WO2018120769A1 - 电池间容量差值的获取方法和装置 - Google Patents

电池间容量差值的获取方法和装置 Download PDF

Info

Publication number
WO2018120769A1
WO2018120769A1 PCT/CN2017/093059 CN2017093059W WO2018120769A1 WO 2018120769 A1 WO2018120769 A1 WO 2018120769A1 CN 2017093059 W CN2017093059 W CN 2017093059W WO 2018120769 A1 WO2018120769 A1 WO 2018120769A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
voltage
battery pack
time
Prior art date
Application number
PCT/CN2017/093059
Other languages
English (en)
French (fr)
Inventor
颜昱
谭俐
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018120769A1 publication Critical patent/WO2018120769A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technologies, and in particular, to a method and an apparatus for acquiring a difference in capacity between batteries.
  • the battery pack can be composed of a plurality of batteries connected in series. Due to the difference in production process and raw materials, the self-discharge rates of the plurality of batteries in the same battery pack are also different. This self-discharge difference ultimately manifests as the capacity between the batteries.
  • the difference between the high and low voltages causes the battery in the entire battery pack to be discharged in advance, while the high-power battery has excess unusable capacity, which in turn affects the release of the entire battery pack capacity. Therefore, it is particularly important to determine the difference in capacity between the batteries in the battery pack.
  • the capacity between the batteries is determined according to the level of the open circuit voltage of each battery. The difference is that at this time, the capacity of the battery having a high open circuit voltage is high, and the capacity of the battery having a low open circuit voltage is low.
  • the difference in capacity of the battery can only be determined according to the level of the open circuit voltage of each battery. At this time, the battery must be in a static state without current flowing to obtain the open circuit voltage of the battery; however, when the battery pack is in operation At the time, a current flows through the battery pack, and the open circuit voltage of each battery cannot be obtained, and the difference in capacity between the batteries cannot be determined.
  • the present application provides a method and an apparatus for acquiring a difference in capacity between batteries, which can be used to solve the problem that the battery pack cannot be obtained when a current flows through the battery pack in the prior art.
  • the problem of the difference in capacity between the batteries is a problem of the difference in capacity between the batteries.
  • the present application provides a method for obtaining a difference in capacity between batteries, including:
  • Charging the battery pack in a specified charging mode and acquiring the current versus time between the first time and the second time in each of the battery packs during charging of the battery pack in a specified charging manner a result of integrating the integral; wherein the first time is a time when the voltage of the battery reaches a first voltage, and the second time is a time when a voltage of the battery having the highest voltage in the battery pack reaches a second voltage;
  • the process of charging the battery pack in the specified charging manner includes a first charging phase and a second charging phase;
  • the first charging phase includes at least two charging sub-phases; in each charging sub-phase, the battery pack is subjected to constant current charging with a constant charging current until the voltage of the battery having the highest voltage in the battery pack Reaching a specified voltage of the charging sub-phase; wherein the first voltage is a specified voltage of a last charging sub-phase of the first charging phase, and in the first charging phase, charging corresponding to each charging sub-phase The current is sequentially reduced;
  • the battery pack is subjected to constant current charging with a specified charging current until the voltage of the battery having the highest voltage in the battery pack reaches a second voltage; wherein the second voltage is the The cutoff voltage of the battery having the highest voltage among the battery packs, the specified charging current being less than the minimum charging current in the first charging phase.
  • the aspect as described above and any possible implementation manner further provide an implementation manner of acquiring each battery in the battery pack in a first time to the first time in a process of charging the battery pack by a specified charging mode
  • the integration result of the current-time integration between the two moments including:
  • any possible implementation manner further provide an implementation manner of obtaining each of the battery packs according to an integration result of each battery in the battery pack
  • the difference in capacity between batteries including:
  • the difference between the integration result of each battery and the integration result of the battery having the highest voltage is separately obtained, and the difference in capacity between the battery that is not fully charged and the battery that is fully charged is obtained.
  • the battery pack is charged in a specified charging mode, and in the process of charging the battery pack in a specified charging manner, each battery in the battery pack is acquired between the first moment and the second moment.
  • An integration result of integrating the current with time wherein the first time is a time when the voltage of the battery reaches the first voltage, and the second time is a voltage of the battery having the highest voltage in the battery package reaching the second voltage Time; then, according to the integration result of each battery in the battery pack, the difference in capacity between the batteries in the battery pack is obtained.
  • the difference in capacity between the batteries in the battery pack is accurately obtained by integrating the current with time; the difference is determined by the size of the open circuit voltage in the prior art.
  • the method for calculating the difference between the capacities of the batteries, in the present application not only can obtain the accurate value of the difference in capacity, but also can be realized in the process of flowing current through the battery pack, therefore, the acquisition of the difference in capacity between the batteries proposed in the present application
  • the method can obtain accurate battery-to-battery capacity difference in the process of the battery pack being in working state, and perform capacity equalization processing on the battery pack, thereby ensuring less capacity loss of the battery pack; therefore, the technology provided by the present application
  • the solution solves the problem in the prior art that the difference in capacity between the batteries in the battery pack cannot be obtained when current flows through the battery pack.
  • the present application provides an apparatus for acquiring a difference in capacity between batteries, including include:
  • a charging unit for charging the battery pack in a specified charging mode
  • an obtaining unit configured to obtain, when the battery pack is charged in a specified charging manner, an integration result of integrating current and time between the first time and the second time of each battery in the battery pack;
  • the first time is a time when the voltage of the battery reaches the first voltage
  • the second time is a time when the voltage of the battery having the highest voltage in the battery pack reaches the second voltage;
  • the obtaining unit is further configured to obtain a capacity difference between each battery in the battery pack according to an integration result of each battery in the battery pack.
  • the process of charging the battery pack in the specified charging manner includes a first charging phase and a second charging phase;
  • the first charging phase includes at least two charging sub-phases; the charging unit is configured to perform constant current charging of the battery pack with a constant charging current in each charging sub-phase until the battery pack The voltage of the battery having the highest voltage reaches a specified voltage of the charging sub-phase; wherein the first voltage is a specified voltage of a last charging sub-phase of the first charging phase, in the first charging phase, The charging current corresponding to each charging sub-stage is sequentially decreased;
  • the charging unit is further configured to perform constant current charging on the battery pack with a specified charging current during the second charging phase, until a voltage of the battery having the highest voltage in the battery pack reaches a second voltage;
  • the second voltage is a cutoff voltage of a battery having the highest voltage among the battery packs, and the specified charging current is less than a minimum charging current in the first charging phase.
  • the difference between the integration result of each battery and the integration result of the battery having the highest voltage is separately obtained, and the difference in capacity between the battery that is not fully charged and the battery that is fully charged is obtained.
  • the device further includes:
  • a detecting unit configured to detect that the consistency of the battery pack does not meet a specified condition when a first target battery is present in the battery pack, wherein a capacity difference between the first target battery and the fully charged battery The value is greater than the preset difference threshold; or,
  • the difference in capacity between the batteries in the battery pack is accurately obtained by integrating the current with time; the difference is determined by the size of the open circuit voltage in the prior art.
  • the method for calculating the difference between the capacities of the batteries, in the present application not only can obtain the accurate value of the difference in capacity, but also can be realized in the process of flowing current through the battery pack, therefore, the acquisition of the difference in capacity between the batteries proposed in the present application
  • the device can obtain an accurate difference in the capacity of the battery during the working state of the battery pack, and perform capacity equalization processing on the battery pack, thereby ensuring a small capacity loss of the battery pack; therefore, the technology provided by the present application
  • the solution solves the problem in the prior art that the difference in capacity between the batteries in the battery pack cannot be obtained when current flows through the battery pack.
