WO2013073529A1 - 燃料油の製造方法 - Google Patents

燃料油の製造方法 Download PDF

Info

Publication number
WO2013073529A1
WO2013073529A1 PCT/JP2012/079413 JP2012079413W WO2013073529A1 WO 2013073529 A1 WO2013073529 A1 WO 2013073529A1 JP 2012079413 W JP2012079413 W JP 2012079413W WO 2013073529 A1 WO2013073529 A1 WO 2013073529A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel oil
group
oil
fatty acid
producing fuel
Prior art date
Application number
PCT/JP2012/079413
Other languages
English (en)
French (fr)
Inventor
佐知夫 浅岡
暁紅 黎
木村 俊之
Original Assignee
公益財団法人北九州産業学術推進機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人北九州産業学術推進機構 filed Critical 公益財団法人北九州産業学術推進機構
Priority to CN201280067047.9A priority Critical patent/CN104039930A/zh
Priority to EP12849331.9A priority patent/EP2781580A1/en
Priority to US14/356,018 priority patent/US20150031929A1/en
Priority to BR112014011627A priority patent/BR112014011627A2/pt
Priority to CA2854711A priority patent/CA2854711A1/en
Priority to KR1020147013828A priority patent/KR20140106517A/ko
Priority to SG11201402173RA priority patent/SG11201402173RA/en
Priority to JP2013544271A priority patent/JP5866740B2/ja
Publication of WO2013073529A1 publication Critical patent/WO2013073529A1/ja
Priority to IL232482A priority patent/IL232482A0/en
Priority to PH12014501131A priority patent/PH12014501131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2078Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by a transformation in which at least one -C(=O)-O- moiety is eliminated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0484Vegetable or animal oils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Definitions

