WO2012152231A1 - 动力电池包一致性评估方法和装置 - Google Patents

动力电池包一致性评估方法和装置 Download PDF

Info

Publication number
WO2012152231A1
WO2012152231A1 PCT/CN2012/076121 CN2012076121W WO2012152231A1 WO 2012152231 A1 WO2012152231 A1 WO 2012152231A1 CN 2012076121 W CN2012076121 W CN 2012076121W WO 2012152231 A1 WO2012152231 A1 WO 2012152231A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
dispersion
battery pack
equivalent
internal resistance
Prior art date
Application number
PCT/CN2012/076121
Other languages
English (en)
French (fr)
Inventor
张昌斌
董凤宇
王鹏
李华春
常晓旗
陈强
温家鹏
刘军
冯韬
Original Assignee
北京市电力公司
北京优科利尔能源设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市电力公司, 北京优科利尔能源设备有限公司 filed Critical 北京市电力公司
Publication of WO2012152231A1 publication Critical patent/WO2012152231A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of power batteries, and in particular to a power battery pack consistency evaluation method and apparatus.
  • BACKGROUND OF THE INVENTION With the development of power battery material technology and popularization and application in the field of electric vehicles, single cells have greatly improved in terms of energy density, power density and cycle life, but it has been found in practical applications due to single cells. There are differences in characteristics. When the power battery is connected in series and in parallel, there will be inconsistencies in the single battery, which will reduce the overall performance of the entire battery. In the process of use, the performance of the battery pack is accelerated due to the uniformity of the single battery.
  • the attenuation and the overall service life are shortened, and the electrical output characteristics (capacity characteristics, rate characteristics, etc.) of the power battery pack are also affected to varying degrees, and it is difficult to meet the requirements of applications such as electric vehicles and energy storage systems. Therefore, the effective evaluation of the consistency of the power battery pack is of great significance for the application of the power battery pack, and the consistency evaluation index of the power battery pack is also a key indicator for measuring the output performance of the battery pack.
  • Existing evaluation methods ignore differences in battery types. As the types of power batteries increase, the battery materials and characteristics will also vary, so the evaluation indicators will also change.
  • the lithium iron phosphate battery has a large difference in equivalent DC internal resistance due to the difference in battery materials, so the voltage platform generated under the action of large current is also large; and the polarization difference at the end of the charge and discharge. The sex becomes larger, causing the difference in voltage dispersion to increase. Therefore, the evaluation index of lithium manganese oxide battery is used to measure the lithium iron phosphate battery, and the future lithium titanate battery has certain limitations. At the same time, the existing evaluation methods ignore the difference in the specific operating conditions of the power battery pack.
  • the discharge rate characteristics of the battery are generally small (maximum between 1C 2C), so the consistency deviation caused by the difference of the equivalent DC internal resistance may affect the output characteristics of the whole battery. Small, and the inconsistency caused by the capacity may have a greater impact on the performance output of the entire battery.
  • the battery capacity utilization interval is generally 30% to 70%, the capacity difference has little effect on the output performance of the entire battery, and the charging and discharging rate is large (generally 10C ⁇ 20C), equivalent.
  • the DC internal resistance consistency may have a greater impact on the performance of the entire battery. Therefore, under different working conditions, the evaluation of the consistency of the power battery pack according to the same standard is also slightly one-sided.
  • a primary object of the present invention is to provide a method and apparatus for evaluating the consistency of a power battery pack to solve the problem of the one-sidedness of the power battery pack consistency evaluation in the prior art.
  • a power battery pack conformance evaluation method is provided.
  • the power battery package consistency evaluation method includes: calculating a capacity dispersion degree, an equivalent DC internal resistance dispersion degree, and a voltage platform dispersion degree of the power battery package according to a characteristic parameter of the power battery package, wherein the power battery package includes n Single cell; using a preset evaluation weight, weighted average calculation of capacity dispersion, equivalent DC internal resistance dispersion and voltage platform dispersion to obtain a comprehensive evaluation coefficient of the power battery package; and according to the comprehensive evaluation coefficient The comprehensive evaluation result of the consistency of the power battery pack, wherein the larger the comprehensive evaluation coefficient, the worse the consistency of the power battery pack.
  • calculating the capacity dispersion of the power battery pack includes: obtaining a maximum available capacity of the power battery pack; and calculating a capacity dispersion according to the maximum available capacity and the rated capacity of the power battery pack. Further, the capacity dispersion is calculated using the following formula:
  • calculating the equivalent DC internal resistance dispersion of the power battery package comprises: obtaining an equivalent DC internal resistance of each single battery in the power battery package; calculating the power battery package according to the equivalent DC internal resistance of each single battery The average equivalent DC internal resistance; and the equivalent DC internal resistance of the power battery pack is calculated according to the equivalent DC internal resistance of each single cell and the average equivalent DC internal resistance. Further, the following formula is used to calculate the equivalent DC internal resistance dispersion of the power battery pack:
  • the equivalent DC internal resistance dispersion ⁇ is the average equivalent DC internal resistance, which is the equivalent DC internal resistance of the i-th single cell, and n is the number of single cells of the power battery pack.
  • calculating the voltage platform dispersion of the power battery package includes: sampling the voltage of each single battery in the power battery package to obtain the instantaneous voltage value of each single battery; calculating the power battery according to the instantaneous voltage value of each single battery The instantaneous average voltage value of the package; and calculating the voltage platform dispersion of the power battery pack according to the instantaneous voltage value of each unit battery and the instantaneous average voltage value of the power battery pack. Further, the voltage platform dispersion of the power battery pack is calculated using the following formula:
  • the comprehensive evaluation factor includes the following formula: Among them, is the comprehensive evaluation coefficient of the power battery pack, ⁇ is the capacity dispersion, the preset evaluation weight of the capacity dispersion is the equivalent DC internal resistance dispersion, and ⁇ is the preset evaluation of the equivalent DC internal resistance dispersion.
  • a power battery pack conformity evaluation apparatus includes: a first calculation module, configured to calculate a capacity dispersion degree, an equivalent DC internal resistance dispersion degree, and a voltage platform dispersion degree of the power battery package according to a characteristic parameter of the power battery package, Wherein, the power battery package includes n single cells; and the second calculation module is configured to adopt a preset evaluation weight, Weighted average calculation of capacity dispersion, equivalent DC internal resistance dispersion and voltage platform dispersion to obtain a comprehensive evaluation coefficient of the power battery package; and a judgment module for determining the consistency of the power battery package consistency based on the comprehensive evaluation coefficient The evaluation results, in which the larger the comprehensive evaluation coefficient, the worse the consistency of the power battery package.
