值算法计算当前电压值对应的SOC值。
在本发明实施例中,根据电池的电池开路电压和SOC值的对应关系确定SOC值之后,该方法还包括:在第三预定时间段之后,若充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对SOC值进行修正;或者,在第五预定时间段之后,若放电回路仍然断开,则根据放电开路电压曲线每隔第六预定时间段对SOC值进行修正。
根据本发明实施例的另一方面,提供了一种电池SOC值的估算装置,包括:检测模块,设置为检测电池是否处于充电状态或者放电状态;第一确定模块,设置为在所述电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;第二确定模块,设置为在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。
在本发明实施例中,检测模块设置为通过以下方式检测电池是否处于充电状态或者放电状态:检测电池的电流是否大于预定阈值;在电流大于预定阈值的情况下,电池处于充电状态或者放电状态。
在本发明实施例中,在电池的充电回路断开的情况下,对应关系为用于指示电池的充电开路电压和SOC值的对应关系的充电开路电压曲线;在电池 的放电回路断开的情况下,对应关系为用于指示电池的放电开路电压和SOC值的对应关系的放电开路电压曲线。
在本发明实施例中,充电开路电压曲线是通过以下方式获取的:在电池的充电过程中,每隔第一预定时间段记录一组SOC值和电池的充电开路电压值,其中,两个相邻的第一预定时间段之间设置有停止对电池进行充电的静置时间段;根据记录的多组SOC值和电池的充电开路电压值拟合成充电开路电压曲线;放电开路电压曲线是通过以下方式获取的:在电池的完全放电过程中,每隔第二预定时间段记录一组SOC值和电池的放电开路电压值,其中,两个相邻的第二预定时间段之间设置有停止对电池进行放电的静置时间段;根据记录的多组SOC值和电池的放电开路电压值拟合成放电开路电压曲线。
在本发明实施例中,该装置还包括:第一修正模块,设置为按照以下方式对充电开路电压曲线或放电开路电压曲线进行修正:根据电池所接入设备的功耗对充电开路电压曲线进行修正或者对放电开路电压曲线进行修正。
在本发明实施例中,第二确定模块包括:第一查找单元,设置为在电池的充电回路断开的情况下,查找电池的当前电压值落入的充电开路电压曲线上的第一取值区间;第一计算单元,设置为对第一取值区间所对应的两点所对应的两组SOC值和电池的充电开路电压采用线性差值算法计算当前电压值对应的SOC值;第二确定模块还包括:第二查找单元,设置为在电池的放电回路断开的情况下,查找电池的当前电压值落入的放电开路电压曲线上的第二取值区间;第二计算单元,设置为对第二取值区间所对应的两点所对应的两组SOC值和电池的放电开路电压采用线性差值算法计算当前电压值对应的SOC值。
在本发明实施例中,该装置还包括第二修正模块,设置为在第二确定模块根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值之后,在第三预定时间段之后,若所述充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对所述SOC值进行修正;或者,在第五预定时间段之后,若所述放电回路仍然断开,则根据所述放电开路电压曲线每隔第六预定时间段对所述SOC值进行修正。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可 执行指令,所述计算机可执行指令被执行时实现上述的电池SOC值的估算方法。
通过本发明实施例,采用在电池处于所述充电状态或者所述放电状态的情况下,通过安时积分法确定所述电池的SOC值,在所述电池的充电回路断开或者放电回路断开的情况下,根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值,即将安时积分法和开路电压法进行结合对SOC进行确定,增加了SOC的修正机会,解决了相关技术中电池SOC估算方法估算的SOC准确度不高的问题,提高了SOC的估算精度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本发明实施例的电池荷电状态(SOC)值的估算方法的流程图;
图2是根据本发明实施例的电池SOC值的估算装置的结构框图一;
图3是根据本发明实施例的电池SOC值的估算装置的结构框图二;
图4a是根据本申请可选实施例的放电开路曲线OCV-SOCdischg 1的示意图;
图4b是根据本申请可选实施例的充电开路曲线OCV-SOCchg 1的示意图;
图5a是根据本申请可选实施例的放电开路曲线OCV-SOCdischg的示意图;
图5b是根据本申请可选实施例的充电开路曲线OCV-SOCchg的示意图;
图6是根据本申请可选实施例的FBMS对磷酸铁锂电池的SOC估算流程图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在 不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本实施例提供了一种电池荷电状态(SOC)值的估算方法,图1是根据本发明实施例的电池SOC值的估算方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,检测电池是否处于充电状态或者放电状态;
步骤S104,在电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;
步骤S106,在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。
通过上述步骤,采用在电池处于所述充电状态或者所述放电状态的情况下,通过安时积分法确定所述电池的SOC值,在所述电池的充电回路断开或者放电回路断开的情况下,根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值,即将安时积分法和开路电压法进行结合对SOC进行确定,增加了SOC的修正机会,解决了相关技术中电池SOC估算方法估算的SOC准确度不高的问题,提高了SOC的估算精度。
需要说明的是,上述方法的执行主体可以是电池的管理系统,可以是电池和电池的管理系统之外的一个第三方设备。
在本发明实施例中,可以通过以下方式检测电池是否处于充电状态或者放电状态:检测电池的电流是否大于预定阈值;在电流大于预定阈值的情况下,电池处于充电状态或者放电状态。也可以通过其他的方式判断电池是否处于充电状态或者放电状态,比如,检测电池的电压来判断。需要说明的是,在本实施例中通过检测电池的电流是否大于预定阈值来确实电池是否处于正常的充放电状态,以便判断是否采用安时积分法来估算SOC值,该判断条件并不区分电池是处于正常的充电状态还是正常的放电状态。
在本发明实施例中,上述对应关系可以是电池开路电压和SOC值的对应关系表,也可以是表示电池开路电压和SOC值对应关系的曲线,在本发明实施例中,当上述对应关系为电池开路电压和SOC值对应关系的曲线时,在电池的充电回路断开的情况下,对应关系为用于指示电池的充电开路电压和SOC值的对应关系的充电开路电压曲线;在电池的放电回路断开的情况下,对应关系为用于指示电池的放电开路电压和SOC值的对应关系的放电开路电压曲线。
