WO2013073253A1 - タングステン細粉の製造方法 - Google Patents

タングステン細粉の製造方法 Download PDF

Info

Publication number
WO2013073253A1
WO2013073253A1 PCT/JP2012/071760 JP2012071760W WO2013073253A1 WO 2013073253 A1 WO2013073253 A1 WO 2013073253A1 JP 2012071760 W JP2012071760 W JP 2012071760W WO 2013073253 A1 WO2013073253 A1 WO 2013073253A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten powder
tungsten
powder
average particle
particle diameter
Prior art date
Application number
PCT/JP2012/071760
Other languages
English (en)
French (fr)
Inventor
内藤 一美
正二 矢部
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/357,953 priority Critical patent/US9669460B2/en
Priority to CN201280055853.4A priority patent/CN103945964A/zh
Priority to JP2012548166A priority patent/JP5222437B1/ja
Priority to EP12849043.0A priority patent/EP2781285A4/en
Publication of WO2013073253A1 publication Critical patent/WO2013073253A1/ja
Priority to US15/587,235 priority patent/US20170232508A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Definitions

  • the present invention relates to a method for producing tungsten fine powder. More specifically, the present invention relates to a method for processing tungsten powder into a tungsten powder having a finer particle diameter that is useful for electrolytic capacitors, and a method for producing tungsten fine powder.
  • capacitors used in these electronic devices are smaller and lighter, with larger capacitance and lower ESR (equivalent series resistance). ) Is required.
  • an anode body of a capacitor made of a sintered body of valve action metal powder such as tantalum capable of anodization is anodized, and a dielectric layer made of these metal oxides is formed on the surface.
  • An electrolytic capacitor has been proposed.
  • An electrolytic capacitor using tungsten as the valve metal and an anode body made of a sintered tungsten powder is an electrolytic capacitor obtained by electrolyzing an anode body of the same volume using tantalum powder of the same particle size at the same voltage.
  • LC leakage current
  • a capacitor using an alloy of tungsten and another metal has been studied, but the leakage current is somewhat improved but is not sufficient (Japanese Patent Laid-Open No. 2004-349658 (US6876083; Patent Document 1)).
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-272959 discloses a capacitor using a tungsten foil electrode on which a dielectric layer selected from WO 3 , W 2 N, and WN 2 is formed. This is not a solution for the leakage current.
  • Patent Document 3 International Publication No. 2004/055843 pamphlet (US7154743) discloses an electrolytic capacitor using an anode selected from tantalum, niobium, titanium, and tungsten. There is no description of specific examples using.
  • the anode body for electrolytic capacitors sintered after forming the tungsten powder has the same volume, it is usually possible to produce an anode body having a larger capacity as the particle diameter of the tungsten powder is smaller. The smaller the diameter, the better. However, the average particle diameter of commercially available tungsten powder is about 0.5 to 20 ⁇ m.
  • Tungsten powder can be produced by treating tungsten oxide, halide, ammonium salt or the like with a reducing agent such as hydrogen.
  • a reducing agent such as hydrogen.
  • the reduction rate is increased, there is a problem that a composite oxide is generated. Therefore, in order to produce a finer powder, the reduction rate must be slowed, resulting in a reduction in production efficiency and an increase in cost.
  • a material having a wide explosion range, such as hydrogen gas must be handled by a complicated process having an expensive control device.
  • An object of the present invention is to provide a tungsten powder processing method for obtaining a tungsten powder having a smaller particle size as a raw material for a capacitor having an anode body of tungsten (hereinafter, tungsten capacitor), and a method for producing a tungsten fine powder using the method Is to provide.
  • a tungsten fine powder more suitable for a tungsten capacitor can be obtained by chemically oxidizing the surface of tungsten powder that is currently available.
  • the present invention has been completed. That is, this invention relates to the fine powdering method of the following tungsten powder, and the manufacturing method of tungsten fine powder.
  • Fine powder of tungsten powder characterized in that tungsten powder is dispersed in an aqueous solution containing an oxidizing agent to form an oxide film on the surface of the tungsten powder particles, and the oxide film is removed with an alkaline aqueous solution.
  • Method. The method for finely pulverizing tungsten powder according to [1], wherein the removal of the oxide film with an alkaline aqueous solution includes mechanically removing a reaction product on the particle surface of the tungsten powder.
  • Tungsten powder refinement according to item 1 or 2 wherein the oxidizing agent is selected from manganese (VII) compounds, chromium (VI) compounds, halogen acid compounds, peroxo acids and salts thereof, and peroxides Method.
  • the oxidizing agent is hydrogen peroxide or ammonium persulfate.
  • tungsten powder having a particle diameter finer than those of raw material powder can be produced using tungsten powder that is currently commercially available or tungsten powder that can be produced by a known method.
  • the tungsten powder particles obtained in the present invention have a more spherical shape than the raw tungsten powder particles. Since the tungsten powder obtained by the present invention has a fine particle size, the capacity of the obtained capacitor is increased. Moreover, since the particle shape becomes closer to a sphere, the fluidity of the tungsten powder is improved. Therefore, handling of the powder is facilitated in a process such as a granulated powder preparation described later.