  • the present invention relates to a method for producing a fuel oil, particularly a fuel oil useful as an aircraft fuel oil, from a fatty acid alkyl ester used for biodiesel fuel (BDF) or the like.
  • BDF biodiesel fuel
  • Biofuels produced from biomass-based raw materials include bioalcohol fuels obtained by direct fermentation of carbohydrates contained in sugarcane, corn, etc., or by fermentation of carbohydrates obtained by decomposing cellulose contained in thinned wood, etc.
  • Biodiesel fuel (BDF) and the like using fatty acid methyl esters obtained by transesterification of animal and vegetable fats and oils as fuel oils are known.
  • bioalcohol fuel made from sugarcane, corn, etc. has an impact on the stable supply of food, requires a lot of energy to remove water, and is difficult to apply to aviation fuel. There are challenges.
  • Bioalcohol fuel using cellulose as a raw material has problems such as high production cost and difficulty in application to aviation fuel.
  • biodiesel fuel is used by being added to or mixed with conventional petroleum-based fuels (see, for example, Patent Document 1), it is still insufficient as a complete alternative technology for petroleum-based raw materials, and by oxidation. There are also problems such as deterioration and low-temperature solidification. In addition, the high cost of production due to the treatment of by-produced glycerin and the cleaning of the product oil is an obstacle to popularization in the transportation industry where price competition is becoming increasingly intense. Furthermore, since the fatty acid group which comprises fats and oils has too many carbon numbers or it is linear, the subject that a sufficient octane number cannot be obtained as it is also exists.
  • biohydrocracking which is obtained by a process of decomposing animal and vegetable oils in the presence of hydrogen gas or a catalyst using a vacuum gas oil hydrocracking apparatus or the like, and mainly contains a hydrocarbon compound.
  • Fuel (BHF) has been proposed.
  • reactions such as reduction of the carboxyl group, shortening of the hydrocarbon chain, isomerization of the straight chain alkyl group to the branched chain alkyl group, and the like consist of a hydrocarbon compound having a desired carbon number or branch A mixture is obtained (see, for example, Patent Documents 2 to 7).
  • the present invention has been made in view of such circumstances. While reducing the hydrogen pressure, a fuel oil or a raw material containing n-paraffin or isoparaffin as a main component from a raw oil containing a fatty acid alkyl ester or a raw material thereof can be obtained at low cost and high yield. It aims at providing the manufacturing method of the raw material oil which can be manufactured at a high rate.
  • the present invention solves the above problems by providing a method for producing a fuel oil as described in any one of [1] to [12] below.
  • One or more metal elements belonging to Group 9 or Group 10 of the Periodic Table and Group 6 of the Periodic Table under the condition of a feedstock oil containing a fatty acid alkyl ester and hydrogen gas at a hydrogen pressure of 1 MPa or less.
  • a fuel oil mainly comprising one or both of n-paraffin and isoparaffin by contacting with a catalyst in which one or a plurality of Group 6 element oxides belonging to the group are supported on a porous metal oxide support And the weight ratio of the Group 6 element contained in the catalyst to the metal element does not exceed 1.0 in terms of metal.
  • [2] The method for producing fuel oil according to [1], wherein the metal element is nickel and / or cobalt, and the group 6 element is molybdenum and / or tungsten molybdenum.
  • [3] The method for producing fuel oil according to the above [2], wherein the metal element is nickel and the Group 6 element is molybdenum.
  • [4] The method for producing fuel oil according to any one of [1] to [3], wherein the porous metal oxide support is ⁇ -alumina or a modified product thereof.
  • [7] The method for producing a fuel oil according to the above [6], wherein the content of lauric acid groups in the fatty acid group composition of the fatty acid alkyl ester is 40% by weight or more.
  • [8] The method for producing fuel oil according to any one of [1] to [7], wherein the raw material oil is produced from oil derived from plants or bacteria.
  • the main component is one or both of n-paraffin and isoparaffin used as a raw material for fuel oil by hydrocracking a fatty acid alkyl ester contained in the raw material oil under a low hydrogen pressure of 1 MPa or less.
  • Fuel oil can be produced at low cost and high yield. Therefore, high-grade fuel oil can be produced at low cost from carbon-neutral raw materials such as vegetable oils and fats. Therefore, it is possible to provide a powerful alternative to conventional fossil fuel-derived fuel oil, and as a result, present effective solutions for environmental problems such as depletion of fossil fuels and reduction of greenhouse gases typified by carbon dioxide. Is.
  • the catalyst used in the implementation of the method for producing fuel oil of the present invention is composed of one or more metal elements belonging to Group 9 or Group 10 of the periodic table, An oxide of one or more Group 6 elements belonging to Group 6 is supported on a porous metal oxide support.
  • porous metal oxide carrier there can be used alumina or a material containing a composite oxide such as silica containing alumina as a main component.
  • alumina or modified alumina containing alumina as a main component is preferable.
  • porous ⁇ -alumina ⁇ -Al 2 O 3
  • ⁇ -alumina, ⁇ -alumina, amorphous alumina, and the like may be used.
  • Alumina the main component of the carrier, is a method of heat-treating aluminum hydroxide obtained by neutralizing an aluminum salt with an alkali, a method of neutralizing or hydrolyzing an aluminum salt and an aluminate, or an aluminum amalgam or aluminum alcoholate. It may be produced by using any of the methods for hydrolyzing, and in addition to these methods, it may be produced using a commercially available alumina intermediate or boehmite powder as a precursor.
  • the porous inorganic oxide carrier is silica (SiO 2 ), silica-alumina (SiO 2 / Al 2 O 3 ), boria (B 2 O 3 ), titania (TiO 2 ), magnesia (MgO).
  • Activated carbon, diphosphorus pentoxide (P 2 O 5 ) or a composite oxide thereof may be included.
  • the porous inorganic oxide support may contain zeolite as silica-alumina (SiO 2 / Al 2 O 3 ).
  • Zeolite is a generic name for aluminosilicates with fine pores in the crystal. Specific examples include amisite (monoclinic system), ammonium leucite, arsenite, barrel zeolite, berbergite, biquitite, bogsite.
  • zeolite when used as the porous metal oxide support, its structure is not particularly limited, and may be, for example, Y-type zeolite, X-type zeolite, beta-type zeolite, ZSM-5 zeolite, etc. The mixture containing 2 or more of these may be sufficient.
  • Group 9 or Group 10 of the periodic table means Group 9 or Group 10 of the long-period type (IUPAC format) periodic table, respectively.
  • metal elements belonging to these groups are as follows. , Cobalt (Co), nickel (Ni), rhodium (Rh), palladium (Pd), iridium (Ir) and platinum (Pt). Of these metal elements, cobalt and nickel are preferable in terms of catalytic activity, cost, and the like, and nickel is particularly preferable.
  • the catalyst contains one of these metals or any two or more of them in an arbitrary ratio, and these are supported on the surface of the porous metal oxide support in the form of metal.
  • Group 6 of the periodic table means Group 6 of the long-period type (IUPAC format) periodic table, and specific examples of elements belonging to these groups (referred to as “Group 6 elements” in the present invention). These include chromium (Cr), molybdenum (Mo) and tungsten (W). Of these, molybdenum and tungsten are preferred, and molybdenum is particularly preferred.
  • the catalyst contains one of these metals or any two or more of them in an arbitrary ratio, and these are supported on the surface of the porous metal oxide support in the form of an oxide.
  • Metal elements belonging to Group 9 or Group 10 of the periodic table have catalytic activity for the hydrocracking reaction of fatty acid alkyl esters contained in the feedstock, and are oxides of elements belonging to Group 6 of the periodic table Is considered to contribute to imparting basicity to the catalyst and improving the dispersibility of the metal.
  • the weight ratio of the Group 6 element to the metal element belonging to Group 9 or Group 10 of the periodic table does not exceed 1.0 in terms of metal. That is, when the weight of the metal element belonging to Group 9 or Group 10 of the periodic table is w 1 and the metal equivalent weight of the Group 6 element is w 2 , (w 2 / w 1 ) ⁇ 1.
  • a preferable range of w 2 / w 1 is 0.05 or more and 1.0 or less, more preferably 0.1 or more and 0.7 or less, and further preferably 0.15 or more and 0.5 or less.
  • the catalyst impregnates a porous metal oxide support with an aqueous solution containing a salt of a Group 6 element and an aqueous solution containing a salt of a metal belonging to Group 9 or Group 10 of the periodic table, and performs a hydrogen reduction treatment after firing. It is manufactured by.
  • the salt used in the production of the catalyst is not particularly limited as long as it has water solubility, and includes inorganic acid salts such as nitrates, halide salts, sulfates and phosphates, and organic acid salts such as carboxylates. Can be used.
  • a polyacid salt or a heteropolyacid salt which is available at a relatively low cost is preferably used.
  • the salt of the Group 6 element and the salt of the metal belonging to Group 9 or Group 10 of the periodic table may be supported at the same time by impregnating an aqueous solution containing both, followed by firing and hydrogen reduction treatment.
  • One of them may be impregnated, and after calcination and hydrogen reduction, the other may be impregnated to perform calcination and hydrogen reduction.
  • the hydrogen reduction treatment may be performed after the impregnation and the firing are sequentially performed.
  • the raw material oil used in the production of fuel oil is any transesterification method in the presence of an acid or base catalyst from any animal or vegetable oil and fat and lower alkyl alcohol containing fatty acid triglyceride as the main component.
  • Fatty acid alkyl esters synthesized using the known methods can be used without particular limitation.
  • Examples of the lower alkyl alcohol used in the production of the fatty acid alkyl ester include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutyl alcohol, t-butyl alcohol, etc., but methanol is most preferably used.
  • Catalysts used for transesterification include acid catalysts such as hydrochloric acid, sulfuric acid, alkylsulfonic acid, and arylsulfonic acid, solid acid catalysts such as Nafion-H (trade name), sodium hydroxide, potassium hydroxide, sodium Examples include base catalysts such as alkoxides, potassium alkoxides, and lanthanoid alkoxides.
  • the fatty acid group composition (carbon number and degree of unsaturation in the fatty acid group) of the fatty acid alkyl ester contained in the feedstock oil affects the carbon number and content of each hydrocarbon compound that makes up the resulting fuel oil.
  • Appropriate raw material oils can be appropriately selected and used according to the performance and the number of carbons required for the fuel oil.