在本发明实施例中,充电开路电压曲线是通过以下方式获取的:在电池的充电过程中,每隔第一预定时间段记录一组SOC值和电池的充电开路电压值,其中,两个相邻的第一预定时间段之间设置有停止对电池进行充电的静置时间段;根据记录的多组SOC值和电池的充电开路电压值拟合成充电开路电压曲线;放电开路电压曲线是通过以下方式获取的:在电池的完全放电过程中,每隔第二预定时间段记录一组SOC值和电池的放电开路电压值,其中,两个相邻的第二预定时间段之间设置有停止对电池进行放电的静置时间段;根据记录的多组SOC值和电池的放电开路电压值拟合成放电开路电压曲线。
在本发明实施例中,考虑的是电池静置后SOC值和电池的充电开路电压值的对应关系来获取的充电开路电压曲线,以及电池静置后SOC值和电池的放电开路电压值的对应关系来获取的放电开路电压曲线,而由于静置后电池的内部反应趋于稳定状态,因而相对于相关技术中的动态方式获取的曲线,干扰因子较少,因而获取的充电开路电压曲线或者放电开路电压曲线相对比较准确,进而提高了SOC估算的准确度。
为了更加接近于实际应用情况,使得SOC估算更加准确,在本发明实施例中,该方法还包括:按照以下方式对充电开路电压曲线或放电开路电压曲线进行修正:根据电池所接入设备的功耗对充电开路电压曲线进行修正或者对放电开路电压曲线进行修正。在开路电压法中考虑了接入设备的损耗,比如电池管理系统的单板或者保护电路的耗电情况,得到更加符合实际工况的充电开路电压曲线或放电开路电压曲线,进而提高了SOC估算的准确度。
在本发明实施例中,在电池的充电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值包括:查找电池的当前电压值落 入的充电开路电压曲线上的第一取值区间;对第一取值区间所对应的两点所对应的两组SOC值和电池的充电开路电压采用线性差值算法计算当前电压值对应的SOC值;在电池的放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值包括:查找电池的当前电压值落入的放电开路电压曲线上的第二取值区间;对第二取值区间所对应的两点所对应的两组SOC值和电池的放电开路电压采用线性差值算法计算当前电压值对应的SOC值。
在本发明上述实施例中,可以按照一定的顺序(比如时间顺序或者电压值从小到大的顺序等)查找当前电压落入到充电开路电压曲线或者放电开路电压曲线上的哪个区间中,对该区间内的两点进行线性差值,计算该当前电压值对应的SOC值。需要说明的是,该区间的两点可以取该区间的两个端点,也可以按照一定的规则取区间内的两个点,也可以是随机取该区间的两个点。
在本发明实施例中,根据电池的电池开路电压和SOC值的对应关系确定SOC值之后,该方法还包括:在第三预定时间段之后,若充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对SOC值进行修正;或者,在第五预定时间段之后,若放电回路仍然断开,则根据放电开路电压曲线每隔第六预定时间段对SOC值进行修正。在确定SOC值之后,经过第三预定时间段或者第五预定时间段之后回路仍然断开,则之后每隔第四预定时间段或者第六预定时间段进行一次SOC的修正,通过对确定的SOC值的修正次数的增加,使得估算的SOC更加准确。
需要说明的是,上述第三预定时间段和上述第五预定时间段可以相同,也可以不相同;上述第四预定时间段和上述第六预定时间段可以相同,也可以不相同。
在本实施例中还提供了一种电池SOC值的估算装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的电池SOC值的估算装置的结构框图一,如图 2所示,该装置包括:
检测模块22,设置为:检测电池是否处于充电状态或者放电状态;
第一确定模块24,与检测模块22连接,设置为在所述电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;
第二确定模块26,与检测模块22连接,设置为在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。
通过上述装置,采用在电池处于所述充电状态或者所述放电状态的情况下,通过安时积分法确定所述电池的SOC值,在所述电池的充电回路断开或者放电回路断开的情况下,根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值,即该装置将安时积分法和开路电压法进行结合对SOC进行确定,增加了SOC的修正机会,解决了相关技术中电池SOC估算方法估算的SOC准确度不高的问题,提高了SOC的估算精度。
在本发明实施例中,检测模块22是设置为通过以下方式检测电池是否处于充电状态或者放电状态:检测电池的电流是否大于预定阈值;在电流大于预定阈值的情况下,电池处于充电状态或者放电状态。需要说明的是,在本实施例中,检测模块22通过检测电池的电流是否大于预定阈值来确定电池是否处于正常的充放电状态,以便判断是否采用安时积分法来估算SOC值,该判断条件并不区分电池是处于正常的充电状态还是正常的放电状态。
在本发明实施例中,上述对应关系可以是电池开路电压和SOC值的对应关系表,也可以是表示电池开路电压和SOC值对应关系的曲线,在本发明实施例中,当上述对应关系为电池开路电压和SOC值对应关系的曲线时,在电池的充电回路断开的情况下,对应关系为用于指示电池的充电开路电压和SOC值的对应关系的充电开路电压曲线;在电池的放电回路断开的情况下,对应关系为用于指示电池的放电开路电压和SOC值的对应关系的放电开路电压曲线。
在本发明实施例中,充电开路电压曲线是通过以下方式获取的:在电池的充电过程中,每隔第一预定时间段记录一组SOC值和电池的充电开路电压值,其中,两个相邻的第一预定时间段之间设置有停止对电池进行充电的静 置时间段;根据记录的多组SOC值和电池的充电开路电压值拟合成充电开路电压曲线;放电开路电压曲线是通过以下方式获取的:在电池的完全放电过程中,每隔第二预定时间段记录一组SOC值和电池的放电开路电压值,其中,两个相邻的第二预定时间段之间设置有停止对电池进行放电的静置时间段;根据记录的多组SOC值和电池的放电开路电压值拟合成放电开路电压曲线。
在本发明实施例中,考虑的是电池静置后SOC值和电池的充电开路电压值的对应关系来获取的充电开路电压曲线,以及电池静置后SOC值和电池的放电开路电压值的对应关系来获取的放电开路电压曲线,而由于静置后电池的内部反应趋于稳定状态,因而相对于相关技术中的动态方式获取的曲线,干扰因子较少,因而获取的充电开路电压曲线或者放电开路电压曲线相对比较准确,进而提高了SOC估算的准确度。
为了更加接近于实际应用情况,使得SOC估算更加准确,图3是根据本发明实施例的电池荷电状态SOC值的估算装置的结构框图二,如图3所示,该装置除包括图2所示的所有模块外,还包括:第一修正模块32,设置为按照以下方式对充电开路电压曲线或放电开路电压曲线进行修正:根据电池所接入设备的功耗对充电开路电压曲线进行修正或者对放电开路电压曲线进行修正。在开路电压法中考虑了接入设备的损耗,比如电池管理系统的单板或者保护电路的耗电情况,得到更加符合实际工况的充电开路电压曲线或放电开路电压曲线,进而提高了SOC估算的准确度。