  • FIG. 1 is a schematic diagram of a correspondence relationship between a SOC and an OCV in the prior art
  • Embodiment 2 is a schematic flow chart of Embodiment 1 of a method for acquiring a difference in capacity between batteries provided by the present application;
  • Figure 3 shows the SOC and power during charging of the battery pack in the specified charging mode. Schematic diagram of the correspondence between pressures;
  • Embodiment 4 is a schematic flow chart of Embodiment 2 of a method for acquiring a difference in capacity between batteries provided by the present application;
  • FIG. 5 is a functional block diagram of an apparatus for acquiring a difference in capacity between batteries provided by the present application.
  • first, second, third, etc. may be used in the present application to describe a target battery or the like, these target batteries and the like should not be limited to these terms. These terms are only used to distinguish the target cells from each other.
  • the first target battery may also be referred to as a second target battery without departing from the scope of the present application.
  • the second target battery may also be referred to as a first target battery.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • the SOC of the battery is determined according to the OCV value of the battery and the corresponding relationship, thereby determining the capacity difference between the respective batteries.
  • the open circuit voltage of the battery can be obtained because the battery must be in a static state in which no current flows, and when there is a current in the battery, at this time The polarization effect generated in the battery. This polarization will cause the voltage of the battery to deviate from the open circuit voltage of the battery. Therefore, when there is current flowing through the battery, the difference in capacity between the batteries is determined by this method. Large errors and low accuracy.
  • the method of determining the difference in capacity between batteries in the prior art is also limited by the degree of discrimination of the correspondence between the SOC and the OCV. Specifically, there is a one-to-one correspondence between the SOC and the OCV of the battery, and the discrimination of the corresponding relationship is large enough to overcome the sampling error existing when the OCV signal of the battery is collected.
  • FIG. 1 is a schematic diagram of the correspondence between the SOC and the OCV in the prior art.
  • the correspondence between the SOC and the OCV appears as a curve as shown in FIG. 1 .
  • the SOC of the battery is almost at the same horizontal line.
  • the OCV of the collected battery exhibits a deviation of 5 mv, the method of the prior art is used.
  • the error in the SOC of the battery may exceed 20%.
  • the present application utilizes the integration of current and time in the charging process of the battery to obtain the amount of electricity charged in the battery during this period of time, and then, considering that the battery pack is fully charged before the battery pack is fully charged.
  • the difference in the amount of electricity input is more obvious, and it is more able to characterize the difference in capacity of each battery. Therefore, the method for obtaining the difference in capacity between batteries requested by the present application is proposed.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of a method for obtaining a difference in capacity between batteries according to the present application. As shown in FIG. 2 , the method is as shown in FIG. 2 . The method includes the following steps:
  • the first time is the time when the voltage of the battery reaches the first voltage
  • the second time is the time when the voltage of the battery having the highest voltage in the battery pack reaches the second voltage
  • the second voltage is greater than the first voltage.
  • the process of charging the battery pack in a specified charging manner may include: a first charging phase and a second charging phase.
  • the first charging phase may further include at least two charging sub-phases.
  • the battery pack is subjected to constant current charging with a constant charging current until the voltage of the battery having the highest voltage in the battery pack reaches a specified voltage of the charging sub-phase; wherein the first voltage is the first charging The specified voltage of the last sub-stage of the stage, in the first charging phase, the charging current corresponding to each charging sub-stage is sequentially decreased;
  • the battery pack is subjected to constant current charging with a specified charging current until the voltage of the battery having the highest voltage in the battery pack reaches the second voltage, and the second voltage is the cutoff voltage of the battery having the highest voltage in the battery pack; Wherein, the specified charging current is less than the minimum charging current in the first charging phase.
  • each charging sub-phase of the first charging phase has its own charging current and a corresponding specified voltage, and the corresponding charging currents of the respective charging sub-stages are sequentially decreased in the order of execution of each charging sub-phase.
  • FIG. 3 is a schematic diagram of the correspondence between SOC and voltage in the process of charging the battery pack by a specified charging method.
  • the first charging phase and the second charging phase are included.
  • the first charging phase is a charging phase between V0 and V3, and the charging phase between V3 and V4 is a second.
  • Charging phase As shown in FIG. 3, if the charging current of the first charging sub-phase is I1, the designated electric power is specified. The voltage is V1; the charging current of the second charging sub-phase is I2, the specified voltage is V2; the charging current of the third charging sub-phase is I3, and the designated voltage is V3.
  • the first voltage is the specified voltage V3 of the third charging sub-phase.
  • the battery pack in the first charging phase, is subjected to constant current charging by the charging current I1 until the voltage of the battery having the highest voltage in the battery pack reaches the specified voltage V1; at this time, the first charging sub-phase ends.
  • the second charging sub-phase starts; charging the battery pack with the charging current I2 by constant current charging until the voltage of the battery having the highest voltage in the battery pack reaches the specified voltage V2; at this time, the second charging sub-phase ends, the third charging
  • the electronic phase begins; charging the battery pack with the charging current I3 by constant current charging until the voltage of the battery having the highest voltage in the battery pack reaches the specified voltage V3; at this time, the first charging phase ends, and the second charging phase is started. Charging.
  • the charging currents corresponding to the respective charging sub-phases in the first charging phase I1>I2>I3; the present application is for V1, V2 and
  • the size relationship between V3 is not particularly limited.
  • the specified voltage may be set as shown in FIG. 3, in order of increasing order of execution of each charging sub-phase.
  • the battery pack is charged with the specified charging current I4 until the voltage of the battery having the highest voltage in the battery pack reaches the second voltage V4.
  • the second voltage is the battery.
  • the specified charging current I4 is smaller than the charging current corresponding to any one of the charging stages in the first charging phase, that is, there is the following relationship: I1>I2>I3>I4; the cutoff voltage V4 is greater than any one of the first charging stages.
  • the specified voltage corresponding to the electronic phase has the following relationship: V4>V1, V4>V2, and V4>V3.
  • the number of charging sub-stages in the first charging phase may be preset according to actual needs, and the charging current and the specified voltage corresponding to each charging sub-phase may be preset according to actual needs, and The specified charging current in the second charging phase may be preset according to actual needs.
  • the present application only limits the size relationship of the data, and the specific numerical value thereof is not particularly limited.
  • the charging current of the first charging sub-phase may be set to 1 C, and the setting is set.
  • the charging current of the second charging sub-phase is 0.75 C
  • the charging current of the third charging sub-phase is set to 0.5 C
  • the charging current of the first charging sub-phase is set to 0.2 C.
  • a floating phenomenon that is, the voltage of the battery having the highest voltage among the collected battery packs is higher than the existing voltage, thus, although collected
  • the voltage of the battery with the highest voltage in the battery pack may have reached the cutoff voltage, but the actual voltage does not reach the cutoff voltage; therefore, in the present application, when the battery pack is about to be fully charged, the battery is gradually reduced in charge current.
  • the package is charged to offset the effect of the floating phenomenon caused by the large current charging on the voltage, thereby maintaining the amount of charge between the first voltage and the second voltage in the second charging phase within a relatively stable range of values. Further, a more accurate difference in capacity between the batteries in the battery pack is obtained.
  • the first moments of each battery may be different, and the second moment is exactly the same.