  • the first calculation module includes a first calculation sub-module for calculating a capacity dispersion of the power battery package, and the first calculation sub-module includes: a first acquisition unit, configured to acquire a maximum available capacity of the power battery package; A calculation unit for calculating the capacity dispersion based on the maximum available capacity and the rated capacity of the power battery pack.
  • the first calculation module includes a second calculation sub-module for calculating an equivalent DC internal resistance dispersion of the power battery pack
  • the second calculation sub-module includes: a second acquisition unit, configured to acquire each single in the power battery package An equivalent DC internal resistance of the body battery; a second calculating unit for calculating an average equivalent DC internal resistance of the power battery pack according to an equivalent DC internal resistance of each of the single cells; and a third calculating unit for each The equivalent DC internal resistance of the single cell and the average equivalent DC internal resistance are calculated, and the equivalent DC internal resistance dispersion of the power battery pack is calculated.
  • the first calculation module includes a third calculation sub-module for calculating a voltage platform dispersion of the power battery package
  • the third calculation sub-module includes: a third acquisition unit, configured to be used for each single battery in the power battery package Voltage sampling to obtain an instantaneous voltage value of each unit battery; a fourth calculating unit, configured to calculate an instantaneous average voltage value of the power battery pack according to an instantaneous voltage value of each unit battery; and a fifth calculating unit, configured to The instantaneous voltage value of the single battery and the instantaneous average voltage value of the power battery pack calculate the voltage platform dispersion of the power battery pack.
  • a power battery package consistency evaluation method including the following steps: calculating a power battery package capacity dispersion, an equivalent DC internal resistance dispersion degree, and a voltage platform dispersion degree, and adopting preset evaluation rights for three kinds of dispersion degrees
  • the value is calculated by weighted average, and the comprehensive evaluation coefficient of the power battery pack is obtained.
  • FIG. 1 is a flow chart of a method for comprehensively evaluating a consistency of a power battery pack according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for testing an equivalent DC internal resistance of a battery in a power battery pack according to an embodiment of the present invention
  • 3 is a voltage graph of each of the single cells of the power battery pack under charging conditions according to an embodiment of the present invention
  • FIG. 4 is a voltage graph of each of the single cells of the power battery pack under discharge conditions according to an embodiment of the present invention
  • 5 is a schematic diagram of selection of a power battery pack voltage platform according to an embodiment of the present invention
  • FIG. 6 is a block diagram of a power battery pack consistency comprehensive evaluation apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a power battery pack consistency evaluation method according to an embodiment of the present invention. Referring to FIG.
  • the method mainly includes the following steps: Step S11: Calculating a capacity of a power battery pack according to a characteristic parameter of a power battery pack Dispersion, equivalent DC internal resistance dispersion and voltage platform dispersion, wherein the power battery package includes n single cells, and the characteristic parameters of the power battery package include current of the battery pack, capacity of the battery pack, and each single in the battery pack The voltage of the body battery, etc. Step S13: performing weighted average calculation of capacity dispersion, equivalent DC internal resistance dispersion and voltage platform dispersion by using preset evaluation weights, to obtain a comprehensive evaluation coefficient of the power battery package, wherein the preset evaluation weight is based on The specific application conditions of the power battery pack are set separately.
  • Step S15 According to the comprehensive evaluation coefficient, a comprehensive evaluation result of the consistency of the power battery package is obtained, wherein the larger the comprehensive evaluation coefficient, the worse the consistency of the power battery package.
  • the power battery package consistency evaluation comprehensively considers the three factors of the battery package capacity dispersion, the equivalent DC internal resistance dispersion and the voltage platform dispersion, and according to the specific application conditions of the battery pack. Differently, determine the appropriate preset evaluation weight, that is, determine the proportion of each factor affecting the consistency of the battery pack, so as to obtain a more accurate evaluation result, which is convenient for completing the comprehensive performance evaluation after the power battery package application, and is the power battery.
  • the application provides reliable technical support.
  • step S13 when calculating the capacity dispersion of the power battery pack, the equivalent DC internal resistance dispersion, and the voltage platform dispersion, the following calculation methods and formulas are respectively adopted: Firstly, the maximum available capacity of the power battery pack is obtained, and the acquisition process includes: according to the battery capacity measurement method, the CP battery is used to test the discharge capacity of the power battery pack (including n single battery packs, n ⁇ l), and calculate the battery pack.
  • the specific acquisition process includes: According to the battery equivalent DC internal resistance test method, in the power battery pack During the normal discharge process, at time (the battery pack capacity is
  • n Calculate the equivalent DC internal resistance dispersion of the power battery pack according to the equivalent DC internal resistance and the average equivalent DC internal resistance of each single cell:
  • / vom(3 ⁇ 4) is the instantaneous voltage and current value of the battery at time t1 under the action of CI current discharge current I C1 ; f/ C2 (t 2 ), I C2 (t 2 ) is the discharge current I C2 of the battery at C2 rate
  • n is the number of single cells in the power battery pack, n ⁇ l.
  • the specific sampling acquisition process includes: During the charging process of the power battery pack, Select the area where the voltage of the single cell voltage platform changes greatly, collect the instantaneous voltage value of each single cell according to the change interval of the specific power battery pack capacity, and calculate the instantaneous average voltage value of the power battery pack at the sampling point m, and 0 ⁇ m ⁇ L, L is the total number of sampling points:
  • the terminal voltage of the mth sampling point that is, the instantaneous voltage value of the mth single cell
  • the instantaneous voltage platform dispersion of the power battery packs at all sampling points is calculated and summed, that is, the voltage platform dispersion of the power battery pack is obtained by the following formula:
  • the evaluation weights of the capacity dispersion, the equivalent DC internal resistance dispersion, and the voltage platform dispersion are set, and the following formula is used to calculate the power battery package.
  • step S15 based on the consistency evaluation coefficient ⁇ M of the power battery pack described above, a quantitative evaluation result can be given for the consistency of the power battery pack.
  • the evaluation method is used to evaluate the consistency of the two battery packs respectively.
  • the first battery pack is made up of 8 single cells in series from 1 to 8 and the second battery pack is 7 to 8 in total.
  • the body batteries are connected in series. Among the individual cells, the inconsistency of the No. 1 cell and the other cells is large.
  • the capacity dispersion, the equivalent DC internal resistance dispersion and the voltage platform dispersion of the power battery package are first calculated respectively.