  • fats and oils used to obtain raw material oil include corn oil, soybean oil, sesame oil, rapeseed oil (canola oil), rice oil, coconut oil, cocoon oil, safflower oil cocoon (safflower oil), palm kernel oil, coconut oil , Cottonseed oil, sunflower oil, camellia oil, olive oil, peanut oil, almond oil, avocado oil, hazelnut oil, walnut oil, grape seed oil, mustard oil, lettuce oil, cacao butter, palm oil, seaweed and microalgae, etc.
  • oils such as fats and oils produced by algae, fish oil, whale oil, cocoon oil, liver oil, lard (pig fat), het (beef tallow), chicken oil, rosin, sheep fat, horse fat, milk fat, butter, etc. Oils and fats produced by bacteria.
  • microalgae that can be used as a source of raw material oil
  • examples of microalgae that can be used as a source of raw material oil include Botryococcus braunii, Chlorella, Aurantiochytrium, and the like.
  • a raw material oil derived from microalgae mainly composed of a fatty acid alkyl ester having a fatty acid alkyl ester content of 40 to 14% by weight or more in the fatty acid group composition of the fatty acid alkyl ester suitable for the production of aviation fuel oil
  • examples thereof include fatty acid alkyl esters produced from oils and fats derived from microalgae deposited under the deposit number FERM P-22090.
  • aviation fuels must be composed mainly of n-paraffins and isoparaffins having about 8 to 14 carbon atoms and have excellent low-temperature characteristics (clouding point, solidification temperature).
  • a raw material oil for efficiently producing a fuel oil that can satisfy such requirements the content of a saturated fatty acid group having 8 to 14 carbon atoms in the fatty acid group composition of the fatty acid alkyl ester contained in the raw material oil is used.
  • a raw material oil containing 40% by weight or more of a fatty acid alkyl ester as a main component is preferable, and among these, a lauric acid group content of 40% by weight or more is particularly preferable.
  • preferable raw material oil for aviation fuel include coconut oil collected from coconut seeds and fatty acid alkyl esters derived from palm kernel oil collected from oil palm seeds. And fatty acid alkyl esters derived from oils and fats collected from algae, particularly microalgae.
  • a pretreatment for removing the free fatty acid may be performed as necessary, but the free fatty acid is also converted into a lower alkyl alcohol under the same conditions as the transesterification of the fatty acid triglyceride. Since it reacts and produces
  • the fuel oil is efficiently produced under a low hydrogen pressure of 1 MPa or less, preferably 0.8 MPa or less and a relatively low reaction temperature of 250 to 400 ° C. Can be obtained. Since the hydrogen pressure can be lowered, there is no need to use a reaction vessel with high pressure resistance, and it is relatively less susceptible to hydrogen embrittlement in a metal reaction vessel. This makes it possible to produce fuel oil at low cost.
  • the liquid space velocity (LHSV) during the reaction is, for example, 0.5 to 20 hr ⁇ 1
  • the hydrogen / oil ratio is, for example, 50 to 4000 NL / L.
  • the fuel oil thus obtained is mainly composed of n-paraffin having a carbon number substantially equal to the carbon number of the fatty acid group contained in the raw material oil.
  • the isomerization treatment may be performed using any known catalyst such as a platinum catalyst or a solid acid catalyst.
  • ⁇ -alumina or the like is used as the porous metal oxide support, it acts as a solid acid catalyst, so that isomerization proceeds at the same time, and formation of isoparaffin may be observed.
  • the time required for the isomerization step necessary to improve the content of isoparaffin can be shortened, and in some cases, the isomerization step can be omitted. Therefore, especially when it is necessary to improve the content of isoparaffin, the production cost of fuel oil can be reduced.
  • fuel oil can be obtained by adding an appropriate amount of additives such as antioxidants and antifreeze agents.
  • additives such as antioxidants and antifreeze agents.
  • coconut oil or fats and oils derived from microalgae are used as a raw material oil, a fuel oil that satisfies the requirements for aviation oil fuel defined in ASTM D 7566 and the like can be obtained.
  • the main standards for aviation turbine fuel oils containing synthetic hydrocarbons as defined in ASTM D 7566 are: ⁇ Hydrocarbon oil: 99.5% or more ⁇ Cycloparaffin 15% or less ⁇ Paraffin hydrocarbon oil: 70% to 85% ⁇ Olefin hydrocarbon: 5% or less ⁇ Aromatic compound: 0.5% or less ⁇ Acidity: 0.10 mgKOH / g or less ⁇ Sulfur compound: 3 ppm or less
  • Example 1 Preparation of Catalyst ⁇ 1> Preparation of ⁇ -Al 2 O 3 Support A 3900 cc aqueous solution of aluminum nitrate having a concentration of 2.67 mol / L was prepared and 3900 cc of an aqueous ammonia solution having a concentration of 14% by weight were prepared. Next, 20 L of pure water was put into a 30 L enamel container, heated to 70 ° C. while stirring, and further 650 cc of the aluminum nitrate aqueous solution was added and stirred for 5 minutes while continuing stirring (pH value: 2.
  • the obtained ⁇ -alumina support has a surface area of 275 m 2 / g, a pore volume of 0.65 cc / g, an average pore diameter of 8.9 nm (89 mm), and an average pore diameter of ⁇ 3 nm (30 mm) with respect to the total pore volume. ) was 91%.
  • the pore diameter distribution of the ⁇ -alumina support obtained by the above method was very small, and it was confirmed that it had a porous structure with uniform pore diameters.
  • hydrocracking catalyst (1) Using the above porous inorganic oxide carrier, 97 cc of a nickel nitrate aqueous solution prepared to a concentration of 0.5 mol / L was impregnated with 100 g of the porous inorganic oxide carrier, and allowed to stand in a sealed container for 12 hours. Thereafter, water was removed at room temperature with an evaporator, and fired in an electric furnace at 200 ° C. in air for 3 hours to obtain each fired product in which nickel (Ni) was supported on a porous inorganic oxide carrier. . Next, each fired product was charged into a flow-type hydrogen reduction device, and hydrogen reduction was performed under a hydrogen stream under conditions of 370 ° C. for 15 hours to obtain a hydrocracking catalyst (1).
  • hydrocracking catalyst (2) An aqueous solution obtained by dissolving 7.19 g of ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O] in 65.92 cc of pure water with respect to 100 g of the hydrocracking catalyst (1) obtained above. After impregnating for 12 hours in an airtight container, moisture is removed at room temperature with an evaporator, and fired in an electric furnace at 200 ° C. in air for 3 hours. The hydrocracking was charged in a hydrogen-reducing apparatus, and was hydrogen-reduced in a hydrogen stream at 370 ° C.
  • Catalyst (2) was prepared.
  • the nickel supported amount (Ni supported amount) in terms of metallic Ni is 22% by weight
  • the molybdic acid (MoO 3 ) supported amount (MoO 3 supported amount) is 5% by weight.
  • hydrocracking catalyst (3) A solution prepared by dissolving 100 g of the hydrocracking catalyst (1) obtained above and 4.72 g of ammonium tungstate [5 (NH 4 ) 2 ⁇ 12WO 3 ⁇ 5H 2 O] in an aminoethanol aqueous solution (65.92 cc) was obtained. After impregnating and allowing to stand for 12 hours in an airtight container, moisture is removed at room temperature with an evaporator, and fired in an electric furnace at 200 ° C. in air for 3 hours. Hydrogenation in which hydrogen reduction apparatus is charged and hydrogen reduction is performed under conditions of 370 ° C.
  • a cracking catalyst (3) was prepared.
  • the nickel supported amount (Ni supported amount) in terms of metallic Ni is 15% by weight
  • the tungstic acid (WO 3 ) supported amount is 5% by weight.
  • Example 2 Production of fuel oil using coconut oil-derived fatty acid methyl ester as raw material ⁇ 1> Production of fatty acid methyl ester from coconut oil Hybrid coconut oil was converted into any known catalyst such as sulfuric acid or p-toluenesulfonic acid. In the presence of an acid catalyst, sodium hydroxide, potassium hydroxide, etc.), and a fatty acid methyl ester was synthesized by transesterification.
  • any known catalyst such as sulfuric acid or p-toluenesulfonic acid.
  • an acid catalyst sodium hydroxide, potassium hydroxide, etc.
  • the obtained fatty acid methyl ester was 45 to 52% by weight of methyl laurate (12: 0), 15 to 22% by weight of methyl myristate (14: 0), 6 to 10% by weight of methyl caprylate (8: 0), 4 to 12% by weight of methyl caprate (10: 0), 1 to 5% by weight of methyl stearate (18: 0), 2 to 10% by weight of methyl oleate (18: 1), methyl linoleate (18: 2) 1 to 3% by weight was contained as a main component (note that the numbers in parentheses indicate the number of carbons: the number of double bonds).
  • FIG. 1 shows the relationship between the reaction time and the conversion rate
  • FIG. 2 shows the carbon number distribution of the obtained hydrocarbon.
  • the conversion in this reaction was almost 100%
  • the product was mainly C 11 hydrocarbons, and almost all of them were normal paraffins. It was.
  • the yield of the obtained liquid hydrocarbon the aviation fuel fraction yield indicating the ratio of the aviation fuel fraction (C 7 to C 16 ) in the liquid hydrocarbon, and the average carbon number of the liquid hydrocarbon are calculated.
  • the results are shown in Table 1 below.
  • the liquid hydrocarbon yield is 94.5% and the aviation fuel fraction yield is very high, 90.5%.
  • Example 3 Production of fuel oil using fatty acid methyl ester derived from microalgae ⁇ 1> Production of fatty acid methyl ester from fats and oils derived from microalgae The microalgae deposited under accession number FERM P-22090 is cultured. The collected fats and oils (hereinafter referred to as “fine algal fats and oils”) are converted into catalysts (any known acid catalyst such as sulfuric acid and p-toluenesulfonic acid, any known base catalyst such as sodium hydroxide and potassium hydroxide). The fatty acid methyl ester was synthesized by a transesterification reaction with methanol in the presence of any).
  • catalysts any known acid catalyst such as sulfuric acid and p-toluenesulfonic acid, any known base catalyst such as sodium hydroxide and potassium hydroxide.
  • the fatty acid group composition (analyzed by GC / MS method) of the obtained fatty acid ester is as shown in Table 2 below, and the proportion of the lauric acid group (C 11 H 23 COOH) in the fatty acid group composition is 40. It turns out that it is more than weight%.
  • Example 3 fatty acid methyl ester obtained by transesterifying fatty acid triglyceride collected by culturing microalgae deposited under the deposit number FERM P-22090 using methanol in the presence of a catalyst was used. Used as a raw material oil, but by blending fatty acid methyl esters obtained from oils and fats derived from two or more known plants (algae including microalgae and bacteria) in any ratio
  • a fatty acid methyl ester mixture having a composition as shown in Table 2 may be prepared and used as a raw material oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 水素圧力を低減しつつも、脂肪酸アルキルエステルを含む原料油から、n-パラフィンまたはイソパラフィンを主成分とする燃料油またはその原料を安価かつ高収率に製造できる原料油の製造方法を提供する。 脂肪酸アルキルエステルを含む原料油と、水素ガスとを、水素圧力1MPa以下の条件下で、周期表の第9族または第10族に属する1または複数の金属元素および周期表の第6族に属する1または複数の第6族元素酸化物を多孔質金属酸化物担体上に担持させた触媒と接触させ、n-パラフィンおよびイソパラフィンの一方または双方を主成分とする燃料油を製造する工程を有する燃料油の製造方法であって、触媒に含まれる前記第6族元素の前記金属元素に対する重量比が、金属換算で1.0を超えない。

