WO2013073564A1 - 浄化装置と浄化方法 - Google Patents

浄化装置と浄化方法 Download PDF

Info

Publication number
WO2013073564A1
WO2013073564A1 PCT/JP2012/079490 JP2012079490W WO2013073564A1 WO 2013073564 A1 WO2013073564 A1 WO 2013073564A1 JP 2012079490 W JP2012079490 W JP 2012079490W WO 2013073564 A1 WO2013073564 A1 WO 2013073564A1
Authority
WO
WIPO (PCT)
Prior art keywords
purification
ozone
chamber
ultraviolet
wavelength
Prior art date
Application number
PCT/JP2012/079490
Other languages
English (en)
French (fr)
Inventor
泰広 真野
政美 河野
Original Assignee
Necライティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necライティング株式会社 filed Critical Necライティング株式会社
Priority to CN201280056222.4A priority Critical patent/CN104023753A/zh
Priority to US14/358,434 priority patent/US20140328720A1/en
Publication of WO2013073564A1 publication Critical patent/WO2013073564A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Definitions

  • the present invention relates to a purification device and a purification method.
  • the nutrient solution cultivation system described in Patent Document 1 includes a sterilization purification unit that sterilizes and purifies the nutrient solution.
  • the sterilization and purification unit includes an electrode, and generates ozone by charging the electrode to a high voltage to generate a silent discharge and passing a gas through the discharge section.
  • the nutrient solution cultivation system of Patent Document 1 has a complicated structure because it includes a flow path for allowing gas to pass through the discharge section, an ultraviolet light source, and the like.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a safe purification device and a purification method having a simple configuration.
  • a purification device comprises: An ultraviolet lamp that emits ultraviolet rays having a wavelength having an ozone generating action and ultraviolet rays having a wavelength having a bactericidal action; Including a transmission part that transmits ultraviolet rays having a wavelength having the bactericidal action, and containing the ultraviolet lamp in an internal accommodation space; An air supply unit for supplying a gas containing oxygen to the accommodation space; A discharge part for discharging ozone generated in the accommodation space by an ozone generating action of ultraviolet rays emitted from the ultraviolet lamp; Is provided.
  • a purification method comprises: Produces UV light with a wavelength that has an ozone-generating action and UV light with a wavelength that has a bactericidal action, Ozone is generated by irradiating the generated ultraviolet light to a gas containing oxygen, Supply the generated ozone to the object to be purified, The generated ultraviolet light is irradiated to the purification object.
  • ozone is generated without generating NO X. Further, ultraviolet rays having a wavelength having a bactericidal action are transmitted through the transmission part and radiated to the outside of the accommodation part. Therefore, according to the present invention, it is possible to purify safely with a simple configuration.
  • FIG. 2 is a front view of the ultraviolet unit according to Embodiment 1.
  • FIG. It is sectional drawing of the seedling raising apparatus which concerns on Embodiment 2 of this invention.
  • the purification device is a device that purifies liquid as a purification object.
  • purification is mainly performed by oxidative decomposition reaction to decompose and remove unwanted organic and inorganic compounds, to kill or reduce bacteria, bacteria, viruses, etc., to suppress the generation of algae, and to remove malodors Including all or part of what to do.
  • the purification apparatus 1 includes a rectangular parallelepiped purification container 11 having a purification space in which a liquid flows.
  • the purification container 11 includes a purification tank 12 that forms a purification space and is open at the top, and a lid 13 that is provided on the upper part of the purification tank 12.
  • Each of the septic tank 12 and the lid 13 is preferably formed of a material that does not easily corrode even when exposed to ozone and ultraviolet rays, and is made of metal (for example, stainless steel), resin (for example, fluororesin), Alternatively, it may be made of glass.
  • the purification container 11 further includes a plate-like partition plate 14 extending in the vertical direction.
  • the partition plate 14 is desirably made of a material that does not easily corrode even when exposed to ozone or ultraviolet rays, like the septic tank 12 or the lid 13, and is made of metal (for example, stainless steel), resin (for example, fluororesin), or It should be made of glass.
  • Both end portions of the partition plate 14 (end portions located in the front direction and depth direction in FIG. 1) are fixed in close contact with the inner wall of the septic tank 12 so that gas and liquid do not flow between the septic tank 12. .
  • the upper end portion of the partition plate 14 is in close contact with the lid body 13 so that no gas flows between the lid body 13.
  • a sealing member such as an O-ring made of rubber, resin or the like is provided between the septic tank 12 and the partition plate 14. It may be provided, and rubber, resin, etc. may be applied. Further, the septic tank 12 and the partition plate 14 may be pressure-bonded to each other with screws or the like. The same applies to the following points in which a seal member or the like is disposed between members that are airtight or liquidtight.
  • the lower end of the partition plate 14 is separated from the bottom surface inside the septic tank 12 by a predetermined distance. Therefore, the purification space is partitioned by the partition plate 14 into a first chamber 16 and a second chamber 17 that communicate with each other through the lower flow path 15.
  • a portion of the lid 13 that forms the first chamber 16 includes an inflow portion 22, a conduit portion 23, and a vent portion that respectively form an inflow passage that communicates the first chamber 16 with the outside, a conduit port, and a vent port. 24 are provided.
  • the ventilation part 24 is provided with a filter 25 for decomposing and ventilating ozone.
  • the filter 25 is provided in a filter mounting unit 26 having a ventilation portion 24 and an upper portion that can be freely opened and closed for easy replacement.
  • the filter mounting unit 26 is fixed to the lid 13 in an airtight manner. It is desirable that the filter 25 is filled in the ventilation portion 24 of the filter mounting unit 26 without a gap so that the first chamber 16 and the outside can only vent through the filter 25.
  • a notch is provided above the part of the septic tank 12 that forms the second chamber 17 and faces the partition plate 14.
  • the upper end of the septic tank 12 excluding the notch is in close contact with the lid 13 in an airtight manner.
  • the cut-out portion and the portion of the lid 13 facing the notch form an outflow passage 21 that communicates the second chamber 17 and the outside.
  • the portion of the lid 13 that forms the second chamber 17 is provided with an ultraviolet unit installation portion 31 that forms an installation port that communicates the second chamber 17 with the outside.
  • a substantially cylindrical ultraviolet unit 32 is inserted through the installation port of the ultraviolet unit installation unit 31 with its longitudinal direction up and down.
  • the ultraviolet unit 32 is provided in an airtight manner so that no gas flows between the ultraviolet unit installation part 31.
  • the ultraviolet unit 32 has a locking portion 36 protruding outward at the upper portion thereof.
  • the locking portion 36 engages with the lid body 13 around the ultraviolet unit installation portion 31. Accordingly, the ultraviolet unit 32 is positioned so that the lower part of the ultraviolet unit 32 is immersed in the second chamber 17, preferably a predetermined length in the liquid to be purified flowing in the second chamber 17 as shown in FIG. 1.
  • a photocatalytic member 33 in which a photocatalytic reaction is caused by one or both of ultraviolet rays and visible light is provided below the ultraviolet unit 32, that is, around a portion located in the second chamber 17.
  • the photocatalyst member 33 is a net-like member and includes, for example, a titanium oxide material on the surface thereof.
  • a photocatalyst member 33 is manufactured by, for example, converting the surface of titanium metal to titanium oxide, applying a titanium oxide material on another material, or the like.
  • the photocatalytic member 33 may be a material that causes a photocatalytic action with ultraviolet rays (100 to 400 nm) or a material that causes a photocatalytic action with visible light. Therefore, the photocatalytic member 33 is preferably provided in a range where one or both of ultraviolet rays (100 to 400 nm) and visible light irradiated from the ultraviolet unit 32 reach. Further, in order to provide the photocatalytic member 33 in a range where one or both of the ultraviolet rays and visible light from the ultraviolet unit 32 can reach, the photocatalytic member 33 is placed in a predetermined range from the ultraviolet unit 32 via an attachment member or the like. It may be attached to the unit 32.
  • the ultraviolet unit 32 is a unit that generates ozone and generates bactericidal action by radiating ultraviolet rays to the outside.
  • the ultraviolet unit 32 includes an ultraviolet lamp 41 that emits ultraviolet rays, and a housing portion 43 that has an airtight housing space 42 in which the ultraviolet lamp 41 is housed.
  • the ultraviolet lamp 41 is a lamp that emits light including ultraviolet light having a wavelength having an ozone generating action and ultraviolet light having a wavelength having a bactericidal action.
  • the wavelength having the ozone generating action is, for example, 200 nm or less.
  • the wavelength having a bactericidal action is, for example, around 260 nm (200 to 320 nm).
  • the photocatalytic action of the photocatalytic member 33 is caused by ultraviolet rays (100 to 400 nm) or visible light depending on the material as described above. Therefore, the ultraviolet ray having a wavelength having an ozone generating action and the ultraviolet ray having a wavelength having a bactericidal action contribute to the photocatalytic action depending on the material of the photocatalytic member 33.
  • the light emitted from the ultraviolet lamp 41 includes ultraviolet light or visible light other than the wavelength having an ozone generating action and the wavelength having a bactericidal action, the light of these wavelengths has a photocatalytic action depending on the material of the photocatalytic member 33. Contribute.
  • the ultraviolet lamp 41 is, for example, a low-pressure ultraviolet lamp, and includes a hot cathode lamp, a cold cathode lamp, an external electrode lamp, an electrodeless lamp, and the like.
  • the ultraviolet lamp 41 is composed of, for example, a cold cathode lamp including a U-shaped tube 45 in which a gas is sealed and a Ni cup electrode 46 as an electrode for discharging in the U-shaped tube 45.
  • the U-shaped tube 45 is filled with, for example, a mixed gas of mercury, Ne, and Ar.
  • the pressure of the mixed gas to be sealed is, for example, about 2.67 to 13.33 kPa (20 to 100 Torr), and preferably about 5.33 kPa (40 Torr).
  • Mercury may be sealed, for example, so that the mercury vapor pressure during lighting is 100 Pa or less.
  • the ultraviolet lamp 41 emits light including ultraviolet light having a wavelength of about 185 nm having an ozone generating action, ultraviolet light having a wavelength of about 254 nm having a bactericidal action, and visible light. Is done.
  • the U-shaped tube 45 transmits both ultraviolet rays having a wavelength having an ozone generating action and ultraviolet rays having a wavelength having a bactericidal action.
  • the U-shaped tube 45 is made of, for example, synthetic quartz, fused silica, or borosilicate glass containing at least one of Al, Na, K, Li, Ca, and Ba.
  • borosilicate glass containing at least one of Al, Na, K, Li, Ca, and Ba is more preferable as a material of the U-shaped tube 45 than quartz glass in terms of ease of processing.
  • the accommodating portion 43 transmits ultraviolet rays and visible light emitted from the ultraviolet lamp 41.
  • the accommodating part 43 is produced using, for example, synthetic quartz, fused quartz, ozoneless quartz, or borosilicate glass containing at least one of Al, Na, K, Li, Ca, and Ba.
  • the housing part 43 preferably blocks ultraviolet light having a wavelength having an ozone generating action out of ultraviolet light radiated from the ultraviolet lamp 41 and transmits ultraviolet light having a wavelength having a bactericidal action.
  • ozone-less quartz is used as a material. desirable.
  • the housing 43 is provided with wiring for supplying power to the electrode 46 of the ultraviolet lamp 41, and the wiring is connected to the electrode 46 of the ultraviolet lamp 41.
  • illustration is abbreviate
  • an oxygen introducing part 50 and an ozone discharging part 51 are provided which respectively form an oxygen introducing port and an ozone discharging port that communicate between the accommodating space 42 and the outside.
  • an introduction pipe 52 made of silicon is airtightly attached to the oxygen introduction part 50 as an air supply part.
  • a pump 53 (see FIG. 1) is attached to the other end of the introduction pipe 52.
  • the pump 53 pressurizes and sends out air, for example, electrically.
  • air is introduced into the accommodation space 42 via the introduction pipe 52 and the oxygen introduction part 50.