  • the equivalent DC internal resistance of the body battery is:
  • the equivalent DC internal resistance dispersion of the power battery pack is calculated as: According to the charging process of the power battery pack, select the area where the voltage of the single battery voltage changes greatly, and according to the charging capacity change 5% as the sampling interval, the instantaneous voltage value of each single battery is collected by the collecting module, as shown in FIG. 5, the curve 50 is the charging current, curve 51 is the voltage of the single cell No. 1, and curve cluster 52 is the voltage of the cell No. 2 to No. 8, and the voltage platform dispersion of the power battery pack is obtained:
  • the evaluation weights of the set capacity dispersion, the equivalent DC internal resistance dispersion and the voltage platform dispersion are: 0.1 ⁇ L C ⁇ 0.4, 0.2 ⁇ 0.4, 0.2 ⁇ 0.4, then obtain the consistency evaluation coefficient of the power battery package:
  • FIG. 6 is a block diagram of a power battery pack consistency comprehensive evaluation apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes: a first calculation module 01, configured to calculate a power battery pack according to a characteristic parameter of a power battery pack The capacity dispersion, the equivalent DC internal resistance dispersion and the voltage platform dispersion, wherein the power battery package includes n single cells, and the characteristic parameters of the power battery package include the current of the battery pack, the capacity of the battery pack, and the battery pack.
  • the voltage of each unit cell is equal to;
  • the second calculation module 02 is configured to perform weighted average calculation on the capacity dispersion, the equivalent DC internal resistance dispersion and the voltage platform dispersion by using a preset evaluation weight to obtain a power battery package.
  • the judgment module 03 is configured to determine the comprehensive evaluation result of the power battery package consistency according to the comprehensive evaluation coefficient, wherein, the comprehensive evaluation The larger the coefficient, the worse the consistency of the power battery pack.
  • the capacity dispersion of the power battery pack, the equivalent DC internal resistance dispersion, and the voltage platform dispersion are calculated by the first calculation module 01, so that the battery pack is comprehensively considered in the consistency evaluation of the power battery pack.
  • the factors of capacity, current and voltage, and the second calculation module 02 selects a suitable preset evaluation weight according to the specific application conditions of the battery pack, and obtains a comprehensive evaluation coefficient of the power battery pack, and finally determines the power of the module 03 to determine the power.
  • Comprehensive evaluation results of battery pack consistency through a comprehensive analysis of the operating parameters of the power battery pack, can obtain more accurate evaluation results, easy to complete the comprehensive performance evaluation after battery package application, provide reliable for the application of power battery Technical Support.
  • the first calculation module includes a first calculation sub-module, a second calculation module, and a third calculation module, respectively, for calculating a capacity dispersion of the power battery pack, an equivalent DC internal resistance dispersion, and a voltage platform dispersion.
  • the first calculation sub-module includes: a first acquisition unit, configured to obtain a maximum available capacity of the power battery pack; and a first calculation unit, configured to calculate a capacity dispersion according to the maximum available capacity and the rated capacity of the power battery pack.
  • the second calculation sub-module includes: a second acquisition unit, configured to obtain an equivalent DC internal resistance of each single battery in the power battery pack; and a second calculation unit, configured to calculate an equivalent DC internal resistance of each single battery The average equivalent DC internal resistance of the power battery pack; and a third calculation unit for calculating the equivalent DC internal resistance dispersion of the power battery pack according to the equivalent DC internal resistance of each single battery and the average equivalent DC internal resistance.
  • the third calculation sub-module includes: a third acquisition unit, configured to sample voltages of the single cells in the power battery pack to obtain instantaneous voltage values of the single cells; and a fourth calculation unit, configured to be used according to each of the single cells The instantaneous voltage value is used to calculate the instantaneous average voltage value of the power battery pack; and the fifth calculating unit is configured to calculate the voltage platform dispersion of the power battery pack according to the instantaneous voltage value of each single battery and the instantaneous average voltage value of the power battery pack .
  • the specific calculation formula and process are consistent with the calculation formulas and processes in the specific implementation manner of the power battery package consistency evaluation method, and the description thereof will not be repeated here.
  • the present invention achieves the following technical effects: Using the consistency evaluation method of the power battery pack, a comprehensive evaluation of the consistency of the power battery pack is realized according to the specific operating conditions of the power battery pack, A comprehensive quantitative analysis can produce more accurate evaluation results, which is convenient for comprehensive performance evaluation after battery grouping, and provides reliable technical support for power battery applications.
  • a comprehensive quantitative analysis can produce more accurate evaluation results, which is convenient for comprehensive performance evaluation after battery grouping, and provides reliable technical support for power battery applications.
  • it is possible to detect the change in the overall consistency of the power battery pack, because when the overall consistency of the power battery pack is poor, not only the performance of the power battery pack cannot be fully utilized, but also the power may be accelerated.
  • the battery pack's performance is attenuated, causing it to not function properly.
  • the present invention was funded by the National High Technology Research and Development Program (863 Program) (2011AA05A109).