Description

燃料油の製造方法
 本発明は、バイオディーゼル燃料(BDF)等に用いられる脂肪酸アルキルエステルより燃料油、特に航空機用燃料油として有用な燃料油を製造する方法に関する。
 温室効果ガスの削減に対する社会的要請の高まりや、原油価格の高騰および石油資源の保全の必要性といった観点から、従来の石油に替わる燃料油の原料として、非枯渇性資源であり、大気中の二酸化炭素濃度を増加させない(いわゆる「カーボンニュートラル」な)バイオマス系原料が注目を集めている。
 バイオマス系原料より生産されるバイオ燃料としては、サトウキビやトウモロコシ等に含まれる糖質の直接発酵、あるいは間伐材等に含まれるセルロースを分解して得られる糖質の発酵により得られるバイオアルコール燃料、動植物油脂のエステル交換反応により得られる脂肪酸メチルエステルを燃料油として使用するバイオディーゼル燃料(BDF)等が知られている。これらのうち、サトウキビやトウモロコシ等を原料とするバイオアルコール燃料には、食糧の安定供給への影響、水分の除去に多大なエネルギーを必要とすること、航空燃料への適用が困難なこと等の課題が存在する。セルロースを原料とするバイオアルコール燃料には、製造コストが高いことや、やはり航空燃料への適用が困難なこと等の課題が存在する。
 バイオディーゼル燃料は、従来の石油系燃料に添加または混合して用いられていることから(例えば、特許文献1参照)、石油系原料の完全な代替技術としては未だ不十分であると共に、酸化による劣化や低温固化等の課題も存在する。また、副生するグリセリンの処理や生成油の洗浄が必要なため製造コストが高いことが、価格競争が激しくなりつつある運輸業界への普及の障害となっているのが現状である。
 さらに、油脂を構成する脂肪酸基の炭素数が多すぎたり、直鎖状であるために、そのままでは十分なオクタン価が得られない等の課題も存在する。
 上記のような課題に鑑みて、減圧軽油水素化分解装置等を用いて、水素ガスや触媒の存在下で動植物油を分解するプロセスにより得られ、炭化水素系化合物を主成分とするバイオハイドロクラッキング燃料(BHF)が提案されている。分解の過程において、カルボキシル基の還元や、炭化水素鎖の短縮、直鎖アルキル基の分岐鎖アルキル基への異性化等の反応が進行し、所望の炭素数や分岐を有する炭化水素化合物からなる混合物が得られる(例えば、特許文献2~7参照)。
特表2010-532419号公報 特開2009-40833号公報 特開2009-40855号公報 特開2009-40856号公報 特表2011-515539号公報 特開2011-52074号公報 特開2011-52077号公報
 しかしながら、特許文献2~4、6~7記載の軽油組成物の製造は、2~13MPaという高い水素圧力の下で行われるため、高圧容器を必要とすることから、これらの軽油組成物については、製造コストが高くなるという課題が存在する。
 特許文献5記載の輸送燃料の製造についても、水素化処理は約0.7~約14MPaという高い水素圧力を必要とする。
 本発明はかかる事情に鑑みてなされたもので、水素圧力を低減しつつも、脂肪酸アルキルエステルを含む原料油から、n-パラフィンまたはイソパラフィンを主成分とする燃料油またはその原料を安価かつ高収率に製造できる原料油の製造方法を提供することを目的とする。
 本発明は、下記の[1]~[12]のいずれかに記載の燃料油の製造方法を提供することにより上記課題を解決するものである。
 [1] 脂肪酸アルキルエステルを含む原料油と、水素ガスとを、水素圧力1MPa以下の条件下で、周期表の第9族または第10族に属する1または複数の金属元素および周期表の第6族に属する1または複数の第6族元素酸化物を多孔質金属酸化物担体上に担持させた触媒と接触させ、n-パラフィンおよびイソパラフィンの一方または双方を主成分とする燃料油を製造する工程を有し、前記触媒に含まれる前記第6族元素の前記金属元素に対する重量比が、金属換算で1.0を超えない燃料油の製造方法。
 [2] 前記金属元素がニッケルおよび/またはコバルトであり、前記第6族元素がモリブデンおよび/またはタングステンモリブデンである上記[1]記載の燃料油の製造方法。
 [3] 前記金属元素がニッケルであり、前記第6族元素がモリブデンである上記[2]記載の燃料油の製造方法。
 [4] 前記多孔質金属酸化物担体がγ-アルミナないしその修飾物である上記[1]から[3]のいずれか1項記載の燃料油の製造方法。
 [5] 前記原料油と、水素ガスと、前記触媒とを、液空間速度0.5~20hr-1
反応温度250~400℃の条件下で接触させる上記[1]から[4]のいずれか1項記載の燃料油の製造方法。
 [6] 前記原料油に含まれる脂肪酸アルキルエステルの脂肪酸基組成における炭素数8~14の飽和脂肪酸基の含有量が40重量%以上である上記[1]から[5]のいずれか1項記載の燃料油の製造方法。
 [7] 前記脂肪酸アルキルエステルの脂肪酸基組成におけるラウリン酸基の含有量が40重量%以上である上記[6]記載の燃料油の製造方法。
 [8] 前記原料油が植物または細菌類由来の油脂から製造される上記[1]から[7]のいずれか1項記載の燃料油の製造方法。
 [9] 前記植物由来の油脂が、2種類以上の植物に由来する油脂の混合物である上記[8]記載の燃料油の製造方法。
 [10] 前記植物由来の油脂がココナッツ油もしくはパーム核油または両者の混合物である上記[8]または[9]記載の燃料油の製造方法。
 [11] 前記植物由来の油脂が藻類由来の油脂である上記[8]または[9]記載の燃料油の製造方法。
 [12] 得られた燃料油が、ASTM D 7566に規定された航空油燃料の要件を満たしている上記[1]から[11]のいずれか1項記載の燃料油の製造方法。
 本発明によると、1MPa以下という低い水素圧力下で、原料油に含まれる脂肪酸アルキルエステルを水素化分解することにより、燃料油の原料となるn-パラフィンおよびイソパラフィンの一方または双方を主成分とする燃料油を安価かつ高収率で製造できる。そのため、植物性油脂等のカーボンニュートラルな原料から、高品位な燃料油を低コストで製造できる。したがって、従来の化石燃料由来の燃料油に対する有力な代替燃料を提供でき、ひいては化石燃料の枯渇、二酸化炭素に代表される温室効果ガスの削減等の環境問題に対し、有効な解決策を提示するものである。
ココナッツ油由来の脂肪酸メチルエステルの水素化分解における反応時間と転化率の関係を示すグラフである。 ココナッツ油由来の脂肪酸メチルエステルの水素化分解により得られた炭化水素の炭素数分布を示すグラフである。
 次いで、本発明を具現化するための具体的な実施形態について説明する。
 本発明の燃料油の製造方法の実施に用いられる触媒(以下、「触媒」と略称する。)は、周期表の第9族または第10族に属する1または複数の金属元素および周期表の第6族に属する1または複数の第6族元素の酸化物を多孔質金属酸化物担体上に担持させたものである。
 多孔質金属酸化物担体としては、アルミナや、アルミナを主成分としたシリカ等の複合酸化物を含有するもの等を使用することができる。これらのうち、その触媒の比表面積を大きくする観点から、アルミナまたはアルミナを主成分とする修飾アルミナが好ましい。上記アルミナとしては、多孔質であるγ-アルミナ(γ-Al)が特に好ましいが、α-アルミナ、β-アルミナ、非晶質アルミナなどであってもよい。
 担体の主成分であるアルミナは、アルミニウム塩をアルカリで中和して得られる水酸化アルミニウムを熱処理する方法、アルミニウム塩とアルミン酸塩を中和または加水分解する方法、あるいはアルミニウムアマルガムまたはアルミニウムアルコレートを加水分解する方法のいずれの方法を用いて製造してもよく、これらの方法以外に市販のアルミナ中間体やベーマイトパウダー等を前駆体として使用して製造してもよい。
 多孔質無機酸化物担体は、アルミナの他にもシリカ(SiO)、シリカ-アルミナ(SiO/Al)、ボリア(B)、チタニア(TiO)、マグネシア(MgO)、活性炭、五酸化二リン(P)またはこれらの複合酸化物等を含んでもよい。
 さらに、上記多孔質無機酸化物担体は、シリカ-アルミナ(SiO/Al)としてゼオライト(Zeolite)を含んでもよい。ゼオライトは、結晶中に微細孔を有するアルミノケイ酸塩の総称であり、その具体例としては、アミサイト(単斜晶系)、アンモニウム白榴石、方沸石、バレル沸石、ベルベルゲイト、ビキタイト、ボッグサイト、菱沸石、灰菱沸石、ソーダ菱沸石、カリ菱沸石、斜プロチル沸石、カリ斜プロチル沸石、ソーダ斜プロチル沸石、灰斜プロチル沸石、コウルス沸石、ダキアルディ沸石、灰ダキアルディ沸石、ソーダダキアルディ沸石、エディトン沸石、剥沸石、エリオン沸石、ソーダエリオン沸石、カリエリオン沸石、灰エリオン沸石、フェリエ沸石、苦土フェリエ沸石、カリフェリエ沸石、ソーダフェリエ沸石、ガロン沸石、ギスモンド沸石、グメリン沸石、ソーダグメリン沸石、灰グメリン沸石、カリグメリン沸石、ゴビンス沸石、ゴナルド沸石、重土十字沸石、輝沸石、灰輝沸石、ストロンリチウム輝沸石、ソーダ輝沸石、カリ輝沸石、濁沸石、白榴石、灰レビ沸石、ソーダレビ沸石、中沸石、ソーダ沸石、十字沸石、ソーダ十字沸石、カリ十字沸石、灰十字沸石、ポルクス石、スコレス沸石、ステラ沸石、束沸石、灰束沸石、ソーダ束沸石、トムソン沸石、ワイラケ沸石、湯河原沸石等の天然ゼオライト化合物およびA型ゼオライト、Y型ゼオライト、X型ゼオライト、ベータ型ゼオライト、ZSM-5ゼオライト等の合成ゼオライト化合物が挙げられる。