  • the raw material tungsten powder to be finely divided is preferably one having an average particle diameter in the range of 0.1 to 10 ⁇ m.
  • a method for obtaining the raw material tungsten powder in addition to commercially available products, those produced by known methods, for example, a method of pulverizing tungsten trioxide powder in a hydrogen atmosphere, or tungstic acid or tungsten halide with hydrogen, sodium, etc. It can obtain by selecting suitably the method etc. which reduce by. Moreover, you may obtain by selecting reduction conditions directly or through a several process from a tungsten containing mineral.
  • fine tungsten powder obtained by applying the method of the present invention may be used as the raw material tungsten powder.
  • a tungsten powder with a small diameter is obtained.
  • tungsten powder having an average particle size of 0.05 ⁇ m or less can be obtained.
  • the particle size of the powder when the dielectric layer is formed by anodic oxidation, there is a lower limit to the particle size of the powder that can be preferably used for the capacitor.
  • the lower limit value of the particle size of tungsten powder used for the capacitor is at least twice the thickness of the dielectric layer to be formed. For example, when the rated voltage is 2V, it is 0.05 ⁇ m or more. When the particle size is less than this, when anodization is performed, a sufficient conductive tungsten portion does not remain, making it difficult to form an anode of the electrolytic capacitor.
  • the particle size of the tungsten powder when used for a high-capacity capacitor, is preferably 0.05 to 0.5 ⁇ m, and more preferably 0.1 to 0.4 ⁇ m.
  • the raw material tungsten powder used in the method of the present invention may contain impurities within a range in which the capacitor characteristics do not deteriorate, or may be processed so as to contain the capacitor characteristics.
  • the processing of the particle surface such as silicidation, nitridation, carbonization, or boride treatment, which will be described later, is preferably performed in a step after applying the present invention.
  • fine tungsten powder is produced by a method of chemically oxidizing the surface of the particles constituting the raw material tungsten powder and removing the oxide film on the surface.
  • Oxidation method Raw material tungsten powder is dispersed in an oxidizer aqueous solution, and the surface is oxidized by holding for a predetermined time. In order to maintain a good dispersion state and oxidize the surface quickly, it is preferable to use an apparatus capable of strong stirring such as a homogenizer. In addition, oxidation proceeds faster when oxidized at a high temperature.
  • oxygen-containing compounds are preferable because oxygen is supplied to tungsten.
  • manganese (VII) compounds such as permanganate; chromium (III), chromate, dichromate and the like ( VI) Compounds; halogen acid compounds such as perchloric acid, chlorous acid, hypochlorous acid and their salts; peroxides such as hydrogen peroxide, diethyl peroxide, sodium peroxide, lithium peroxide; Examples include peroxo acids such as persulfates and salts thereof.
  • hydrogen peroxide and ammonium persulfate are preferable from the viewpoint of ease of handling, stability as an oxidizing agent, and water solubility.
  • the concentration of the oxidizing agent in the aqueous solution is in a range from about 1% to the saturation solubility of the oxidizing agent.
  • the oxidant concentration is appropriately determined by preliminary experiments.
  • the oxidation time is 1 hour to 1000 hours, preferably 1 hour to 100 hours, and the oxidation temperature is 20 ° C. to the boiling point of the solution, preferably 50 ° C. to the boiling point of the solution.
  • the solvent used in each step of the present invention is not limited to water and is selected from a mixed aqueous solution with a water-soluble organic solvent (for example, ethanol, methanol, etc.) from the viewpoint of powder dispersibility and decantation time. May be.
  • the tungsten powder is separated from the oxidation reaction solution by an operation such as decantation, and then washed by repeating a series of operations of adding to a solvent, stirring, standing, and decantation.
  • the tungsten powder in this state has changed color from black as a raw material to yellowish blue, and it can be visually confirmed that the surface has been oxidized.
  • the oxide film of tungsten powder having the oxidized surface obtained above is treated with an alkaline aqueous solution and at least chemically removed.
  • the stirring is performed while mechanically removing the product generated on the surface of the tungsten particles by a device capable of strong stirring such as a homogenizer.
  • a device capable of strong stirring such as a homogenizer.
  • the alkaline aqueous solution for example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, an aqueous ammonia or the like is used, and a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferable.
  • the tungsten powder whose surface is oxidized is dispersed by stirring in an alkaline aqueous solution. After stirring, the mixture is allowed to stand, and after removing the aqueous alkali solution by decantation, a solvent such as water is added, and after stirring, the series of operations of standing and decanting is repeated several times. By these operations, the oxide formed on the surface of the tungsten particles is removed. Thereafter, the film is dried in a vacuum dryer under reduced pressure (eg, 10 4 to 10 2 Pa) at a temperature of 50 to 180 ° C. and cooled to room temperature. Next, by gradually putting air so as not to ignite and taking it out into the air, tungsten powder having a smaller particle diameter than the raw material tungsten powder can be obtained.