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

动力电池包一致性评估方法和装置 技术领域 本发明涉及动力电池领域, 具体而言, 涉及一种动力电池包一致性评估方法和装 置。 背景技术 随着动力电池材料技术的发展和在电动汽车领域的推广应用, 单体电池在能量密 度、 功率密度和循环寿命等方面有了很大提高, 然而从实际应用中发现, 由于单体电 池特性存在差异, 动力电池串并联成组后会出现单体电池不一致问题, 使得整组电池 的整体性能有所下降, 在使用过程中, 因单体电池一致性的不同, 导致加快动力电池 包性能的衰减和整体使用寿命的缩短, 而且动力电池包的电气输出特性 (容量特性、 倍率特性等) 也会不同程度地受到影响, 难以满足电动汽车、 储能系统等应用场合的 要求。 因此, 有效评估动力电池包的一致性对于动力电池包的应用意义重大, 动力电 池包的一致性评价指标也是衡量电池包输出性能的关键指标。 现有评价方法忽视电池类型的差异。 随着动力电池种类的增加, 电池材料及特性 也会出现差异, 因此评价指标也会发生变化。 比如与锰酸锂电池比较, 磷酸铁锂电池 由于电池材料的差异, 等效直流内阻差异较大, 因此在大电流作用下产生的电压平台 差异也大; 而且在充放电末端由于极化差异性变大, 造成电压离散度差异增大。 因此 用锰酸锂电池的评价指标衡量磷酸铁锂电池, 以及未来的钛酸锂电池存在一定的局限 性。 同时, 现有评价方法忽视动力电池包具体运行工况的差异。 对于纯电动汽车运行 工况而言, 电池的放电倍率特性一般较小 (最大在 1C 2C之间), 因此等效直流内阻 差异带来的一致性偏差对整组电池的输出特性影响可能较小, 而由容量引起的不一致 可能对整组电池的性能输出影响度较大。 对于混合动力工况, 由于电池容量利用区间 一般为 30%~70%, 因此容量差异对整组电池的输出性能影响较小, 而由于充放电倍率 较大 (一般为 10C~20C), 等效直流内阻一致性对整组电池的性能发挥影响度可能较 大。 因此不同工况条件下, 按照一样的标准对动力电池包的一致性做出评价也略显片 面。 针对现有技术中, 对动力电池包的一致性评估片面, 导致评估不准确的问题, 目 前尚未提出有效的解决方案。 发明内容 本发明的主要目的是提供一种动力电池包一致性评估方法和装置, 以解决现有技 术中对动力电池包一致性评估存在片面性的问题。 为了实现上述目的,根据本发明的一个方面,提供了动力电池包一致性评估方法。 根据本发明的动力电池包一致性评估方法包括: 根据动力电池包的特性参数, 计 算动力电池包的容量离散度、 等效直流内阻离散度与电压平台离散度, 其中, 动力电 池包包括 n个单体电池; 采用预设评估权值, 对容量离散度、 等效直流内阻离散度与 电压平台离散度进行加权平均计算, 以获取动力电池包的综合评估系数; 以及根据综 合评估系数得出动力电池包一致性的综合评估结果, 其中, 综合评估系数越大, 动力 电池包一致性越差。 进一步地, 计算动力电池包的容量离散度包括: 获取动力电池包的最大可用容量; 以及根据最大可用容量与动力电池包的额定容量, 计算容量离散度。 进一步地, 采用以下公式计算容量离散度:
If* -C I
c r 其中, ^为容量离散度, cw为最大可用容量, 为额定容量。 进一步地, 计算动力电池包的等效直流内阻离散度包括: 获取动力电池包中各单 体电池的等效直流内阻; 根据各单体电池的等效直流内阻, 计算动力电池包的平均等 效直流内阻; 以及根据各单体电池的等效直流内阻和平均等效直流内阻, 计算动力电 池包等效直流内阻离散度。 进一步地, 采用以下公式计算动力电池包等效直流内阻离散度:
Figure imgf000004_0001
其中, 为等效直流内阻离散度, ^为平均等效直流内阻, 为第 i个单体电 池的等效直流内阻, n为动力电池包的单体电池个数。 进一步地, 计算动力电池包的电压平台离散度包括: 对动力电池包中各单体电池 的电压采样以获取各单体电池的瞬时电压值; 根据各单体电池的瞬时电压值, 计算动 力电池包的瞬时平均电压值; 以及根据各单体电池的瞬时电压值和动力电池包的瞬时 平均电压值, 计算动力电池包的电压平台离散度。 进一步地, 采用以下公式计算动力电池包的电压平台离散度:
Figure imgf000005_0001
Figure imgf000005_0002
其中, 为第 i个单体电池在第 m个采样点的瞬时电压值, „m为动力电池包在 第 m个采样点的瞬时平均电压值, 为电压平台离散度, L为采样点个数, n为动 力电池包的单体电池个数。 进一步地, 采用预设评估权值, 对容量离散度、 等效直流内阻离散度与电压平台 离散度进行加权平均计算,以获取动力电池包的综合评估系数包括采用以下公式计算:
Figure imgf000005_0003
其中, 为动力电池包的综合评估系数, ^为容量离散度, 为容量离散度 的预设评估权值, 为等效直流内阻离散度, ^为等效直流内阻离散度的预设评估 权值, 为电压平台离散度, 为电压平台离散度的预设评估权值, 其中 ^ + + = 1且 lc、 、 均大于 0小于 1。 为了实现上述目的,根据本发明的另一方面,提供了动力电池包一致性评估装置。 根据本发明的动力电池包一致性评估装置包括: 第一计算模块, 用于根据动力电 池包的特性参数, 计算动力电池包的容量离散度、 等效直流内阻离散度与电压平台离 散度, 其中, 动力电池包包括 n个单体电池; 第二计算模块, 用于采用预设评估权值, 对容量离散度、 等效直流内阻离散度与电压平台离散度进行加权平均计算, 以获取动 力电池包的综合评估系数; 以及判断模块, 用于根据综合评估系数确定动力电池包一 致性的综合评估结果, 其中, 综合评估系数越大, 动力电池包一致性越差。 进一步地, 第一计算模块包括第一计算子模块, 用于计算动力电池包的容量离散 度, 第一计算子模块包括: 第一获取单元, 用于获取动力电池包的最大可用容量; 以 及第一计算单元,用于根据最大可用容量与动力电池包的额定容量, 计算容量离散度。 进一步地, 第一计算模块包括第二计算子模块, 用于计算动力电池包的等效直流 内阻离散度, 第二计算子模块包括: 第二获取单元, 用于获取动力电池包中各单体电 池的等效直流内阻; 第二计算单元, 用于根据各单体电池的等效直流内阻, 计算动力 电池包的平均等效直流内阻; 以及第三计算单元, 用于根据各单体电池的等效直流内 阻和平均等效直流内阻, 计算动力电池包等效直流内阻离散度。 进一步地, 第一计算模块包括第三计算子模块, 用于计算动力电池包的电压平台 离散度, 第三计算子模块包括: 第三获取单元, 用于对动力电池包中各单体电池的电 压采样以获取各单体电池的瞬时电压值; 第四计算单元, 用于根据各单体电池的瞬时 电压值, 计算动力电池包的瞬时平均电压值; 以及第五计算单元, 用于根据各单体电 池的瞬时电压值和动力电池包的瞬时平均电压值,计算动力电池包的电压平台离散度。 通过本发明, 采用包括以下步骤的动力电池包一致性评估方法: 计算动力电池包 的容量离散度、 等效直流内阻离散度与电压平台离散度, 并对三种离散度采用预设评 估权值进行加权平均计算, 得到动力电池包的综合评估系数, 综合评估系数越大, 动 力电池包一致性越差, 解决了现有技术中对动力电池包的一致性评估片面, 导致评估 不准确的问题, 使得动力电池包的一致性评估综合考虑了电池包的容量离散度、 等效 直流内阻离散度与电压平台离散度, 使得评估时考虑的因素更加全面, 评估结果更加 准确, 便于完成单体电池成包应用后的综合性能评价, 为动力电池的应用提供可靠的 技术支持。 