 また、多孔質金属酸化物担体としてゼオライトを用いる場合、その構造は特に制限されず、例えば、Y型ゼオライト、X型ゼオライト、ベータ型ゼオライト、ZSM-5ゼオライト等であってもよく、これらの任意の2以上を含む混合物であってもよい。
 「周期表の第9族または第10族」とは、それぞれ、長周期型(IUPAC形式)周期表の第9族または第10族を意味し、これらの族に属する金属元素の具体例としては、コバルト(Co)、ニッケル(Ni)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)および白金(Pt)が挙げられる。これらの金属元素のうち、触媒活性、価格等の点で好ましいのはコバルトおよびニッケルであり、特に好ましいのはニッケルである。触媒はこれらの金属のうち1種、または任意の2種以上を任意の割合で含んでおり、これらは金属の形態で多孔質金属酸化物担体の表面に担持されている。
 「周期表の第6族」とは、長周期型(IUPAC形式)周期表の第6族を意味し、これらの族に属する元素(本発明において「第6族元素」という。)の具体例としては、クロム(Cr)、モリブデン(Mo)およびタングステン(W)が挙げられる。これらのうち好ましいのはモリブデンおよびタングステンであり、特に好ましいのはモリブデンである。触媒はこれらの金属のうち1種、または任意の2種以上を任意の割合で含んでおり、これらは酸化物の形態で多孔質金属酸化物担体の表面に担持されている。
 周期表の第9族または第10族に属する金属元素は、原料油に含まれる脂肪酸アルキルエステルの水素化分解反応に対する触媒活性を有しており、周期表の第6族に属する元素の酸化物は、触媒への塩基性の付与や、上記の金属の分散性の向上に寄与していると考えられる。周期表の第9族または第10族に属する金属元素に対する第6族元素の重量比は、金属換算で1.0を超えない。すなわち、周期表の第9族または第10族に属する金属元素の重量をw、第6族元素の金属換算重量をwとした場合、(w/w)≦1である。w/wが1を超えると水素化分解活性が低下するため、原料油の変換効率および炭化水素の収率が低下する。w/wの好ましい範囲は0.05以上1.0以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.15以上0.5以下である。
 触媒は、多孔質金属酸化物担体に第6族元素の塩を含む水溶液および周期表の第9族または第10族に属する金属の塩を含む水溶液を含浸させ、焼成後、水素還元処理を行うことにより製造される。触媒の製造に用いられる塩は、水溶性を有している限りにおいて特に制限されず、硝酸塩、ハロゲン化物塩、硫酸塩、リン酸塩等の無機酸塩、カルボン酸塩等の有機酸塩を用いることができる。なお、第6族元素の塩としては、比較的に安価に入手可能なポリ酸塩またはヘテロポリ酸塩が好ましく用いられる。第6族元素の塩および周期表の第9族または第10族に属する金属の塩は、両者を含む水溶液を含浸後、焼成および水素還元処理を行うことにより同時に担持させてもよいが、どちらか一方を含浸させ、焼成および水素還元後、他方について含浸させ、焼成および水素還元を行うようにしてもよい。あるいは、含浸および焼成を順次行った後、水素還元処理を行うようにしてもよい。
 燃料油の製造に用いられる原料油としては、脂肪酸トリグリセリドを主成分として含有している任意の動物性または植物性油脂と低級アルキルアルコールから、酸または塩基触媒存在下でのエステル交換法等の任意の公知の方法を用いて合成された脂肪酸アルキルエステルを特に制限なく用いることができる。
 脂肪酸アルキルエステルの製造に用いられる低級アルキルアルコールとしては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、t-ブチルアルコール等が挙げられるが、メタノールが最も好ましく用いられる。また、エステル交換反応に用いられる触媒としては、塩酸、硫酸、アルキルスルホン酸、アリールスルホン酸等の酸触媒、Nafion-H(商品名)等の固体酸触媒、水酸化ナトリウム、水酸化カリウム、ナトリウムアルコキシド、カリウムアルコキシド、ランタノイドアルコキシド等の塩基触媒が挙げられる。
 原料油に含まれる脂肪酸アルキルエステルの脂肪酸基組成(脂肪酸基の炭素数および不飽和度)は、得られる燃料油を構成する各炭化水素化合物の炭素数および含有率等に影響を与えるため、所望の燃料油に要求される性能や炭素数等に応じて適当な原料油を適宜選択して用いることができる。原料油を得るために用いられる油脂の具体例としては、コーン油、大豆油、ごま油、菜種油(キャノーラ油)、米油、糠油、椿油、サフラワー油 (ベニバナ油)、パーム核油、ココナッツ油、綿実油、ひまわり油、荏油、オリーブオイル、ピーナッツオイル、アーモンドオイル、アボカドオイル、ヘーゼルナッツオイル、ウォルナッツオイル、グレープシードオイル、マスタードオイル、レタス油、カカオバター、パーム油、海藻類や微細藻類等の藻類の産生する油脂等の植物性油脂、魚油、鯨油、鮫油、肝油、ラード(豚脂)、ヘット(牛脂)、鶏油、兎脂、羊脂、馬脂、乳脂、バター等の動物性油脂、細菌類が産生する油脂が挙げられる。
 上記の動物性および植物性油脂は、食品原料でもある農作物および家畜類に由来するものも多く、食品資源との競合の問題や、大量栽培が困難なため安定供給の観点から課題を有しているものも存在する。そこで、食品と競合しない原料油として、ヤトロファ油等の非食用植物、微細藻類または細菌類由来の油脂等も用いることもでき、なかでも、繁殖力に優れ、単位体積あたりの油脂の産生量が多く、大量培養が容易な微細藻類由来の油脂を用いてもよい。微細藻類由来の原料油を用いることには、原料油の調達コストや輸送コストを大幅に低減でき、燃料油の価格を低く抑えることができるという利点も存在する。
 原料油の供給源として使用可能な微細藻類としては、ボトリオコッカス・ブラウニー(Botoryococcus braunii)、クロレラ(Chlorella)、オーランチオキトリウム(Aurantiochytrium)類等が挙げられる。航空燃料油の製造に適した脂肪酸アルキルエステルの脂肪酸基組成における炭素数8~14の飽和脂肪酸基の含有量が40重量%以上である脂肪酸アルキルエステルを主成分とする微細藻類由来の原料油としては、例えば、受託番号FERM P-22090として寄託された微細藻類由来の油脂より製造された脂肪酸アルキルエステルが挙げられる。
 燃料油のうち、航空燃料については、炭素数8~14程度のn-パラフィンおよびイソパラフィンを主成分とし、低温特性(曇点、固化温度)に優れている必要がある。このような要求を満たすことができる燃料油を効率的に製造するための原料油としては、原料油に含まれる脂肪酸アルキルエステルの脂肪酸基組成における炭素数8~14の飽和脂肪酸基の含有量が40重量%以上である脂肪酸アルキルエステルを主成分とする原料油が好ましく、これらのうち、ラウリン酸基の含有量が40重量%以上であるものが特に好ましい。上記の動物性および植物性油脂のうち、航空燃料の原料油として好ましいものの具体例としては、ココヤシの種子より採取されるココナッツ油およびアブラヤシの種子より採取されるパーム核油に由来する脂肪酸アルキルエステル等や、藻類、特に微細藻類等より採取される油脂に由来する脂肪酸アルキルエステル等が挙げられる。
 原料油の遊離脂肪酸含有量が高い場合、必要に応じて遊離脂肪酸を除去するための前処理を行ってもよいが、遊離脂肪酸も、脂肪酸トリグリセリドのエステル交換と同様の条件下で低級アルキルアルコールと反応し脂肪酸アルキルエステルを生成するため、通常、遊離脂肪酸を分離除去することなく燃料油製造の原料油として使用できる。
 上記の触媒および脂肪酸アルキルエステルを含む原料油を組み合わせて用いることにより、1MPa以下、好ましくは0.8MPa以下の低い水素圧力、250~400℃という比較的低い反応温度の下で、効率よく燃料油を得ることができる。水素圧力を低くすることができるため、高い耐圧性を有する反応容器を用いる必要がなく、金属製の反応容器における水素脆化の影響も相対的に受けにくくなることから、製造設備による制約を受けにくく、低コストで燃料油の製造が可能になる。
 反応時の液空間速度(LHSV)は、例えば、0.5~20hr-1、水素/油比は、例えば、50~4000NL/Lである。これらの数値は、原料油の組成、燃料油の要求性能(炭素数、低温流動特性等)等に応じて適宜調節される。
 このようにして得られる燃料油は、原料油に含まれる脂肪酸基の炭素数とほぼ等しい炭素数のn-パラフィンが主成分となる。イソパラフィンの含有率を向上させる必要がある場合には、白金触媒や固体酸触媒等の任意の公知の触媒を用いて異性化処理を行ってもよい。なお、多孔質金属酸化物担体としてγ-アルミナ等を使用した場合には、これが固体酸触媒として作用することにより異性化が同時に進行して、イソパラフィンの生成が認められる場合がある。このような場合には、イソパラフィンの含有率を向上させるために必要な異性化工程に要する時間を短縮でき、場合によっては異性化工程を省略できる。そのため、特にイソパラフィンの含有率を向上させる必要がある場合には、燃料油の製造コストを低減できる。
 必要に応じて、抗酸化剤、凍結防止剤等の添加剤を適量添加することにより、燃料油を得ることができる。特に、ココナッツ油や微細藻類由来の油脂を原料油として使用した場合、ASTM D 7566等に規定された航空油燃料の要件を満たす燃料油が得られる。