  • the first moment of the battery is a time when the voltage of the battery reaches the first voltage
  • each battery in the battery pack may There are differences in capacity and the like, and therefore, in the same battery pack, the timing at which each battery reaches the first voltage is different.
  • the second moment is a moment when the voltage of the battery having the highest voltage among all the batteries in the battery pack reaches the cutoff voltage of the battery.
  • the entire charging process is ended, and the current-time integration is no longer performed.
  • the battery pack is charged at the specified charging current.
  • the second charging phase when the voltage of any battery reaches the first voltage, the current-time integration of the battery is started.
  • the integration result of integrating the current versus time between the first time and the second time of each battery in the battery pack is obtained.
  • the integration result of integrating the current versus time between the first time and the second time of each battery can be obtained in the charging phase of V3 to V4.
  • the step of "acquiring the difference in capacity between the batteries in the battery pack according to the integration result of each battery in the battery pack" is performed in S202.
  • S202 Can be achieved by the following steps:
  • the difference between the integration result of each battery and the integration result of the battery having the highest voltage is obtained separately, and the difference in capacity between the battery that is not fully charged and the battery that is fully charged is obtained.
  • the battery with the highest voltage in the battery pack is integrated with current over time in the second charging phase.
  • the voltage of the battery with the highest voltage reaches the cutoff voltage, and the battery is fully charged.
  • the integration result of the battery having the highest voltage may indicate the capacity of the fully charged battery; while the other battery may not reach the cutoff voltage when the voltage of the battery having the highest voltage reaches the cutoff voltage, that is, These batteries may not reach a fully charged state, so the difference between the integrated result of each battery and the integrated result of the battery with the highest voltage is obtained, and the capacity between the uncharged battery and the fully charged battery can be obtained. Difference.
  • the difference in capacity between the batteries in the battery pack is small, and the consistency of the battery pack is good. At this time, the battery pack is not required to be subjected to capacity equalization processing; or, the battery When the consistency of the package does not meet the specified conditions, the difference in the capacity of the battery in the battery pack is different from the capacity of the other battery, and the consistency of the battery pack is poor. At this time, the battery pack needs to be subjected to capacity equalization processing.
  • the first type when the first target battery exists in the battery pack, detecting that the consistency of the battery pack does not meet the specified condition, wherein the difference between the capacity of the first target battery and the fully charged battery is greater than a preset difference Threshold; or, when the first target battery is not present in the battery pack, the consistency of the battery pack is detected to meet the specified condition.
  • the integral result of each battery and have the highest power After the difference in capacity between the integrated results of the pressed batteries, it is detected whether there is a capacity difference greater than a preset difference threshold among the capacity differences, and if there is a capacity greater than the preset difference threshold among the capacity differences The difference, at this time, the number of the first target batteries in the battery pack is at least one, and it is detected that the consistency of the battery pack does not meet the specified condition. Alternatively, if the capacity difference values are all less than or equal to the preset difference threshold, at this time, the number of the first target batteries is 0, and the consistency of the battery pack is detected to meet the specified condition.
  • the difference threshold may be preset according to actual needs, and is not specifically limited herein.
  • the second type when the second target battery exists in the battery pack, it is detected that the consistency of the battery pack does not meet the specified condition; or, when the second target battery does not exist in the battery pack, the consistency of the detected battery pack meets the specified condition.
  • the voltage of the second target battery never reaches the first voltage.
  • the second charging phase if the voltage of the second target battery does not reach the first voltage, no current-time integration is performed on the second target battery during the entire charging process. Obtaining the integration result of the second target battery. Therefore, when the number of integration results of each battery in the obtained battery pack is less than the number of the battery, it indicates that the second target battery exists in the battery pack, and at this time, the battery pack is detected. Consistency does not meet the specified criteria. Alternatively, when the number of integrated results of the obtained batteries is equal to the number of batteries, the second target battery does not exist in the battery pack, and the consistency of the battery pack is detected to meet the specified condition.
  • the batteries in the battery pack are subjected to capacity equalization processing.
  • the specific implementation manner of the capacity equalization processing in the present application is not particularly limited.
  • the data of the battery pack can also be cleared.
  • the data of the battery pack includes a difference in capacity between the batteries in the obtained battery pack. In this way, the influence of the acquisition result can be avoided in the process of performing the method to obtain the difference in capacity between the batteries in the battery pack.
  • the battery pack is charged by the specified charging method, and the charging is specified.
  • the process of charging the battery pack electrically, obtaining an integration result of integrating current and time between the first time and the second time of each battery in the battery pack; wherein, the first time is that the voltage of the battery reaches the first At the time of the voltage, the second time is the time when the voltage of the battery having the highest voltage in the battery pack reaches the second voltage; then, the capacity difference between the batteries in the battery pack is obtained according to the integration result of each battery in the battery pack.
  • the difference in capacity between the batteries in the battery pack is accurately obtained by integrating the current with time; the difference is determined by the size of the open circuit voltage in the prior art.
  • the method for calculating the difference between the capacities of the batteries, in the present application not only can obtain the accurate value of the difference in capacity, but also can be realized in the process of flowing current through the battery pack, therefore, the acquisition of the difference in capacity between the batteries proposed in the present application
  • the method can obtain accurate battery-to-battery capacity difference in the process of the battery pack being in working state, and perform capacity equalization processing on the battery pack, thereby ensuring less capacity loss of the battery pack; therefore, the technology provided by the present application
  • the solution solves the problem in the prior art that the difference in capacity between the batteries in the battery pack cannot be obtained when current flows through the battery pack.
  • the present application provides a specific implementation manner of the foregoing method.
  • FIG. 4 is a schematic flowchart of Embodiment 2 of a method for obtaining a difference in capacity between batteries according to the present application.
  • the implementation manner may specifically include the following steps:
  • the battery pack is subjected to constant current charging by I1, and the voltage of each battery in the battery pack is detected in real time.
  • S402. Determine whether the voltage of the battery having the highest voltage in the battery pack reaches V1; if yes, execute S403; if not, execute S402.
  • the battery pack is subjected to constant current charging by I2, and the voltage of each battery in the battery pack is detected in real time.
  • I2 is less than I1.
  • the battery pack includes N batteries, and N is an integer greater than 1.
  • S407 Perform current-to-time integration on the battery whose voltage in the battery pack reaches V3, and detect the voltage of each battery in the battery pack in real time.
  • V4 is the second voltage
  • the data of the battery pack includes the difference in capacity between the batteries in the obtained battery pack.
  • the method provided by the present application is a specific implementation manner of the method for obtaining the difference between the capacities of the batteries provided in the first embodiment, and is not intended to limit the application.
  • the difference in capacity between the batteries in the battery pack is accurately obtained by integrating the current with time; the difference is determined by the size of the open circuit voltage in the prior art.
  • the method for calculating the difference between the capacities of the batteries, in the present application not only can obtain the accurate value of the difference in capacity, but also can be realized in the process of flowing current through the battery pack, therefore, the difference in the capacity difference between the batteries proposed in the present application is obtained.
  • the method can obtain accurate battery-to-battery capacity difference in the process of the battery pack being in working state, and perform capacity equalization processing on the battery pack, thereby ensuring less capacity loss of the battery pack; therefore, the present application provides The technical solution solves the problem in the prior art that the difference in capacity between the batteries in the battery pack cannot be obtained when current flows through the battery pack.
  • the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • FIG. 5 is a functional block diagram of an apparatus for acquiring a difference in capacity between batteries provided by the present application.