  • a vacuum dryer under reduced pressure
  • substantially spherical tungsten particles can be obtained as long as the particle shape of the raw material tungsten powder is not particularly anisotropic.
  • the spherical particle means that the average particle diameter (d) ( ⁇ m), true density (M) (g / cm 3 ), and BET specific surface area (S) (m 2 / g) of the obtained tungsten powder are as follows: It can be confirmed by satisfying the formula. That is, the product (d ⁇ S ⁇ M) (abbreviated as dSM) of the average particle diameter d ( ⁇ m), true density M (g / cm 3 ), and BET specific surface area S (m 2 / g) of the obtained tungsten powder.
  • the obtained tungsten powder is almost spherical.
  • the value of dMS of the tungsten powder obtained by the present invention is usually in the range of 6 ⁇ 0.8.
  • the tungsten powder obtained by applying the method of the present invention can be used as a raw material tungsten powder to obtain a tungsten powder composed of particles close to a true sphere.
  • the dielectric layer formed on the surface of particles close to a spherical shape has a substantially uniform curvature, and there is no deterioration because there is no portion that bends with a small curvature that tends to concentrate stress. As a result, a capacitor with better LC characteristics can be obtained.
  • the tungsten powder produced by the method of the present invention may be directly sintered to form a sintered body, or alternatively, the powder granulated into granules of about 10 to 300 ⁇ m may be sintered to form a sintered body. Good. Granulated ones are easier to handle and easier to keep ESR low. Further, the tungsten powder produced by the method of the present invention is subjected to silicidation, nitridation, carbonization, or boride treatment, and tungsten silicide, tungsten nitride, tungsten carbide, and tungsten boride are partially applied to the surface of the tungsten particles. It is good also as tungsten powder containing at least 1 selected from these. Moreover, these processes can also be applied at the stage when the granulated powder or sintered body is obtained. An electrolytic capacitor is produced by using this sintered body as one electrode (anode) and a dielectric interposed between the counter electrode (cathode).
  • the particle diameter, specific surface area, and true density were measured by the following methods.
  • the particle size was measured by laser diffraction scattering method using HRA9320-X100 manufactured by Microtrack, and the particle size value (D 50 ; ⁇ m) corresponding to 50% by volume was calculated as the average particle size. (D).
  • this measurement method is a measurement method of the secondary particle size, the dispersibility of the tungsten powder is good to some extent, and therefore the measurement result can be a value close to the primary particle size. Therefore, the measurement result may be substantially regarded as the primary particle diameter, and applied to the above-described equation (1) to determine the particle shape.
  • the specific surface area (S; m 2 / g) was measured by BET method using NOVA2000E (SYSMEX).
  • the true density (M; g / cm 3 ) was measured by a pycnometer method (20 ° C.).
  • Example 1 200 g of tungsten powder having an average particle diameter of 1 ⁇ m obtained by hydrogen reduction of ammonium tungstate was put into 500 mL of distilled water in which 5% by mass of ammonium persulfate was dissolved, and a homogenizer NS-51 manufactured by Microtech Nichion Co., Ltd. And stirred at 50 ° C. for 24 hours. Meanwhile, continued to replenish the evaporating water. After allowing the powder to settle for 17 hours at room temperature, the liquid was removed by decantation. Further, 200 mL of distilled water was added, and the mixture was stirred for 5 minutes with a homogenizer. After standing for 5 hours, the liquid was removed by decantation.
  • the produced powder had an average particle size (d) of 0.5 ⁇ m, a specific surface area (S) of 0.6 m 2 / g, and a true density (M) of 19.3 g / cm 3 .
  • the resulting tungsten powder had a mean particle size, specific surface area, and true density product (dMS) of 5.8. Since the value of dMS was in the range of 6 ⁇ 0.2, it was confirmed that the powder particles obtained had a shape close to a sphere.
  • Example 2 500 mL of distilled water initially charged in Example 1 is 100 mL of ethanol and 400 mL of distilled water, the concentration of dissolved ammonium persulfate is 3% by mass, and the sedimentation time until decantation is 24 hours.
  • a tungsten powder was obtained in the same manner as in Example 1. By adding ethanol to the first solution, the dispersibility of the initial tungsten powder was improved and the surface oxidation was facilitated.
  • the produced powder had an average particle size (d) of 0.4 ⁇ m, a specific surface area (S) of 0.7 m 2 / g, and a true density (M) of 19.3 g / cm 3 .
  • the obtained tungsten powder had a mean particle size, specific surface area, and true density product (dMS) of 5.4. Since the value of dMS was in the range of 6 ⁇ 0.6, it was confirmed that the obtained powder particles were almost spherical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明は、酸化剤を含有する水溶液中にタングステン粉を分散することによりタングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去するタングステン粉の細粉化方法、前記細粉化方法を含む工程により平均粒子径0.05~0.5μmのタングステン粉を得るタングステン細粉の製造方法、及び平均粒子径が0.05~0.5μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.8の範囲内であるタングステン粉を提供する。