  • a discharge pipe 55 made of, for example, silicon is inserted into the ozone discharge section 51 as an exhaust section while maintaining airtightness with the ozone discharge section 51.
  • One end of the discharge pipe 55 extends below the accommodation space 42.
  • an air stone 56 as an ozone discharge portion is attached to the other end of the discharge pipe 55.
  • the air stone 56 is a member that discharges the supplied gas into a liquid in the form of small bubbles of about several tens of ⁇ m to several mm, and is placed at the bottom of the first chamber 16.
  • the liquid to be purified flows from the inflow portion 22 into the first chamber 16 of the purification container 11 as indicated by the arrow A11, flows through the flow path 15 to the second chamber 17, and as indicated by the arrow A12. It flows out from the outflow part 21 to the outside.
  • the air pressurized by the pump 53 is introduced into the accommodation space 42 through the introduction pipe 52 and the oxygen introduction part 50 as indicated by an arrow A21, and as indicated by an arrow A22. Flowing.
  • oxygen in the air becomes ozone by the action of ultraviolet light having a wavelength having an ozone generating action emitted from the ultraviolet lamp 41.
  • the ozone generated in the accommodation space 42 is discharged from the ozone discharge portion 51 to the discharge pipe 55 as indicated by an arrow A23.
  • the discharged ozone is guided to the air stone 55 through the discharge pipe 55 and is discharged from the air stone 56 into the first chamber 16 as small bubbles.
  • the liquid flowing into the first chamber 16 is exposed to ozone before reaching the flow path 15. Since ozone is a small bubble, the contact area between ozone and liquid is large. Thereby, the liquid flowing through the first chamber 16 can be purified efficiently by the action of ozone.
  • ozone In the first chamber 16, a part of ozone is dissolved in the liquid.
  • the ozone that has reached the liquid surface in the first chamber 16 without being dissolved in the liquid is discharged to the outside through the filter 25 provided in the ventilation portion 24 of the lid 13.
  • ozone At the time of discharge, ozone is decomposed by the action of the filter 25 and is at least detoxified to the extent that it does not harm the human body.
  • the liquid in which ozone is dissolved in the first chamber 16 flows to the second chamber 17 through the flow path 15.
  • the liquid that has flowed into the second chamber 17 as ozone water is irradiated with ultraviolet rays from the ultraviolet lamp 41 disposed in the second chamber 17.
  • the container 43 is made of a material that transmits at least ultraviolet light having a sterilizing effect, the liquid is purified in the second chamber 17 by the action of the ultraviolet light transmitted through the container 43.
  • Ozone is dissolved in the liquid in the second chamber 17, and a part of the ozone is converted into OH radicals or O radicals by irradiation with ultraviolet rays from the ultraviolet unit 32. Therefore, the liquid in the second chamber 17 is also purified by the action of OH radicals and O radicals, which have a stronger oxidizing power than ozone and high reactivity.
  • the photocatalyst member 33 when the photocatalyst member 33 is irradiated with ultraviolet rays and visible light from the ultraviolet unit 32, electrons and holes are generated on the surface of the photocatalyst member 33. Therefore, the liquid in the second chamber 17, particularly the liquid flowing in the vicinity of the photocatalyst member 33, is also purified by the action of electrons and holes generated on the surface of the photocatalyst member 33.
  • the liquid purified in the second chamber 17 flows out through the outflow portion 21 as indicated by an arrow A12.
  • the liquid flowing in from the inflow portion 22 is purified in the first chamber 16 and further purified by a strong purifying force in the second chamber 17.
  • a strong purifying force in the second chamber 17 As a result, many bacteria, viruses, molds, and the like contained in the liquid before purification are killed, the odor contained in the liquid before purification is removed, and the transparency of the liquid is improved as compared with that before the purification.
  • the ultraviolet lamp 41 since the ultraviolet lamp 41 has both the ozone generating action and the sterilizing action, there is no need to provide a separate ozone generator. Therefore, it is possible to simplify the configuration of the purification device 1, and as a result, it is possible to configure the purification device 1 inexpensively and compactly.
  • the ultraviolet unit 32 of the purification device 1 of the present embodiment generates ozone by ultraviolet rays. For this reason, NO X is not generated even if air is used as a raw material. Therefore, ozone can be generated safely even if air is used as a raw material. Moreover, it becomes possible to implement
  • the purification space is divided into a first chamber 16 and a second chamber 17, and the liquid to be purified is aerated in the first chamber 16 with ozone. Therefore, the liquid to be purified can be sufficiently exposed to ozone, and the liquid can be purified by ozone, and a large amount of ozone is dissolved in the liquid to improve the purification power in the second chamber 17. It becomes possible.
  • ozone is harmful to the human body at high concentrations.
  • the Japan Society for Occupational Health prescribes an allowable ozone concentration of 0.1 ppm.
  • the purification space is substantially hermetically divided into the first chamber 16 and the second chamber 17 as described above, and ozone is released in the first chamber 16. Therefore, ozone that has not dissolved in the liquid in the first chamber 16 is decomposed through the filter 25 and then discharged to the outside of the purification device 1. Therefore, ozone having a high concentration is not discharged to the outside of the purification device 1 to the extent that it causes harm to the human body, and it becomes possible to realize a highly safe purification device 1 while utilizing the ozone purification action. .
  • Embodiment 1 of this invention was demonstrated, this Embodiment is not limited to this.
  • the lid 13 is an integral lid that covers the upper part of the first chamber 16 and the second chamber 17, but the lid 13 is located above the first chamber 16 and above the second chamber 17, respectively. It may be composed of a separate lid that closes the door.
  • the lid 13 may be provided only above the first chamber 16.
  • the ultraviolet unit 32 may be fixed to the septic tank 12 by an attachment, for example, or may be placed on the bottom of the septic tank 12.
  • the inflow portion 22 is not limited to the lid body 13 and may be provided, for example, on the side wall of the septic tank 12 that forms the first chamber 16.
  • a pump or the like may be used for the inflow and outflow of the liquid in the purification device 1, but when the inflow and outflow of the liquid is realized by a natural flow without using a pump or the like, the upper surface of the flowing liquid is outflowed. It will be roughly defined by the road. Therefore, inflow part 22 in this case is good to be provided so that an inflow way may be located above an outflow way.
  • the partition plate 14 is an example of a partition part, and the partition part is a member that forms a flow path 15 below and partitions the purification space into a first chamber 16 and a second chamber 17. What is necessary is just and it is not restricted to a plate-shaped member.
  • the septic tank 12 may be comprised by the separate 1st septic tank and 2nd septic tank. In this case, the first septic tank forms the first chamber 16, the second septic tank forms the second chamber 17, and the first chamber 16 and the second chamber 17 are connected by a flow pipe connecting the first septic tank and the second septic tank.
  • a flow path 15 that communicates with each other may be formed.
  • the ultraviolet lamp 41 is provided with the U-shaped tube 45, but instead of the U-shaped tube 45, a tube having an arbitrary shape such as a straight tube, an L-shaped tube, or a W-shaped tube may be employed. Further, the ultraviolet lamp 41 may include a plurality of tubes having an arbitrary shape such as a U-shaped tube 45, a straight tube, an L-shaped tube, and a W-shaped tube.
  • a fluorescent material may be applied to a part of the U-shaped tube 45 constituting the ultraviolet lamp 41.
  • the phosphor may have a property of changing the wavelength of ultraviolet light mainly to visible light, or may have a property of changing the wavelength of ultraviolet light (for example, from 254 nm to 350 nm).
  • ultraviolet light or visible light having a wavelength specific to the applied phosphor is emitted from the ultraviolet lamp 41 together with the ultraviolet light.
  • the housing part 43 is also capable of transmitting visible light, the photocatalytic member 33 develops a photocatalytic reaction with ultraviolet rays and visible light.
  • the accommodation unit 43 transmits ultraviolet light having a bactericidal action and ultraviolet light having a wavelength causing photocatalytic action out of the light emitted from the ultraviolet lamp 41. It is not necessary to have good transparency.
  • the accommodating part 43 may only include a transmission part that transmits ultraviolet light having a wavelength having a bactericidal action and ultraviolet light having a wavelength causing a photocatalytic action in the light emitted from the ultraviolet lamp 41.
  • the permeation part is provided at a position where the septic tank 12 is immersed in the flowing liquid, for example, below the accommodation part 43.
  • the transmission portion is provided below the outflow path.
  • the entire portion below the outflow path of the accommodating portion 43 is a transmission portion.
  • the housing portion 43 may include a transmission portion made of a material that transmits ultraviolet light having a bactericidal action among the light emitted from the ultraviolet lamp 41. That is, the accommodating part 43 may be made of such a material as a whole, or may only include a part of the transmission part made of such a material.
  • ozoneless quartz transmits ultraviolet light having a wavelength having a bactericidal action and visible light, but has a property of blocking ultraviolet light having a wavelength having an ozone generating action. Therefore, by adopting ozone-less quartz as the material of the housing part 43, the generation of ozone in the second chamber 17 can be suppressed, and the possibility of ozone being released from the purification device 1 to the outside is further reduced. Can do. Therefore, the safety of the purification device 1 can be improved.
  • a material having a photocatalytic action may be disposed on the outer surface of the housing portion 43 to such an extent that it does not impede the transmission of ultraviolet light having a bactericidal action emitted from the ultraviolet lamp 41.
  • a material having a photocatalytic action such as titanium oxide may be coated on the surface of the accommodating portion 43.
  • the outer surface of the accommodating portion 43 is provided with a material having a photocatalytic action, in addition to purifying the nutrient solution in the vicinity of the accommodating portion 43 by the photocatalytic action, algae and fungi are formed on the outer surface of the accommodating portion 43. It becomes possible to prevent adhesion of dirt.
  • the gas introduced into the accommodation space 42 via the oxygen introduction part 50 is not limited to air, and may be a gas containing oxygen.
  • an oxygen cylinder that can adjust the exhaust pressure may be provided instead of the pump 53.
  • the ozone discharge part 51 is provided at the upper part of the accommodation part 43, but the ozone discharge part 51 may be provided at the lower part of the accommodation part 43, for example.
  • one end of the discharge pipe 55 is preferably attached to the ozone discharge unit 51.
  • the ozone emitting part is provided with an air stone 56.
  • the configuration of the ozone emitting part is not limited to this.
  • the ozone release unit includes a microbubble generator that generates microbubbles using ozone discharged from the ozone discharge unit 51, and a member that discharges the microbubbles generated by the microbubble generator into the liquid. It may be configured.
  • the contact area between ozone and liquid can be further increased as compared with the case of using the air stone 56.
  • the liquid in which more ozone is dissolved can be flowed to the second chamber 17, it is possible to enhance the purification effect derived from the dissolved ozone in the second chamber 17.
  • Embodiment 2 This Embodiment demonstrates the example which applies the purification apparatus 1 which concerns on Embodiment 1 to hydroponics.
  • the seedling raising apparatus 201 has a support member 261, a nutrient solution tank 262 in which the purification device 1 is installed, and a nutrient solution pump 263, as shown in FIG. With.
  • the support member 261, the nutrient solution tank 262, and the nutrient solution pump 263 are installed on the floor, for example.
  • the support member 261 includes a three-stage cultivation shelf 264, a lighting device 265 provided above each cultivation shelf 264, and a purified nutrient solution pipe 266 extending from the nutrient solution pump 263 to the left end of the upper cultivation shelf 264. To support.
  • Each planting shelf 264 is provided with a plant arrangement plate 267 having a plurality of holes. Plants 268 are arranged on the plant arrangement plate 267.