  • the device includes:
  • a charging unit 51 configured to charge the battery pack in a specified charging manner
  • the obtaining unit 52 is configured to obtain, when the battery pack is charged in a specified charging manner, an integration result of integrating current and time between the first time and the second time of each battery in the battery pack;
  • the first time is a time when the voltage of the battery reaches the first voltage
  • the second time is a time when the voltage of the battery having the highest voltage in the battery pack reaches the second voltage
  • the obtaining unit 51 is further configured to obtain a difference in capacity between the batteries in the battery pack according to the integration result of each battery in the battery pack.
  • the process of charging the battery pack in a specified charging manner may include a first charging phase and a second charging phase;
  • the first charging phase includes at least two charging sub-phases; the charging unit 51 is configured to perform constant current charging of the battery pack with a constant charging current in each charging sub-phase until the voltage of the battery having the highest voltage in the battery pack Reaching a specified voltage of the charging sub-phase; wherein, the first voltage is a specified voltage of the last charging sub-phase in the first charging phase, and in the first charging phase, the charging current corresponding to each charging sub-phase is sequentially decreased;
  • the charging unit 51 is further configured to: during the second charging phase, the battery pack is subjected to constant current charging with a specified charging current until the voltage of the battery having the highest voltage in the battery pack reaches a second voltage; wherein the second voltage is in the battery pack The cutoff voltage of the battery with the highest voltage, the specified charging current is less than the minimum charging current in the first charging phase.
  • the obtaining unit 52 is specifically configured to:
  • the obtaining unit 52 is specifically configured to:
  • the difference between the integration result of each battery and the integration result of the battery having the highest voltage is obtained separately, and the difference in capacity between the battery that is not fully charged and the battery that is fully charged is obtained.
  • the device further includes:
  • the detecting unit 53 is configured to detect that the consistency of the battery pack does not meet the specified condition when the first target battery is present in the battery pack, wherein a difference in capacity between the first target battery and the fully charged battery is greater than a preset Difference threshold; or,
  • the detecting unit 53 is further configured to detect that the consistency of the battery pack meets the specified condition when the first target battery does not exist in the battery pack.
  • the charging unit in the device for obtaining the difference in capacity between the batteries charges the battery pack in a specified charging mode
  • the obtaining unit in the device for obtaining the difference in the capacity between the batteries charges the battery pack in the specified charging mode.
  • the integration result of integrating the current and the time between the first time and the second time of each battery in the battery pack wherein, the first time is the time when the voltage of the battery reaches the first voltage, and the second time is the battery The time when the voltage of the battery having the highest voltage in the packet reaches the second voltage; then, the obtaining unit in the device for obtaining the difference in the capacity between the batteries obtains the difference in capacity between the batteries in the battery pack according to the integration result of each battery in the battery pack value.
  • the difference in capacity between the batteries in the battery pack is accurately obtained by integrating the current with time; the difference is determined by the size of the open circuit voltage in the prior art.
  • the method for calculating the difference between the capacities of the batteries, in the present application not only can obtain the accurate value of the difference in capacity, but also can be realized in the process of flowing current through the battery pack, therefore, the acquisition of the difference in capacity between the batteries proposed in the present application
  • the device can obtain an accurate difference in battery capacity during the operation of the battery pack, and perform capacity equalization processing on the battery pack, thereby ensuring a small capacity loss of the battery pack; therefore, the present invention