附图说明 说明书附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明实施例的动力电池包一致性综合评估方法的流程图; 图 2是根据本发明实施例的动力电池包中电池等效直流内阻测试方法的示意图; 图 3是根据本发明实施例的动力电池包在充电条件下各单体电池的电压曲线图; 图 4是根据本发明实施例的动力电池包在放电条件下各单体电池的电压曲线图; 图 5是根据本发明实施例的动力电池包电压平台选取示意图; 以及 图 6是根据本发明实施例的动力电池包一致性综合评估装置的框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 首先, 介绍动力电池包一致性评估方法的具体实施方式。 图 1是根据本发明实施例的动力电池包一致性评估方法的流程图,参见图 1所示, 该方法主要包括如下步骤: 步骤 S11 : 根据动力电池包的特性参数, 计算动力电池包的容量离散度、 等效直 流内阻离散度与电压平台离散度, 其中, 动力电池包包括 n个单体电池, 动力电池包 的特性参数包括电池包的电流、 电池包的容量以及电池包中各单体电池的电压等。 步骤 S13 : 采用预设评估权值, 对容量离散度、 等效直流内阻离散度与电压平台 离散度进行加权平均计算, 以获取动力电池包的综合评估系数, 其中, 预设评估权值 依据动力电池包的具体应用工况分别设定。 步骤 S15 : 根据综合评估系数得出动力电池包一致性的综合评估结果, 其中, 综 合评估系数越大, 动力电池包一致性越差。 在该实施例中, 对动力电池包一致性评估时综合考虑了电池包的容量离散度、 等 效直流内阻离散度及电压平台离散度三方面的因素, 并且根据电池包的具体应用工况 不同, 确定合适的预设评估权值, 即确定各因素在影响电池包一致性的比重, 从而能 够得出更准确的评估结果, 便于完成动力电池成包应用后的综合性能评价, 为动力电 池的应用提供可靠的技术支持。 优选地, 在步骤 S13中, 计算动力电池包的容量离散度、 等效直流内阻离散度及 电压平台离散度时, 分别采用以下计算方法和公式: 首先获取动力电池包的最大可用容量, 获取的过程包括: 根据电池容量测定方法, 采用 CP倍率对动力电池包 (包括 n个单体电池电池组, n≥l )放电容量进行测试, 计 算电池包的最大可用容量 CN
Figure imgf000008_0001
其中, Cw为采集获得的电池包实际放电测试容量, CP 为电池电流倍率, CP = ^ - , I(t) 为 t时刻采集模块采集的瞬时电流, CNM为电池包中单体电池的标称 额定容量, 由电池厂家提供。 其次, 根据动力电池包的最大可用容量与额定容量, 计算容量离散度, 采用以下
C - C
公式计算:
r
2. 计算动力电池包的等效直流内阻离散度 首先获取动力电池包中各单体电池的等效直流内阻, 具体获取过程包括: 根据电 池等效直流内阻测试方法, 在动力电池包常规放电过程中, 在 to时刻 (电池包容量在
30%〜80%区间内的条件下) 改变放电电流, 采用 C1倍率电流 IC1进行放电; 在 tl时 刻改变放电电流,采用 C2倍率电流 IC2进行放电; 在 t2时刻改变电流为常规放电电流 进行放电, 如图 2所示, 其中, t0为测试开始时刻, (tl-tO)为电流 1«作用稳定时段, 且 (tl-tO) <10s; (t2-tl ) 为电流 IC2作用稳定时段, 且 (t2-tl ) <10s。 则第 i个单体电池 (0<i<n) 的等效直流内阻 为:
R = Ucl (t -UC2 (t2
各单体电池等效直流内阻的平均值:
_
Rn = ^ ~
n 根据各单体电池的等效直流内阻和平均等效直流内阻, 计算动力电池包等效直流 内阻离散度:
Figure imgf000009_0001
其中, /„(¾)为电池在 CI倍率放电电流 IC1作用下 tl时刻的瞬时电压、 电流值; f/C2 (t2 )、 IC2 (t2 )为电池在 C2倍率放电电流 IC2作用下 t2时刻的瞬时电压、 电流值, n为动力电池包中单体电池个数, n≥l。
3. 计算动力电池包的电压平台离散度 首先对动力电池包中各单体电池的电压采样以获取各单体电池的瞬时电压值, 具 体的采样获取过程包括: 在动力电池包充电过程中, 选择单体电池电压平台变化较大 的区域, 按特定动力电池包容量变化间隔, 采集各单体电池的瞬时电压值, 计算采样 点 m时刻动力电池包的瞬时平均电压值, 且 0<m<L, L为总采样点个数:
其中, 为动力电池包中第 i节单体电池, 第 m个采样点的端电压, 即第 m个 单体电池的瞬时电压值, 为动力电池包在第 m个采样点的瞬时平均电压值。 其次,根据各单体电池的第 m个采样点的瞬时电压值和动力电池包第 m个采样点 的瞬时平均电压值,采用以下公式计算动力电池包第 m个采样点的瞬时电压平台离散 度:
Figure imgf000009_0003
最后, 计算所有采样点的动力电池包的瞬时电压平台离散度, 并加和平均, 即采 用如下公式获得动力电池包的电压平台离散度:
Figure imgf000009_0004
优选地, 在步骤 S15中, 依据动力电池包的具体应用工况, 设定容量离散度、 等 效直流内阻离散度和电压平台离散度的评估权值 、 , 采用以下公式计算动 力电池包的综合评估系数:
KCM =入 CKC + KR + KV 其中, Ac、 ^、 分别为容量离散度 等效直流内阻离散度 与电压平台 离散度 ^ ^在一致性评价方法中所占的权重数值, 且 ^+ +^ = 1, ^均 大于 0小于 1。 最后, 在步骤 S15中, 根据上述动力电池包的一致性综合评估系数 ^M, 可对动 力电池包一致性给出定量的评估结果。 采用该评估方法分别评估两个电池包的一致性, 其中, 第一个电池包由 1至 8号 共 8个单体电池串联而成, 第二个电池包由 2至 8号共 7个单体电池串联而成。 在各 单体电池中, 1号单体电池与其他单体电池的不一致性较大。 首先, 计算由 8个单体电池串联而成的电池包的综合评估系数如下: 通过动力电池检测系统对动力电池包充放电检测, 检测过程中, 动力电池包在充 电时各单体电池的电压曲线如图 3所示, 曲线 30为充电电流, 曲线 31为 1号单体电 池的电压, 曲线簇 32为 2至 8号单体电池的电压。在放电时各单体电池的电压曲线如 图 4所示, 曲线 40为放电电流, 曲线 41为 1号单体电池的电压, 曲线簇 42为 2至 8 号单体电池的电压。 基于采集的动力电池包充放电特征参数数据, 首先分别计算所述动力电池包的容 量离散度、 等效直流内阻离散度与电压平台离散度。 根据电池容量测定方法, 采用 0.55C倍率对 8个单体电池的动力电池包进行放电 容量进行测试, 测得动力电池包的最大可用容量 CN=17.43 (Ah), 且 CNM=20Ah (额 定容量), 则动力电池包的容量离散度 (Kc) 为:
Figure imgf000010_0001
根据电池等效直流内阻测试方法, 在控制放电电流为 2(L4→ (L4范围内的阶跃跳 变条件下, 对各单体电池等效直流内阻进行测试, 根据测得的单体电池电压和放电电 流数据, 并根据单体电池的等效直流内阻换算公式: = , 得到各单
Figure imgf000011_0001