  • the lighting fixtures 265 provided above the cultivation shelves 264 can adjust their heights so as to irradiate light having the most suitable intensity according to the growth state of the plants 268 and the like.
  • the upper cultivation shelf 264 includes a nutrient solution conduit 269 extending downward from the right end of the bottom toward the right end of the middle cultivation shelf 264.
  • the middle cultivation shelf 264 includes a nutrient solution conduit 269 that extends downward from the left end of the bottom thereof toward the left end of the lower cultivation shelf 264.
  • the lower cultivation shelf 264 has a dirty liquid pipe 270 extending from the right end of the bottom thereof to the inflow portion 22 of the purification device 1 provided below.
  • the nutrient solution tank 262 is a tank that stores a nutrient solution containing nutrients for growing the plant 268.
  • the nutrient solution pump 263 sucks and raises the nutrient solution stored in the nutrient solution tank 262, and discharges the nutrient solution from the pressurized solution discharge unit 271 to the purified nutrient solution pipe 266.
  • the purified nutrient solution pipe 266 is a tube that guides the nutrient solution discharged from the nutrient solution pump 263 to the left end portion of the upper cultivation shelf 264, and one end thereof is connected to the pressurizing solution discharge unit 271 of the nutrient solution pump 263.
  • an injection portion 272 that forms a mouth whose other end faces downward.
  • the injection part 272 is provided above the left end part of the upper cultivation shelf 264.
  • the nutrient solution is poured from the injection portion 272 to the left end portion of the upper cultivation shelf 264 as indicated by an arrow A31.
  • the nutrient solution flows in the right direction while sequentially contacting the roots of the plants 268 extending downward through the holes of the plant arrangement plate 267 provided in the upper cultivation shelf 264.
  • the nutrient solution that has reached the right end portion of the upper cultivation shelf 264 flows through the nutrient solution conduit 269 to the right end portion of the middle cultivation shelf 264 as indicated by an arrow A32.
  • the nutrient solution further flows in the left direction while sequentially contacting the roots of the plants 268 arranged in the middle cultivation shelf 264.
  • the nutrient solution that has reached the left end portion of the middle cultivation shelf 264 flows to the left end portion of the lower cultivation shelf 264 via the nutrient solution conduit 269 as indicated by an arrow A33.
  • the nutrient solution further flows to the right while sequentially contacting the roots of the plants 268 arranged on the lower cultivation shelf 264.
  • the nutrient solution that has reached the right end of the lower cultivation shelf 264 is guided to the inflow portion 22 of the purification device 1 through the dirty pipe 270.
  • the nutrient solution that has flowed into the purification device 1 from the inflow portion 22 is purified by the action of ozone, ultraviolet rays, and the photocatalytic member 33 as described in the first embodiment, and flows out from the outflow portion 21 as indicated by an arrow A34. To do.
  • the nutrient solution flowing out from the outflow part 21 is received by the nutrient solution tank 262, pressurized by the nutrient solution pump 263, and raised through the purified nutrient solution pipe 266, and the left end of the upper cultivation shelf 264 from the injection part 272. Will be poured again. In this way, the nutrient solution circulates through the cultivation shelf 264 and the purification device 1.
  • fungi, molds, algae, organic matter, etc. in the nutrient solution may cause diseases of the plant 268, and may inhibit the growth of the plant 268 by adhering to the roots. It can be a cause.
  • pathogenic bacteria such as Escherichia coli propagate in the solution.
  • the nutrient solution is appropriately replaced, and members that come into contact with the nutrient solution such as the purified nutrient solution pipe 266, the cultivation shelf 264, the nutrient solution conduit 269, the dirty fluid pipe 270, the nutrient solution tank 262, and the like are cleaned as needed.
  • the purification device 1 purifies the nutrient solution during the circulation. Therefore, since the frequency of exchanging the nutrient solution or cleaning the member in contact with the nutrient solution can be reduced, it is possible to realize economical hydroponics without taking time and effort.
  • fungi, mold, algae, organic matter, etc. adhering to the root of the plant 268 may inhibit the root of the plant 268 from sucking nutrients.
  • fungi, mold, algae, organic matter, and the like attached to the roots are reduced, so that the plant 268 can keep sucking nutrients sufficiently and the growth rate of the plant 268 can be improved.
  • the ozone after purifying the nutrient solution in the second chamber 17 of the purification device 1 becomes oxygen, and the nutrient solution in which a part thereof is dissolved flows out from the outflow part 21. Therefore, the nutrient solution having a higher dissolved oxygen concentration than normal flows out from the purification device 1. In addition, a decrease in bacteria and organic matter in the solution also leads to an increase in dissolved oxygen.
  • the growth rate of the plant 268 can be improved by the nutrient solution having a high oxygen concentration.
  • the ozone dissolved in the first chamber 16 remains in the nutrient solution flowing out from the purification device 1.
  • the growth rate of the plant 268 can be improved also by the action of the ozone itself.
  • Embodiment 2 of this invention was demonstrated, this Embodiment is not limited to this.
  • the purification device 1 purifies the nutrient solution regardless of the arrangement and number of the cultivation shelves 264 provided in the seedling device 201. be able to.
  • the purification apparatus 1 may be provided with two or more, and the ultraviolet-ray unit 32 is provided in the large purification container 11. May be.
  • an example of purifying the nutrient solution has been described as an application example of the purification device 1.
  • the target to be purified by the purification device 1 is not limited to the nutrient solution.
  • the target to be purified by the purification device 1 may be, for example, water for breeding or cultivating seafood, water for daily use such as drinking water or bath water.
  • the purification container 11 is not provided, that is, the ultraviolet unit 32, the introduction pipe 52, the pump 53, the discharge pipe 55, and the air stone 56.
  • the structure provided with the photocatalyst member 33 may be employ
  • the ultraviolet unit 32, the discharge pipe 55, the air stone 56, and the photocatalyst member 33 as necessary may be arranged in water, and the pump 53 may be arranged so as to supply outside air via the introduction pipe 52. .
  • the object to be purified by the purification device 1 may be, for example, a solid.
  • FIG. 4 shows an example of a purification device 301 that purifies the purification object 312 disposed in the purification container 311 by exposing it to ozone for a certain period of time.
  • the purification container 311 is sealed except for the ventilation part 324 provided with the filter 325.
  • the ultraviolet unit 332 provided in the purification container 311 includes a cylindrical sealed housing 343 and an ultraviolet lamp 341 provided therein.
  • the housing part 343 is arranged such that its longitudinal direction is horizontal (laterally), and an oxygen introduction part 350 and an ozone discharge part 351 are provided on a wall part facing the longitudinal direction.
  • the ozone discharge part 351 is provided below the oxygen introduction part 350.
  • the purification object 312 is placed on an installation table 373 provided in the purification container 311 and having a large number of holes for allowing ozone to pass through.
  • ozone is generated in the ultraviolet unit 332, and the ozone flows in the direction indicated by the arrow A41 in FIG. 4 and circulates in the purification space. Therefore, the purification target 312 is exposed to ozone by keeping the purification container 311 containing the purification target 312 in a sealed state for a certain period of time. Further, the purification object 312 is purified by being irradiated with ultraviolet rays that have passed through the transmission part of the ultraviolet unit 332. After a certain period of time has passed, the ozone in the purification container 311 is released to the outside through a filter 325 using a fan (not shown) and the like, and then the operator inhales ozone by opening the cover of the purification container 311. The purification object 312 can be safely removed from the purification container 311 without any problem.
  • the target to be purified by the purification device 1 may be, for example, a gas.
  • FIG. 5 shows an example in which air as a purification object is purified by the purification device 401.
  • an ultraviolet unit 432 is disposed in the purification container 411 in the horizontal direction in the same manner as the ultraviolet unit 332 described with reference to FIG.
  • the purification container 411 is sealed so that the purification space in the purification container 411 does not communicate with the outside except for the inflow part 422 and the outflow part 421.
  • the inflow portion 422 is provided on the wall portion of the purification container 411 facing the oxygen introduction portion 450 of the ultraviolet unit 432 and has a fan 474. Outside air continuously flows into the purification space by the fan 474.
  • the outflow part 421 is provided on the wall part of the purification container 411 facing the ozone discharge part 451 of the ultraviolet unit 432 and has a filter 425.
  • the purification container 411 further includes a photocatalyst member 433 on the inner wall located above the ultraviolet unit 432.
  • the outside air that has flowed into the purification space from the inflow portion 422 is purified by the action of ozone, ultraviolet light, and the photocatalytic member 433, and flows and flows out as indicated by an arrow A51 in FIG. Spill from. Since the outflow portion 421 is provided with the filter 425, ozone is decomposed by the filter and flows out. Therefore, it becomes possible to purify the air safely.
  • An ultraviolet lamp that emits ultraviolet rays having a wavelength having an ozone generating action and ultraviolet rays having a wavelength having a bactericidal action; Including a transmitting part that transmits ultraviolet light having a wavelength having the bactericidal action, and an accommodating part in which the ultraviolet lamp is accommodated in an internal accommodating space; An air supply part for forming an air supply port for supplying a gas containing oxygen to the accommodation space in the accommodation part;
  • a purifying apparatus comprising: an exhaust portion that forms, in the housing portion, a discharge port that discharges ozone generated in the housing space by an ozone generating action of ultraviolet light emitted from the ultraviolet lamp.
  • Appendix 2 The purification apparatus according to appendix 1, wherein the ultraviolet lamp is a discharge lamp in which metal vapor is sealed.
  • Appendix 3 The purification apparatus according to appendix 2, wherein the ultraviolet lamp is a cold cathode lamp.
  • the material of the discharge tube or the material of the transmission part of the ultraviolet lamp is synthetic quartz, fused quartz, ozoneless quartz, or borosilicate glass containing at least one of Al, Na, K, Li, Ca, and Ba.
  • An ozone discharge part for discharging ozone discharged from the exhaust part into the purification space;
  • the purification container forms a purification space including the separated first chamber and the second chamber, and a flow path communicating the first chamber and the second chamber,
  • the ozone emitting part is provided in the first chamber,
  • Appendix 7 The purification device according to appendix 6, wherein the ozone discharge unit includes an air stone or microbubble generator that discharges ozone discharged from the exhaust unit into bubbles into the purification space.
  • the purification container A communication portion for communicating the first chamber with the outside;
  • the purification container An inflow portion for allowing the fluid to be purified to flow into the first chamber from the outside;
  • the purifier according to any one of appendices 6 to 8, further comprising an outflow portion that causes the fluid to flow out from the second chamber to the outside.
  • Appendix 10 The purification apparatus according to any one of appendices 1 to 9, further comprising a photocatalytic member that is provided around the housing portion and that exhibits a photocatalytic reaction when irradiated with ultraviolet rays or visible light. .
  • Appendix 11 The purification apparatus according to appendix 10, wherein the photocatalytic member includes a titanium oxide material on a surface thereof.
  • (Appendix 12) Produces UV light with a wavelength that has an ozone-generating action and UV light with a wavelength that has a bactericidal action, Ozone is generated by irradiating the generated ultraviolet light to a gas containing oxygen, Supply the generated ozone to the object to be purified, Irradiating the purification target with the generated ultraviolet rays, A purification method characterized by the above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Hydroponics (AREA)