Description

タングステン細粉の製造方法
 本発明は、タングステン細粉の製造方法に関する。さらに詳しく言えば、タングステン粉を電解コンデンサ用として有用な、より細かな粒径を有するタングステン粉に加工する方法、及びタングステン細粉の製造方法に関する。
 携帯電話やパーソナルコンピュータ等の電子機器の形状の小型化、高速化、軽量化に伴い、これらの電子機器に使用されるコンデンサは、より小型で軽く、より大きな容量、より低いESR(等価直列抵抗)が求められている。
 このようなコンデンサとしては、陽極酸化が可能なタンタルなどの弁作用金属粉末の焼結体からなるコンデンサの陽極体を陽極酸化して、その表面にこれらの金属酸化物からなる誘電体層を形成した電解コンデンサが提案されている。
 弁作用金属としてタングステンを用い、タングステン粉の焼結体を陽極体とする電解コンデンサは、同一粒径のタンタル粉を用いた同体積の陽極体を同電圧で電解化成して得られる電解コンデンサに比較して、大きな容量を得ることができるが、漏れ電流(LC)が大きく電解コンデンサとして実用に供されなかった。このことを改良するために、タングステンと他の金属との合金を用いたコンデンサが検討されているが漏れ電流は幾分改良されるものの十分ではなかった(特開2004-349658号公報(US6876083;特許文献1))。
 特許文献2(特開2003-272959号公報)には、WO3、W2N、WN2から選択される誘電体層が形成されたタングステン箔の電極を用いたコンデンサが開示されているが、前記漏れ電流について解決したものではない。
 また、特許文献3(国際公開第2004/055843号パンフレット(US7154743))には、タンタル、ニオブ、チタン、タングステンから選択される陽極を用いた電解コンデンサを開示しているが、明細書中にタングステンを用いた具体例の記載はない。
 タングステン粉を成形後、焼結した電解コンデンサ用陽極体では、同一体積であれば、通常、タングステン粉の粒径が小さなほど容量の大きな陽極体を作製することができるので、原料タングステン粉の粒径は小さいほど好ましいが、市販のタングステン粉の平均粒径は0.5~20μm程度である。
 タングステン粉は、タングステンの酸化物、ハロゲン化物、アンモニウム塩等を原料として水素などの還元剤で処理して作製できる。ただし、還元速度を速くすると複合酸化物が生成する等の問題がある。そのため、より細かい粉体を作製するためには還元速度を遅くしなければならず、生産効率が低下しコスト高となる。また、高価な制御装置を有する煩雑な工程によって作製する必要があり、さらに水素ガスのような爆発範囲が広い材料を扱わねばならないという問題もあった。
特開2004-349658号公報 特開2003-272959号公報 国際公開第2004/055843号パンフレット
 本発明の課題は、タングステンを陽極体とするコンデンサ(以下、タングステンコンデンサ)の原料となる粒径のより小さいタングステン粉末を得るタングステン粉の加工方法、及びその方法を用いたタングステン細粉の製造方法を提供することにある。
 本発明者は、前記課題を達成するために鋭意検討した結果、現在入手できるタングステン粉の表面を化学的に酸化することにより、タングステンコンデンサ用としてより好適なタングステン細粉が得られることを見出し、本発明を完成した。
 すなわち、本発明は下記のタングステン粉の細粉化方法、及びタングステン細粉の製造方法に関する。
[1]酸化剤を含有する水溶液中にタングステン粉を分散することにより前記タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去することを特徴とするタングステン粉の細粉化方法。
[2]前記酸化膜のアルカリ水溶液での除去が、タングステン粉の粒子表面の反応生成物を機械的に除去することを含む前項1に記載のタングステン粉の細粉化方法。
[3]酸化剤が、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、ペルオキソ酸及びその塩、並びに過酸化物から選択される前項1または2に記載のタングステン粉の細粉化方法。
[4]酸化剤が過酸化水素または過硫酸アンモニウムである前項3に記載のタングステン粉の細粉化方法。
[5]前項1~4の方法を含む工程により平均粒子径0.05~0.5μmのタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[6]前項1~4の方法を含む工程により、平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.8の範囲内であるタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
[7]平均粒子径が0.05~0.5μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.8の範囲内であるタングステン粉。
 本発明によれば、現在市販されているタングステン粉、あるいは公知の方法で製造できるタングステン粉を原料とし、これら原料粉より細かな粒径を有するタングステン粉を製造することができる。また、本発明で得られるタングステン粉の粒子は、原料タングステン粉の粒子より球形に近い形状になる。