体电池等效直流内阻为:
Figure imgf000011_0004
从而计算出动力电池包的等效直流内阻离散度为:
Figure imgf000011_0002
根据动力电池包充电过程中, 选择单体电池电压平台变化较大的区域, 按充电容 量变化 5%为采样间隔, 通过采集模块采集各单体电池的瞬时电压值, 如图 5所示, 曲 线 50为充电电流, 曲线 51为 1号单体电池的电压, 曲线簇 52为 2至 8号单体电池的 电压, 得出动力电池包的电压平台离散度:
0.01339, 其中 L=8 根据电动汽车运行工况的要求, 设定容量离散度、 等效直流内阻离散度和电压平 台离散度的评估权值为: 0.1< LC<0.4, 0.2<^<0.4, 0.2<^<0.4, 则得到动力电 池包的一致性综合评估系数:
KCM = ACKC +^ =0.3*0.1285+0.3*0.000156+0.4*0.00358=0.04002 然后, 计算由 7个单体电池串联而成的电池包的综合评估系数如下: 动力电池包的容量离散度:
|CW— C丽
K。 =— 1 ~~ ^ I Il9.0-20.0l
=J L=0.05
C爾 20.0 动力电池包的等效直流内阻离散度:
Figure imgf000011_0003
动力电池包的电压平台离散度:
Kv = ^—— =0.00358, 其中 L=7
L 动力电池包的一致性综合评估系数:
KCM = ACKC + ^ =0.3*0.05+0.3*0.0003062+0.4*0.01339=0.02044 最后, 对比两个电池包的一致性综合评估系数, 由 8个单体电池串联而成的电池 包的综合评估系数大于去掉 1号单体电池后, 由 7个单体电池串联而成的电池包的综 合评估系数, 从而验证了本具体实施方式提供的评估方法的有效性。 其次, 介绍动力电池包一致性评估装置的具体实施方式。 图 6是根据本发明实施例的动力电池包一致性综合评估装置的框图,如图 6所示, 该装置包括: 第一计算模块 01, 用于根据动力电池包的特性参数, 计算动力电池包的 容量离散度、 等效直流内阻离散度与电压平台离散度, 其中, 动力电池包包括 n个单 体电池, 动力电池包的特性参数包括电池包的电流、 电池包的容量以及电池包中各单 体电池的电压等; 第二计算模块 02, 用于采用预设评估权值, 对容量离散度、 等效直 流内阻离散度与电压平台离散度进行加权平均计算, 以获取动力电池包的综合评估系 数, 其中, 预设评估权值依据动力电池包的应用工况分别设定; 以及判断模块 03, 用 于根据综合评估系数确定动力电池包一致性的综合评估结果, 其中, 综合评估系数越 大, 动力电池包一致性越差。 在该实施例中,通过第一计算模块 01计算动力电池包的容量离散度、等效直流内 阻离散度与电压平台离散度, 以使对动力电池包的一致性评估中综合考虑电池包的容 量、 电流以及电压三方面的因素, 并且第二计算模块 02根据电池包的具体应用工况不 同, 选取合适的预设评估权值, 获取动力电池包的综合评估系数, 最后判断模块 03 确定动力电池包一致性的综合评估结果, 通过全面的分析动力电池包的工作参数, 从 而能够得出更准确的评估结果, 便于完成电池成包应用后的综合性能评价, 为动力电 池的应用提供可靠的技术支持。 优选地, 第一计算模块包括第一计算子模块、 第二计算模块和第三计算模块, 分 别用于计算动力电池包的容量离散度、 等效直流内阻离散度和电压平台离散度。 其中, 第一计算子模块包括: 第一获取单元, 用于获取动力电池包的最大可用容 量; 以及第一计算单元, 用于根据最大可用容量与动力电池包的额定容量, 计算容量 离散度。 第二计算子模块包括: 第二获取单元, 用于获取动力电池包中各单体电池的等效 直流内阻; 第二计算单元, 用于根据各单体电池的等效直流内阻, 计算动力电池包的 平均等效直流内阻; 以及第三计算单元, 用于根据各单体电池的等效直流内阻和平均 等效直流内阻, 计算动力电池包等效直流内阻离散度。 第三计算子模块包括: 第三获取单元, 用于对动力电池包中各单体电池的电压采 样以获取各单体电池的瞬时电压值; 第四计算单元, 用于根据各单体电池的瞬时电压 值, 计算动力电池包的瞬时平均电压值; 以及第五计算单元, 用于根据各单体电池的 瞬时电压值和动力电池包的瞬时平均电压值, 计算动力电池包的电压平台离散度。 在上述各模块中, 具体的计算公式和过程与上文中动力电池包一致性评估方法的 具体实施方式中的计算公式和过程一致, 此处不再重复描述。 综上所述, 本发明实现了如下的技术效果: 利用这种动力电池包的一致性评估方 法, 实现了根据动力电池包具体运行工况要求, 对动力电池包一致性的综合评估, 通 过这种综合量化分析, 能够得出更准确的评估结果, 便于完成电池成包成组后的综合 性能评价, 为动力电池的应用提供可靠的技术支持。 在电池包的实际使用过程中, 能 够检测出动力电池包整体一致性的变化情况, 因为当动力电池包整体一致性较差时, 不仅不能充分发挥动力电池包的性能, 而且及其可能加速动力电池包性能的衰减, 导 致其不能正常使用。 本发明由国家高技术研究发展计划 (863计划) 课题 (2011AA05A109) 资助。 显然, 本领域的技术人员应该明白, 本发明上述的各模块或各步骤可以用通用的 计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所组 成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1. 一种动力电池包一致性评估方法, 其特征在于, 包括:
根据动力电池包的特性参数, 计算所述动力电池包的容量离散度、 等效直 流内阻离散度与电压平台离散度, 其中, 所述动力电池包包括 n个单体电池; 采用预设评估权值, 对所述容量离散度、 所述等效直流内阻离散度与所述 电压平台离散度进行加权平均计算, 以获取所述动力电池包的综合评估系数; 以及
根据所述综合评估系数得出所述动力电池包一致性的综合评估结果,其中, 所述综合评估系数越大, 所述动力电池包一致性越差。
2. 根据权利要求 1所述的方法, 其特征在于, 计算所述动力电池包的容量离散度 包括:
获取所述动力电池包的最大可用容量; 以及
根据所述最大可用容量与所述动力电池包的额定容量, 计算所述容量离散 度。
3. 根据权利要求 2所述的方法,其特征在于,采用以下公式计算所述容量离散度:
其中, 为所述容量离散度, Cw为所述最大可用容量, 为所述额定
4. 根据权利要求 1所述的方法, 其特征在于, 计算所述动力电池包的等效直流内 阻离散度包括:
获取所述动力电池包中各单体电池的等效直流内阻;
根据所述各单体电池的等效直流内阻, 计算所述动力电池包的平均等效直 流内阻; 以及
根据所述各单体电池的等效直流内阻和所述平均等效直流内阻, 计算所述 动力电池包等效直流内阻离散度。 根据权利要求 4所述的方法, 其特征在于, 采用以下公式计算所述动力电池包 等效直流内阻离散度:
Figure imgf000015_0001
其中, 为所述等效直流内阻离散度, ^为平均等效直流内阻, 为第 i个单体电池的等效直流内阻, n为所述动力电池包的单体电池个数。
6. 根据权利要求 1所述的方法, 其特征在于, 计算所述动力电池包的电压平台离 散度包括:
对所述动力电池包中各单体电池的电压采样以获取所述各单体电池的瞬时 电压值;
根据所述各单体电池的瞬时电压值, 计算所述动力电池包的瞬时平均电压 值; 以及