Abstract

 浄化装置は、オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを放射する紫外線ランプ(41)と、紫外線ランプ(41)が内部の収容空間に収容される収容部(43)とを備える。収容部(43)は、殺菌作用を有する波長の紫外線を透過させる透過部を含む。酸素導入部(50)から収容空間に供給される気体に酸素が含まれるので、紫外線ランプ(41)が放射する紫外線のオゾン生成作用により収容空間でオゾンが生成される。収容空間で生成されたオゾンはオゾン排出部(51)から排出される。

Description

浄化装置と浄化方法
 本発明は、浄化装置と浄化方法に関する。
 植物工場などで水耕栽培に利用する養液(培養液)をオゾン、紫外線及び光触媒の働きによって除菌浄化する養液栽培システムが提案されている(例えば、特許文献1参照)。特許文献1に記載の養液栽培システムは、養液を除菌浄化する除菌浄化ユニットを備える。除菌浄化ユニットは電極を備え、電極を高圧に帯電させて無声放電を発生させ、放電区間に気体を通過させることにより、オゾンを発生する。
特開2009-247303号公報
 しかしながら、無声放電方式でオゾンを発生させると、大気を原料とした場合、人体に有害なNOが発生し、酸素を原料とした場合には装置の構造が複雑化する。
 さらに、特許文献1の養液栽培システムは、放電区間に気体を通過させるための流路、紫外線光源などを備えるために、構成が複雑である。
 本発明は、上記の実情に鑑みてなされたものであり、簡易な構成を備える安全な浄化装置と浄化方法を提供することを目的とする。
 上記の目的を達成するため、本発明に係る浄化装置は、
 オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを放射する紫外線ランプと、
 前記殺菌作用を有する波長の紫外線を透過させる透過部を含み、前記紫外線ランプを内部の収容空間に収容する収容部と、
 酸素を含む気体を前記収容空間に供給する給気部と、
 前記紫外線ランプが放射する紫外線のオゾン生成作用により前記収容空間で生成されたオゾンを排出する排出部と、
を備える。
 上記の目的を達成するため、本発明に係る浄化方法は、
 オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを生成し、
 生成された紫外線を酸素を含む気体に照射することによりオゾンを生成し、
 生成したオゾンを浄化対象物に供給し、
 生成された紫外線を前記浄化対象物に照射する。
 本発明に係る浄化装置では、NOを発生させることなくオゾンが生成される。また、殺菌作用を有する波長の紫外線は、透過部を透過して収容部の外部へ放射される。したがって、本発明によれば、簡易な構成で安全に浄化をすることが可能になる。
本発明の実施の形態1に係る浄化装置の断面図である。 実施の形態1に係る紫外線ユニットの正面図である。 本発明の実施の形態2に係る育苗装置の断面図である。 本発明の一変形例に係る浄化装置の断面図である。 本発明の他の変形例に係る浄化装置の断面図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。全図を通じて同一の要素には同一の番号を付す。また、以下の説明では、参照する図に従って「上」「下」「左」「右」を用いて方向を説明するが、これは理解を容易にするために用いるものであって、発明を限定する趣旨ではない。
(実施の形態1)
 本発明の実施の形態1に係る浄化装置は、浄化対象物としての液体を浄化する装置である。ここで浄化は、主に酸化分解反応によって、好ましくない有機化合物や無機化合物を分解除去すること、菌、細菌、ウィルス類などを死滅又は減少させること、藻類の発生を抑制すること、悪臭を除去することなどのすべて又は一部を含む。
 浄化装置1は、図1に示すように、液体が流動する浄化空間を内部に有する直方体の浄化容器11を備える。
 浄化容器11は、浄化空間を形成し上方が開放した浄化槽12と、浄化槽12の上部に設けられる蓋体13とを備える。浄化槽12と蓋体13とはそれぞれ、オゾン、紫外線に曝されても腐食しにくい材料から形成されることが望ましく、金属製(例えば、ステンレス鋼など)、樹脂製(例えば、フッ素樹脂など)、又はガラス製であるとよい。
 浄化容器11はさらに、上下方向に延びる板状の仕切板14を備える。仕切板14は、浄化槽12や蓋体13と同様にオゾン、紫外線に曝されても腐食しにくい材料が望ましく、金属製(例えば、ステンレス鋼など)、樹脂製(例えば、フッ素樹脂など)、又はガラス製であるとよい。
 仕切板14の両端部(図1では手前方向及び奥行き方向に位置する端部)は、浄化槽12との間を気体及び液体が流通しないように、浄化槽12の内壁に密着して固定されている。仕切板14の上端部は、蓋体13との間で気体が流通しないように、蓋体13に密着する。
 なお、部材間で気体又は液体が流通しないように(気密に又は液密に)するために、浄化槽12と仕切板14の間に、ゴム、樹脂などを材料とするOリングなどのシーリング部材が設けられてもよく、ゴム、樹脂などが塗布されていてもよい。また、浄化槽12と仕切板14とは、ネジなどによって相互に圧着されてもよい。気密に又は液密に設けられる部材間に、シール部材等を配置する点は、以下においても同様である。
 仕切板14の下端部は、浄化槽12の内部の底面から所定の距離だけ離隔している。したがって、浄化空間は、仕切板14によって、下方の流動路15で連通する第1室16と第2室17とに区画される。
 蓋体13のうち第1室16を形成する部分には、第1室16と外部とを連通する流入路と導管口と通気口とのそれぞれを形成する流入部22と導管部23と通気部24とが設けられる。通気部24には、オゾンを分解して通気させるフィルタ25が設けられている。
 フィルタ25は、交換を容易にするため、通気部24を有するとともに上部が開閉自在なフィルタ取付ユニット26内に設けられている。フィルタ取付ユニット26は蓋体13に気密に固定される。フィルタ25は、第1室16と外部とがフィルタ25を介してのみ通気するように、フィルタ取付ユニット26の通気部24内にすき間なく充填されることが望ましい。
 浄化槽12の第2室17を形成する部分であって仕切板14と対向する部分の上方には、切り欠き部が設けられている。その切り欠き部を除く浄化槽12の上端部は、蓋体13と気密に密着する。切り欠き部とそれに対向する蓋体13の部分とは流出部21として、第2室17と外部とを連通する流出路を形成する。
 蓋体13のうち第2室17を形成する部分には、第2室17と外部とを連通する設置口を形成する紫外線ユニット設置部31が設けられる。紫外線ユニット設置部31の設置口には、概ね円筒状の紫外線ユニット32がその長手方向を上下に向けて挿通されている。紫外線ユニット32は、紫外線ユニット設置部31との間で気体が流通しないように気密に設けられている。
 紫外線ユニット32はその上部に外方へ突出した係止部36を有する。係止部36は紫外線ユニット設置部31の周辺の蓋体13に係合する。それによって、紫外線ユニット32はその下方が第2室17に、望ましくは図1に示すように第2室17を流動する浄化対象の液体に所定の長さだけ浸漬するように位置付けられる。
 紫外線ユニット32の下方、すなわち第2室17に位置する部分の周囲には、紫外線と可視光の一方又は両方により光触媒反応が発現する光触媒部材33が設けられる。
 光触媒部材33は、網状の部材であって、その表面に例えば酸化チタン材料を含む。このような光触媒部材33は、例えば金属チタンの表面を酸化チタン化すること、酸化チタン材料を他の素材上に塗布することなどによって製造される。
 なお、光触媒部材33は、紫外線(100~400nm)で光触媒作用を引き起こす材料であってもよく、可視光で光触媒作用を引き起こす材料であってもよい。そのため、光触媒部材33は、紫外線ユニット32から照射される紫外線(100~400nm)と可視光の一方又は両方が届く範囲に設けられるとよい。また、紫外線ユニット32からの紫外線と可視光の一方又は両方が届く範囲に光触媒部材33を設けるために、光触媒部材33は取付部材などを介して紫外線ユニット32から所定の範囲に位置するように紫外線ユニット32に取り付けられてもよい。
 ここから、図2を参照して、紫外線ユニット32の構成について説明する。
 紫外線ユニット32は、紫外線を外部に放射することにより、殺菌作用を生じさせるとともにオゾンを発生させるユニットである。紫外線ユニット32は、紫外線を放射する紫外線ランプ41と、紫外線ランプ41が収容される気密な収容空間42を内部に有する収容部43とを備える。
 紫外線ランプ41は、オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを含む光を放射するランプである。オゾン生成作用を有する波長は、例えば200nm以下である。殺菌作用を有する波長は、例えば260nm前後(200~320nm)である。
 なお、光触媒部材33の光触媒作用は、上述のようにその材料に応じて、紫外線(100~400nm)や可視光によって引き起こされる。したがって、オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とは、光触媒部材33の材料によっては、その光触媒作用にも寄与する。また、紫外線ランプ41が放射する光がオゾン生成作用を有する波長と殺菌作用を有する波長以外の紫外線や可視光を含む場合、これらの波長の光は光触媒部材33の材料によっては、その光触媒作用に寄与する。
 紫外線ランプ41は、例えば、低圧紫外線ランプであり、熱陰極ランプ、冷陰極ランプ、外部電極ランプ、無電極ランプなどから構成される。