  • the technical solution provided by the application solves the problem in the prior art that the difference in capacity between the batteries in the battery pack cannot be obtained when current flows through the battery pack.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池间容量差值的获取方法和装置。以指定充电方式对电池包进行充电,并在以指定充电方式对电池包进行充电的过程中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果(S201);其中,第一时刻为该电池的电压达到第一电压的时刻,第二时刻为电池包中具有最高电压的电池的电压达到第二电压的时刻;然后,根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值(S202)。该方法和装置能够解决现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。

Description

电池间容量差值的获取方法和装置
本申请要求于2016年12月26日提交中国专利局、申请号为201611215343.5、发明名称为“电池间容量差值的获取方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其涉及一种电池间容量差值的获取方法和装置。
背景技术
电池包可以由成多个电池串联组成,由于生产工艺和原料的差异性,同一个电池包中多个电池的自放电率也各不相同,这种自放电差异最终表现为电池之间存在容量的高低差异,从而,导致整个电池包中低电量的电池会提前放完电量,而高电量的电池存在多余的不能使用的容量,进而,影响整个电池包容量的释放。因此,确定电池包中各电池间的容量差异就变得尤为重要。
现有技术中,一般是基于电池的荷电状态(State of Charge,SOC)与开路电压(Open Circuit Voltage,OCV)之间的对应关系,根据各电池的开路电压的高低来确定电池间的容量差异,此时,开路电压高的电池的容量高,开路电压低的电池的容量低。
在实现本申请过程中,申请人发现现有技术中至少存在如下问题:
现有技术中只能根据各电池的开路电压的高低来确定其容量差异,此时,要求电池必须处于无电流流经的静态状态时才能得到电池的开路电压;但是,当电池包处于工作状态时,有电流流经电池包,无法得到各电池的开路电压,也就无法确定各电池间的容量差异。
申请内容
有鉴于此,本申请提供了一种电池间容量差值的获取方法和装置,用以解决现有技术中在有电流流经电池包时无法获取到电池包 中各电池间的容量差异的问题。
一方面,本申请提供了一种电池间容量差值的获取方法,包括:
以指定充电方式对电池包进行充电,并在以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,所述第一时刻为该电池的电压达到第一电压的时刻,所述第二时刻为所述电池包中具有最高电压的电池的电压达到第二电压的时刻;
根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,以所述指定充电方式对所述电池包进行充电的过程包括第一充电阶段和第二充电阶段;
所述第一充电阶段包括至少两个充电子阶段;在每个充电子阶段中,以恒定的充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到所述充电子阶段的指定电压;其中,所述第一电压为所述第一充电阶段中最后一个充电子阶段的指定电压,在所述第一充电阶段中,各充电子阶段对应的充电电流依次降低;
在所述第二充电阶段,以指定充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到第二电压;其中,所述第二电压为所述电池包中具有最高电压的电池的截止电压,所述指定充电电流小于所述第一充电阶段中的最小的充电电流。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果,包括:
在所述第二充电阶段中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述电池包中各电池的积分结果,获得所述电池包中各 电池间的容量差值,包括:
获取所述电池包中具有最高电压的电池的积分结果;
分别获取各电池的积分结果与所述具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述方法还包括:
当所述电池包中存在第一目标电池时,检测到所述电池包的一致性不符合指定条件,其中,所述第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,
当所述电池包中不存在所述第一目标电池时,检测到所述电池包的一致性符合所述指定条件。
上述技术方案中的一个技术方案具有如下有益效果:
本申请中,以指定充电方式对电池包进行充电,并在以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,所述第一时刻为该电池的电压达到第一电压的时刻,所述第二时刻为所述电池包中具有最高电压的电池的电压达到第二电压的时刻;然后,根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值。本申请中,是在对电池包进行充电的过程中,通过电流对时间积分的形式,准确的得到电池包中各电池之间的容量差值;区别于现有技术中通过开路电压的大小确定电池间容量差值的方法,本申请中,不仅能够得到准确的容量差值的数值,而且可以在有电流流经电池包的过程中实现,因此,本申请提出的电池间容量差值的获取方法,能够在电池包处于工作状态的过程中获取到准确的电池间容量差值,并对电池包进行容量均衡处理,从而,保证了电池包的容量损失较小;因此,本申请提供的技术方案解决了现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。
另一方面,本申请提供了一种电池间容量差值的获取装置,包 括:
充电单元,用于以指定充电方式对电池包进行充电;
获取单元,用于在以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,所述第一时刻为该电池的电压达到第一电压的时刻,所述第二时刻为所述电池包中具有最高电压的电池的电压达到第二电压的时刻;
所述获取单元,还用于根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,以所述指定充电方式对所述电池包进行充电的过程包括第一充电阶段和第二充电阶段;
所述第一充电阶段包括至少两个充电子阶段;所述充电单元,用于在每个充电子阶段中,以恒定的充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到所述充电子阶段的指定电压;其中,所述第一电压为所述第一充电阶段中最后一个充电子阶段的指定电压,在所述第一充电阶段中,各充电子阶段对应的充电电流依次降低;
所述充电单元,还用于在所述第二充电阶段,以指定充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到第二电压;其中,所述第二电压为所述电池包中具有最高电压的电池的截止电压,所述指定充电电流小于所述第一充电阶段中的最小的充电电流。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述获取单元,具体用于:
在所述第二充电阶段中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述获取单元,具体用于:
获取所述电池包中具有最高电压的电池的积分结果;
分别获取各电池的积分结果与所述具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述装置还包括:
检测单元,用于当所述电池包中存在第一目标电池时,检测到所述电池包的一致性不符合指定条件,其中,所述第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,
还用于当所述电池包中不存在所述第一目标电池时,检测到所述电池包的一致性符合所述指定条件。
上述技术方案中的一个技术方案具有如下有益效果:
本申请中,是在对电池包进行充电的过程中,通过电流对时间积分的形式,准确的得到电池包中各电池之间的容量差值;区别于现有技术中通过开路电压的大小确定电池间容量差值的方法,本申请中,不仅能够得到准确的容量差值的数值,而且可以在有电流流经电池包的过程中实现,因此,本申请提出的电池间容量差值的获取装置,能够在电池包处于工作状态的过程中获取到准确的电池间容量差值,并对电池包进行容量均衡处理,从而,保证了电池包的容量损失较小;因此,本申请提供的技术方案解决了现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是现有技术中的SOC与OCV之间的对应关系示意图;
图2是本申请所提供的电池间容量差值的获取方法的实施例一的流程示意图;
图3是以指定充电方式对电池包进行充电的过程中的SOC与电 压之间的对应关系示意图;
图4是本申请所提供的电池间容量差值的获取方法的实施例二的流程示意图;
图5是本申请所提供的电池间容量差值的获取装置的功能方块图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请中可能采用术语第一、第二、第三等来描述目标电池等,但这些目标电池等不应限于这些术语。这些术语仅用来将目标电池彼此区分开。例如,在不脱离本申请范围的情况下,第一目标电池也可以被称为第二目标电池,类似地,第二目标电池也可以被称为第一目标电池。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
现有技术中,基于电池的SOC与OCV之间的对应关系,然后,根据电池的OCV值与该对应关系,确定该电池的SOC,以此来确定各个电池之间的容量差异。
现有技术中,由于需要利用电池的开路电压进行电池间容量差异的确定,由于要求电池必须处于无电流流经的静态状态时才能得到电池的开路电压,当电池中有电流经过时,此时,电池中会产生的极化作用,这种极化作用会会使得电池的电压偏离电池的开路电压,因此,在有电流流经电池时,利用这种方法确定电池之间的容量差异存在较大的误差,准确率较低。
并且,现有技术中确定电池间容量差异的方法还受到SOC与OCV之间的对应关系的区分度的限制。具体的,有且只有电池的SOC与OCV之间存在一对一的对应关系,且这种对应关系的区分度要足够大时,才能克服采集电池的OCV信号时存在的采样误差。