 本発明により得られるタングステン粉は、細かな粒径を有するので得られるコンデンサの容量が大きくなる。また、粒子形状がより球形に近くなるので、タングステン粉の流動性が良好となる。そのため、後記する造粒粉作製時等の工程で粉体の取扱いが容易になる。
[原料タングステン粉]
 本発明で細粉化の対象となる原料タングステン粉は、平均粒径が0.1~10μmの範囲のものが好ましい。
 原料タングステン粉を得る方法としては、市販品の他、公知の方法により製造されるもの、例えば、三酸化タングステン粉を水素雰囲気下で粉砕する方法、あるいはタングステン酸やハロゲン化タングステンを水素やナトリウム等で還元する方法等を適宜選択することによって得ることができる。また、タングステン含有鉱物から直接または複数の工程を経て、還元条件を選択することによって得てもよい。
 ただし、これらの方法では粒子径の小さい原料タングステン粉を得ることが難しいので、本発明の方法を適用して得た細粒のタングステン粉を原料タングステン粉として用いてもよく、この場合、さらに粒子径の小さいタングステン粉が得られる。このように、本発明の方法の適用を繰り返すと、例えば、平均粒径0.05μm以下のタングステン粉を得ることもできる。
 ただし、陽極酸化により誘電体層を形成する場合、コンデンサに好ましく利用できる粉体の粒径には下限がある。コンデンサに用いるタングステン粉の粒径の下限値は、形成しようとする誘電体層の厚みの2倍以上である。例えば、定格電圧が2Vの場合、0.05μm以上である。このような粒径未満であると、陽極酸化をしたときに、導電性のタングステン部分が十分残らず、電解コンデンサの陽極を構成することが困難となる。
 特に高容量のコンデンサに用いる場合、タングステン粉の粒子径を0.05~0.5μmとすることが好ましく、0.1~0.4μmとすることがさらに好ましい。
 なお、本発明の方法で使用される原料タングステン粉は、不純物を、コンデンサ特性が劣化しない範囲で含んでもよく、あるいはコンデンサ特性の改良のために含むように加工されたものでもよい。ただし、後述するケイ化、窒化、炭化、あるいはホウ化処理等の粒子表面の加工は、本発明を適用した後の工程で行うことが好ましい。
[タングステン粉の細粉化]
 本発明では、原料タングステン粉を構成する粒子の表面を化学的に酸化し、表面の酸化膜を除去する加工法によりタングステン細粉を製造する。
酸化方法:
 原料のタングステン粉を、酸化剤水溶液中に分散させ、所定時間保持することにより表面を酸化する。良好な分散状態を保ち、表面を早く酸化させるために、ホモジナイザー等の強い撹拌ができる装置を使用することが好ましい。また、高温で酸化させると早く酸化が進む。
 酸化剤としては、タングステンに酸素を供給するため、酸素を含む化合物が好ましく、例えば、過マンガン酸塩などのマンガン(VII)化合物;三酸化クロム、クロム酸塩、二クロム酸塩などのクロム(VI)化合物;過塩素酸、亜塩素酸、次亜塩素酸及びそれらの塩などのハロゲン酸化合物;過酸化水素、過酸化ジエチル、過酸化ナトリウム、過酸化リチウム等の過酸化物;過酢酸、過硫酸塩等のペルオキソ酸及びその塩などが挙げられる。特に、扱い易さと酸化剤としての安定性、水易溶性の面から過酸化水素及び過硫酸アンモニウムが好ましい。
 水溶液中の酸化剤濃度は、1%程度から酸化剤の飽和溶解度となる範囲である。酸化剤濃度は予備的な実験により適宜決められる。
 酸化時間は1時間~1000時間、好ましくは1時間~100時間であり、酸化温度は20℃~溶液の沸点の温度、好ましくは50℃~溶液の沸点温度である。
 なお、本発明の各工程で用いる溶媒は、粉体の分散性やデカンテーションにかかる時間などから、水だけでなく、水溶性有機溶媒(例えば、エタノール、メタノール等)との混合水溶液を選択してもよい。
 酸化反応後、タングステン粉末を酸化反応溶液からデカンテーションなどの操作で分取し、溶媒に投入、撹拌、静置、デカンテーションの一連の操作を繰り返して洗浄する。この状態のタングステン粉は原料の黒色から黄色がかった青色に変色しており、表面が酸化されたことが目視でも確認できる。
酸化膜の除去:
 上記で得られた表面が酸化されたタングステン粉の酸化膜をアルカリ水溶液で処理し、少なくとも化学的に除去する。好ましくは、ホモジナイザーなどの強い撹拌ができる装置により、タングステン粒子表面に生成した生成物を機械的にも除去しながら前記撹拌を行う。
 アルカリ水溶液としては、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水等が用いられ、水酸化ナトリウム水溶液、水酸化カリウム水溶液が好ましい。
 具体的には、表面が酸化されたタングステン粉をアルカリ水溶液中で撹拌をするなどして分散させる。撹拌した後に静置し、デカンテーションでアルカリ水溶液を除去した後に、水等の溶媒を投入し、撹拌した後に静置し、デカンテーションする一連の操作を数回繰り返す。これらの操作によりタングステン粒子表面に形成された酸化物は除去される。その後、真空乾燥機中、減圧下(例えば104~102Pa)で50~180℃の温度で乾燥し、室温まで冷却する。次に、発火しないように徐々に空気を入れ、空気中に取り出すことにより、原料タングステン粉に比べて粒径が小さいタングステン粉を得ることができる。