 紫外線ランプ41は、例えば、ガスが封入されるU字管45と、U字管45内で放電するための電極としてNiのカップ電極46を備える冷陰極ランプから構成される。U字管45には、例えば水銀とNeとArの混合ガスが封入される。封入される混合ガスの圧力は、例えば約2.67~13.33kPa(20~100Torr)であり、望ましくは5.33kPa(40Torr)程度である。水銀は、例えば、点灯中の水銀蒸気圧が100Pa以下となるように封入されるとよい。
 このような水銀ランプを紫外線ランプ41に採用することによって、オゾン生成作用を有する約185nmの波長の紫外線と殺菌作用を有する約254nmの波長の紫外線と可視光とを含む光が紫外線ランプ41から放射される。
 U字管45は、オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線との両方を透過させるものである。具体的には、U字管45は、例えば合成石英、溶融石英、又は、Al、Na、K、Li、Ca及びBaの少なくとも1つを含むホウケイ酸ガラス等を材料として生成されている。特に、Al、Na、K、Li、Ca及びBaの少なくとも1つを含むホウケイ酸ガラスは、加工の容易さの点で石英ガラスよりもU字管45の材料として望ましい。
 収容部43は、紫外線ランプ41が放射する紫外線と可視光を透過させるものである。具体的には、収容部43は、例えば合成石英、溶融石英、オゾンレス石英、又は、Al、Na、K、Li、Ca及びBaの少なくとも1つを含むホウケイ酸ガラスを材料として生成されている。
 収容部43は、紫外線ランプ41が放射する紫外線のうち、オゾン生成作用を有する波長の紫外線を遮断し、殺菌作用を有する波長の紫外線を透過させることが望ましく、例えばオゾンレス石英を材料とすることが望ましい。
 なお、収容部43の中には図示省略するが、紫外線ランプ41の電極46に電力を供給するための配線が設けられており、その配線は紫外線ランプ41の電極46に接続されている。また、収容部43の内部又は外部には図示省略するが、インバータなどが設けられていてもよい。
 収容部43の上部には、収容空間42と外部との間を連通する酸素導入口とオゾン排出口とのそれぞれを形成する酸素導入部50とオゾン排出部51とが設けられる。
 給気部としての酸素導入部50には、例えばシリコン製の導入管52の一端が気密に取り付けられている。導入管52の他端には、ポンプ53(図1参照)が取り付けられている。ポンプ53は、例えば電動で空気を昇圧して送り出す。これにより、空気が導入管52、そして酸素導入部50を介して収容空間42に導入される。
 排気部としてのオゾン排出部51には、図2に示すように、例えばシリコン製の排出管55がオゾン排出部51との間で気密性を保持した状態で挿通されている。排出管55の一端は、収容空間42の下方にまで伸びる。排出管55の他端には、図1に示すように、オゾン放出部としてのエアストーン56が取り付けられている。エアストーン56は、送り込まれた気体を数十μm~数mm程度の小さい気泡にして液体中へ放出する部材であり、第1室16の底に置かれている。
 次に、上記構成を有する浄化装置1が液体を浄化する方法について図1と図2を参照して説明する。
 浄化対象の液体は、矢印A11で示すように、流入部22から浄化容器11の第1室16へ流入し、流動路15を通って第2室17へ流動し、矢印A12で示すように、流出部21から外部へ流出する。
 また、図2に示すように、ポンプ53により昇圧された空気は、矢印A21で示すように、導入管52と酸素導入部50とを介して収容空間42に導入され、矢印A22で示すように流れる。収容空間42では、紫外線ランプ41から放射されるオゾン生成作用を有する波長の紫外線の働きによって空気中の酸素がオゾンになる。収容空間42で生成されたオゾンは、矢印A23で示すように、オゾン排出部51から排出管55に排出される。排出されたオゾンは、図1に示すように、排出管55によりエアストーン55に導かれ、エアストーン56から小気泡になって第1室16に放出される。
 したがって、第1室16に流入した液体は、流動路15へ至るまでにオゾンに曝される。オゾンは小気泡となっているので、オゾンと液体との接触面積は大きい。これによって、第1室16を流動する液体を効率的にオゾンの働きによって浄化することができる。
 第1室16でオゾンの一部は液体に溶解する。液体に溶解せずに第1室16の液体表面に達したオゾンは、蓋体13の通気部24に設けられたフィルタ25を介して外部へ排出される。排出の際、オゾンはフィルタ25の働きによって分解され、少なくとも人体に害を及ぼさない程度に無毒化される。
 第1室16にてオゾンが溶解した液体は、流動路15を通って第2室17へ流動する。オゾン水となって第2室17へ流動した液体には、第2室17に配置された紫外線ランプ41からの紫外線が照射される。収容部43は上述のように、少なくとも殺菌作用を有する波長の紫外線を透過させる材料で作られているため、第2室17において液体は収容部43を透過した紫外線の作用により浄化される。
 第2室17の液体にはオゾンが溶存しており、オゾンの一部は紫外線ユニット32からの紫外線の照射によってOHラジカルやOラジカルに変化する。そのため、第2室17の液体は、オゾンより酸化力が強く反応性の高いOHラジカルやOラジカルの働きによっても浄化される。
 さらに、光触媒部材33に紫外線ユニット32からの紫外線と可視光が照射されることによって光触媒部材33の表面では電子と正孔が発生する。そのため、第2室17の液体、特に光触媒部材33の近傍を流動する液体は、光触媒部材33の表面で発生した電子と正孔の働きによっても浄化される。
 第2室17で浄化された液体は、矢印A12で示すように、流出部21を介して外部へ流出する。
 このように流入部22から流入した液体は、第1室16で浄化され、さらに第2室17での強い浄化力により浄化される。これによって、浄化前の液体に含まれていた細菌、ウィルス、カビなどの多くは死滅し、浄化前の液体に含まれた臭いは除去され、液体の透明性は浄化前よりも向上する。
 本実施の形態によれば、紫外線ランプ41がオゾン発生作用と殺菌作用との両作用を備えるため、別途オゾン発生装置を設ける必要がない。そのため、浄化装置1の構成を簡易化することが可能となり、その結果、浄化装置1を安価でコンパクトに構成することが可能になる。
 本実施の形態の浄化装置1の紫外線ユニット32は、紫外線によりオゾンを発生する。このため、原料に大気を採用してもNOは発生しない。したがって、原料に大気を用いても安全にオゾンを発生させることができる。また、原料として大気を用いることで、低いランニングコストを実現することが可能になる。
 さらに、本実施の形態では、浄化空間は第1室16と第2室17とに区画されており、第1室16で浄化対象である液体をオゾンに曝気する。そのため、浄化対象である液体を十分にオゾンに曝すことができ、オゾンによって液体を浄化することが可能になるとともに、多くのオゾンを液体に溶解させて第2室17での浄化力を向上させることが可能になる。
 一般にオゾンは高濃度であれば人体に有害である。例えば日本産業衛生学会は、オゾンの許容濃度を0.1ppmと規定している。本実施の形態では、上述のように浄化空間を第1室16と第2室17とに実質的に気密に区画しており、オゾンは第1室16で放出される。そのため、第1室16にて液体に溶解しなかったオゾンは、フィルタ25を介して分解されてから浄化装置1の外部へ排出される。したがって、人体に害を及ぼす程に高濃度のオゾンが浄化装置1の外部へ排出されることはなく、オゾンの浄化作用を利用しつつ安全性の高い浄化装置1を実現することが可能になる。
 以上、本発明の実施の形態1について説明したが、本実施の形態はこれに限定されない。
 例えば、蓋体13は、第1室16と第2室17との上方を塞ぐ一体の蓋であるとしたが、蓋体13は第1室16の上方と第2室17の上方とのそれぞれを塞ぐ別体の蓋で構成されてもよい。
 蓋体13は、第1室16の上方のみに設けられてもよい。この場合、紫外線ユニット32は例えば、取付具によって浄化槽12に固定されてもよく、浄化槽12の底に置かれてもよい。
 流入部22は、蓋体13に限らず、例えば、第1室16を形成する浄化槽12の側壁に設けられてもよい。例えば浄化装置1の液体の流入と流出とにポンプなどが用いられてもよいが、ポンプなどを用いずに自然の流れによって液体の流入と流出とを実現する場合、流動する液体の上面は流出路で概ね規定されることになる。そのため、この場合の流入部22は、流入路が流出路より上方に位置するように設けられるとよい。
 本実施の形態に係る仕切板14は仕切部の一例であって、仕切部は、下方に流動路15を形成するとともに浄化空間を第1室16と第2室17とに区画する部材であればよく、板状の部材に限られない。また、浄化槽12は、別体の第1浄化槽と第2浄化槽とで構成されてもよい。この場合、第1浄化槽が第1室16を形成し、第2浄化槽が第2室17を形成し、第1浄化槽と第2浄化槽とを接続する流動管によって第1室16と第2室17とを連通する流動路15が形成されてもよい。
 本実施の形態では紫外線ランプ41がU字管45を備えるとしたが、U字管45に代えて直管、L字管、W字管など任意の形状の管が採用されてよい。また、紫外線ランプ41は、U字管45、直管、L字管、W字管など任意の形状の管を複数備えてもよい。収容空間42に効率よく紫外線ランプ41を収容することによって、紫外線ランプ41の大きさを変えることなく、それが放射する光の量を増大させることができる。これにより、浄化装置1の浄化能力の向上やコンパクト化が可能になる。