此时,请参考图1,其为现有技术中的SOC与OCV之间的对应关系示意图,现有技术中,SOC与OCV之间的对应关系表现为如图1所示的曲线。如图1所示的曲线中,在电池的OCV高于3300mV之后,电池的SOC几乎处于同一水平线上,此时,若采集到的电池的OCV出现5mv的偏差,利用现有技术中的方法得到的电池的SOC存在的误差可能超过20%。
为了解决现有技术中存在的上述问题,本申请利用电池在充电过程中,电流对时间的积分得到在这段时间充入电池中的电量,然后,考虑到电池包在充满电之前各电池充入的电量差异较为明显,更能够表征各电池的容量差值,因此,提出本申请请求保护的电池间容量差值的获取方法。
实施例一
本申请给出一种电池间容量差值的获取方法,请参考图2,其为本申请所提供的电池间容量差值的获取方法的实施例一的流程示意图,如图2所示,该方法包括以下步骤:
S201,以指定充电方式对电池包进行充电,并在以指定充电方式对电池包进行充电的过程中,获取电池包中每个电池在第一时刻 到第二时刻之间电流对时间进行积分的积分结果。
需要说明的是,第一时刻为该电池的电压达到第一电压的时刻,第二时刻为电池包中具有最高电压的电池的电压达到第二电压的时刻。
可以理解的是,第二电压大于第一电压。
S202,根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值。
具体的,本申请中,以指定充电方式对电池包进行充电的过程可以包括:第一充电阶段和第二充电阶段。
具体的,第一充电阶段还可以包括至少两个充电子阶段。在每个充电子阶段中,以恒定的充电电流对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到该充电子阶段的指定电压;其中,第一电压就是第一充电阶段中最后一个宠溺的那子阶段的指定电压,在第一充电阶段中,各充电子阶段对应的充电电流依次降低;
在第二充电阶段,以指定充电电流对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到第二电压,第二电压就是电池包中具有最高电压的电池的截止电压;其中,指定充电电流小于第一充电阶段中的最小的充电电流。
需要说明的是,本申请中,需要实时地检测电池包中各电池的电压,以便于根据电池包中具有最高电压的电池的电压是否达到指定电压,来区分以上各充电阶段。
在整个充电过程中,第一充电阶段的每个充电子阶段都有各自的充电电流以及对应的指定电压,各充电子阶段的对应的充电电流按照每个充电子阶段的执行顺序依次降低。
具体的,请参考图3,其为以指定充电方式对电池包进行充电的过程中的SOC与电压之间的对应关系示意图。在如图3所示的充电过程中,包括第一充电阶段和第二充电阶段,此时,第一充电阶段为V0至V3之间的充电阶段,V3至V4之间的充电阶段为第二充电阶段。如图3所示,若第一充电子阶段的充电电流为I1,指定电 压为V1;第二充电子阶段的充电电流为I2,指定电压为V2;第三充电子阶段的充电电流为I3,指定电压为V3。此时,第一电压为第三充电子阶段的指定电压V3。
如图3所示,在第一充电阶段,以充电电流I1对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到指定电压V1;此时,第一充电子阶段结束,第二充电子阶段开始;以充电以充电电流I2对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到指定电压V2;此时,第二充电子阶段结束,第三充电子阶段开始;以充电以充电电流I3对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到指定电压V3;此时,第一充电阶段结束,开始进行第二充电阶段的充电。
需要注意的是,在如图3所示的的充电过程中,第一充电阶段中的各充电子阶段对应的充电电流之间存在如下关系:I1>I2>I3;本申请对于V1、V2和V3之间的大小关系不进行特别限定,在具体的实现过程中,指定电压可以设置为如图3所示的,按照每个充电子阶段的执行顺序依次升高的顺序。
如图3所示,在第一充电阶段结束之后,以指定充电电流I4对电池包进行充电,直至电池包中具有最高电压的电池的电压达到第二电压V4,此时,第二电压就是电池包中具有最高电压的电池的截止电压。此时,指定充电电流I4小于第一充电阶段中任意一个充电子阶段所对应的充电电流,也即存在如下关系:I1>I2>I3>I4;截止电压V4大于第一充电阶段中任意一个充电子阶段所对应的指定电压,也即存在如下关系:V4>V1,V4>V2,V4>V3。
需要说明的是,在具体的实现过程中,可以根据实际需要预设第一充电阶段中充电子阶段的数目,还可以根据实际需要预设每个充电子阶段对应的充电电流和指定电压,还可以根据实际需要预设第二充电阶段中的指定充电电流,本申请仅限定这些数据的大小关系,对其具体数值不进行特别限定。
例如,在一个具体的实现过程中,可以设置为如图3所示的充电过程,并且,可以设置第一充电子阶段的充电电流为1C,设置第 二充电子阶段的充电电流为0.75C,设置第三充电子阶段的充电电流为0.5C,设置第一充电子阶段的充电电流为0.2C。
具体的,考虑到以较大的充电电流对电池包进行充电可能存在浮充现象,即采集到的电池包中具有最高电压的电池的电压相较于现有电压偏高,如此,虽然采集到的电池包中具有最高电压的电池的电压可能已经达到了截止电压,但实际电压并未达到截止电压;因此,本申请中,在电池包即将充满电时,采用逐渐降低充电电流的方式对电池包进行充电,以抵消大电流充电造成的浮充现象对电压的影响,从而,使得第二充电阶段中的第一电压和第二电压之间充入的电量维持在一个较为稳定的数值范围内,进而,获得更为准确的电池包中各电池间的容量差值。
需要说明的是,同一个电池包中,各电池的第一时刻可能是不同的,第二时刻则是完全相同的。
具体的,对于同一个电池包中的任意一个电池,该电池的第一时刻是该电池的电压达到第一电压的时刻,在对电池包进行充电的过程中,电池包中的各个电池可能会存在容量等方面的差异,因此,在同一个电池包中,各个电池达到第一电压的时刻是不同的。
具体的,第二时刻是该电池包中所有电池中的具有最高电压的电池的电压达到这个电池的截止电压的时刻。当电池包中具有最高电压的电池的电压达到截止电压时,整个充电过程就会结束,也就不再进行电流对时间的积分。
此外,在第一充电阶段的最后一个充电子阶段中,当具有最高电压的电池的电压达到第一电压之后,开始以指定充电电流对电池包进行充电,此时,这个具有最高电压的电池达到了第一电压,开始对这个电池的进行电流对时间的积分;而对于该电池包中的其他电池,此时,还没有达到第一电压,因此,在以指定充电电流对电池包进行充电的第二充电阶段中,当任意电池的电压达到第一电压时,才开始对这个电池进行电流对时间的积分。
因此,本申请中,是在第二充电阶段中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。例 如,如图3所示充电过程中,可以在V3至V4的充电阶段,获取每个电池在第一时刻和第二时刻之间电流对时间进行积分的积分结果。
本申请中,在上述充电过程中,获取到电池包中各电池的积分结果后,执行S202中“根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值”的步骤,可以通过以下步骤实现:
获取电池包中具有最高电压的电池的积分结果;
分别获取各电池的积分结果与具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
可以理解的是,电池包中具有最高电压的电池是在整个第二充电阶段中进行了电流对时间的积分,此时,该具有最高电压的电池的电压达到了截止电压,该电池达到充满电的状态,因此,该具有最高电压的电池的积分结果可以表示充满电的电池的容量;而其他电池在该具有最高电压的电池的电压达到截止电压时,可能还未达到截止电压,也即,这些电池可能没有达到充满电状态,因此,分别获取各电池的积分结果与具有最高电压的电池的积分结果之间的差值,就能得到未充满电的电池与充满电的电池之间的容量差值。
在一个具体的实现过程中,还可以根据获取到的电池包中各电池之间的容量差值,检测该电池包的一致性是否符合指定条件。
具体的,电池包的一致性符合指定条件时,电池包中各电池之间的容量差异较小,电池包的一致性较好,此时,不需要对电池包进行容量均衡处理;或者,电池包的一致性不符合指定条件时,电池包中有电池的容量差异与其他电池的容量差异较大,电池包的一致性较差,此时,需要对电池包进行容量均衡处理。
本申请中,可以通过以下两种方式来检测电池包的一致性是否符合指定条件:
第一种:当电池包中存在第一目标电池时,检测到电池包的一致性不符合指定条件,其中,第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,当电池包中不存在第一目标电池时,检测到电池包的一致性符合指定条件。
在一个具体实现过程中,获取各电池的积分结果与具有最高电 压的电池的积分结果之间的容量差值之后,检测这些容量差值中是否有大于预设的差值阈值的容量差值,若这些容量差值中存在大于预设的差值阈值的容量差值,此时,电池包中第一目标电池的数目为至少一个,检测到电池包的一致性不符合指定条件。或者,若这些容量差值全部都小于或者等于预设的差值阈值,此时,第一目标电池的数目为0,检测到电池包的一致性符合指定条件。
其中,差值阈值可以根据实际需要进行预设,这里不进行特别限定。
第二种:当电池包中存在第二目标电池时,检测到电池包的一致性不符合指定条件;或者,当电池包中不存在第二目标电池时,检测到电池包的一致性符合指定条件。
其中,在以指定充电方式对电池包进行充电的过程中,第二目标电池的电压始终未达到第一电压。
具体的,在第二充电阶段中,若第二目标电池的电压始终未达到第一电压,则在整个充电过程中,都不会对第二目标电池进行电流对时间的积分,此时,无法获取到第二目标电池的积分结果,因此,当获取到的电池包中各电池的积分结果的数目小于电池的数目时,说明电池包中存在第二目标电池,此时,检测到电池包的一致性不符合指定条件。或者,当获取到的各电池的积分结果的数目与电池的数目相等时,电池包中不存在第二目标电池,检测到电池包的一致性符合指定条件。
在一个具体的实现过程中,当检测到电池包的一致性不符合指定条件时,对电池包中各电池进行容量均衡处理。
本申请对于容量均衡处理的具体实现方式不进行特别限定。
对电池包中各电池进行容量均衡处理之后,还可以清除该电池包的数据。具体的,该电池包的数据包括获得的电池包中各电池间的容量差值。如此,可以在下一次执行该方法获取电池包中各电池间的容量差值的过程中,避免此次获取结果的影响。
本申请的技术方案具有以下有益效果:
本申请中,以指定充电方式对电池包进行充电,并在以指定充 电方式对电池包进行充电的过程中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,第一时刻为该电池的电压达到第一电压的时刻,第二时刻为电池包中具有最高电压的电池的电压达到第二电压的时刻;然后,根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值。本申请中,是在对电池包进行充电的过程中,通过电流对时间积分的形式,准确的得到电池包中各电池之间的容量差值;区别于现有技术中通过开路电压的大小确定电池间容量差值的方法,本申请中,不仅能够得到准确的容量差值的数值,而且可以在有电流流经电池包的过程中实现,因此,本申请提出的电池间容量差值的获取方法,能够在电池包处于工作状态的过程中获取到准确的电池间容量差值,并对电池包进行容量均衡处理,从而,保证了电池包的容量损失较小;因此,本申请提供的技术方案解决了现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。