 ASTM D 7566(米国材料試験協会)に規定された合成炭化水素を含む航空タービン燃料油に関する主要な規格は、下記のとおりである。
  ・炭化水素油:99.5%以上
  ・シクロパラフィン15%以下
  ・パラフィン系炭化水素油:70%~85%
  ・オレフィン系炭化水素:5%以下
  ・芳香族系化合物:0.5%以下
  ・酸度:0.10mgKOH/g以下
  ・硫黄化合物:3ppm以下
 次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:触媒の調製
<1>γ-Al担体の調製
 濃度2.67mol/Lの硝酸アルミニウム水溶液3900ccを調製すると共に、濃度14重量%のアンモニア水溶液3900ccを用意した。次に、30Lのホーロー容器に純水20Lを入れ、撹拌しながら70℃に加温し、更に撹拌を継続しながら、上記硝酸アルミニウム水溶液650ccを投入して5分間撹拌し(pH値:2.0)、次いで上記アンモニア水溶液650ccを投入して5分間撹拌する(pH値:7.4)pHスイング操作を6回繰り返し行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いで、このケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回繰り返し行い、水酸化アルミニウムの洗浄ケーキを得た。次に、洗浄ケーキを風乾して水分調整を行った後、押出成形機で直径1.6mmの棒状に成形し、120℃、3時間の条件で乾燥した後、長さ約1cm程度に粉砕し、マッフル炉にて500℃、3時間の条件で焼成してγ-アルミナ担体を得た。
 得られたγ-アルミナ担体の表面積は275m/g、細孔容積は0.65cc/g、平均細孔径は8.9nm(89Å)、全細孔容積に対して平均細孔径±3nm(30Å)の細孔が占める割合は91%であった。上記の方法により得られたγ-アルミナ担体の細孔径分布は非常に小さく、細孔径の揃った多孔質構造を有していることが確認できた。
<2>水素化分解触媒の調製(1)
 上記の多孔質無機酸化物担体を使用し、0.5mol/Lの濃度に調製した硝酸ニッケル水溶液97ccに上記多孔質無機酸化物担体の100gを含浸して密閉容器中にて12時間静置した後、エバポレーターにて常温で水分を除去し、電気炉にて空気中200℃、3時間の条件で焼成し、多孔質無機酸化物担体にニッケル(Ni)が担持された各焼成物を得た。次に、これら各焼成物を流通式水素還元装置に充填し、水素気流下に370℃、15時間の条件で水素還元を行い、水素化分解触媒(1)を得た。
<3>水素化分解触媒の調製(2)
 上記で得られた水素化分解触媒(1)を100gに対して、7.19gのモリブデン酸アンモニウム[(NHMo24・4HO]を純水65.92ccに溶かした水溶液を含浸させ密閉容器中にて12時間静置した後、エバポレーターにて常温で水分を除去し、電気炉にて空気中200℃、3時間の条件で焼成し、次に、この焼成物を流通式水素還元装置に充填し、水素気流下に370℃、15時間の条件で水素還元してモリブデン酸(MoO)が上記水素化分解触媒基準で5重量%の割合で添加された水素化分解触媒(2)を調製した。
 得られた水素化分解触媒(2)における金属Ni換算のニッケル担持量(Ni担持量)は22重量%、及びモリブデン酸(MoO)担持量(MoO担持量)は5重量%である。
<4>水素化分解触媒の調製(3)
 上記で得られた水素化分解触媒(1)を100gに、4.72gのタングステン酸アンモニウム[5(NH・12WO・5HO]をアミノエタノール水溶液65.92ccに溶かした溶液を含浸させ密閉容器中にて12時間静置した後、エバポレーターにて常温で水分を除去し、電気炉にて空気中200℃、3時間の条件で焼成し、次に、この焼成物を流通式水素還元装置に充填し、水素気流下に370℃、15時間の条件で水素還元してタングステン酸(WO)が水素化分解触媒(1)基準で5重量%の割合で添加された水素化分解触媒(3)を調製した。得られた水素化分解触媒(3)における金属Ni換算のニッケル担持量(Ni担持量)は15重量%、及びタングステン酸(WO)担持量(WO担持量)は5重量%である。
実施例2:ココナッツ油由来脂肪酸メチルエステルを原料油とする燃料油の製造
<1>ココナッツ油からの脂肪酸メチルエステルの製造
 ハイブリッドココナッツ油を、触媒(硫酸、p-トルエンスルホン酸等の任意の公知の酸触媒、水酸化ナトリウム、水酸化カリウム等の任意の公知の塩基触媒のいずれでもよい。)の存在下、メタノールと反応させ、エステル交換反応により脂肪酸メチルエステルを合成した。得られた脂肪酸メチルエステルは、ラウリン酸メチル(12:0)45~52重量%、ミリスチン酸メチル(14:0)15~22重量%、カプリル酸メチル(8:0)6~10重量%、カプリン酸メチル(10:0)4~12重量%、ステアリン酸メチル(18:0)1~5重量%、オレイン酸メチル(18:1)2~10重量%、リノール酸メチル(18:2)1~3重量%を主な成分として含んでいた(なお、括弧内の数字は、炭素数:二重結合数を示す。)。
<2>ココナッツ油由来脂肪酸メチルエステルの水素化分解による燃料油の製造
 上記のようにして合成したココナッツ油由来脂肪酸メチルエステルを原料油として、下記の条件下で水素化分解を行った。
・反応温度:350
・LHSV:1.0h-1
・反応圧力:0.8MPa
・H/脂肪酸メチルエステルの流量比=1250NL/L
・触媒量:2.0mL
・触媒粒径:355~600μm
 なお、使用した触媒は上記実施例1の<3>で調製した水素化分解触媒(2)であり、前処理として370℃、GHSV=5000h-1で7時間水素還元処理を行った。
 反応時間と転化率の関係を図1に、得られた炭化水素の炭素数分布を図2にそれぞれ示す。図1に示されるように、本反応における転化率はほぼ100%を示し、図2に示されるように、生成物はC11の炭化水素がメインであり、それらのほぼ全てがノルマルパラフィンであった。また、得られた液体状の炭化水素の収率、液体炭化水素に占める航空燃料留分(C~C16)の割合を示す航空燃料留分収率および液体炭化水素の平均炭素数を算出した結果を、下記の表1に示しているが、液体炭化水素収率は94.5%、航空燃料留分収率は90.5%と非常に高く、微細藻類由来の油脂より得た脂肪酸メチルエステルを原料油として用いた場合とほぼ同等の結果が得られたことが確認された。また、曇点、酸度、硫黄化合物含有率のいずれについても、ASTM D 7566の規格を満足していた。
Figure JPOXMLDOC01-appb-T000001
実施例3:微細藻類由来の脂肪酸メチルエステルを原料油とする燃料油の製造
<1>微細藻類由来の油脂からの脂肪酸メチルエステルの製造
 受託番号FERM P-22090として寄託された微細藻類を培養し、採取した油脂(以下「微細藻類油脂」という。)を、触媒(硫酸、p-トルエンスルホン酸等の任意の公知の酸触媒、水酸化ナトリウム、水酸化カリウム等の任意の公知の塩基触媒のいずれでもよい。)の存在下、メタノールと反応させ、エステル交換反応により脂肪酸メチルエステルを合成した。得られた脂肪酸エステルの脂肪酸基組成(GC/MS法により分析した。)は、下記の表2に示すとおりであり、脂肪酸基組成におけるラウリン酸基(C1123COOH)の占める割合が40重量%以上であることがわかる。
Figure JPOXMLDOC01-appb-T000002
<2>微細藻類油脂由来脂肪酸メチルエステルの水素化分解による燃料油の製造
 上記のようにして合成した微細藻類油脂由来脂肪酸メチルエステルを原料油として、上記実施例2の<2>と同様の条件下で水素化分解を行った。転化率、パラフィンおよびオレフィン含有率、液炭化水素収率、航空燃料留分収率および航空燃料留分平均炭素数を表3に示す。また、燃料油における炭素数分布の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、実施例1の<3>で調製した水素化分解触媒(2)を用いた場合、非常に高い炭化水素収率および航空燃料留分収率を得ることができた。また、全ての原料が脱酸素すると仮定したときの収率を100%とし、液炭化水素収率、液炭化水素中の航空燃料留分(C~C16)選択性および平均炭素数を算出している。表4に示されるように、生成物はC11を中心として分布しており、奇数と偶数の炭化水素が生成されていること、奇数:偶数の割合はほぼ2:1であることが確認された。生成物のほとんどはノルマルパラフィンであるが、常温でも液体であることから流動性に関しては問題ないと考えられる。また、-40℃まで冷却してもワックス分の結晶の析出は観察されなかった。酸度および硫黄含有量についても、ASTM D 7566の規格を満足する数値が観測された。
 なお、実施例3では、受託番号FERM P-22090として寄託された微細藻類を培養して採取された脂肪酸トリグリセリドを、触媒の存在下メタノールを用いてエステル交換することにより得られた脂肪酸メチルエステルを原料油として使用したが、既知の2種以上の植物(微細藻類を含む藻類、細菌類であってもよい。)に由来する油脂より得られた脂肪酸メチルエステルを任意の比率でブレンドすることにより、例えば表2に示すような組成を有する脂肪酸メチルエステル混合物を調製し、原料油として使用してもよい。