 本実施の形態で用いる紫外線ランプ41は、それを構成するU字管45の一部に蛍光体が塗布されていてもよい。蛍光体は、紫外線の波長を主に可視光に変える性質を有するものであってもよく、主に紫外線の波長を(例えば、254nmから350nmへ)変える性質を有するものであってもよい。
 この場合、紫外線ランプ41から紫外線とともに、塗布された蛍光体固有の波長の紫外線や可視光が放射される。収容部43が可視光をも透過させるものであれば、光触媒部材33は、紫外線と可視光とによって光触媒反応を発現する。
 本実施の形態では収容部43は、紫外線ランプ41が放射する光のうち殺菌作用を有する波長の紫外線と光触媒作用を引き起こす波長の紫外線とを透過させるとしたが、収容部43の全体がこのような透過性を持つ必要はない。収容部43は、紫外線ランプ41が放射する光のうち殺菌作用を有する波長の紫外線と光触媒作用を引き起こす波長の紫外線とを透過させる透過部を一部に含むだけであってもよい。
 この場合、透過部は、浄化槽12を流動する液体に浸漬する位置、例えば収容部43の下方に設けられる。流動する液体の上面が流出路で規定される場合には、透過部が流出路より下方に設けられることが望ましい。液体中で光を照射することで、紫外線及び溶存するオゾンによる浄化の効果を向上させることが可能になる。また、光触媒部材33に強い光が照射されて、光触媒反応による浄化の効果を向上させることが可能になる。
 また、収容部43の流出路より下方の部分全体を透過部とすることがより望ましい。液体中でより多くの光を照射することにより、紫外線及び溶存するオゾンによる浄化の効果を向上させることが可能になる。また、光触媒部材33にも強い光がより多く照射されて、光触媒反応による浄化の効果を向上させることが可能になる。
 光触媒部材33を設けない場合には、収容部43は、紫外線ランプ41が放射する光のうち殺菌作用を有する波長の紫外線を透過させる材料で作られた透過部を含めばよい。すなわち、収容部43は、全体がそのような材料で作られてもよく、そのような材料で作られた透過部を一部に含むだけであってもよい。
 なお、収容部43がオゾン生成作用を有する波長の紫外線を透過させる場合、僅かな量ではあるが第2室17においてもオゾンが発生する可能性がある。第2室17でオゾンが発生した場合、そのオゾンの多くは流出部21を介して浄化装置1の外部に放出される。
 一般にオゾンレス石英は、殺菌作用を有する波長の紫外線と可視光を透過させるが、オゾン生成作用を有する波長の紫外線を遮断する性質を有する。そのため、収容部43の材料にオゾンレス石英を採用することによって、第2室17でのオゾンの発生を抑制することができ、浄化装置1から外部へオゾンが放出される可能性をさらに低減させることができる。したがって、浄化装置1の安全性を向上させることが可能になる。
 収容部43の外表面に、紫外線ランプ41から放射される殺菌作用を有する波長の紫外線の透過を阻害しない程度に光触媒作用を有する素材が配置されてもよい。例えば、酸化チタンなど光触媒作用を有する素材が収容部43の表面にコーティングされてもよい。
 収容部43の外表面が、光触媒作用を有する素材を備える場合には、その光触媒作用によって、収容部43の近傍の養液を浄化することに加えて、収容部43の外表面に藻、菌などの汚れの付着を防止することが可能になる。
 酸素導入部50を介して収容空間42に導入される気体は、空気に限らず、酸素を含むガスであればよい。例えば高濃度の酸素を収容空間42に導入する場合、ポンプ53に代えて排気圧を調整することができる酸素ボンベが設けられてもよい。
 実施の形態では、オゾン排出部51が収容部43の上部に設けられているが、例えば、オゾン排出部51は収容部43の下部に設けられてもよい。この場合、排出管55の一端がオゾン排出部51に取り付けられるとよい。
 さらに、本実施の形態ではオゾン放出部は、エアストーン56を備えている。オゾン放出部の構成はこれに限られない。例えば、オゾン放出部は、オゾン排出部51から排出されたオゾンを用いてマイクロバブルを発生させるマイクロバブル発生装置と、そのマイクロバブル発生装置が発生させたマイクロバブルを液体中に放出する部材とにより構成されてもよい。
 オゾンをマイクロバブルで放出することによって、エアストーン56による場合よりもオゾンと液体との接触面積をさらに増加させることができる。その結果、第1室16でのオゾンによる浄化の効果を高めることが可能になる。また、より多くのオゾンが溶存する液体を第2室17へ流動させることができるので、第2室17での溶存するオゾンに由来する浄化の効果を高めることが可能になる。
(実施の形態2)
 本実施の形態では、実施の形態1に係る浄化装置1を水耕栽培に適用する例について説明する。
 本発明の実施の形態2に係る育苗装置201は、図3にその断面の概要を示すように、支持部材261と、浄化装置1が内部に設置される養液槽262と、養液ポンプ263とを備える。支持部材261と養液槽262と養液ポンプ263とは例えば床に設置される。
 支持部材261は、三段の栽培棚264と、各栽培棚264の上方に設けられる照明器具265と、養液ポンプ263から上段の栽培棚264の左側端部まで伸びる浄化養液管266とを支持する。
 栽培棚264の各々には、複数の孔を有する植物配置板267が設けられる。植物配置板267には植物268が並べ置かれる。各栽培棚264の上方に設けられた照明器具265は、植物268の生育状態など応じて最も適した強さの光を照射するためにそれぞれの高さを調節することができる。
 上段の栽培棚264は、その底部の右側端部から中段の栽培棚264の右側端部へ向けて下方へ伸びる養液導管269を備える。中段の栽培棚264は、その底部の左側端部から下段の栽培棚264の左側端部へ向けて下方へ伸びる養液導管269を備える。下段の栽培棚264は、その底部の右側端部から下方に設けられた浄化装置1の流入部22へ伸びる汚液管270を有する。
 養液槽262は、植物268を栽培するための養分を含む養液を蓄える槽である。養液ポンプ263は、養液槽262に蓄えられた養液を吸引して昇圧し、養液を昇圧液排出部271から浄化養液管266に排出する。浄化養液管266は、養液ポンプ263から排出された養液を上段の栽培棚264の左側端部へ導く管であって、その一端が養液ポンプ263の昇圧液排出部271に接続され、その他端が下方を向いた口を形成する注入部272を有する。注入部272は、上段の栽培棚264の左側端部の上方に設けられる。
 次に、育苗装置201における養液の流れについて説明する。
 養液は、矢印A31に示すように、注入部272から上段の栽培棚264の左側端部に注がれる。養液は、上段の栽培棚264に設けられた植物配置板267の孔を介して下方に伸びた植物268の根に順次接触しながら、右方向へ流れる。
 上段の栽培棚264の右側端部に到達した養液は、養液導管269を介して、矢印A32に示すように、中段の栽培棚264の右側端部へ流れる。養液はさらに、中段の栽培棚264に並べ置かれた植物268の根に順次接触しながら、左方向へ流れる。
 中段の栽培棚264の左側端部に到達した養液は、養液導管269を介して、矢印A33に示すように、下段の栽培棚264の左側端部へ流れる。養液はさらに、下段の栽培棚264に並べ置かれた植物268の根に順次接触しながら、右方向へ流れる。
 下段の栽培棚264の右側端部に到達した養液は、汚液管270を介して浄化装置1の流入部22へ導かれる。流入部22から浄化装置1の内部に流入した養液は、実施の形態1で説明したようにオゾン、紫外線、及び光触媒部材33の働きによって浄化され、矢印A34で示すように流出部21から流出する。
 流出部21から流出した養液は、養液槽262に受け止められ、養液ポンプ263で昇圧されて浄化養液管266を介して上昇し、注入部272から上段の栽培棚264の左側端部に再び注がれる。このようにして、養液は、栽培棚264と浄化装置1とを通って循環する。
 一般に養液中の菌、カビ、藻、有機物などは、植物268の病気の原因となることがあり、また、根に付着するなどによって植物268の成長を阻害することがあり、さらに、悪臭の原因となることがある。また、植物268が食材に用いるものである場合には、大腸菌などの病原菌が溶液中に繁殖すると食の安全性を保てなくなる可能性がある。
 これらを防ぐために、養液は適宜交換され、浄化養液管266、栽培棚264、養液導管269、汚液管270、養液槽262などといった養液と接触する部材は随時清掃される。
 本実施の形態では、循環の途中で浄化装置1が養液を浄化する。そのため、養液の交換や養液と接触する部材の清掃の頻度を少なくすることができるので、手間が掛からず経済的な水耕栽培を実現できる。
 植物268の根に付着する菌、カビ、藻、有機物などは上述のように、植物268の根が養分を吸うことを阻害することがある。本実施の形態では、根に付着する菌、カビ、藻、有機物などが低減するため、植物268は養分を十分に吸い続けることができ、植物268の生育速度を向上させることが可能になる。
 浄化装置1の第2室17にて養液を浄化した後のオゾンは酸素になり、その一部が溶け込んだ養液が流出部21から流出する。そのため、浄化装置1からは通常よりも溶存酸素濃度が高い養液が流出する。また、溶液中の菌や有機物の減少も、溶存酸素の増加につながる。高酸素濃度の養液によって、植物268の生育速度を向上させることが可能になる。
 さらに、浄化装置1から流出する養液には第1室16にて溶解したオゾンの一部が残存している。そのオゾン自体の働きによっても植物268の生育速度を向上させることが可能になる。
 このように浄化装置1を備えることによって、複数の要因で植物268の生育速度を向上させることが可能となり、効率的な水耕栽培を実現できる。