实施例二
基于上述实施例一所提供的电池间容量差值的获取方法,本申请提出一种上述方法的具体实现方式。
具体的,请参考图4,其为本申请所提供的电池间容量差值的获取方法的实施例二的流程示意图,如图4所示,该实现方式具体可以包括以下步骤:
S401,以I1对电池包进行恒流充电,并实时检测电池包中各电池的电压。
S402,判断电池包中具有最高电压的电池的电压是否达到V1;若是,执行S403;若否,执行S402。
S403,以I2对电池包进行恒流充电,并实时检测电池包中各电池的电压。
其中,I2小于I1。
S404,判断电池包中具有最高电压的电池的电压是否达到V2;若是,执行S405;若否,执行S404。
S405,以I3对电池包进行恒流充电,并实时检测电池包中各电 池的电压。
其中,I3小于I2。
S406,分别判断电池包中各电池的电压是否达到V3;对于电池包中电池的电压达到V3的电池,执行S407;对于电池包中电池的电压未达到V3的电池,继续执行S406。
其中,V3为第一电压。此时,电池包中包括有N个电池,N为大于1的整数。
S407,对电池包中电池的电压达到V3的电池,进行电流对时间的积分,并实时检测电池包中各电池的电压。
S408,判断电池包中具有最高电压的电池的电压是否达到V4;若是,执行S409;若否,执行S408。
其中,V4为第二电压。
S409,充电过程结束,积分过程结束,获得电池包中各电池的积分结果。
S410,分别获取各电池的积分结果与具有最高电压的电池的积分结果之间的差值。
S411,判断得到的各差值中是否存在超过差值阈值的差值;若是,执行S412;若否,结束。
S412,对电池包进行容量均衡处理。
S413,容量均衡处理之后,清除该电池包的数据。
其中,该电池包的数据中包括获得的电池包中各电池间的容量差值。
可以理解的是,本申请提供的方法为实施例一所提供的电池间容量差值的获取方法的一种具体实现方式,并不用以限制本申请。
本申请的技术方案具有以下有益效果:
本申请中,是在对电池包进行充电的过程中,通过电流对时间积分的形式,准确的得到电池包中各电池之间的容量差值;区别于现有技术中通过开路电压的大小确定电池间容量差值的方法,本申请中,不仅能够得到准确的容量差值的数值,而且可以在有电流流经电池包的过程中实现,因此,本申请提出的电池间容量差值的获 取方法,能够在电池包处于工作状态的过程中获取到准确的电池间容量差值,并对电池包进行容量均衡处理,从而,保证了电池包的容量损失较小;因此,本申请提供的技术方案解决了现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。
实施例三
基于上述实施例一所提供的电池间容量差值的获取方法,本申请进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
请参考图5,其为本申请所提供的电池间容量差值的获取装置的功能方块图。如图5所示,该装置包括:
充电单元51,用于以指定充电方式对电池包进行充电;
获取单元52,用于在以指定充电方式对电池包进行充电的过程中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;
其中,第一时刻为该电池的电压达到第一电压的时刻,第二时刻为电池包中具有最高电压的电池的电压达到第二电压的时刻;
获取单元51,还用于根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值。
在一个具体的实现过程中,本申请中,以指定充电方式对电池包进行充电的过程可以包括第一充电阶段和第二充电阶段;
第一充电阶段包括至少两个充电子阶段;充电单元51,用于在每个充电子阶段中,以恒定的充电电流对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到充电子阶段的指定电压;其中,第一电压为第一充电阶段中最后一个充电子阶段的指定电压,在第一充电阶段中,各充电子阶段对应的充电电流依次降低;
充电单元51,还用于在第二充电阶段,以指定充电电流对电池包进行恒流充电,直至电池包中具有最高电压的电池的电压达到第二电压;其中,第二电压为电池包中具有最高电压的电池的截止电压,指定充电电流小于第一充电阶段中的最小的充电电流。
具体的,本申请中,获取单元52,具体用于:
在第二充电阶段中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。
具体的,本申请中,获取单元52,具体用于:
获取电池包中具有最高电压的电池的积分结果;
分别获取各电池的积分结果与具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
在一个具体的实现过程中,该装置还包括:
检测单元53,用于当电池包中存在第一目标电池时,检测到电池包的一致性不符合指定条件,其中,第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,
检测单元53,还用于当电池包中不存在第一目标电池时,检测到电池包的一致性符合指定条件。
由于本实施例中的各单元能够执行图2所示的方法,本实施例未详细描述的部分,可参考对图2的相关说明。
本申请的技术方案具有以下有益效果:
本申请中,电池间容量差值的获取装置中的充电单元以指定充电方式对电池包进行充电,电池间容量差值的获取装置中的获取单元在以指定充电方式对电池包进行充电的过程中,获取电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,第一时刻为该电池的电压达到第一电压的时刻,第二时刻为电池包中具有最高电压的电池的电压达到第二电压的时刻;然后,电池间容量差值的获取装置中的获取单元根据电池包中各电池的积分结果,获得电池包中各电池间的容量差值。本申请中,是在对电池包进行充电的过程中,通过电流对时间积分的形式,准确的得到电池包中各电池之间的容量差值;区别于现有技术中通过开路电压的大小确定电池间容量差值的方法,本申请中,不仅能够得到准确的容量差值的数值,而且可以在有电流流经电池包的过程中实现,因此,本申请提出的电池间容量差值的获取装置,能够在电池包处于工作状态的过程中获取到准确的电池间容量差值,并对电池包进行容量均衡处理,从而,保证了电池包的容量损失较小;因此,本 申请提供的技术方案解决了现有技术中在有电流流经电池包时无法获取到电池包中各电池间的容量差异的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请, 凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种电池间容量差值的获取方法,其特征在于,所述方法包括:
    以指定充电方式对电池包进行充电,并在以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,所述第一时刻为该电池的电压达到第一电压的时刻,所述第二时刻为所述电池包中具有最高电压的电池的电压达到第二电压的时刻;
    根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值。
  2. 根据权利要求1所述的方法,其特征在于,以所述指定充电方式对所述电池包进行充电的过程包括第一充电阶段和第二充电阶段;
    所述第一充电阶段包括至少两个充电子阶段;在每个充电子阶段中,以恒定的充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到所述充电子阶段的指定电压;其中,所述第一电压为所述第一充电阶段中最后一个充电子阶段的指定电压,在所述第一充电阶段中,各充电子阶段对应的充电电流依次降低;
    在所述第二充电阶段,以指定充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到第二电压;其中,所述第二电压为所述电池包中具有最高电压的电池的截止电压,所述指定充电电流小于所述第一充电阶段中的最小的充电电流。
  3. 根据权利要求2所述的方法,其特征在于,以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果,包括:
    在所述第二充电阶段中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。
  4. 根据权利要求1所述的方法,其特征在于,根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值,包 括:
    获取所述电池包中具有最高电压的电池的积分结果;
    分别获取各电池的积分结果与所述具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述电池包中存在第一目标电池时,检测到所述电池包的一致性不符合指定条件,其中,所述第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,
    当所述电池包中不存在所述目标电池时,检测到所述电池包的一致性符合所述指定条件。
  6. 一种电池间容量差值的获取装置,其特征在于,所述装置包括:
    充电单元,用于以指定充电方式对电池包进行充电;
    获取单元,用于在以指定充电方式对所述电池包进行充电的过程中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果;其中,所述第一时刻为该电池的电压达到第一电压的时刻,所述第二时刻为所述电池包中具有最高电压的电池的电压达到第二电压的时刻;
    所述获取单元,还用于根据所述电池包中各电池的积分结果,获得所述电池包中各电池间的容量差值。
  7. 根据权利要求6所述的装置,其特征在于,以所述指定充电方式对所述电池包进行充电的过程包括第一充电阶段和第二充电阶段;
    所述第一充电阶段包括至少两个充电子阶段;所述充电单元,具体用于:在每个充电子阶段中,以恒定的充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到所述充电子阶段的指定电压;其中,所述第一电压为所述第一充电阶段中最后一个充电子阶段的指定电压,在所述第一充电阶段中,各充电子阶段对应的充电电流依次降低;
    所述充电单元,具体用于:在所述第二充电阶段,以指定充电电流对所述电池包进行恒流充电,直至所述电池包中具有最高电压的电池的电压达到第二电压;其中,所述第二电压为所述电池包中具有最高电压的电池的截止电压,所述指定充电电流小于所述第一充电阶段中的最小的充电电流。
  8. 根据权利要求7所述的装置,其特征在于,所述获取单元,具体用于:
    在所述第二充电阶段中,获取所述电池包中每个电池在第一时刻到第二时刻之间电流对时间进行积分的积分结果。
  9. 根据权利要求6所述的装置,其特征在于,所述获取单元,具体用于:
    获取所述电池包中具有最高电压的电池的积分结果;
    分别获取各电池的积分结果与所述具有最高电压的电池的积分结果之间的差值,得到未充满电的电池与充满电的电池之间的容量差值。
  10. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    检测单元,用于当所述电池包中存在第一目标电池时,检测到所述电池包的一致性不符合指定条件,其中,所述第一目标电池与充满电的电池之间的容量差值大于预设的差值阈值;或者,
    还用于当所述电池包中不存在所述第一目标电池时,检测到所述电池包的一致性符合所述指定条件。
PCT/CN2017/093059 2016-12-26 2017-07-15 电池间容量差值的获取方法和装置 WO2018120769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611215343.5A CN106786893B (zh) 2016-12-26 2016-12-26 电池间容量差值的获取方法和装置
CN201611215343.5 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018120769A1 true WO2018120769A1 (zh) 2018-07-05

Family

ID=58927209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093059 WO2018120769A1 (zh) 2016-12-26 2017-07-15 电池间容量差值的获取方法和装置

Country Status (2)

Country Link
CN (1) CN106786893B (zh)
WO (1) WO2018120769A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092470A (zh) * 2019-12-25 2020-05-01 欣旺达电动汽车电池有限公司 获取电池组中各电池容量差的方法、装置以及存储介质
CN113954692A (zh) * 2021-09-07 2022-01-21 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786893B (zh) * 2016-12-26 2019-08-13 宁德时代新能源科技股份有限公司 电池间容量差值的获取方法和装置
CN110635177B (zh) * 2018-06-22 2021-05-11 华为技术有限公司 电池控制方法、电池控制装置以及计算机可读存储介质
CN112698207A (zh) * 2020-12-03 2021-04-23 天津小鲨鱼智能科技有限公司 一种电池容量检测方法及装置
CN115954565B (zh) * 2022-11-21 2023-08-25 上海玫克生储能科技有限公司 电池模组的补电方法、系统、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217484A1 (en) * 2009-02-24 2010-08-26 Denso Corporation Vehicle control system having automatic engine stop function selectively enabled/disabled based on estimated charge amount in battery
CN102590756A (zh) * 2012-02-14 2012-07-18 深圳市沛城电子科技有限公司 电池电量检测的方法及装置
CN102868000A (zh) * 2012-09-05 2013-01-09 浙江众泰新能源汽车科技有限公司 一种电动汽车动力源均衡方法
CN104578286A (zh) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 锂电池组的主动均衡方法
CN105021994A (zh) * 2015-07-10 2015-11-04 华霆(合肥)动力技术有限公司 一种检测电池组内单体电池一致性的方法和装置
CN106786893A (zh) * 2016-12-26 2017-05-31 宁德时代新能源科技股份有限公司 电池间容量差值的获取方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264203B2 (en) * 2006-03-31 2012-09-11 Valence Technology, Inc. Monitoring state of charge of a battery
CN103163464B (zh) * 2011-12-14 2016-01-20 微宏动力系统(湖州)有限公司 电池包中电芯的检测方法
KR102082866B1 (ko) * 2013-04-18 2020-04-14 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
CN107431367B (zh) * 2015-03-02 2020-08-11 日本汽车能源株式会社 电池控制装置和车辆系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100217484A1 (en) * 2009-02-24 2010-08-26 Denso Corporation Vehicle control system having automatic engine stop function selectively enabled/disabled based on estimated charge amount in battery
CN102590756A (zh) * 2012-02-14 2012-07-18 深圳市沛城电子科技有限公司 电池电量检测的方法及装置
CN102868000A (zh) * 2012-09-05 2013-01-09 浙江众泰新能源汽车科技有限公司 一种电动汽车动力源均衡方法
CN104578286A (zh) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 锂电池组的主动均衡方法
CN105021994A (zh) * 2015-07-10 2015-11-04 华霆(合肥)动力技术有限公司 一种检测电池组内单体电池一致性的方法和装置
CN106786893A (zh) * 2016-12-26 2017-05-31 宁德时代新能源科技股份有限公司 电池间容量差值的获取方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092470A (zh) * 2019-12-25 2020-05-01 欣旺达电动汽车电池有限公司 获取电池组中各电池容量差的方法、装置以及存储介质
CN113954692A (zh) * 2021-09-07 2022-01-21 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备
CN113954692B (zh) * 2021-09-07 2023-08-22 东风汽车集团股份有限公司 一种电池充电控制方法、装置和设备

Also Published As

Publication number Publication date
CN106786893A (zh) 2017-05-31
CN106786893B (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2018120769A1 (zh) 电池间容量差值的获取方法和装置
US11181585B2 (en) Electronic device and method for detecting the state of health of a battery
CN106324508B (zh) 电池健康状态的检测装置及方法
EP3255719B1 (en) Charging method and device
CN106646256B (zh) 电池容量计算方法
KR100987606B1 (ko) 배터리팩의 잔류용량 측정의 수정장치와 방법
US10345382B2 (en) Method and terminal for displaying battery power
US9753094B2 (en) Battery performance under high temperature exposure
CN110506215A (zh) 一种确定电池内短路的方法及装置
CN107024665B (zh) 电池的剩余容量校准方法
US9869723B2 (en) Power management scheme for separately and accurately measuring battery information of each of multiple batteries
CN104466277A (zh) 一种锂离子电池自放电筛选方法
US20150372514A1 (en) Electric storage device and deterioration determination method
JP6041040B2 (ja) 蓄電池、蓄電池の制御方法、制御装置及び制御方法
CN111722134B (zh) 电池的直流阻抗的测量方法和装置,充电系统和终端设备
WO2019052146A1 (zh) 一种电池电量预估方法和装置、无人机
WO2018120771A1 (zh) 一种电池目标soc的确定方法及装置
US20140139230A1 (en) Method and apparatus for determining a charge state
CN112054564B (zh) 电路检测方法及装置、设备、存储介质
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
CN113009360A (zh) 锂电池soc-ocv测试方法、装置及终端设备
CN112698229B (zh) 短路电流检测方法、装置、可读存储介质及电子设备
US20140019790A1 (en) Monitoring a battery in an electronic device
WO2022188607A1 (zh) 电池内短路检测方法、电子装置以及存储介质
CN113507154B (zh) 充电方法、装置、充电机和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886495

Country of ref document: EP

Kind code of ref document: A1