在本发明实施例中,第二确定模块26包括:第一查找单元,设置为在电池的充电回路断开的情况下,查找电池的当前电压值落入的充电开路电压曲线上的第一取值区间;第一计算单元,设置为对第一取值区间所对应的两点所对应的两组SOC值和电池的充电开路电压采用线性差值算法计算当前电压值对应的SOC值;第二确定模块26还包括:第二查找单元,设置为在电池的放电回路断开的情况下,查找电池的当前电压值落入的放电开路电压曲线上的第二取值区间;第二计算单元,设置为对第二取值区间所对应的两点所对应的两组SOC值和电池的放电开路电压采用线性差值算法计算当前电压值对应的SOC值。需要说明的是,在本发明实施例中,上述第一查找单元和上述第二查找单元可以是同一个查找单元,也可以是不同的查找单元,上 述第一计算单元和上述第二计算单元可以是同一个计算单元,也可以是不同的计算单元。
在本发明上述实施例中,可以按照一定的顺序(比如时间顺序或者电压值从小到大的顺序等)查找当前电压落入到充电开路电压曲线或者放电开路电压曲线上的哪个区间中,对该区间内的两点进行线性差值,计算该当前电压值对应的SOC值。需要说明的是,该区间的两点可以取该区间的两个端点,也可以按照一定的规则取区间内的两个点,也可以是随机取该区间的两个点。
在本发明实施例中,该装置还包括第二修正模块,设置为在第二确定模块26根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值之后,在第三预定时间段之后,若所述充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对所述SOC值进行修正;或者,在第五预定时间段之后,若所述放电回路仍然断开,则根据所述放电开路电压曲线每隔第六预定时间段对所述SOC值进行修正。在确定SOC值之后,经过第三预定时间段或者第五预定时间段之后回路仍然断开,则之后每隔第四预定时间段或者第六预定时间段进行一次SOC的修正,通过对确定的SOC值的修正次数的增加,使得估算的SOC更加准确。
需要说明的是,上述第三预定时间段和上述第五预定时间段可以相同,也可以不相同;上述第四预定时间段和上述第六预定时间段可以相同,也可以不相同。
需要说明的是,上述模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
以下结合具体的实施例对本申请做进一步的解释。
本发明实施例提供了一种可选的电池SOC值的估算方法,包括以下步骤:
(1)当FBMS(磷酸铁锂电池管理系统)监测到电池在动态充放电时,采用安时积分法进行SOC的估算;
(2)当充电回路断开或者放电回路断开时,则采用充放电独立考虑的开路电压法。
当充电开关断开时,磷酸铁锂电池便相当于处于充电开路状态,根据相应的充电开路电压曲线,经过查表拟合法便可得到充电开路状态时对应的磷酸铁锂电池的SOC预估值;同理,当放电开关断开时,磷酸铁锂电池便相当于处于放电开路状态,根据相应的放电开路电压曲线,便可得到放电开路状态时对应的磷酸铁锂电池的SOC预估值。从而实现SOC在开路状态时的修正,使容量的估算更加准确。
本申请可选实施例是基于一种磷酸铁锂电池管理系统(FBMS)的,FBMS主要是实现对磷酸铁锂电池的精细化管理,对电池的单体信息进行实时监测,通过相应的控制防止电池过充或者过放,达到保护电池的目的。现在电池管理系统已经得到了越来越多的应用,由于电池管理系统因素比如单板或者保护电路等的耗电情况,这些是常规开路电压法使用中未考虑进入的因素,本申请可选实施例之所以充放电单独考虑开路电压,均是因为考虑到系统实际应用时的用电损耗对电池开路电压曲线的影响,从而对开路电压曲线进行加权处理,得到更加符合实际工况的充电和放电开路电压曲线,因此本发明实施例更加接近于实际应用情况,从而SOC估算的更加准确,也为其它的电池管理系统提供一种更加准确的SOC修正方法。
上述FBMS需要具备以下条件:(1)能够实时监测磷酸铁锂电池的单体信息;(2)能够对磷酸铁锂电池实现充电或者放电保护。
上述FBMS并非特指某种用途的系统,适用于所有磷酸铁锂电池的管理单元。FBMS能够对磷酸铁锂电池实现充电或者放电保护,当充电保护时,充电开关切断,充电回路处于断开状态,电池停止充电;当放电保护时,放电开关切断,放电回路处于断开状态,电池停止放电,从而起到保护电池的作用。而充电回路断开或者放电开关切断时,电池处于开路状态,无电流经过,此时电池相当于开路状态,因此FBMS具备电池组的静置条件,从而为本申请可选实施例所述的采用充放电独立考虑的开路电压法对磷酸铁锂电池SOC的修正方法奠定基础。
本发明实施例提供了另一种可选的电池SOC值的估算方法,包括如下步骤:
(1)通过对磷酸铁锂电池进行完整的充电和放电过程,并在过程中进行 分段静置记录,然后通过加权拟合得到对应的充电开路曲线和放电开路曲线,这两个曲线包含了磷酸铁锂电池SOC和电池开路电压的对应关系,然后将此关系表存入FBMS中;
(2)初始化SOC,根据电池的电压值进行初始容量的估算,依据电池电压值,通过查表线性插值算法得到对应的磷酸铁锂电池SOC初始值SOCini
(3)判断若电池电流绝对值超出Imin(电流的最小值,根据硬件检测误差来定),此时认为电池在正常的充电或者放电,采用安时积分法来估算SOC值,即
Figure PCTCN2016089688-appb-000001
否则进入下一步;
(4)判断FBMS的充电回路是否断开,若断开则进入步骤(5),否则进入步骤(6);
(5)启动计时器,当计时时间到达一小时,则根据充电开路电压曲线OCV-SOCchg进行SOC的修正,主要是根据静置后的电池组电压值,采用递增式查找法,查找到当前电压值落入OCV-SOCchg的哪个区间中,然后对该区间的两点进行线性拟合,计算出当前电压值对应的SOC值;若充电回路状态变成闭合,则计时器清零,退出此次修正过程;
(6)判断放电回路是否断开,若断开则启动计时器,当计时时间到达一小时,则根据放电开路电压曲线OCV-SOCdischg进行SOC的修正,主要是根据静置后的电池组电压值,采用递增式查找法,查找到当前电压值落入OCV-SOCdischg的哪个区间中,然后对该区间的两点进行线性拟合,计算出当前电压值对应的SOC值;若放电回路状态变成闭合,则计时器清零,退出此次修正过程;
(7)上述步骤(5)和(6)若一小时后回路仍然断开,则之后每隔15分钟进行一次SOC的修正,使修正次数增加,从而使容量估算更加准确。
上述步骤(5)、(6)和(7)便是通过充放电独立的OCV(Open Circuit Voltage,开路电压)-SOC曲线进行SOC的修正,步骤(3)体现了正常充放电时采用安时积分法进行SOC的估算,这两者结合,尤其是充放电独立考虑的OCV-SOC曲线修正法使容量的估算更加准确。
下面详细介绍如何获取充电OCV-SOC曲线和放电OCV-SOC曲线:
(1)将电池充电至最高电压,待充电电流接近0时,且维持一段时间, 认为电池充满,此时静置一个小时,记录对应的电池电压值和SOC值。然后电池端接入负载,使电池以较小电流放电至一个新的SOC值,静置一个小时,记录对应的电池电压值,依此类推,直至电池放完电,记录最终的SOC值和静置电压值。在此过程中记录的所有(SOC,Uocv)点拟合成放电开路曲线OCV-SOCdischg 1,如图4a所示,该曲线的横坐标为SOC值,纵坐标为电池组开路电压值Uocv