根据所述各单体电池的瞬时电压值和所述动力电池包的瞬时平均电压值, 计算所述动力电池包的电压平台离散度。 根据权利要求 6所述的方法, 其特征在于, 采用以下公式计算所述动力电池包 的电压平台离散度:
Figure imgf000015_0002
其中, 为第 i个单体电池在第 m个采样点的瞬时电压值, „m为所述动 力电池包在第 m个采样点的瞬时平均电压值, 为所述电压平台离散度, L 为采样点个数, n为所述动力电池包的单体电池个数。
8. 根据权利要求 1所述的方法, 其特征在于, 采用预设评估权值, 对所述容量离 散度、 所述等效直流内阻离散度与所述电压平台离散度进行加权平均计算, 以 获取所述动力电池包的综合评估系数包括采用以下公式计算:
KCM = ^CKC + KR + Kl 其中, 为所述动力电池包的综合评估系数, 为所述容量离散度, 为所述容量离散度的预设评估权值, 为所述等效直流内阻离散度, ^为所 述等效直流内阻离散度的预设评估权值, 为所述电压平台离散度, 为所 述电压平台离散度的预设评估权值, 其中 4+ + = 1且 4、 均大于
0小于 1。
9. 一种动力电池包一致性评估装置, 其特征在于, 包括:
第一计算模块, 用于根据动力电池包的特性参数, 计算所述动力电池包的 容量离散度、 等效直流内阻离散度与电压平台离散度, 其中, 所述动力电池包 包括 η个单体电池; 第二计算模块, 用于采用预设评估权值, 对所述容量离散度、 所述等效直 流内阻离散度与所述电压平台离散度进行加权平均计算, 以获取所述动力电池 包的综合评估系数; 以及
判断模块, 用于根据所述综合评估系数确定所述动力电池包一致性的综合 评估结果, 其中, 所述综合评估系数越大, 所述动力电池包一致性越差。
10. 根据权利要求 9所述的装置,其特征在于,第一计算模块包括第一计算子模块, 用于计算所述动力电池包的容量离散度, 所述第一计算子模块包括:
第一获取单元, 用于获取所述动力电池包的最大可用容量; 以及 第一计算单元,用于根据所述最大可用容量与所述动力电池包的额定容量, 计算所述容量离散度。
11. 根据权利要求 9所述的装置,其特征在于,第一计算模块包括第二计算子模块, 用于计算所述动力电池包的等效直流内阻离散度, 所述第二计算子模块包括: 第二获取单元, 用于获取所述动力电池包中各单体电池的等效直流内阻; 第二计算单元, 用于根据所述各单体电池的等效直流内阻, 计算所述动力 电池包的平均等效直流内阻; 以及
第三计算单元, 用于根据所述各单体电池的等效直流内阻和所述平均等效 直流内阻, 计算所述动力电池包等效直流内阻离散度。
12. 根据权利要求 9所述的装置,其特征在于,第一计算模块包括第三计算子模块, 用于计算所述动力电池包的电压平台离散度, 所述第三计算子模块包括: 第三获取单元, 用于对所述动力电池包中各单体电池的电压采样以获取所 述各单体电池的瞬时电压值; 第四计算单元, 用于根据所述各单体电池的瞬时电压值, 计算所述动力电 池包的瞬时平均电压值; 以及
第五计算单元, 用于根据所述各单体电池的瞬时电压值和所述动力电池包 的瞬时平均电压值, 计算所述动力电池包的电压平台离散度。
PCT/CN2012/076121 2011-10-12 2012-05-25 动力电池包一致性评估方法和装置 WO2012152231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110308910.2A CN102590751B (zh) 2011-10-12 2011-10-12 动力电池包一致性评估方法和装置
CN201110308910.2 2011-10-12

Publications (1)

Publication Number Publication Date
WO2012152231A1 true WO2012152231A1 (zh) 2012-11-15

Family

ID=46479671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076121 WO2012152231A1 (zh) 2011-10-12 2012-05-25 动力电池包一致性评估方法和装置

Country Status (2)

Country Link
CN (1) CN102590751B (zh)
WO (1) WO2012152231A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093775A (zh) * 2017-05-04 2017-08-25 广东电网有限责任公司电力科学研究院 一种串联结构电池组的一致性评价方法及装置
CN112836331A (zh) * 2019-11-25 2021-05-25 前进设计有限公司 一种基于环境作用的纯电动汽车电池性能可靠性分析方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176137B (zh) * 2013-02-15 2015-06-24 中国南方电网有限责任公司调峰调频发电公司 基于电池soc不均匀性的电池组健康状态评价方法
CN103176138B (zh) * 2013-02-15 2015-09-09 中国南方电网有限责任公司调峰调频发电公司 一种电池组维护检测方法
CN103472396B (zh) * 2013-03-01 2016-02-17 苏州海客科技有限公司 移动终端电量监测方法
CN104267355B (zh) * 2014-10-29 2017-07-28 哈尔滨工业大学 基于工况测试和简化阻抗谱等效电路模型的电池分选方法
CN106207265B (zh) * 2016-07-26 2019-01-15 金龙联合汽车工业(苏州)有限公司 一种提高锂离子电池一致性的制备方法
CN107271907B (zh) * 2017-06-08 2020-05-12 北京理工大学 一种电动汽车动力电池性能的判断方法及系统
CN108171406B (zh) * 2017-12-14 2021-11-12 同济大学 批量产品性能一致性量化评价方法
CN109100652B (zh) * 2018-06-05 2022-04-26 中国电力科学研究院有限公司 一种用于预测梯次利用动力电池的离散度的方法及系统
CN109375115B (zh) * 2018-09-29 2019-06-25 佳木斯大学 基于算法的铅酸蓄电池soh估计方法和装置
CN109507597A (zh) * 2019-01-04 2019-03-22 清华四川能源互联网研究院 锂电池性能评估方法及装置
CN111693876A (zh) * 2020-05-09 2020-09-22 清华大学 电池组评价方法及系统
CN111707951B (zh) * 2020-06-22 2021-04-06 北京理工大学 一种电池组一致性评估方法及系统
CN112216883B (zh) * 2020-09-28 2022-02-22 长安大学 一种锂电池均衡方法、系统、设备及存储介质
CN112180274B (zh) * 2020-09-28 2023-06-27 上海理工大学 一种动力电池组快速检测测评方法
CN112285573A (zh) * 2020-10-16 2021-01-29 东风汽车集团有限公司 一种评价动力电池组在动态使用过程中单体一致性的方法