 本発明の方法によれば、原料タングステン粉の粒子形状が特に異方性の高いものでない限り、ほぼ球状のタングステン粒子を得ることもできる。球形であることは得られたタングステン粉の平均粒子径(d)(μm)と真密度(M)(g/cm3)とBET比表面積(S)(m2/g)の値が下記の式を満たすことで確認できる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、得られたタングステン粉の平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)の積(d×S×M)(dSMと略記)の値が6の値に近ければ得られたタングステン粉はほぼ球形であると言える。本発明により得られるタングステン粉のdMSの値は、通常6±0.8の範囲内となる。さらに、本発明の方法を適用して得たタングステン粉を原料タングステン粉として用い、さらに真球に近い粒子からなるタングステン粉を得ることもできる。
 球形に近い粒子の表面に形成される誘電体層は、ほぼ一様な曲率を有し、応力が集中しやすい小さな曲率で屈曲する部分が無いので劣化が少ない。その結果、LC特性がより良好なコンデンサが得られる。
 本発明の方法で製造されたタングステン粉は、これを直接焼結して焼結体としてもよいが、あるいは、10~300μm程度の顆粒に造粒した粉を焼結して焼結体としてもよい。造粒した方が取扱いがしやすく、ESRを低く抑えやすい。
 さらに、本発明の方法で製造されたタングステン粉に、ケイ化、窒化、炭化、あるいはホウ化処理をして、タングステン粒子表面の一部にケイ化タングステン、窒化タングステン、炭化タングステン、及びホウ化タングステンから選択される少なくとも1つを含有するタングステン粉としてもよい。また、これら処理を造粒粉あるいは焼結体となった段階で適用することもできる。この焼結体を一方の電極(陽極)とし、対電極(陰極)との間に介在する誘電体とにより電解コンデンサが作製される。
 以下に実施例及び比較例を挙げて本発明を説明するが、下記の記載により本発明は何ら限定されるものではない。
 本発明において、粒子径と比表面積と真密度は以下の方法で測定した。
 粒子径は、マイクロトラック社製HRA9320-X100を用い、粒度分布をレーザー回折散乱法で測定し、その累積体積%が、50体積%に相当する粒径値(D50;μm)を平均粒子径(d)とした。なお、この測定法は2次粒子径の測定法ではあるが、タングステン粉の分散性はある程度良好なので、測定結果は1次粒子径に近い値が得られる。そのため、測定結果を実質的に1次粒子径とみなして、前述の式(1)に適用し、粒子形状を判断してもよい。
 比表面積(S;m2/g)は、NOVA2000E(SYSMEX社)を用いBET法で測定した。
 真密度(M;g/cm3)は、ピクノメーター法(20℃)で測定した。
実施例1:
 タングステン酸アンモニウムを水素還元して得た平均粒径1μmのタングステン粉200gを5質量%の過硫酸アンモニウムが溶解した蒸留水500mLに投入し、(株)マイクロテック・ニチオン社製のホモジナイザーNS-51を用い、50℃で24時間撹拌した。その間、蒸発する水を補給し続けた。室温で17時間放置して粉を沈降させた後に液をデカンテーションで除去し、さらに200mLの蒸留水を加えてホモジナイザーで5分撹拌し、5時間放置後、液をデカンテーションにて除去した。この蒸留水の投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色から黄色がかった青色に変色し、表面が酸化されたことが分かった。次に5質量%の水酸化ナトリウム水溶液を100mL加え、ホモジナイザーで1時間撹拌した。前記したように、静置、デカンテーションで液を除去した後に、蒸留水投入、撹拌、静置、デカンテーションの一連の操作を4回繰り返した。この状態のタングステン粉は黒色で粒子表面に形成された酸化物は除去されていた。その後、粉の一部を真空乾燥機(約103Pa,50℃)に移し乾燥後、室温に戻した。次に、発火しないように徐々に空気を入れ、空気中に取り出した。作製した粉は、平均粒径(d)0.5μm、比表面積(S)0.6m2/g、真密度(M)19.3g/cm3であった。得られたタングステン粉の平均粒径、比表面積、及び真密度の積(dMS)は5.8であった。dMSの値が6±0.2の範囲内であったことから得られた粉の粒子はかなり球に近い形状であることが確認された。
実施例2:
 実施例1で最初に投入する蒸留水500mLを、エタノール100mLと蒸留水400mLとし、溶解している過硫酸アンモニウムの濃度を3質量%とし、さらに、デカンテーションまでの沈降時間を24時間にした以外は実施例1と同様にしてタングステン粉を得た。最初の液にエタノールを加えることにより初期のタングステン粉の分散性が良くなり、表面の酸化が進みやすくなった。作製した粉は、平均粒径(d)0.4μm、比表面積(S)0.7m2/g、真密度(M)19.3g/cm3であった。得られたタングステン粉の平均粒径、比表面積、及び真密度の積(dMS)は5.4であった。dMSの値が6±0.6の範囲内であったことから、得られた粉の粒子はほぼ球状であることが確認された。