(2)在步骤(1)的基础上,将电池进行较小电流充电,采样记录的间隔以放电开路曲线中的SOC值为准,分别进行充电静置一个小时,记录对应的电池电压值,直至电池充满电。在此过程中记录的所有(Uocv,SOC)点拟合成充电开路曲线OCV-SOCchg 1,如图4b所示;
(3)以上过程均只对电池本身进行测试,考虑FBMS系统接入后,单板或者保护电路等的耗电情况,对上述得到的OCV-SOCdischg 1和OCV-SOCchg 1两组数据进行加权拟合,由于单板或者保护电路会有一定的电量损耗,因此把OCV-SOCdischg 1和OCV-SOCchg 1两组曲线进行向下偏移,即将电压值减去偏移电压值得到OCV-SOCdischg和OCV-SOCchg曲线。
(4)对修正之后的OCV-SOCdischg和OCV-SOCchg曲线进行实际应用的验证,偏移电压值根据每个系统的单板或者保护电路的损耗情况来确定,通过实际应用的验证,取得合理的偏移电压值,从而得到最终的OCV-SOCdischg曲线(如图5a所示)和OCV-SOCchg曲线(如图5b所示),保证SOC修正更加准确。
本申请可选实施例将充放电独立考虑的开路电压法和安时积分法结合进行磷酸铁锂电池SOC的估算,尤其是采用充放电独立考虑的开路电压法对磷酸铁锂电池SOC进行修正,大大增加了SOC的修正机会,提高了SOC的估算精度,易于实现和推广。由于本发明实施例提出了充放电独立考虑的开路电压法,在充电保护或者放电保护的情况下,均可以对SOC进行修正,提高了此工况下的SOC估算精度。
本发明实施例提供了又一种可选的电池SOC值的估算方法,包括以下步骤:
磷酸铁锂电池管理系统(FBMS)能够采集电池单体电压、温度及电池 电流等模拟量和状态量的采集,对磷酸铁锂电池可以实现充电或者放电保护,当充电保护时,充电开关切断,充电回路处于断开状态,电池停止充电;当放电保护时,放电开关切断,放电回路处于断开状态,电池停止放电。
结合上述实施例中图5b所示的充电开路曲线OCV-SOCchg和图5a所示的放电开路电压曲线OCV-SOCdischg对本申请可选实施例做进一步解释,这两组曲线通过采集点(Uocv,SOC)的坐标方式(每个曲线包含13个坐标点)映射成二维数组的方式写入FBMS中待使用。
图6是根据本申请可选实施例的FBMS对磷酸铁锂电池的SOC估算流程图,结合该流程图说明SOC估算的实施步骤如下:
步骤S602,估算SOC的初始值。FBMS启动工作后,根据采集到的实时数据得到电池组电压值Uini,然后通过查表,查看Uini电压若小于充电开路曲线OCV-SOCchg中的某个点i的电压,则认为该电压点落入(Ui,SOCi)和(Ui-1,SOCi-1)区间内,然后根据线性插值算法得到对应的磷酸铁锂电池SOC初始值SOCini
Figure PCTCN2016089688-appb-000002
步骤S604,周期性地判断若电池电流绝对值超出Imin(2安培(A)),此时认为电流在正常充电或者放电,采用安时积分法来估算SOC值,即
Figure PCTCN2016089688-appb-000003
Figure PCTCN2016089688-appb-000004
否则进入下一步;
步骤S606,判断FBMS的充电回路是否断开,若断开则进入步骤S608,否则进入步骤S610;
步骤S608,启动计时器(即wBatCutTime1),当计时时间到达一小时,则根据充电开路电压曲线OCV-SOCchg进行SOC的修正,主要是根据静置后的电池组电压值,采用递增式查找法,查找到当前电压值落入OCV-SOCchg的哪个区间中,然后对该区间的两点进行线性插值,计算出当前电压值对应的SOC值,其中,计算方法参考步骤S602中的公式(a);若充电回路状态变成闭合,则计时器清零,退出此次修正过程;
步骤S610,判断放电回路是否断开,若断开则启动计时器(即wBatCutTime2),当计时时间到达一小时,则根据放电开路电压曲线OCV-SOCdischg进行SOC的修正,主要是根据静置后的电池组电压值,采用 递增式查找法,查找到当前电压值落入OCV-SOCdischg的哪个区间中,然后对该区间的两点进行线性插值,计算出当前电压值对应的SOC值,其中,计算方法参考步骤S602中的公式(a);若放电回路状态变成闭合,则计时器清零,退出此次修正过程;
上述步骤S608和步骤S610中,若一小时后回路仍然断开,则之后每隔15分钟进行一次SOC的修正,使修正次数增加,从而使容量估算更加准确。
周期循环执行步骤S602至步骤S610。
本发明实施例还提供了一种计算机可读存储介质。可选地,在本实施例中,上述计算机可读存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S1,检测电池是否处于充电状态或者放电状态;
步骤S2,在电池处于充电状态或者放电状态的情况下,通过安时积分法确定电池的SOC值;
步骤S3,在电池不处于充电状态和放电状态,且在电池的充电回路断开或者放电回路断开的情况下,根据电池的电池开路电压和SOC值的对应关系确定SOC值。
可选地,在本实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本领域的技术人员应该明白,上述的本申请的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成单个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成 电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本发明实施例提供一种电池SOC值的估算方法及装置,将安时积分法和开路电压法进行结合对SOC进行确定,增加了SOC的修正机会,解决了相关技术中电池SOC估算方法估算的SOC准确度不高的问题,提高了SOC的估算精度。

Claims (14)

  1. 一种电池荷电状态SOC值的估算方法,包括:
    检测电池是否处于充电状态或者放电状态;
    在所述电池处于所述充电状态或者所述放电状态的情况下,通过安时积分法确定所述电池的SOC值;
    在所述电池不处于所述充电状态和所述放电状态,且在所述电池的充电回路断开或者放电回路断开的情况下,根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值。
  2. 根据权利要求1所述的方法,其中,通过以下方式检测电池是否处于充电状态或者放电状态:
    检测所述电池的电流是否大于预定阈值;
    在所述电流大于所述预定阈值的情况下,所述电池处于所述充电状态或者所述放电状态。
  3. 根据权利要求1所述的方法,其中,在所述电池的充电回路断开的情况下,所述对应关系为用于指示所述电池的充电开路电压和所述SOC值的对应关系的充电开路电压曲线;在所述电池的放电回路断开的情况下,所述对应关系为用于指示所述电池的放电开路电压和所述SOC值的对应关系的放电开路电压曲线。
  4. 根据权利要求3所述的方法,其中,
    所述充电开路电压曲线是通过以下方式获取的:在所述电池的充电过程中,每隔第一预定时间段记录一组所述SOC值和所述电池的充电开路电压值,其中,两个相邻的所述第一预定时间段之间设置有停止对所述电池进行充电的静置时间段;根据记录的多组所述SOC值和所述电池的充电开路电压值拟合成所述充电开路电压曲线;
    所述放电开路电压曲线是通过以下方式获取的:在所述电池的完全放电过程中,每隔第二预定时间段记录一组所述SOC值和所述电池的放电开路电压值,其中,两个相邻的所述第二预定时间段之间设置有停止对所述电池进行放电的静置时间段;根据记录的多组所述SOC值和所述电池的放电开路电 压值拟合成所述放电开路电压曲线。
  5. 根据权利要求3所述的方法,所述方法还包括:按照以下方式对所述充电开路电压曲线或放电开路电压曲线进行修正:
    根据所述电池所接入设备的功耗对所述充电开路电压曲线进行修正或者对所述放电开路电压曲线进行修正。
  6. 根据权利要求1至5中任一项所述的方法,其中,
    在所述电池的充电回路断开的情况下,所述根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值包括:查找所述电池的当前电压值落入的所述充电开路电压曲线上的第一取值区间;对所述第一取值区间所对应的两点所对应的两组所述SOC值和所述电池的充电开路电压采用线性差值算法计算所述当前电压值对应的SOC值;
    在所述电池的放电回路断开的情况下,所述根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值包括:查找所述电池的当前电压值落入的所述放电开路电压曲线上的第二取值区间;对所述第二取值区间所对应的两点所对应的两组所述SOC值和所述电池的放电开路电压采用线性差值算法计算所述当前电压值对应的SOC值。
  7. 根据权利要求1至6中任一项所述的方法,所述根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值之后,所述方法还包括:在第三预定时间段之后,若所述充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对所述SOC值进行修正;或者,在第五预定时间段之后,若所述放电回路仍然断开,则根据所述放电开路电压曲线每隔第六预定时间段对所述SOC值进行修正。
  8. 一种电池荷电状态SOC值的估算装置,包括:
    检测模块,设置为检测电池是否处于充电状态或者放电状态;
    第一确定模块,设置为在所述电池处于所述充电状态或者所述放电状态的情况下,通过安时积分法确定所述电池的SOC值;
    第二确定模块,设置为在所述电池不处于所述充电状态和所述放电状态,且在所述电池的充电回路断开或者放电回路断开的情况下,根据所述电池的 电池开路电压和所述SOC值的对应关系确定所述SOC值。
  9. 根据权利要求8所述的装置,其中,所述检测模块设置为通过以下方式检测电池是否处于充电状态或者放电状态:
    检测所述电池的电流是否大于预定阈值;
    在所述电流大于所述预定阈值的情况下,所述电池处于所述充电状态或者所述放电状态。
  10. 根据权利要求8所述的装置,其中,在所述电池的充电回路断开的情况下,所述对应关系为用于指示所述电池的充电开路电压和所述SOC值的对应关系的充电开路电压曲线;在所述电池的放电回路断开的情况下,所述对应关系为用于指示所述电池的放电开路电压和所述SOC值的对应关系的放电开路电压曲线。
  11. 根据权利要求10所述的装置,其中,
    所述充电开路电压曲线是通过以下方式获取的:在所述电池的充电过程中,每隔第一预定时间段记录一组所述SOC值和所述电池的充电开路电压值,其中,两个相邻的所述第一预定时间段之间设置有停止对所述电池进行充电的静置时间段;根据记录的多组所述SOC值和所述电池的充电开路电压值拟合成所述充电开路电压曲线;
    所述放电开路电压曲线是通过以下方式获取的:在所述电池的完全放电过程中,每隔第二预定时间段记录一组所述SOC值和所述电池的放电开路电压值,其中,两个相邻的所述第二预定时间段之间设置有停止对所述电池进行放电的静置时间段;根据记录的多组所述SOC值和所述电池的放电开路电压值拟合成所述放电开路电压曲线。
  12. 根据权利要求10所述的装置,所述装置还包括:第一修正模块,设置为按照以下方式对所述充电开路电压曲线或放电开路电压曲线进行修正:
    根据所述电池所接入设备的功耗对所述充电开路电压曲线进行修正或者对所述放电开路电压曲线进行修正。
  13. 根据权利要求8至12中任一项所述的装置,其中,
    所述第二确定模块包括:第一查找单元,设置为在所述电池的充电回路 断开的情况下,查找所述电池的当前电压值落入的所述充电开路电压曲线上的第一取值区间;第一计算单元,设置为对所述第一取值区间所对应的两点所对应的两组所述SOC值和所述电池的充电开路电压采用线性差值算法计算所述当前电压值对应的SOC值;
    所述第二确定模块还包括:第二查找单元,设置为在所述电池的放电回路断开的情况下,查找所述电池的当前电压值落入的所述放电开路电压曲线上的第二取值区间;第二计算单元,设置为对所述第二取值区间所对应的两点所对应的两组所述SOC值和所述电池的放电开路电压采用线性差值算法计算所述当前电压值对应的SOC值。
  14. 根据权利要求8至13中任一项所述的装置,所述装置还包括第二修正模块,设置为:在所述第二确定模块根据所述电池的电池开路电压和所述SOC值的对应关系确定所述SOC值之后,在第三预定时间段之后,若所述充电回路仍然断开,则根据充电开路电压曲线每隔第四预定时间段对所述SOC值进行修正;或者,在第五预定时间段之后,若所述放电回路仍然断开,则根据所述放电开路电压曲线每隔第六预定时间段对所述SOC值进行修正。
PCT/CN2016/089688 2015-07-27 2016-07-11 电池荷电状态值的估算方法及装置 WO2017016385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510446190.4A CN106405421A (zh) 2015-07-27 2015-07-27 电池荷电状态soc值的估算方法及装置
CN201510446190.4 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017016385A1 true WO2017016385A1 (zh) 2017-02-02

Family

ID=57884097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089688 WO2017016385A1 (zh) 2015-07-27 2016-07-11 电池荷电状态值的估算方法及装置

Country Status (2)

Country Link
CN (1) CN106405421A (zh)
WO (1) WO2017016385A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663621A (zh) * 2017-03-29 2018-10-16 比亚迪股份有限公司 一种动力电池组的荷电状态计算方法及系统
CN109633471A (zh) * 2018-12-24 2019-04-16 银隆新能源股份有限公司 用于确定电池的荷电状态与开路端电压对应关系的方法
CN112213649A (zh) * 2019-10-31 2021-01-12 蜂巢能源科技有限公司 构建开路电压曲线的方法及系统
CN112305433A (zh) * 2020-03-30 2021-02-02 宁德时代新能源科技股份有限公司 电池性能参数的估算方法、装置、设备和介质
CN112379293A (zh) * 2019-06-24 2021-02-19 宁德时代新能源科技股份有限公司 荷电状态修正方法及装置
CN112485680A (zh) * 2020-11-27 2021-03-12 浙江零跑科技有限公司 一种电池soc估算方法
CN112557928A (zh) * 2020-12-04 2021-03-26 湖北亿纬动力有限公司 一种计算电池荷电状态的方法、装置和动力电池
CN112698233A (zh) * 2020-12-15 2021-04-23 合肥国轩高科动力能源有限公司 一种锂离子动力电池包虚焊检测方法及系统
CN112819995A (zh) * 2021-01-29 2021-05-18 北京嘀嘀无限科技发展有限公司 数据处理方法、装置、电子设备和可读存储介质
CN113075555A (zh) * 2019-05-24 2021-07-06 宁德时代新能源科技股份有限公司 Soc修正方法和装置、电池管理系统和存储介质
CN113740754A (zh) * 2021-09-06 2021-12-03 北京西清能源科技有限公司 一种检测电池组不一致性的方法与系统
EP3923001A1 (en) * 2020-06-09 2021-12-15 Gunitech Corp. Capacity judgment module and capacity calibration method thereof
CN114167294A (zh) * 2021-11-15 2022-03-11 量道(深圳)储能科技有限公司 一种锂电池储能系统的soc校准方法
CN114325431A (zh) * 2021-12-31 2022-04-12 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置
CN114705990A (zh) * 2022-03-31 2022-07-05 上海玫克生储能科技有限公司 电池簇荷电状态的估计方法及系统、电子设备及存储介质
CN114938044A (zh) * 2022-04-26 2022-08-23 阿尔特汽车技术股份有限公司 车辆电池涓流充电时soc的确定方法、装置、设备及介质
CN116087817A (zh) * 2023-04-10 2023-05-09 澄瑞电力科技(上海)有限公司 一种船舶电池的荷电状态评估方法及系统
CN116108705A (zh) * 2023-04-13 2023-05-12 烟台海博电气设备有限公司 钠离子电池管理系统和soc计算方法
CN116930780A (zh) * 2023-09-19 2023-10-24 惠州锐鉴兴科技有限公司 智能电量检测方法、检测装置及计算机可读存储介质
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690584B2 (ja) * 2017-03-10 2020-04-28 トヨタ自動車株式会社 電池状態推定装置
CN107247234B (zh) * 2017-05-10 2019-12-31 江苏大学 一种车用动力电池的soc实时在线估计方法及系统
CN107015163B (zh) * 2017-06-12 2021-01-05 惠州亿纬锂能股份有限公司 一种电池容量的获取方法和装置
CN109471034B (zh) * 2017-09-08 2020-11-03 上海汽车集团股份有限公司 一种电动汽车能量效率的获取方法及装置
CN107656210B (zh) * 2017-09-14 2020-01-21 广州市香港科大霍英东研究院 一种估算电池电量状态的方法
EP3579007B1 (en) * 2018-06-07 2022-08-17 Rolls-Royce Deutschland Ltd & Co KG Method and apparatus for estimating a state of charge of a battery
CN109239608B (zh) * 2018-08-10 2021-01-19 力高(山东)新能源技术有限公司 一种实时修正锂电池soc-ocv曲线的方法
CN109188291B (zh) * 2018-09-17 2020-10-27 济南大学 一种铅酸蓄电池核容放电剩余容量预测方法
CN108931741A (zh) * 2018-09-18 2018-12-04 深圳市格瑞普智能电子有限公司 电池组剩余电量监测方法及系统
CN109655755B (zh) * 2018-12-21 2020-11-03 深圳先进储能材料国家工程研究中心有限公司 一种电池soc估算校准方法
CN109884545A (zh) * 2019-03-27 2019-06-14 奇瑞商用车(安徽)有限公司 一种基于动态电压校准的soc估算方法
CN110361658A (zh) * 2019-08-12 2019-10-22 广东博力威科技股份有限公司 基于ocv的soc估算方法
CN111679213A (zh) * 2020-06-18 2020-09-18 重庆金康动力新能源有限公司 电池soc的修正方法、装置和存储介质
CN112540303B (zh) * 2020-11-18 2022-11-29 潍柴动力股份有限公司 一种校正方法及装置
CN112433156A (zh) * 2020-11-18 2021-03-02 深圳市科信通信技术股份有限公司 Soc估算方法
CN113466697B (zh) * 2021-06-10 2024-02-27 深圳拓邦股份有限公司 电池的soc估算方法、计算机终端和存储介质
CN113933729A (zh) * 2021-09-30 2022-01-14 蜂巢能源科技有限公司 电池荷电状态的处理方法、装置、车辆及电池管理系统
CN114264998A (zh) * 2021-12-27 2022-04-01 傲普(上海)新能源有限公司 一种利用ocv-soc曲线矫正soc的方法
CN115524629B (zh) * 2022-11-23 2023-02-24 陕西汽车集团股份有限公司 一种车辆动力电池系统健康状态的评估方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402375A (zh) * 2002-04-04 2003-03-12 北京航空航天大学 基于电池动态电量差异补偿的自动均衡充放电方法与装置
US20050012496A1 (en) * 2003-07-18 2005-01-20 Denso Corporation Electric current detection apparatus
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN102347517A (zh) * 2011-06-29 2012-02-08 重庆长安汽车股份有限公司 一种寿命状态自适应型soc估算方法及系统
CN103048626A (zh) * 2012-12-17 2013-04-17 惠州市亿能电子有限公司 一种准确估算soc的方法
CN103499794A (zh) * 2013-10-14 2014-01-08 北京华电天仁电力控制技术有限公司 一种储能电池剩余容量估算方法及装置
US20140306712A1 (en) * 2013-04-12 2014-10-16 Broadcom Corporation Tracking aging effect on battery impedance and tracking battery state of health
CN104283230A (zh) * 2014-10-22 2015-01-14 国家电网公司 一种基于多能源微电网的蓄电池soc计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388447B1 (en) * 2000-11-07 2002-05-14 Moltech Power Systems, Inc. Method and apparatus for battery fuel gauging
KR100759706B1 (ko) * 2005-05-11 2007-09-17 주식회사 엘지화학 하이브리드 차량용 배터리의 충전상태 추정 방법
JP2007292648A (ja) * 2006-04-26 2007-11-08 Toyota Motor Corp 二次電池の充電状態推定装置
CN102162836A (zh) * 2011-03-21 2011-08-24 浙江吉利汽车研究院有限公司 一种汽车电池soc的估算方法
CN102608444B (zh) * 2011-12-26 2015-04-01 惠州市亿能电子有限公司 一种超级电容储能装置soc检测及修正方法
CN103018679A (zh) * 2012-12-10 2013-04-03 中国科学院广州能源研究所 一种铅酸电池初始荷电状态soc0的估算方法
CN104714182A (zh) * 2013-12-11 2015-06-17 广州汽车集团股份有限公司 一种确定电池荷电状态值的方法和系统
CN103935260B (zh) * 2014-05-08 2015-10-28 山东大学 一种基于电池安全保护的电池管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402375A (zh) * 2002-04-04 2003-03-12 北京航空航天大学 基于电池动态电量差异补偿的自动均衡充放电方法与装置
US20050012496A1 (en) * 2003-07-18 2005-01-20 Denso Corporation Electric current detection apparatus
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN102347517A (zh) * 2011-06-29 2012-02-08 重庆长安汽车股份有限公司 一种寿命状态自适应型soc估算方法及系统
CN103048626A (zh) * 2012-12-17 2013-04-17 惠州市亿能电子有限公司 一种准确估算soc的方法
US20140306712A1 (en) * 2013-04-12 2014-10-16 Broadcom Corporation Tracking aging effect on battery impedance and tracking battery state of health
CN103499794A (zh) * 2013-10-14 2014-01-08 北京华电天仁电力控制技术有限公司 一种储能电池剩余容量估算方法及装置
CN104283230A (zh) * 2014-10-22 2015-01-14 国家电网公司 一种基于多能源微电网的蓄电池soc计算方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663621B (zh) * 2017-03-29 2020-06-19 比亚迪股份有限公司 一种动力电池组的荷电状态计算方法及系统
CN108663621A (zh) * 2017-03-29 2018-10-16 比亚迪股份有限公司 一种动力电池组的荷电状态计算方法及系统
CN109633471A (zh) * 2018-12-24 2019-04-16 银隆新能源股份有限公司 用于确定电池的荷电状态与开路端电压对应关系的方法
CN113075555A (zh) * 2019-05-24 2021-07-06 宁德时代新能源科技股份有限公司 Soc修正方法和装置、电池管理系统和存储介质
CN112379293B (zh) * 2019-06-24 2022-09-23 宁德时代新能源科技股份有限公司 荷电状态修正方法及装置
CN112379293A (zh) * 2019-06-24 2021-02-19 宁德时代新能源科技股份有限公司 荷电状态修正方法及装置
US11536772B2 (en) 2019-06-24 2022-12-27 Contemporary Amperex Technology Co., Limited Method and apparatus for correcting state of charge
CN112213649A (zh) * 2019-10-31 2021-01-12 蜂巢能源科技有限公司 构建开路电压曲线的方法及系统
CN112213649B (zh) * 2019-10-31 2023-05-23 蜂巢能源科技有限公司 构建开路电压曲线的方法及系统
CN112305433A (zh) * 2020-03-30 2021-02-02 宁德时代新能源科技股份有限公司 电池性能参数的估算方法、装置、设备和介质
CN112305433B (zh) * 2020-03-30 2023-01-13 宁德时代新能源科技股份有限公司 电池性能参数的估算方法、装置、设备和介质
US11573273B2 (en) 2020-03-30 2023-02-07 Contemporary Amperex Technology Co., Limited Method, apparatus, device and medium for estimating performance parameters of a battery
EP3923001A1 (en) * 2020-06-09 2021-12-15 Gunitech Corp. Capacity judgment module and capacity calibration method thereof
CN112485680B (zh) * 2020-11-27 2024-04-23 浙江零跑科技股份有限公司 一种电池soc估算方法
CN112485680A (zh) * 2020-11-27 2021-03-12 浙江零跑科技有限公司 一种电池soc估算方法
CN112557928B (zh) * 2020-12-04 2023-08-01 湖北亿纬动力有限公司 一种计算电池荷电状态的方法、装置和动力电池
CN112557928A (zh) * 2020-12-04 2021-03-26 湖北亿纬动力有限公司 一种计算电池荷电状态的方法、装置和动力电池
CN112698233A (zh) * 2020-12-15 2021-04-23 合肥国轩高科动力能源有限公司 一种锂离子动力电池包虚焊检测方法及系统
CN112819995A (zh) * 2021-01-29 2021-05-18 北京嘀嘀无限科技发展有限公司 数据处理方法、装置、电子设备和可读存储介质
CN112819995B (zh) * 2021-01-29 2022-09-09 北京嘀嘀无限科技发展有限公司 数据处理方法、装置、电子设备和可读存储介质
CN113740754A (zh) * 2021-09-06 2021-12-03 北京西清能源科技有限公司 一种检测电池组不一致性的方法与系统
CN113740754B (zh) * 2021-09-06 2023-10-13 北京西清能源科技有限公司 一种检测电池组不一致性的方法与系统
CN114167294B (zh) * 2021-11-15 2024-02-27 量道(深圳)储能科技有限公司 一种锂电池储能系统的soc校准方法
CN114167294A (zh) * 2021-11-15 2022-03-11 量道(深圳)储能科技有限公司 一种锂电池储能系统的soc校准方法
CN114325431A (zh) * 2021-12-31 2022-04-12 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置
CN114325431B (zh) * 2021-12-31 2024-03-08 北京西清能源科技有限公司 一种电池直流内阻测算方法及装置
CN114705990A (zh) * 2022-03-31 2022-07-05 上海玫克生储能科技有限公司 电池簇荷电状态的估计方法及系统、电子设备及存储介质
CN114705990B (zh) * 2022-03-31 2023-10-20 上海玫克生储能科技有限公司 电池簇荷电状态的估计方法及系统、电子设备及存储介质
CN114938044A (zh) * 2022-04-26 2022-08-23 阿尔特汽车技术股份有限公司 车辆电池涓流充电时soc的确定方法、装置、设备及介质
CN116087817A (zh) * 2023-04-10 2023-05-09 澄瑞电力科技(上海)有限公司 一种船舶电池的荷电状态评估方法及系统
CN116108705A (zh) * 2023-04-13 2023-05-12 烟台海博电气设备有限公司 钠离子电池管理系统和soc计算方法
CN116108705B (zh) * 2023-04-13 2023-07-04 烟台海博电气设备有限公司 钠离子电池管理系统和soc计算方法
CN116930780B (zh) * 2023-09-19 2024-02-23 惠州锐鉴兴科技有限公司 智能电量检测方法、检测装置及计算机可读存储介质
CN116930780A (zh) * 2023-09-19 2023-10-24 惠州锐鉴兴科技有限公司 智能电量检测方法、检测装置及计算机可读存储介质
CN117060553B (zh) * 2023-10-13 2024-01-02 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件
CN117060553A (zh) * 2023-10-13 2023-11-14 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件

Also Published As

Publication number Publication date
CN106405421A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2017016385A1 (zh) 电池荷电状态值的估算方法及装置
US11215679B2 (en) Method and apparatus for detecting micro short circuit of battery
CN106324508B (zh) 电池健康状态的检测装置及方法
US10393819B2 (en) Method and apparatus for estimating state of battery
CN106443480B (zh) 一种锂离子电池系统soc估算方法
KR101547006B1 (ko) 배터리 잔존 용량 추정 장치 및 방법
CN107576918B (zh) 锂电池的剩余电量的估算方法及系统
US9653759B2 (en) Method and apparatus for optimized battery life cycle management
CN109507611B (zh) 一种电动汽车的soh修正方法及系统
US20150226811A1 (en) Apparatus and method for estimating internal resistance of battery pack
US10031185B2 (en) Method for determining a state of charge and remaining operation life of a battery
CN109856548B (zh) 动力电池容量估算方法
CN113030742B (zh) 电池容量的估算方法、装置及设备
US20190004115A1 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
CN102565716A (zh) 用于计算二次电池的残余容量的设备
JP2008134060A (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
JP2013531780A (ja) リチウムイオン電池充電状態の算出方法
CN110376536B (zh) 电池系统soh检测方法、装置、计算机设备和存储介质
US10819138B2 (en) Control method and control system for energy storage system having demand control and uninterrupted power supply functions
CN106249170B (zh) 一种动力电池系统功率状态估计方法及装置
WO2014101807A1 (zh) 一种显示电池电量的方法和终端
JP2014025738A (ja) 残容量推定装置
US20210311127A1 (en) Battery Status Estimation Apparatus and Battery Control Apparatus
CN113009351A (zh) 电池容量的确定方法及装置
CN110687458A (zh) 终端电池电量确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829751

Country of ref document: EP

Kind code of ref document: A1