 以上、本発明の実施の形態2について説明したが、本実施の形態はこれに限定されない。
 例えば、本実施の形態では三段の栽培棚264を備える育苗装置201を例に説明したが、浄化装置1は、育苗装置201が備える栽培棚264の配置や数にかかわらず養液を浄化することができる。また、育苗装置201が大きいなどの事情により高い浄化能力が要求される場合には、浄化装置1が複数備えられてもよいのはもちろんであるし、大きい浄化容器11に紫外線ユニット32が複数設けられてもよい。
 本実施の形態では浄化装置1の応用例として養液を浄化する例を説明したが、浄化装置1が浄化する対象は養液に限られない。
 浄化装置1が浄化する対象は例えば、魚介類を飼育又は養殖する水、飲料水や風呂水などの生活用水などであってもよい。
 例えば、魚介類を飼育又は養殖する水の浄化に浄化装置1を使用する場合には、浄化容器11を備えない、すなわち紫外線ユニット32と導入管52とポンプ53と排出管55とエアストーン56と必要に応じて光触媒部材33とを備える構成が採用されてもよい。この場合例えば、紫外線ユニット32と排出管55とエアストーン56と必要に応じて光触媒部材33とが水中に配置され、ポンプ53が導入管52を介して外気を供給するように配置されるとよい。
 浄化装置1が浄化する対象は例えば、固体であってもよい。図4は、浄化容器311の中に配置された浄化対象物312を一定時間オゾンに曝すことによって浄化する浄化装置301の例を示す。この例では、浄化容器311は、フィルタ325が設けられた通気部324以外では、密閉されている。浄化容器311の中に設けられる紫外線ユニット332は、円筒形の密閉された収容部343とその中に設けられた紫外線ランプ341とを備える。
 収容部343は長手方向が水平に(横向きに)配置されており、その長手方向に対向する壁部に酸素導入部350とオゾン排出部351とが設けられている。オゾン排出部351は酸素導入部350よりも下方に設けられている。浄化対象物312は、浄化容器311内に設けられた、オゾンを通過させるための多数の孔を有する設置台373に載置されている。
 なお、図示しないが、浄化容器311内の浄化空間でオゾンを流動させるために、また収容部343内の収容空間342に酸素又は空気を導入してオゾンを生成し排出するために、強制的に気体を流動させるファンなどが設けられてもよい。
 これによって、紫外線ユニット332でオゾンが生成され、そのオゾンは図4に矢印A41で示す方向に流動して浄化空間を循環する。そのため、浄化対象物312を収容した浄化容器311を密閉した状態に一定時間保つことで、浄化対象物312はオゾンに曝される。また、浄化対象物312は、紫外線ユニット332の透過部を透過した紫外線の照射を受けて浄化される。一定時間経過した後は、浄化容器311の中のオゾンをフィルタ325を介して図示しないファンなどを用いて外部へ放出してから浄化容器311の蓋を開けることで、操作する人がオゾンを吸い込むことなく安全に浄化対象物312を浄化容器311から取り出すことができる。
 浄化装置1が浄化する対象は例えば、気体であってもよい。図5は、浄化装置401によって浄化対象物としての空気を浄化する例を示す。同図に示すように、浄化容器411の中には紫外線ユニット432が、図4を参照して説明した紫外線ユニット332と同様に横向きに配置されている。浄化容器411内の浄化空間が流入部422及び流出部421を除いて外部と連通しないように、浄化容器411は密閉されている。流入部422は、紫外線ユニット432の酸素導入部450に対向する浄化容器411の壁部に設けられており、ファン474を有する。ファン474によって浄化空間に外気が継続的に流入する。流出部421は、紫外線ユニット432のオゾン排出部451に対向する浄化容器411の壁部に設けられており、フィルタ425を有する。浄化容器411はさらに、紫外線ユニット432の上方に位置する内壁に光触媒部材433を備える。
 このような構成を備えることによって、流入部422から浄化空間に流入した外気は、オゾン、紫外線、及び光触媒部材433の働きによって浄化され、図5に矢印A51で示すように流動して流出部421から流出する。流出部421にはフィルタ425が設けられているため、オゾンはフィルタで分解されて流出する。したがって、安全に空気を浄化することが可能になる。
 以上、本発明の実施の形態及び変形例について説明したが、本発明は、実施の形態及び変形例に限定されるものではなく、例えば各実施の形態及び各変形例を適宜組み合わせた態様、またそれらと均等な技術的範囲をも含む。
 上記の実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを放射する紫外線ランプと、
 前記殺菌作用を有する波長の紫外線を透過させる透過部を含み、前記紫外線ランプが内部の収容空間に収容される収容部と、
 酸素を含む気体を前記収容空間に供給する給気口を前記収容部に形成する給気部と、
 前記紫外線ランプが放射する紫外線のオゾン生成作用により前記収容空間で生成されるオゾンを排出する排出口を前記収容部に形成する排気部とを備える
 ことを特徴とする浄化装置。
(付記2)
 前記紫外線ランプは金属蒸気を封入した放電ランプである
 ことを特徴とする付記1に記載の浄化装置。
(付記3)
 前記紫外線ランプは冷陰極ランプである
 ことを特徴とする付記2に記載の浄化装置。
(付記4)
 前記紫外線ランプが有する放電管の材料又は前記透過部の材料は、合成石英、溶融石英、オゾンレス石英、又は、Al、Na、K、Li、Ca及びBaの少なくとも1つを含むホウケイ酸ガラスである
 ことを特徴とする付記1から3のいずれか1つに記載の浄化装置。
(付記5)
 浄化対象物が配置され又は流動する浄化空間を形成する浄化容器をさらに備え、
 前記透過部は前記浄化空間に配置される
 ことを特徴とする付記1から4のいずれか1つに記載の浄化装置。
(付記6)
 前記排気部から排出されたオゾンを前記浄化空間に放出するオゾン放出部を備え、
 前記浄化容器は、分離された第1室及び第2室と、当該第1室及び第2室を連通する流動路とを含む浄化空間を形成し、
 前記オゾン放出部は前記第1室に設けられ、
 前記紫外線ランプ及び前記収容部の前記透過部は前記第2室に設けられる
 ことを特徴とする付記5に記載の浄化装置。
(付記7)
 前記オゾン放出部は、前記排気部から排出されたオゾンを気泡にして、前記浄化空間に放出するエアストーン又はマイクロバブル発生装置を備える
 ことを特徴とする付記6に記載の浄化装置。
(付記8)
 前記浄化容器は、
  前記第1室と外部とを連通する連通部と、
  前記連通部に設けられ、オゾンを分解するフィルタとを備える
 ことを特徴とする付記6又は7に記載の浄化装置。
(付記9)
 前記浄化容器は、
  前記浄化対象物である流体を外部から前記第1室に流入させる流入部と、
  前記流体を前記第2室から外部へ流出させる流出部とを備える
 ことを特徴とする付記6から8のいずれか1つに記載の浄化装置。
(付記10)
 前記収容部の周囲に設けられており、紫外線又は可視光が照射されることによって光触媒反応が発現する光触媒部材をさらに備える
 ことを特徴とする付記1から9のいずれか1つに記載の浄化装置。
(付記11)
 前記光触媒部材は酸化チタン材料を表面に含む
 ことを特徴とする付記10に記載の浄化装置。
(付記12)
 オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを生成し、
 生成された紫外線を酸素を含む気体に照射することによりオゾンを生成し、
 生成したオゾンを浄化対象物に供給し、
 生成された紫外線を前記浄化対象物に照射する、
 ことを特徴とする浄化方法。
 本発明は、2011年11月15日に出願された日本国特許出願2011-249463号に基づく。本明細書中に日本国特許出願2011-249463号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
  1,301,401 浄化装置
 11,311,411 浄化容器
         12 浄化槽
         13 蓋体
         14 仕切板
         15 流動路
         16 第1室
         17 第2室
     21,421 流出部
     22,422 流入部
         23 導管部
     24,324 通気部
 25,325,425 フィルタ
         26 フィルタ取付ユニット
         31 紫外線ユニット設置部
 32,332,432 紫外線ユニット
     33,433 光触媒部材
         36 係止部
     41,341 紫外線ランプ
     42,342 収容空間
     43,343 収容部
         45 U字管
         46 電極
 50,350,450 酸素導入部
 51,351,451 オゾン排出部
         52 導入管
         53 ポンプ
         55 排出管
         56 エアストーン
        201 育苗装置
        261 支持部材
        262 養液槽
        263 養液ポンプ
        264 栽培棚
        265 照明器具
        266 浄化養液管
        267 植物配置板
        268 植物
        269 養液導管
        270 汚液管
        271 昇圧液排出部
        272 注入部
        373 設置台
        474 ファン
 