CN112613735B (zh) * 2020-12-16 2023-05-23 北方工业大学 不同应用场景下电池性能评价方法
CN112924870A (zh) * 2021-04-12 2021-06-08 上海电享信息科技有限公司 电池不一致性的评估方法
CN113655395A (zh) * 2021-08-17 2021-11-16 星恒电源股份有限公司 一种评估电动自行车用锂电池使用状态的方法
CN113721157A (zh) * 2021-08-31 2021-11-30 星恒电源股份有限公司 一种提高电池组寿命的方法、装置、终端及存储介质
CN113917351B (zh) * 2021-10-09 2023-12-22 长沙理工大学 基于容量变化的储能电站电池簇不一致性在线评估方法
CN113759252B (zh) * 2021-10-09 2024-05-17 长沙理工大学 基于直流内阻ir压降的储能电站电池簇不一致性在线评估方法
CN114047450A (zh) * 2021-12-21 2022-02-15 湖北亿纬动力有限公司 电池系统的可用容量一致性评估方法和装置
CN114626016B (zh) * 2022-02-18 2023-05-09 杭州五星铝业有限公司 一种微凹技术涂碳铝箔清洗控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067644A (zh) * 2007-04-20 2007-11-07 杭州高特电子设备有限公司 蓄电池性能分析专家诊断方法
CN101067645A (zh) * 2007-04-20 2007-11-07 杭州高特电子设备有限公司 一种阀控式铅酸蓄电池性能分析方法
CN101819259A (zh) * 2010-05-06 2010-09-01 惠州市亿能电子有限公司 电池组一致性评价方法
CN101907688A (zh) * 2010-08-02 2010-12-08 天津力神电池股份有限公司 一种锂离子电池电性能一致性的检测方法
CN101950001A (zh) * 2010-08-09 2011-01-19 奇瑞汽车股份有限公司 一种电动汽车用锂离子电池组一致性的评价方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067644A (zh) * 2007-04-20 2007-11-07 杭州高特电子设备有限公司 蓄电池性能分析专家诊断方法
CN101067645A (zh) * 2007-04-20 2007-11-07 杭州高特电子设备有限公司 一种阀控式铅酸蓄电池性能分析方法
CN101819259A (zh) * 2010-05-06 2010-09-01 惠州市亿能电子有限公司 电池组一致性评价方法
CN101907688A (zh) * 2010-08-02 2010-12-08 天津力神电池股份有限公司 一种锂离子电池电性能一致性的检测方法
CN101950001A (zh) * 2010-08-09 2011-01-19 奇瑞汽车股份有限公司 一种电动汽车用锂离子电池组一致性的评价方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093775A (zh) * 2017-05-04 2017-08-25 广东电网有限责任公司电力科学研究院 一种串联结构电池组的一致性评价方法及装置
CN107093775B (zh) * 2017-05-04 2019-09-27 广东电网有限责任公司电力科学研究院 一种串联结构电池组的一致性评价方法及装置
CN112836331A (zh) * 2019-11-25 2021-05-25 前进设计有限公司 一种基于环境作用的纯电动汽车电池性能可靠性分析方法

Also Published As

Publication number Publication date
CN102590751A (zh) 2012-07-18
CN102590751B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
WO2012152231A1 (zh) 动力电池包一致性评估方法和装置
CN101917038B (zh) 动力电池组充电均衡控制方法
CN106716158B (zh) 电池荷电状态估算方法和装置
JP5818878B2 (ja) リチウムイオン電池充電状態の算出方法
TWI381182B (zh) 基於電池電壓變化模式用以估量電池健康狀態之方法及裝置
CN107991623A (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
CN102253343B (zh) 一种蓄电池的健康度与荷电状态的估算方法
US20120316815A1 (en) Method for evaluating deterioration of lithium ion secondary battery, and battery pack
CN105759213A (zh) 一种测量蓄电池剩余容量soc的方法
TW201122523A (en) Apparatus for estimating battery&#39;s state of health
WO2013075420A1 (zh) 电池电量的计算方法及装置、终端
CN108732499B (zh) 一种检测锂离子电池循环寿命的方法和系统
Hossain et al. A parameter extraction method for the Thevenin equivalent circuit model of Li-ion batteries
Zhang et al. On-line measurement of internal resistance of lithium ion battery for EV and its application research
CN108776308A (zh) 估计电池剩余能量的方法及装置
CN104852414A (zh) 一种电池组电芯的均衡方法及装置
CN105738828B (zh) 一种电池容量精准测量方法
CN108829911A (zh) 一种开路电压与soc函数关系优化方法
CN104777427A (zh) 一种适用于铅酸电池的soc在线检测方法
CN113777501A (zh) 一种电池模组的soh的估算方法
CN114609523A (zh) 一种电池容量的在线检测方法、电子设备及存储介质
CN116879822A (zh) 一种soc校准方法及相关装置
CN110441703A (zh) 一种移动充电系统的锂电池soc的估算方法及其检测系统
CN112731162B (zh) 一种基于v2g使用场景下的电池健康度检测方法
Wang et al. Quantitative diagnosis of the soft short circuit for LiFePO4 battery packs between voltage plateaus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782962

Country of ref document: EP

Kind code of ref document: A1