Claims (7)

  1.  酸化剤を含有する水溶液中にタングステン粉を分散することにより、タングステン粉の粒子表面に酸化膜を形成させ、前記酸化膜をアルカリ水溶液で除去することを特徴とするタングステン粉の細粉化方法。
  2.  前記酸化膜のアルカリ水溶液での除去が、タングステン粉の粒子表面の反応生成物を機械的に除去することを含む請求項1に記載のタングステン粉の細粉化方法。
  3.  酸化剤が、マンガン(VII)化合物、クロム(VI)化合物、ハロゲン酸化合物、ペルオキソ酸及びその塩、並びに、過酸化物から選択される請求項1または2に記載のタングステン粉の細粉化方法。
  4.  酸化剤が過酸化水素または過硫酸アンモニウムである請求項3に記載のタングステン粉の細粉化方法。
  5.  請求項1~4の方法を含む工程により平均粒子径0.05~0.5μmのタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
  6.  請求項1~4の方法を含む工程により、平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.8の範囲内であるタングステン粉を得ることを特徴とするタングステン細粉の製造方法。
  7.  平均粒子径が0.05~0.5μmであり、かつ平均粒子径d(μm)と真密度M(g/cm3)とBET比表面積S(m2/g)との積(dMS)の値が6±0.8の範囲内であるタングステン粉。
PCT/JP2012/071760 2011-11-15 2012-08-29 タングステン細粉の製造方法 WO2013073253A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/357,953 US9669460B2 (en) 2011-11-15 2012-08-29 Method for producing fine tungsten powder
CN201280055853.4A CN103945964A (zh) 2011-11-15 2012-08-29 钨细粉的制造方法
JP2012548166A JP5222437B1 (ja) 2011-11-15 2012-08-29 タングステン細粉の製造方法
EP12849043.0A EP2781285A4 (en) 2011-11-15 2012-08-29 METHOD FOR PRODUCING A FINE TREATMENT OF TUNGSTEN
US15/587,235 US20170232508A1 (en) 2011-11-15 2017-05-04 Method for producing fine tungsten powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-250155 2011-11-15
JP2011250155 2011-11-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/357,953 A-371-Of-International US9669460B2 (en) 2011-11-15 2012-08-29 Method for producing fine tungsten powder
US15/587,235 Division US20170232508A1 (en) 2011-11-15 2017-05-04 Method for producing fine tungsten powder

Publications (1)

Publication Number Publication Date
WO2013073253A1 true WO2013073253A1 (ja) 2013-05-23

Family

ID=48429331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071760 WO2013073253A1 (ja) 2011-11-15 2012-08-29 タングステン細粉の製造方法

Country Status (5)

Country Link
US (2) US9669460B2 (ja)
EP (1) EP2781285A4 (ja)
JP (2) JP5222437B1 (ja)
CN (1) CN103945964A (ja)
WO (1) WO2013073253A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097698A1 (ja) * 2012-12-17 2014-06-26 昭和電工株式会社 タングステン微粉の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781285A4 (en) * 2011-11-15 2015-12-23 Showa Denko Kk METHOD FOR PRODUCING A FINE TREATMENT OF TUNGSTEN
JP5222438B1 (ja) * 2011-11-29 2013-06-26 昭和電工株式会社 タングステン細粉の製造方法
CN104532160B (zh) * 2014-12-26 2016-12-14 重庆迎瑞升压铸有限公司 一种泵用合金钢材料
CN113681008B (zh) * 2019-07-26 2023-06-27 昆山卡德姆新材料科技有限公司 一种金属零件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211752A (en) * 1975-07-17 1977-01-28 Toshiba Corp Method of manufacturing cathodes for electron tubes
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
JP2005325448A (ja) * 2004-04-15 2005-11-24 Jfe Mineral Co Ltd タンタル粉末およびこれを用いた固体電解コンデンサ
JP2006299385A (ja) * 2005-04-25 2006-11-02 Noritake Co Ltd 白金粉末、その製造方法、および圧電セラミック材用白金ペースト
WO2012086272A1 (ja) * 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3236634A (en) 1962-02-12 1966-02-22 Jr Foraker Lambdin Process for production of high surface area tungsten and tungsten trioxide powders
JPS6169904A (ja) * 1984-09-14 1986-04-10 Nippon Tungsten Co Ltd 酸化タングステン微粉末の製造法
JPH0615681B2 (ja) * 1985-03-04 1994-03-02 株式会社東芝 高純度のモリブデン又はタングステン粉末の製造方法
CZ301097B6 (cs) 1997-02-19 2009-11-04 H.C. Starck Gmbh Tantalový prášek sestávající z aglomerátu, zpusob jeho výroby a z nej získané slinuté anody
CZ303684B6 (cs) * 1998-05-06 2013-03-06 H. C. Starck Inc. Slitinový prásek, zpusob jeho výroby, anoda kondenzátoru z tohoto slitinového prásku a kondenzátor, a prásek slitiny niobu a tantalu
WO2005099936A1 (ja) 2004-04-15 2005-10-27 Jfe Mineral Company, Ltd. タンタル粉末およびこれを用いた固体電解コンデンサ
US7629265B2 (en) * 2006-02-13 2009-12-08 Macronix International Co., Ltd. Cleaning method for use in semiconductor device fabrication
CN101983804B (zh) 2010-12-03 2012-07-04 中南大学 近球形钨粉的制备方法
EP2781285A4 (en) * 2011-11-15 2015-12-23 Showa Denko Kk METHOD FOR PRODUCING A FINE TREATMENT OF TUNGSTEN