 

Claims (11)

  1.  オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを放射する紫外線ランプと、
     前記殺菌作用を有する波長の紫外線を透過させる透過部を含み、前記紫外線ランプを内部の収容空間に収容する収容部と、
     酸素を含む気体を前記収容空間に供給する給気部と、
     前記紫外線ランプが放射する紫外線のオゾン生成作用により前記収容空間で生成されたオゾンを排出する排気部とを備える
     ことを特徴とする浄化装置。
  2.  前記紫外線ランプは金属蒸気を封入した放電ランプである
     ことを特徴とする請求項1に記載の浄化装置。
  3.  前記紫外線ランプは冷陰極ランプである
     ことを特徴とする請求項2に記載の浄化装置。
  4.  前記紫外線ランプが有する放電管の材料又は前記透過部の材料は、合成石英、溶融石英、オゾンレス石英、又は、Al、Na、K、Li、Ca及びBaの少なくとも1つを含むホウケイ酸ガラスである
     ことを特徴とする請求項1から3のいずれか1項に記載の浄化装置。
  5.  浄化対象物が配置され又は流動する浄化空間を形成する浄化容器をさらに備え、
     前記透過部は前記浄化空間に配置される
     ことを特徴とする請求項1から4のいずれか1項に記載の浄化装置。
  6.  前記排気部から排出されたオゾンを前記浄化空間に放出するオゾン放出部を備え、
     前記浄化容器は、分離された第1室及び第2室と、当該第1室及び第2室を連通する流動路とを含む浄化空間を形成し、
     前記オゾン放出部は前記第1室に設けられ、
     前記紫外線ランプ及び前記収容部の前記透過部は前記第2室に設けられる
     ことを特徴とする請求項5に記載の浄化装置。
  7.  前記オゾン放出部は、前記排気部から排出されたオゾンを気泡にして、前記浄化空間に放出するエアストーン又はマイクロバブル発生装置を備える
     ことを特徴とする請求項6に記載の浄化装置。
  8.  前記浄化容器は、
      前記第1室と外部とを連通する連通部と、
      前記連通部に設けられ、オゾンを分解するフィルタとを備える
     ことを特徴とする請求項6又は7に記載の浄化装置。
  9.  前記浄化容器は、
      前記浄化対象物である流体を外部から前記第1室に流入させる流入部と、
      前記流体を前記第2室から外部へ流出させる流出部とを備える
     ことを特徴とする請求項6から8のいずれか1項に記載の浄化装置。
  10.  前記収容部の周囲に設けられており、紫外線又は可視光が照射されることによって光触媒反応が発現する光触媒部材をさらに備える
     ことを特徴とする請求項1から9のいずれか1項に記載の浄化装置。
  11.  オゾン生成作用を有する波長の紫外線と殺菌作用を有する波長の紫外線とを生成し、
     生成された紫外線を酸素を含む気体に照射することによりオゾンを生成し、
     生成したオゾンを浄化対象物に供給し、
     生成された紫外線を前記浄化対象物に照射する、
     ことを特徴とする浄化方法。
PCT/JP2012/079490 2011-11-15 2012-11-14 浄化装置と浄化方法 WO2013073564A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280056222.4A CN104023753A (zh) 2011-11-15 2012-11-14 净化装置和净化方法
US14/358,434 US20140328720A1 (en) 2011-11-15 2012-11-14 Purification device and purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249463 2011-11-15
JP2011249463A JP2013103184A (ja) 2011-11-15 2011-11-15 浄化装置

Publications (1)

Publication Number Publication Date
WO2013073564A1 true WO2013073564A1 (ja) 2013-05-23

Family

ID=48429620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079490 WO2013073564A1 (ja) 2011-11-15 2012-11-14 浄化装置と浄化方法

Country Status (4)

Country Link
US (1) US20140328720A1 (ja)
JP (1) JP2013103184A (ja)
CN (1) CN104023753A (ja)
WO (1) WO2013073564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572564B (zh) * 2015-04-24 2017-03-01 維妙實業有限公司 水潔淨裝置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014012870A1 (de) * 2013-09-05 2015-03-05 Seoul Viosys Co., Ltd. Luftreiniger unter Verwendung von ultravioletten Strahlen
JP5807209B2 (ja) 2013-09-26 2015-11-10 パナソニックIpマネジメント株式会社 水耕栽培装置
US10010634B2 (en) 2014-01-29 2018-07-03 P Tech, Llc Systems and methods for disinfection
JP2019126758A (ja) * 2018-01-23 2019-08-01 パナソニック株式会社 液体処理装置
CN109368887B (zh) * 2018-10-08 2022-03-15 江苏奥创深紫电子科技有限公司 一种具无机封装的紫外线发光二极管模组的流体载体总成
JP7206810B2 (ja) * 2018-10-30 2023-01-18 ウシオ電機株式会社 気体処理装置
WO2020153353A1 (ja) * 2019-01-22 2020-07-30 有限会社マロニエ技術研究所 浄化装置
JP7283842B2 (ja) * 2019-05-30 2023-05-30 株式会社オーク製作所 紫外線照射装置およびオゾン生成装置、オゾン生成方法
JP7320404B2 (ja) * 2019-08-16 2023-08-03 株式会社ディスコ 加工液循環装置
JP7024021B2 (ja) * 2020-08-07 2022-02-22 株式会社オーク製作所 オゾン処理装置
CN114568322A (zh) * 2020-11-30 2022-06-03 重庆市六九畜牧科技股份有限公司 猪场生活区实时连续环境洁净系统
CN112546268A (zh) * 2020-12-17 2021-03-26 哈尔滨商业大学 采用冷链物流仓储消杀集成装置实现的消杀方法
CN113615606B (zh) * 2021-08-13 2022-06-14 浙江大学 一种基于紫外光电催化的水产品品质提升方法及系统
CN114873709A (zh) * 2022-04-26 2022-08-09 南京万瑞环境科技有限公司 一种uv气箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113832A (ja) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd 養液栽培用の養液殺菌装置
JPH04247294A (ja) * 1991-02-01 1992-09-03 Toshiba Corp 紫外線酸化水処理装置
JPH06277660A (ja) * 1993-03-24 1994-10-04 Chiyoda Kohan Kk 水処理装置
JP2001162273A (ja) * 1999-12-10 2001-06-19 Mitsui Eng & Shipbuild Co Ltd 水の浄化装置
US6824693B1 (en) * 2002-05-08 2004-11-30 Light Sources, Inc. Ozone generator and germicidal device using an ultraviolet lamp

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493843B2 (ja) * 1995-08-30 2004-02-03 株式会社明電舎 水処理における促進酸化処理装置
JP2000070971A (ja) * 1998-08-28 2000-03-07 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai オゾン反応システム
JP2000201569A (ja) * 1999-01-18 2000-07-25 Toshiba Lighting & Technology Corp 水浄化装置および水槽装置
JP2001332216A (ja) * 2000-03-14 2001-11-30 Toshiba Lighting & Technology Corp 放電ランプ、光照射装置、殺菌装置、液体処理装置および空気清浄装置
US6461501B1 (en) * 2001-05-11 2002-10-08 Hardscape Materials, Inc. Ornamental pond skimmer and filter apparatus
JP2003266088A (ja) * 2002-03-15 2003-09-24 Toshiba Corp 紫外線併用オゾン促進酸化水処理システム
JP3914850B2 (ja) * 2002-09-11 2007-05-16 株式会社東芝 紫外線併用オゾン促進酸化水処理装置およびオゾン促進酸化モジュール
US7025883B1 (en) * 2003-09-30 2006-04-11 Ok Technologies, Llc Autotrofic sulfur denitration chamber and calcium reactor
US7794608B2 (en) * 2006-06-30 2010-09-14 Zuvo Water, Llc Apparatus and method for treating water with ozone
US20080008632A1 (en) * 2006-07-07 2008-01-10 Rolf Engelhard Pressurized uv/o3 water purification system
JP2009213959A (ja) * 2008-03-07 2009-09-24 Nippon Cellulose Kk 硫化物を含有しない黒液の処理方法
JP2010056008A (ja) * 2008-08-29 2010-03-11 Ehime Univ 無水銀殺菌ランプおよび殺菌装置
SG176623A1 (en) * 2009-06-02 2012-01-30 Ian Geoffrey Cummins Fluid treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113832A (ja) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd 養液栽培用の養液殺菌装置
JPH04247294A (ja) * 1991-02-01 1992-09-03 Toshiba Corp 紫外線酸化水処理装置
JPH06277660A (ja) * 1993-03-24 1994-10-04 Chiyoda Kohan Kk 水処理装置
JP2001162273A (ja) * 1999-12-10 2001-06-19 Mitsui Eng & Shipbuild Co Ltd 水の浄化装置
US6824693B1 (en) * 2002-05-08 2004-11-30 Light Sources, Inc. Ozone generator and germicidal device using an ultraviolet lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572564B (zh) * 2015-04-24 2017-03-01 維妙實業有限公司 水潔淨裝置

Also Published As

Publication number Publication date
US20140328720A1 (en) 2014-11-06
JP2013103184A (ja) 2013-05-30
CN104023753A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013073564A1 (ja) 浄化装置と浄化方法
JP5802558B2 (ja) 養液栽培システム
JP5191782B2 (ja) 養液栽培システム
KR100439195B1 (ko) 광촉매 반응에 의한 용수 살균 방법 및 장치
JPWO2013084485A1 (ja) オゾン分解器
JP2008093549A (ja) 水浄化装置
US20050061743A1 (en) Device and device for treating aqueous liquids in human medical treatment
KR101901383B1 (ko) 식물재배용 양액 정화장치
KR20090030783A (ko) 저수조 살균장치를 포함하는 정수기 및 정수기의 저수조살균장치
KR101896964B1 (ko) 에어버블 초음파를 이용한 수처리 장치 및 이를 이용한 살균 시스템
WO2007086829A1 (en) Accessory for providing ultraviolet disinfection to a water dispenser
CN210056866U (zh) 一种具有消毒功能的电子雾化设备及收容盒
JPS6274484A (ja) 液体浄化装置
KR100774565B1 (ko) 상하수의 자외선 살균장치
JPH05305125A (ja) 水殺菌装置および超音波加湿機
KR200373329Y1 (ko) 냉온풍이 발생되는 공기 소독 정화 장치
KR200227807Y1 (ko) 저수조 음용수 살균장치
JPH10155887A (ja) 空気及び水の殺菌・浄化方法並びにその装置
KR102240590B1 (ko) 오존 생성을 포함하는 관로형 자외선 살균장치
KR101269386B1 (ko) Led-uv 램프와 광촉매를 이용한 수처리 장치
JP2002177973A (ja) 水の浄化装置
KR100390354B1 (ko) 저수조 음용수 살균장치
KR100567252B1 (ko) 정수기용 물탱크
KR101254551B1 (ko) 양의 압력제어형 가압수조와 부압에서 양의 압력까지 제어가 가능한 수조가 결합된 플라즈마 수족관 살균기
KR100419828B1 (ko) 다수의 자외선 램프를 구비하는 수처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848847

Country of ref document: EP

Kind code of ref document: A1