Claims (12)

  1.  脂肪酸アルキルエステルを含む原料油と、
     水素ガスとを、
     水素圧力1MPa以下の条件下で、周期表の第9族または第10族に属する1または複数の金属元素および周期表の第6族に属する1または複数の第6族元素酸化物を多孔質金属酸化物担体上に担持させた触媒と接触させ、n-パラフィンおよびイソパラフィンの一方または双方を主成分とする燃料油を製造する工程を有し、
     前記触媒に含まれる前記第6族元素の前記金属元素に対する重量比が、金属換算で1.0を超えないことを特徴とする燃料油の製造方法。
  2.  前記金属元素がニッケルおよび/またはコバルトであり、前記第6族元素がモリブデンおよび/またはタングステンであることを特徴とする請求項1記載の燃料油の製造方法。
  3.  前記金属元素がニッケルであり、前記第6族元素がモリブデンであることを特徴とする請求項2記載の燃料油の製造方法。
  4.  前記多孔質金属酸化物担体がγ-アルミナまたはその修飾物であることを特徴とする請求項1から3のいずれか1項記載の燃料油の製造方法。
  5.  前記原料油と、水素ガスと、前記触媒とを、
     液空間速度0.5~20hr-1、反応温度250~400℃の条件下で接触させることを特徴とする請求項1から4のいずれか1項記載の燃料油の製造方法。
  6.  前記原料油に含まれる脂肪酸アルキルエステルの脂肪酸基組成における炭素数8~14の飽和脂肪酸基の含有量が40重量%以上であることを特徴とする請求項1から5のいずれか1項記載の燃料油の製造方法。
  7.  前記脂肪酸アルキルエステルの脂肪酸基組成におけるラウリン酸基の含有量が40重量%以上であることを特徴とする請求項6記載の燃料油の製造方法。
  8.  前記原料油が植物または細菌類由来の油脂から製造されることを特徴とする請求項1から7のいずれか1項記載の燃料油の製造方法。
  9.  前記植物由来の油脂が、2種類以上の植物に由来する油脂の混合物であることを特徴とする請求項8記載の燃料油の製造方法。
  10.  前記植物由来の油脂がココナッツ油もしくはパーム核油または両者の混合物であることを特徴とする請求項8または9記載の燃料油の製造方法。
  11.  前記植物由来の油脂が藻類由来の油脂であることを特徴とする請求項8または9記載の燃料油の製造方法。
  12.  得られた燃料油が、ASTM D 7566に規定された航空油燃料の要件を満たしていることを特徴とする請求項1から11のいずれか1項記載の燃料油の製造方法。
PCT/JP2012/079413 2011-11-15 2012-11-13 燃料油の製造方法 WO2013073529A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201280067047.9A CN104039930A (zh) 2011-11-15 2012-11-13 燃料油的制造方法
EP12849331.9A EP2781580A1 (en) 2011-11-15 2012-11-13 Method for producing fuel oil
US14/356,018 US20150031929A1 (en) 2011-11-15 2012-11-13 Method for producing fuel oil
BR112014011627A BR112014011627A2 (pt) 2011-11-15 2012-11-13 processo para produção de óleo combustível
CA2854711A CA2854711A1 (en) 2011-11-15 2012-11-13 Method for producing fuel oil
KR1020147013828A KR20140106517A (ko) 2011-11-15 2012-11-13 연료유의 제조 방법
SG11201402173RA SG11201402173RA (en) 2011-11-15 2012-11-13 Method for producing fuel oil
JP2013544271A JP5866740B2 (ja) 2011-11-15 2012-11-13 燃料油の製造方法
IL232482A IL232482A0 (en) 2011-11-15 2014-05-07 Method for making fuel oil
PH12014501131A PH12014501131A1 (en) 2011-11-15 2014-05-21 Method for producing fuel oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-249713 2011-11-15
JP2011249713 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073529A1 true WO2013073529A1 (ja) 2013-05-23

Family

ID=48429586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079413 WO2013073529A1 (ja) 2011-11-15 2012-11-13 燃料油の製造方法

Country Status (11)

Country Link
US (1) US20150031929A1 (ja)
EP (1) EP2781580A1 (ja)
JP (1) JP5866740B2 (ja)
KR (1) KR20140106517A (ja)
CN (1) CN104039930A (ja)
BR (1) BR112014011627A2 (ja)
CA (1) CA2854711A1 (ja)
IL (1) IL232482A0 (ja)
PH (1) PH12014501131A1 (ja)
SG (1) SG11201402173RA (ja)
WO (1) WO2013073529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087938A1 (ja) * 2013-12-11 2015-06-18 出光興産株式会社 水素化分解処理用触媒および炭化水素の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608450A (zh) 2011-05-06 2014-02-26 索拉兹米公司 基因工程改造的代谢木糖的微生物
US9258495B2 (en) * 2012-06-21 2016-02-09 Providence Photonics, Llc Multi-spectral infrared imaging system for flare combustion efficiency monitoring
US9394550B2 (en) * 2014-03-28 2016-07-19 Terravia Holdings, Inc. Lauric ester compositions
US10065900B2 (en) * 2015-06-02 2018-09-04 Johann Haltermann Limited High volumetric energy density rocket propellant
CN105841808B (zh) * 2016-04-28 2017-12-08 京东方科技集团股份有限公司 紫外线监测设备、监测方法及系统
US9919293B1 (en) * 2017-07-17 2018-03-20 Kuwait Institute For Scientific Research Catalyst for mild-hydrocracking of residual oil
FR3075663A1 (fr) * 2017-12-22 2019-06-28 IFP Energies Nouvelles Catalyseur d'hydrotraitement et/ou d'hydrocraquage prepare par dissolution de particules comprenant du metal du groupe viii sous forme metallique
KR102057143B1 (ko) * 2018-04-25 2019-12-18 세종대학교산학협력단 선형의 공극을 가지는 반응체를 이용한 바이오 연료의 제조 방법
CN109836329A (zh) * 2019-03-15 2019-06-04 东北农业大学 从栅藻制备碳氢烃的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308567A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法及び環境低負荷型ガソリン基材
JP2009040833A (ja) 2007-08-07 2009-02-26 Nippon Oil Corp 軽油組成物
JP2009040856A (ja) 2007-08-08 2009-02-26 Nippon Oil Corp 軽油組成物
JP2009040855A (ja) 2007-08-08 2009-02-26 Nippon Oil Corp 軽油組成物
JP2010209330A (ja) * 2009-03-10 2010-09-24 Ifp ニッケル及びモリブデンをベースとする触媒を用いる、脱炭酸転化が限定された、再生可能な供給源由来の仕込原料の水素化脱酸素法
JP2010532419A (ja) 2007-06-29 2010-10-07 エナジー・アンド・エンヴァイロンメンタル・リサーチ・センター・ファウンデイション 別々に生成したブレンドストックに由来する航空機グレードのケロシン
WO2010147849A2 (en) * 2009-06-19 2010-12-23 Exxonmobil Research & Engineering Co. Ebullating bed methods for treatment of biocomponent feedstocks
WO2011025002A1 (ja) * 2009-08-31 2011-03-03 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物
JP2011052074A (ja) 2009-08-31 2011-03-17 Jx Nippon Oil & Energy Corp 燃料油基材及びこれを含有する航空燃料組成物
JP2011515539A (ja) 2008-03-17 2011-05-19 ユーオーピー エルエルシー 再生可能供給原料からの輸送燃料の製造
JP2011148909A (ja) * 2010-01-21 2011-08-04 Tokyo Univ Of Agriculture & Technology バイオ炭化水素、バイオ炭化水素の製造方法、およびバイオ炭化水素製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712867B1 (en) * 1999-08-18 2004-03-30 Biox Corporation Process for production of fatty acid methyl esters from fatty acid triglycerides
US7780845B2 (en) * 2004-04-22 2010-08-24 Exxonmobil Research And Engineering Company Process to manufacture low sulfur distillates
JP5537781B2 (ja) * 2008-06-02 2014-07-02 出光興産株式会社 灯油組成物
US8361309B2 (en) * 2008-06-19 2013-01-29 Chevron U.S.A. Inc. Diesel composition and method of making the same
FR2940144B1 (fr) * 2008-12-23 2016-01-22 Inst Francais Du Petrole Methode de transformation d'effluents d'origine renouvelable en carburant d'excellente qualite mettant en oeuvre un catalyseur a base de molybdene
CA2784105A1 (en) * 2009-12-18 2011-06-23 Shell Internationale Research Maatschappij B.V. A process for the extraction of sugars and lignin from lignocellulose-comprising solid biomass
FR2969509B1 (fr) * 2010-12-22 2012-12-28 IFP Energies Nouvelles Materiau spherique a base d'heteropolyanions pieges dans une matrice oxyde mesostructuree et son utilisation comme catalyseur dans les procedes du raffinage
FR2982270B1 (fr) * 2011-11-08 2013-11-08 IFP Energies Nouvelles Production de carburants paraffiniques a partir de matieres renouvelables par un procede d'hydrotraitement en continu comprenant une etape de pretraitement

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308567A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法及び環境低負荷型ガソリン基材
JP2010532419A (ja) 2007-06-29 2010-10-07 エナジー・アンド・エンヴァイロンメンタル・リサーチ・センター・ファウンデイション 別々に生成したブレンドストックに由来する航空機グレードのケロシン
JP2009040833A (ja) 2007-08-07 2009-02-26 Nippon Oil Corp 軽油組成物
JP2009040856A (ja) 2007-08-08 2009-02-26 Nippon Oil Corp 軽油組成物
JP2009040855A (ja) 2007-08-08 2009-02-26 Nippon Oil Corp 軽油組成物
JP2011515539A (ja) 2008-03-17 2011-05-19 ユーオーピー エルエルシー 再生可能供給原料からの輸送燃料の製造
JP2010209330A (ja) * 2009-03-10 2010-09-24 Ifp ニッケル及びモリブデンをベースとする触媒を用いる、脱炭酸転化が限定された、再生可能な供給源由来の仕込原料の水素化脱酸素法
WO2010147849A2 (en) * 2009-06-19 2010-12-23 Exxonmobil Research & Engineering Co. Ebullating bed methods for treatment of biocomponent feedstocks
WO2011025002A1 (ja) * 2009-08-31 2011-03-03 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物
JP2011052077A (ja) 2009-08-31 2011-03-17 Jx Nippon Oil & Energy Corp 航空燃料油基材の製造方法及び航空燃料油組成物
JP2011052074A (ja) 2009-08-31 2011-03-17 Jx Nippon Oil & Energy Corp 燃料油基材及びこれを含有する航空燃料組成物
JP2011148909A (ja) * 2010-01-21 2011-08-04 Tokyo Univ Of Agriculture & Technology バイオ炭化水素、バイオ炭化水素の製造方法、およびバイオ炭化水素製造装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087938A1 (ja) * 2013-12-11 2015-06-18 出光興産株式会社 水素化分解処理用触媒および炭化水素の製造方法
CN105992646A (zh) * 2013-12-11 2016-10-05 出光兴产株式会社 氢化裂解处理用催化剂和烃的制造方法
JPWO2015087938A1 (ja) * 2013-12-11 2017-03-16 出光興産株式会社 水素化分解処理用触媒および炭化水素の製造方法
TWI639692B (zh) * 2013-12-11 2018-11-01 出光興產股份有限公司 Catalyst for hydrogenation decomposition treatment and method for producing hydrocarbon
US10307739B2 (en) 2013-12-11 2019-06-04 Idemitsu Kosan Co., Ltd. Catalyst for hydrocracking and hydrocarbon production method

Also Published As

Publication number Publication date
CA2854711A1 (en) 2013-05-23
KR20140106517A (ko) 2014-09-03
BR112014011627A2 (pt) 2017-05-09
CN104039930A (zh) 2014-09-10
US20150031929A1 (en) 2015-01-29
JP5866740B2 (ja) 2016-02-17
EP2781580A1 (en) 2014-09-24
PH12014501131A1 (en) 2014-08-04
JPWO2013073529A1 (ja) 2015-04-02
SG11201402173RA (en) 2014-09-26
IL232482A0 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5866740B2 (ja) 燃料油の製造方法
Ameen et al. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production
JP5920672B2 (ja) 燃料油の製造方法
US9505986B2 (en) Fuel oil base and aviation fuel composition containing same
JP5330935B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物
TWI639692B (zh) Catalyst for hydrogenation decomposition treatment and method for producing hydrocarbon
SG178490A1 (en) Aviation fuel oil composition
JP2015113405A (ja) 燃料油基材、及びその製造方法並びに燃料油組成物
CN109294746B (zh) 一种油脂类原料加氢制备柴油馏分的方法
EP3607027A1 (en) Hydrotreatment of feedstock from renewable sources using catalysts with a high content of active phase
RU2602278C1 (ru) Катализатор и процесс гидродеоксигенации растительного сырья с его использованием
RU2652990C1 (ru) Катализатор и способ получения компонентов транспортного топлива углеводородного состава при помощи такого катализатора
JP2018095723A (ja) ディーゼル燃料基材、ディーゼル燃料組成物、ディーゼル燃料基材の製造方法およびディーゼル燃料組成物の製造方法
Chaowichitra Production of Bio-jet fuel from palm fatty acid distillate over Bi-Functional CoPd/HZSM-12 catalysts
WO2021106619A1 (ja) 流通式反応装置を用いたバイオ燃料の製造方法
JP6957317B2 (ja) ディーゼル燃料組成物
Asiedu et al. 12 Liquid Hydrocarbon
RU2492922C1 (ru) Состав и способ синтеза катализатора гидродеоксигенации кислородсодержащего углеводородного сырья
JP6618007B2 (ja) 燃料油基材の製造方法
Janampelli Catalytic deoxygenation of fatty acids to diesel-range hydrocarbons over promoted platinum catalysts
JP6145397B2 (ja) 軽油組成物
JP6181540B2 (ja) 軽油組成物
Asiedu et al. Liquid Hydrocarbon Biofuels from Lipids
JP6181539B2 (ja) 燃料油組成物
Rocha et al. Conversion of Biomass-Derived Glycerol Over Zeolite-Based Catalysts: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849331

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2854711

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 232482

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2013544271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12014501131

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20147013828

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201403468

Country of ref document: ID

Ref document number: 2012849331

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014124110

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011627

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14356018

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112014011627

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140514