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211752A (en) * 1975-07-17 1977-01-28 Toshiba Corp Method of manufacturing cathodes for electron tubes
JP2003272959A (ja) 2002-03-15 2003-09-26 Sanyo Electric Co Ltd コンデンサ
JP2004349658A (ja) 2002-07-26 2004-12-09 Sanyo Electric Co Ltd 電解コンデンサ
US6876083B2 (en) 2002-07-26 2005-04-05 Sanyo Electric Co., Ltd. Electrolytic capacitor and a fabrication method therefor
WO2004055843A1 (ja) 2002-12-13 2004-07-01 Sanyo Electric Co.,Ltd. 固体電解コンデンサ及びその製造方法
US7154743B2 (en) 2002-12-13 2006-12-26 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
JP2005325448A (ja) * 2004-04-15 2005-11-24 Jfe Mineral Co Ltd タンタル粉末およびこれを用いた固体電解コンデンサ
JP2006299385A (ja) * 2005-04-25 2006-11-02 Noritake Co Ltd 白金粉末、その製造方法、および圧電セラミック材用白金ペースト
WO2012086272A1 (ja) * 2010-12-24 2012-06-28 昭和電工株式会社 タングステン粉、コンデンサの陽極体及び電解コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781285A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097698A1 (ja) * 2012-12-17 2014-06-26 昭和電工株式会社 タングステン微粉の製造方法
US9789538B2 (en) 2012-12-17 2017-10-17 Show A Denko K.K. Method for producing ultrafine tungsten powder

Also Published As

Publication number Publication date
US20140315039A1 (en) 2014-10-23
US20170232508A1 (en) 2017-08-17
JP2013151755A (ja) 2013-08-08
JPWO2013073253A1 (ja) 2015-04-02
CN103945964A (zh) 2014-07-23
EP2781285A1 (en) 2014-09-24
JP5731558B2 (ja) 2015-06-10
US9669460B2 (en) 2017-06-06
EP2781285A4 (en) 2015-12-23
JP5222437B1 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5731558B2 (ja) 電解コンデンサ用タングステン細粉
AU2005291557B2 (en) Tantalum powder for the production of solid electrolyte capacitors
US9789538B2 (en) Method for producing ultrafine tungsten powder
JP5731559B2 (ja) 電解コンデンサ用タングステン細粉
JP2005503661A (ja) 酸化ニオブの製造方法
WO2006062234A1 (ja) 金属粉末および多孔質焼結体の製造方法、金属粉末、およびコンデンサ
TWI744397B (zh) 鉭粉、陽極和包含其的電容器及彼等之製造方法
WO2015053239A1 (ja) ニオブ造粒粉末の製造方法
JP2005325448A (ja) タンタル粉末およびこれを用いた固体電解コンデンサ
JP5844953B2 (ja) タングステンコンデンサ用陽極体
US20040042154A1 (en) Powder for capacitor, sintered body and capacitor using the sintered body
JP5476511B1 (ja) コンデンサ素子
JP2010265549A (ja) コンデンサ用ニオブ粉
WO2014104177A1 (ja) ニオブコンデンサ陽極用化成体及びその製造方法
JP5779741B1 (ja) タングステンコンデンサ用陽極体の製造方法
JP2024018489A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法
JP2024018487A (ja) ニッケル合金粉末及び、ニッケル合金粉末の製造方法
WO2015093155A1 (ja) タングステン粉、コンデンサの陽極体、及び電解コンデンサ
JP2010261106A (ja) コンデンサ用ニオブ焼結体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012548166

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012849043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14357953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE