WO2013073141A1 - 軸流送風機およびそれを搭載した電気機器 - Google Patents

軸流送風機およびそれを搭載した電気機器 Download PDF

Info

Publication number
WO2013073141A1
WO2013073141A1 PCT/JP2012/007179 JP2012007179W WO2013073141A1 WO 2013073141 A1 WO2013073141 A1 WO 2013073141A1 JP 2012007179 W JP2012007179 W JP 2012007179W WO 2013073141 A1 WO2013073141 A1 WO 2013073141A1
Authority
WO
WIPO (PCT)
Prior art keywords
commercial
air volume
power supply
axial blower
axial
Prior art date
Application number
PCT/JP2012/007179
Other languages
English (en)
French (fr)
Inventor
高田 昌亨
和弘 室町
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011250358A external-priority patent/JP5945686B2/ja
Priority claimed from JP2011250359A external-priority patent/JP5877325B2/ja
Priority claimed from JP2012187183A external-priority patent/JP6114906B2/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280053126.4A priority Critical patent/CN103907268B/zh
Publication of WO2013073141A1 publication Critical patent/WO2013073141A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0633Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/12Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit being adapted for mounting in apertures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/46Motors having additional short-circuited winding for starting as an asynchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention mainly relates to an axial-flow fan mounted on a ventilation fan for exhaust and supply such as a fan for a pipe or a general type ventilation fan, a pressure ventilation fan for business use or industrial use, a cooling fan for incorporation in an apparatus, etc.
  • the present invention also relates to an electric device equipped with the axial flow fan.
  • FIG. 13 is a diagram illustrating a configuration of a conventional axial fan.
  • power is supplied from the DC power source 101 to the DC motor 103 via the energization control unit 102.
  • a propeller fan 104 is attached to the rotating shaft of the DC motor 103.
  • the voltage control unit 107 applies a rated voltage from the DC power source 101 to the DC motor 103, and rotates the rotation speed slightly lower than the rotation speed at the time of zero static pressure as a predetermined rotation speed.
  • the number is stored in the number storage unit 106.
  • the voltage control unit 107 increases the output voltage of the DC power source 101 to a rated voltage or higher, and the predetermined rotational speed. Control so as not to lower.
  • Such a conventional axial blower has a problem that it cannot be reduced in size and thickness in order to secure a space for installing a DC power supply, a control circuit, and the like. Therefore, there is a demand for an axial blower that can reduce the decrease in the amount of air flow even if the external pressure loss such as the external wind pressure increases without using a circuit such as a DC power supply, a special sensor, or a microcomputer. .
  • the axial blower of the present invention includes a rotating shaft, a propeller fan, a cage rotor, and a stator.
  • the propeller fan is connected to at least one end of the rotating shaft.
  • the cage rotor is integrated with the outer periphery of the rotating shaft and has a plurality of conductor bars.
  • the stator is positioned opposite the squirrel-cage rotor and winds the armature winding.
  • the armature winding is connected to a commercial AC power supply via a commercial AC power supply connection.
  • permanent magnets are arranged at positions where the conductor bar is sandwiched between the stator and the stator.
  • the axial blower operates at a constant rotational speed synchronized with the power supply frequency of the commercial AC power supply in a range from zero external static pressure to approximately maximum external static pressure.
  • FIG. 1 is a diagram showing a configuration of an axial blower according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing an example of the rotational speed-torque characteristic of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing an example of the air volume-static pressure characteristics of the axial blower according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing an installation state of the ventilation device equipped with the axial blower according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a configuration of an axial blower according to Embodiment 2 of the present invention.
  • FIG. 7 is a graph showing an example of the rotational speed-torque characteristic of the electric motor according to Embodiment 2 of the present invention.
  • FIG. 8 is a graph showing an example of air volume-static pressure characteristics of the axial blower according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram showing a configuration of an axial blower according to Embodiment 3 of the present invention.
  • FIG. 10 is an exploded perspective view showing the configuration of the electric motor according to Embodiment 3 of the present invention.
  • FIG. 11 is a graph showing an example of the rotation speed-torque characteristic of the electric motor according to Embodiment 3 of the present invention.
  • FIG. 12 is a graph showing an example of air volume-static pressure characteristics of the axial blower according to Embodiment 3 of the present invention.
  • FIG. 13 is a diagram showing a configuration of
  • FIG. 1 is a diagram showing a configuration of an axial blower according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a graph showing an example of the rotational speed-torque characteristic of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a graph showing an example of the air flow-static pressure characteristics of the axial blower according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing an installation state of the ventilation device equipped with the axial blower according to Embodiment 1 of the present invention.
  • the axial blower 18 in the present embodiment is equipped with an electric motor 11, and a propeller fan 8 is attached to one end of a shaft 9 that is a rotating shaft of the electric motor 11.
  • the axial blower 18 is connected to the commercial AC power source 20 via the commercial AC power source connection unit 16.
  • the ventilator 1 which is an electric device has an axial blower 18 built therein. Dirty room air that has been sucked in by the axial blower 18 and generated by smoke or cooking is sucked from the suction port of the ventilator 1, passes through the wall 14 of the building, and is discharged outside.
  • the electric motor 11 includes a stator 4, a cage rotor 3, an operating capacitor 10, a starting capacitor 12, and a PTC thermistor 13.
  • the stator 4 is configured such that a main winding 2a and an auxiliary winding 2b, which are armature windings 2, are concentratedly wound around teeth 17 of the stator core 4a.
  • the auxiliary winding 2b is wound around the teeth 17 at an electrical angle of 90 degrees with respect to the main winding 2a.
  • the cage rotor 3 is rotatably held facing the stator 4.
  • a shaft 9 that is a rotating shaft is press-fitted into the center of the cage rotor 3. That is, the squirrel-cage rotor 3 is integrally fixed to the outer periphery of the shaft 9.
  • the cage rotor 3 is provided with a plurality of conductor bars 5 made of aluminum on the outer peripheral side.
  • the conductor bar 5 is skewed.
  • a permanent magnet 6 is disposed between the conductor bar 5 and the shaft 9 of the cage rotor 3. That is, the permanent magnet 6 is disposed at a position where the conductor bar 5 is sandwiched between the stator 4 and the stator 4.
  • the permanent magnet 6 is a bonded magnet in which anisotropic samarium / iron / nitrogen magnetic powder and anisotropic neodymium / iron / boron magnetic powder are mixed.
  • the cross-sectional shape of the permanent magnet 6 in the radial direction is a crescent shape, and the convex side 7 of the permanent magnet 6 faces the stator 4 side.
  • the permanent magnet 6 is skewed similarly to the conductor bar 5.
  • the particle size of samarium / iron / nitrogen magnetic powder is 2 to 3 ⁇ m.
  • the particle size of neodymium / iron / boron magnetic powder is 50-100 ⁇ m.
  • One end of the main winding 2 a and one end of the auxiliary winding 2 b are connected, and the connection point is connected to one terminal of the commercial AC power supply 20.
  • the other end of the main winding 2 a is connected to the other terminal of the commercial AC power supply 20.
  • the other end of the auxiliary winding 2 b is connected to the other terminal of the commercial AC power supply 20 through a series circuit of a starting capacitor 12 and a PTC thermistor 13.
  • the operating capacitor 10 is connected in parallel with this series circuit.
  • the starting capacitor 12 is disconnected from the commercial AC power supply 20 by the PTC thermistor 13.
  • the axial blower 18 operates at a constant rotational speed synchronized with the power supply frequency of the commercial AC power supply 20 in the range from zero external static pressure to the maximum static pressure (zero air volume).
  • an induced current is generated in the conductor bar 5 so that the rotational torque corresponding to the slip is generated. Occur and work. And it transfers to the synchronous operation mode rotated by the attractive force of the magnetic force of the permanent magnet 6 and the magnetic force of the electromagnet by the armature winding 2 of the stator 4.
  • the axial blower 18 operates at a constant rotational speed synchronized with the power supply frequency of the commercial AC power supply 20 in a range from zero external static pressure to approximately maximum external static pressure.
  • the ventilator 1 equipped with the axial blower 18 does not need to use a DC power supply or a control circuit equipped with a microcomputer.
  • the axial blower 18 is compared with the axial blower equipped with the conventional DC motor or AC motor even if the external pressure loss such as the external wind pressure increases. And there is little decrease in blast volume.
  • the axial blower 18 can smoothly transition from a state where it operates as an induction machine, such as when the power is turned on, to a state where it operates as a synchronous machine. Furthermore, since the torque ripple at the time of synchronous operation is reduced, an axial blower that achieves low vibration and low noise can be obtained.
  • the cross-sectional shape of the permanent magnet 6 in the radial direction is a crescent shape, and the convex side 7 of the permanent magnet 6 faces the stator 4 side. For this reason, the induced voltage waveform at the time of the synchronous operation of the axial blower 18 becomes close to a sine wave. Thereby, a torque ripple becomes small and the axial-flow fan which implement
  • the permanent magnet 6 is a bonded magnet in which anisotropic samarium / iron / nitrogen magnetic powder having a small magnetic particle diameter and anisotropic neodymium / iron / boron magnetic powder having a large magnetic particle diameter are mixed. Therefore, the permanent magnet 6 has a high magnetic flux density due to an improved filling rate of the magnetic powder. Also, neodymium / iron / boron magnetic powder suppresses magnetization reversal of samarium / iron / nitrogen magnetic powder. Accordingly, since the coercive force of the permanent magnet 6 is improved, the torque that rotates in synchronization with the power supply frequency of the axial blower 18 is increased.
  • the propeller fan 8 can take a large difference between the load curve at the time of opening and the load curve at the time of closing. That is, an axial blower can be obtained in which the decrease in the amount of blown air can be extremely reduced even if the outside pressure loss such as outside wind pressure increases.
  • FIG. 6 is a diagram showing the configuration of the axial blower in the second embodiment of the present invention.
  • FIG. 7 is a graph showing an example of the rotation speed-torque characteristics of the electric motor according to Embodiment 2 of the present invention.
  • FIG. 8 is a graph showing an example of the air volume-static pressure characteristics of the axial blower according to Embodiment 2 of the present invention.
  • symbol is attached
  • the operating condenser of the axial blower 28 in the present embodiment is composed of a large air volume operating capacitor 25 and a small air volume operating capacitor 15.
  • the large air volume operation capacitor 25 is connected in parallel to the series circuit of the start capacitor 12 and the PTC thermistor 13.
  • the small air volume operation capacitor 15 is connected in series with the large air volume operation capacitor 25 via a resistor.
  • the commercial AC power source 20 is connected to the armature winding 2 of the electric motor 21 via the commercial AC power source connection unit 16.
  • the commercial AC power supply connection unit 16 includes a small air volume connection unit 16a, a large air volume connection unit 16b, and a common connection unit 16c.
  • the common connection portion 16c is connected to one end of the armature winding 2 (a connection point where one end of the main winding 2a and one end of the auxiliary winding 2b are connected).
  • the large air volume connection portion 16b is connected to the other end of the auxiliary winding 2b via the large air volume operation capacitor 25.
  • the small air volume connection portion 16a is connected to the auxiliary winding 2b with the small air volume operation capacitor 15 connected in series to the large air volume operation capacitor 25.
  • the other end of the main winding 2a is directly connected to the large air volume connection portion 16b, and is connected to the small air volume connection portion 16a via the small air volume operation capacitor 15.
  • the small air volume operation capacitor 15 and the large air volume operation capacitor 25 are A series connection is made and the capacity of the operating capacitor is reduced. Further, when the commercial AC power supply 20 is connected to the large air volume connection portion 16b and the common connection portion 16c of the commercial AC power source connection portion 16 (when the large air volume is selected), the small air volume operation capacitor 15 is electrically connected. It will not be done. Accordingly, the operating capacitor is only the large air volume operating capacitor 25, and the capacity of the operating capacitor is the capacity of the large air volume operating capacitor 25.
  • the starting capacitor 12 is disconnected from the commercial AC power supply 20 by the PTC thermistor 13 in the synchronous operation state of the axial blower 28.
  • the axial blower 28 operates in a low rotational speed range.
  • the axial blower 28 operates at a constant rotational speed synchronized with the power supply frequency of the commercial AC power supply in the range from zero external static pressure to the maximum static pressure (zero air volume).
  • the commercial AC power supply 20 is connected to the small air volume connecting portion 16a and the common connecting portion 16c as shown in the graph of the rotational speed-torque characteristics of FIG.
  • the torque of the electric motor 21 is reduced.
  • the counter electromotive voltage generated by the permanent magnet 6 becomes the brake torque, the torque of the electric motor 21 further decreases.
  • the axial blower 28 is operated at a rotation corresponding to the slip by generating an induced current in the conductor bar 5.
  • the commercial AC power supply 20 is connected to the large air volume connection portion 16b and the common connection portion 16c, the capacity of the operating capacitor is large.
  • the axial blower 28 can be operated at a low speed when constant ventilation is selected, so that a small air flow operation can be realized.
  • the axial blower 28 operates at a constant rotational speed synchronized with the power supply frequency, and therefore, even if the external pressure loss such as the external wind pressure increases, the air flow rate decreases. Less. That is, in all the pipe lengths 10 m to 30 m connected to the axial blower 28, the reduction in the amount of blown air can be reduced as compared with the conventional axial blower equipped with a DC motor or an AC motor.
  • FIG. 9 is a diagram illustrating a configuration of an axial blower according to Embodiment 3 of the present invention.
  • FIG. 10 is an exploded perspective view showing the configuration of the electric motor according to Embodiment 3 of the present invention.
  • FIG. 11 is a graph showing an example of the rotational speed-torque characteristic of the electric motor according to Embodiment 3 of the present invention.
  • FIG. 12 is a graph showing an example of the air flow-static pressure characteristics of the axial blower according to Embodiment 3 of the present invention.
  • symbol is attached
  • the electric motor 31 of the present embodiment includes a stator 4, a cage rotor 33, an operating capacitor, a starting capacitor 12, and a PTC thermistor 13.
  • the stator 4 is configured by concentrically winding the main winding 2a and the auxiliary winding 2b, which are the armature windings 2, around the teeth 17 of the stator core 4a.
  • the squirrel-cage rotor 33 is rotatably held facing the stator 4.
  • a shaft 9 that is a rotating shaft is press-fitted into the center of the cage rotor 33.
  • a plurality of conductor bars 35 made of aluminum are provided on the outer peripheral side of the cage rotor 33. The conductor bar 35 is skewed.
  • the number of the plurality of conductor bars 35 is an even number.
  • a permanent magnet 36 is disposed between the conductor bar 35 of the cage rotor 33 and the shaft 9. That is, the permanent magnet 36 is disposed at a position where the conductor bar 35 is sandwiched between the stator 4 and the stator 4.
  • the permanent magnet 36 is a bonded magnet in which anisotropic samarium / iron / nitrogen magnetic powder and anisotropic neodymium / iron / boron magnetic powder are mixed.
  • the permanent magnet 36 has a substantially U-shaped cross section in the radial direction, and the concave side 37 of the permanent magnet 36 faces the stator 4 side.
  • the permanent magnet 36 is skewed similarly to the conductor bar 35.
  • the particle size of samarium / iron / nitrogen magnetic powder is 2 to 3 ⁇ m.
  • the particle size of neodymium / iron / boron magnetic powder is 50-100 ⁇ m.
  • a conductor bar 35 is disposed at a position on the center line between the poles 39 that connects the centers of the poles 39 facing each other in the gap 39 between the permanent magnets 36. Due to the arrangement of the conductor bars 35 and the even number of conductor bars 35, the counter-electromotive voltage induced in the armature winding 2 by the rotation of the cage rotor 33 is the third harmonic component. Is contained in a large amount.
  • the commercial AC power source 20 When the small air volume is selected, the commercial AC power source 20 is connected to the small air volume connecting portion 16a and the common connecting portion 16c of the commercial AC power source connecting portion 16. In this case, the axial blower 38 is operated at a constant rotational speed that is one third of the rotational speed synchronized with the power supply frequency of the commercial AC power supply 20 in the range from zero external static pressure to the maximum static pressure (zero airflow). To do.
  • the commercial AC power source 20 when the large air volume is selected, the commercial AC power source 20 is connected to the large air volume connecting portion 16b and the common connecting portion 16c of the commercial AC power source connecting portion 16. In this case, the axial blower 38 operates at a constant rotational speed synchronized with the power supply frequency of the commercial AC power supply 20 in the range from zero external static pressure to the maximum static pressure (zero air volume).
  • the rotation speed is one third of the rotation speed synchronized with the power supply frequency of the commercial AC power supply 20.
  • the number of rotations is constant in a predetermined torque region.
  • the axial blower 38 operates at a rotational speed that is one third of the rotational speed synchronized with the power frequency of the commercial AC power supply 20 that is the intersection of the load curves of the propeller fan 8.
  • the ventilation device 1 is constantly ventilated.
  • the engine is operated at a predetermined constant rotational speed. That is, the axial blower 38 of the present embodiment can reduce the decrease in the amount of blown air even if the external pressure loss such as the external wind pressure increases.
  • the axial blower 38 reduces the amount of blown air compared to the conventional axial blower equipped with a DC motor or an AC motor in all pipe lengths 10 m to 30 m connected to the axial blower 38. Less.
  • the electric motor 31 is concentratedly wound around the teeth 17 of the stator core 4a, the number of the plurality of conductor bars 35 is an even number, and the poles connecting the centers of the poles 39 facing each other in the pole gaps 39 of the permanent magnets 36 are connected.
  • a conductor bar 35 is disposed at a position on the center line.
  • the axial blower 38 smoothly transitions from the operation as an induction machine to the operation as a synchronous machine when the power is turned on. Furthermore, since the torque ripple at the time of synchronous operation is reduced, an axial blower that achieves low vibration and low noise can be obtained.
  • the cross-sectional shape of the permanent magnet 36 in the radial direction is substantially U-shaped, and the concave side 37 faces the stator 4 side.
  • the third harmonic component is further contained in the counter electromotive voltage induced in the armature winding 2 by the rotation of the cage rotor 33. Therefore, the torque region where the rotational speed is constant at a rotational speed that is one third of the rotational speed synchronized with the power supply frequency of the commercial AC power supply 20 is further expanded. Thereby, even if it is a small air volume, the axial-flow fan which implement
  • the permanent magnet 36 is a bonded magnet in which anisotropic samarium / iron / nitrogen magnetic powder having a small magnetic particle diameter and anisotropic neodymium / iron / boron magnetic powder having a large magnetic particle diameter are mixed. And the permanent magnet 36 becomes high in magnetic flux density because the filling rate of magnetic powder improves. Furthermore, neodymium / iron / boron magnetic powder suppresses magnetization reversal of samarium / iron / nitrogen magnetic powder. Therefore, the holding force of the permanent magnet 36 is improved, and the torque that rotates in synchronization with the power supply frequency is increased. Therefore, the propeller fan 8 can take a large difference between the load curve when opened and the load curve when closed. It becomes. Therefore, an axial blower can be obtained in which the decrease in the amount of blown air can be extremely reduced even if the outside pressure loss such as outside wind pressure increases.
  • the starting capacitor 12 and the PTC thermistor 13 are provided. However, if there is no influence on the shift from the starting as the induction machine to the synchronous operation as the synchronous machine, the starting capacitor 12 And the PTC thermistor 13 may be omitted.
  • the axial blower according to the present invention operates at a constant speed at a rotational speed synchronized with the power supply frequency, so that even if the external static pressure rises, the reduction in the air volume is small.
  • air conditioners such as ventilators, electric fans, refrigerators, air conditioners, cooling units, etc. that are required to ensure an appropriate air volume at low cost without mounting brushless DC motors or special circuits It is useful to install on.

Abstract

 軸流送風機(18)は、回転軸(9)と、プロペラファン(8)と、かご形回転子(3)と、固定子と、を備える。プロペラファン(8)は、回転軸(9)の少なくとも一端に接続される。かご形回転子(3)は、回転軸(9)の外周に一体化され、複数の導体バー(5)を有する。固定子は、かご形回転子(3)に対向して位置し、電機子巻線(2)を巻装する。電機子巻線(2)は商用交流電源接続部(16)を介して商用交流電源(20)に接続される。かご形回転子(3)には、導体バー(5)を固定子との間に挟む位置に永久磁石(6)を配置する。軸流送風機(18)は、機外静圧ゼロから機外静圧が略最大になるまでの範囲で商用交流電源(20)の電源周波数に同期した一定の回転数で運転する。

Description

軸流送風機およびそれを搭載した電気機器
 本発明は、主にパイプ用ファンや一般型換気扇、業務用や産業用の有圧換気扇等の排気用および給気用の換気装置や、機器組み込み用の冷却用ファンなどに搭載する軸流送風機およびその軸流送風機を搭載した電気機器に関する。
 近年、換気装置等の電気機器に搭載する電動機においては、低価格化、高効率化、静音化、小型化、薄型化をした上で、外風圧、フィルタ等の目詰まりによる圧力損失の変化の影響を大きく受けることなく、適切な風量で換気ができるような環境影響度の少ない軸流送風機が求められている。従来、この種の軸流送風機は、特許文献1に開示された構成のものが知られている。
 以下、従来の軸流送風機について図13を参照しながら説明する。図13は、従来の軸流送風機の構成を示す図である。図13に示すように、軸流送風機108では、DC電源101より通電制御部102を介してDCモータ103に電力が供給される。DCモータ103の回転軸にはプロペラファン104が取り付けられている。軸流送風機108の定常状態において、電圧制御部107は、DC電源101より定格電圧をDCモータ103に印加し、静圧ゼロの時の回転数よりも若干低い回転数を所定の回転数として回転数記憶部106に記憶する。外風圧などによって、回転検出部105が検出する運転回転数が所定の回転数よりも下がった場合、電圧制御部107は、DC電源101の出力電圧を定格電圧以上に上昇させ、所定の回転数より低くならないように制御する。
 このような従来の軸流送風機には、DC電源や制御回路などを設置するためのスペースを確保するために、小型化、薄型化ができないという課題がある。このため、DC電源などの回路や、特別なセンサや、マイクロコンピュータを用いることなく、外風圧など機外圧力損失が増加しても、送風量の減少が少なくできる軸流送風機が要求されている。
 また、常時換気など小風量が必要な場合は、小風量での送風を実現でき、急速換気など大風量が必要な場合は、外風圧など機外圧力損失が増加しても、送風量の減少が少なくできる軸流送風機が要求されている。
特許第3159503号公報
 本発明の軸流送風機は、回転軸と、プロペラファンと、かご形回転子と、固定子と、を備える。プロペラファンは、回転軸の少なくとも一端に接続される。かご形回転子は、回転軸の外周に一体化され、複数の導体バーを有する。固定子は、かご形回転子に対向して位置し、電機子巻線を巻装する。電機子巻線は商用交流電源接続部を介して商用交流電源に接続される。かご形回転子には、導体バーを固定子との間に挟む位置に永久磁石を配置する。軸流送風機は、機外静圧ゼロから機外静圧が略最大になるまでの範囲で商用交流電源の電源周波数に同期した一定の回転数で運転する。
 これにより、軸流送風機は、外風圧などの影響により、ファン負荷が増加しても、商用交流電源の電源周波数に同期して一定の回転数で運転する。その結果、マイクロコンピュータや特別な制御回路を使用することなく、送風量の減少が少なくできる。
図1は本発明の実施の形態1における軸流送風機の構成を示す図である。 図2は本発明の実施の形態1における電動機の構成を示す分解斜視図である。 図3は本発明の実施の形態1における電動機の回転数-トルク特性の一例を示すグラフである。 図4は本発明の実施の形態1における軸流送風機の風量-静圧特性の一例を示すグラフである。 図5は本発明の実施の形態1における軸流送風機を搭載した換気装置の設置状態を示す断面図である。 図6は本発明の実施の形態2における軸流送風機の構成を示す図である。 図7は本発明の実施の形態2における電動機の回転数-トルク特性の一例を示すグラフである。 図8は本発明の実施の形態2における軸流送風機の風量-静圧特性の一例を示すグラフである。 図9は本発明の実施の形態3における軸流送風機の構成を示す図である。 図10は本発明の実施の形態3における電動機の構成を示す分解斜視図である。 図11は本発明の実施の形態3における電動機の回転数-トルク特性の一例を示すグラフである。 図12は本発明の実施の形態3における軸流送風機の風量-静圧特性の一例を示すグラフである。 図13は従来の軸流送風機の構成を示す図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1における軸流送風機の構成を示す図である。図2は、本発明の実施の形態1における電動機の構成を示す分解斜視図である。図3は、本発明の実施の形態1における電動機の回転数-トルク特性の一例を示すグラフである。図4は、本発明の実施の形態1における軸流送風機の風量-静圧特性の一例を示すグラフである。図5は、本発明の実施の形態1における軸流送風機を搭載した換気装置の設置状態を示す断面図である。
 図1~図5に示すように、本実施の形態における軸流送風機18は電動機11を搭載し、この電動機11の回転軸であるシャフト9の一端にプロペラファン8が取り付けられている。軸流送風機18は、商用交流電源20に商用交流電源接続部16を介して接続されている。電気機器である換気装置1は、軸流送風機18を内蔵している。軸流送風機18によって吸い込まれた、煙草の煙や調理等で発生した汚れた室内空気は換気装置1の吸込み口より吸込まれ、建物の壁14を貫通して屋外に排出される。
 電動機11は、固定子4と、かご形回転子3と、運転コンデンサ10と、始動コンデンサ12と、PTCサーミスタ13より構成されている。固定子4は、電機子巻線2である主巻線2aと補助巻線2bとがそれぞれ固定子鉄心4aのティース17に集中巻きして構成されている。補助巻線2bは主巻線2aに対して電気角90度でティース17に巻かれている。かご形回転子3は、固定子4に対向して回転自在に保持されている。
 かご形回転子3の中心には回転軸であるシャフト9が圧入されている。すなわち、かご形回転子3は、シャフト9の外周に一体化され固定されている。かご形回転子3には、外周側にアルミで形成された複数の導体バー5が設けられている。導体バー5はスキューされている。そして、かご形回転子3の導体バー5とシャフト9の間には永久磁石6が配置されている。すなわち、永久磁石6は、導体バー5を固定子4との間に挟む位置に配置されている。
 永久磁石6は異方性のサマリウム・鉄・窒素磁粉と異方性のネオジウム・鉄・ホウ素磁粉を混合したボンド磁石である。永久磁石6の径方向の断面形状は三日月状であり、永久磁石6の凸側7は固定子4側に向いている。永久磁石6は、導体バー5同様にスキューされている。サマリウム・鉄・窒素磁粉の粒径は2~3μmである。ネオジウム・鉄・ホウ素磁粉の粒径は50~100μmである。
 主巻線2aの一方の端と補助巻線2bの一方の端が接続されており、その接続点が商用交流電源20の一方の端子に接続されている。また、主巻線2aの他方の端は商用交流電源20の他方の端子と接続されている。補助巻線2bの他方の端は始動コンデンサ12とPTCサーミスタ13の直列回路を介して商用交流電源20の他方の端子と接続されている。また、運転コンデンサ10はこの直列回路と並列に接続されている。軸流送風機18の同期運転状態において、始動コンデンサ12はPTCサーミスタ13によって商用交流電源20から切り離される。そして、軸流送風機18は、機外静圧ゼロから最大静圧(風量ゼロ)までの範囲で商用交流電源20の電源周波数に同期した一定の回転数で運転する。
 このような本実施の形態の軸流送風機18では、図3の回転数-トルク特性のグラフに示すように、始動時は導体バー5に誘導電流が発生することで滑りに対応した回転トルクが発生して動作する。そして、永久磁石6の磁力と固定子4の電機子巻線2による電磁石の磁力の吸引力によって回転する同期運転モードへ移行する。この同期運転モードでは、軸流送風機18は機外静圧ゼロから機外静圧が略最大になるまでの範囲で商用交流電源20の電源周波数に同期した一定の回転数で運転する。従って、軸流送風機18を搭載する換気装置1では、DC電源や、マイクロコンピュータを搭載した制御回路を使用しなくてもよい。そして、図4の風量-静圧特性のグラフに示すように、軸流送風機18では外風圧など機外圧力損失が増加しても、従来のDCモータやACモータを搭載した軸流送風機と比較して送風量の減少が少ない。
 また、導体バー5と永久磁石6はスキューされているので、軸流送風機18は電源投入時など誘導機として動作する状態から、同期機としての動作する状態へ滑らかに移行できる。さらに、同期運転時のトルクリプルも小さくなるため、低振動・低騒音化を実現した軸流送風機が得られる。
 また、永久磁石6の径方向の断面形状が三日月状であり、永久磁石6の凸側7が固定子4側に向いている。このため、軸流送風機18の同期運転時の誘起電圧波形が正弦波に近くなる。これにより、トルクリプルが小さくなり、より一層の低振動・低騒音化を実現した軸流送風機が得られる。
 また、永久磁石6は磁粉粒径の小さい異方性のサマリウム・鉄・窒素磁粉と、磁粉粒径の大きな異方性のネオジウム・鉄・ホウ素磁粉を混合したボンド磁石である。そのため、永久磁石6は磁粉の充填率が向上することで、磁束密度が高くなる。また、ネオジウム・鉄・ホウ素磁粉がサマリウム・鉄・窒素磁粉の磁化反転を抑制する。従って、永久磁石6の保磁力が向上するので、軸流送風機18の電源周波数に同期して回転するトルクが高くなる。トルクが高くなると、プロペラファン8は開放時の負荷曲線と閉切り時の負荷曲線の差を大きくとることが可能となる。すなわち、外風圧など機外圧力損失が増加しても、送風量の減少が極めて少なくできる軸流送風機が得られる。
 (実施の形態2)
 次に、本発明の実施の形態2における軸流送風機について説明する。図6は、本発明の実施の形態2における軸流送風機の構成を示す図である。図7は、本発明の実施の形態2における電動機の回転数-トルク特性の一例を示すグラフである。図8は、本発明の実施の形態2における軸流送風機の風量-静圧特性の一例を示すグラフである。なお、実施の形態1と同じ構成には同一の符号を付し説明を省略する。
 図6に示すように、本実施の形態における軸流送風機28の運転コンデンサは大風量用運転コンデンサ25と、小風量用運転コンデンサ15から構成されている。大風量用運転コンデンサ25は始動コンデンサ12とPTCサーミスタ13の直列回路に並列に接続されている。小風量用運転コンデンサ15は抵抗を介して大風量用運転コンデンサ25と直列に接続されている。
 商用交流電源20は商用交流電源接続部16を介して電動機21の電機子巻線2と接続されている。商用交流電源接続部16は、小風量用接続部16aと、大風量用接続部16bと、共通接続部16cと、を有する。共通接続部16cは、電機子巻線2の一方の端(主巻線2aの一方の端と補助巻線2bの一方の端とが接続された接続点)に接続されている。大風量用接続部16bは、大風量用運転コンデンサ25を介して補助巻線2bの他方の端に接続されている。小風量用接続部16aは、大風量用運転コンデンサ25に小風量用運転コンデンサ15が直列に接続されて補助巻線2bと接続されている。主巻線2aの他方の端は大風量用接続部16bとは直接接続され、小風量用接続部16aとは小風量用運転コンデンサ15を介して接続されている。
 商用交流電源20が商用交流電源接続部16の小風量用接続部16aと共通接続部16cに接続された場合(小風量選択時)は、小風量用運転コンデンサ15と大風量用運転コンデンサ25が直列接続となり、運転コンデンサの容量が小さくなる。また、商用交流電源20が商用交流電源接続部16の大風量用接続部16bと共通接続部16cに接続された場合(大風量選択時)は、小風量用運転コンデンサ15は電気的には接続されなくなる。従って、運転コンデンサは大風量用運転コンデンサ25のみとなり、運転コンデンサの容量は大風量用運転コンデンサ25の容量となる。また、始動コンデンサ12は軸流送風機28の同期運転状態において、PTCサーミスタ13によって商用交流電源20から切り離される。そして、小風量が選択された時には、軸流送風機28は低い回転数域で運転する。一方、大風量が選択された時には、軸流送風機28は、機外静圧ゼロから最大静圧(風量ゼロ)までの範囲で商用交流電源の電源周波数に同期した一定の回転数で運転する。
 このような本実施の形態の軸流送風機28によれば、図7の回転数-トルク特性のグラフに示すように、商用交流電源20が小風量用接続部16aと共通接続部16cに接続された場合は、運転コンデンサの容量が小さいので、電動機21のトルクが低下する。さらに、永久磁石6によって発生する逆起電圧がブレーキトルクになるので、一層、電動機21のトルクは低下する。そして、軸流送風機28は導体バー5に誘導電流を発生させて滑りに対応した回転で運転することになる。一方、商用交流電源20が大風量用接続部16bと共通接続部16cに接続された場合は、運転コンデンサの容量が大きい。従って、軸流送風機28の始動時は導体バー5に誘導電流が発生することで滑りに対応した回転トルクが発生して動作する。その後、永久磁石6の磁力と固定子4の電機子巻線2による電磁石の磁力の吸引力によって回転する同期運転モードへ移行し、商用交流電源20の電源周波数に同期した一定の回転数で運転する。従って、軸流送風機28を搭載する換気装置1では、DC電源や、マイクロコンピュータを搭載した制御回路を使用する必要がない。
 そして、図8の風量-静圧特性のグラフに示すように、軸流送風機28は常時換気が選択された場合は、低速運転となることから小風量運転が実現できる。また、軸流送風機28は急速換気が選択された場合は、電源周波数に同期した一定の回転数の運転となることから、外風圧など機外圧力損失が増加しても、送風量の減少が少なくできる。すなわち、軸流送風機28に接続されるすべてのパイプ長10m~30mにおいて、従来のDCモータやACモータを搭載した軸流送風機と比較して、送風量の減少を少なくできる。
 (実施の形態3)
 次に、本発明の実施の形態3における軸流送風機について説明する。図9は、本発明の実施の形態3における軸流送風機の構成を示す図である。図10は、本発明の実施の形態3における電動機の構成を示す分解斜視図である。図11は、本発明の実施の形態3における電動機の回転数-トルク特性の一例を示すグラフである。図12は、本発明の実施の形態3における軸流送風機の風量-静圧特性の一例を示すグラフである。なお、実施の形態1、2と同じ構成には同一の符号を付し説明を省略する。
 図9及び図10に示すように、本実施の形態の電動機31は、固定子4と、かご形回転子33と、運転コンデンサと、始動コンデンサ12と、PTCサーミスタ13より構成される。固定子4は、電機子巻線2である主巻線2aと補助巻線2bとをそれぞれ固定子鉄心4aのティース17に集中巻きして構成されている。かご形回転子33は、固定子4に対向して回転自在に保持されている。かご形回転子33の中心には回転軸であるシャフト9が圧入されている。かご形回転子33の外周側にはアルミで形成された複数の導体バー35が設けられている。導体バー35は、スキューされている。複数の導体バー35の本数は偶数である。そして、かご形回転子33の導体バー35とシャフト9の間には永久磁石36が配置されている。すなわち、永久磁石36は、導体バー35を固定子4との間に挟む位置に配置されている。
 永久磁石36は、異方性のサマリウム・鉄・窒素磁粉と異方性のネオジウム・鉄・ホウ素磁粉を混合したボンド磁石である。永久磁石36は、径方向の断面形状は略コの字状であり、永久磁石36の凹側37が固定子4側を向いている。また、永久磁石36は、導体バー35同様にスキューされている。サマリウム・鉄・窒素磁粉の粒径は2~3μmである。ネオジウム・鉄・ホウ素磁粉の粒径は50~100μmである。また、各永久磁石36の極間39において対向する極間39の中心を結ぶ極間中心線上の位置に導体バー35が配置されている。この導体バー35の配置と、導体バー35が偶数本数形成されていることにより、かご形回転子33が回転することで電機子巻線2に誘起される逆起電圧には3次高調波成分が多く含有されることになる。
 そして、小風量が選択された時には、商用交流電源20が商用交流電源接続部16の小風量用接続部16aと共通接続部16cに接続される。この場合には、軸流送風機38は機外静圧ゼロから最大静圧(風量ゼロ)までの範囲で商用交流電源20の電源周波数に同期した回転数の3分の1の一定回転数で運転する。一方、大風量が選択された時には、商用交流電源20が商用交流電源接続部16の大風量用接続部16bと共通接続部16cに接続される。この場合には、軸流送風機38は、機外静圧ゼロから最大静圧(風量ゼロ)までの範囲で商用交流電源20の電源周波数に同期した一定回転数で運転する。
 このような本実施の形態の軸流送風機38によれば、図11の回転数-トルク特性のグラフに示すように、商用交流電源20の電源周波数に同期した回転数の3分の1の回転数において、所定のトルク領域にて回転数が一定となる。商用交流電源20が小風量用接続部16aと共通接続部16cに接続された場合は、運転コンデンサの容量が小さいので、電動機31のトルクが低下する。そして、軸流送風機38は、プロペラファン8の負荷曲線の交点である商用交流電源20の電源周波数に同期した回転数の3分の1の回転数で運転する。また、商用交流電源20が大風量用接続部16bと共通接続部16cに接続された場合は、運転コンデンサの容量が大きい。従って、始動時は導体バー35に誘導電流が発生することで滑りに対応した回転トルクが発生して動作する。その後、永久磁石36の磁力と固定子4の電機子巻線2による電磁石の磁力の吸引力によって回転する同期運転モードへ移行する。そして、商用交流電源20の電源周波数に同期した一定の回転数で運転する。
 このように、軸流送風機38を搭載する換気装置1では、DC電源や、マイクロコンピュータを搭載した制御回路を使用することなく、図12の風量-静圧特性のグラフに示すように、常時換気が選択された場合(小風量選択時)も、急速換気が選択された場合(大風量選択時)も、所定の一定回転数で運転する。すなわち、本実施の形態の軸流送風機38は、外風圧など機外圧力損失が増加しても、送風量の減少が少なくできる。このように、軸流送風機38は、軸流送風機38に接続されるすべてのパイプ長10m~30mにおいて、従来のDCモータやACモータを搭載した軸流送風機と比較して、送風量の減少を少なくできる。
 また、電動機31は、固定子鉄心4aのティース17に集中巻きするとともに、複数の導体バー35の本数を偶数本とし、各永久磁石36の極間39において対向する極間39の中心を結ぶ極間中心線上の位置に導体バー35を配置している。この構成により、かご形回転子33が回転することで電機子巻線2に誘起される逆起電圧には3次高調波成分が多く含有されることになる。従って、商用交流電源20の電源周波数に同期した回転数の3分の1の回転数において回転数一定となるトルク領域が拡大する。これにより、小風量であっても、高静圧化を実現した軸流送風機が得られる。
 また、導体バー35と永久磁石36はスキューされているので、軸流送風機38では電源投入時など誘導機としての動作から、同期機としての動作への移行が滑らかとなる。さらに、同期運転時のトルクリプルも小さくなるため、低振動・低騒音化を実現した軸流送風機が得られる。
 また、永久磁石36の径方向の断面形状は略コの字状であり、凹側37が固定子4側に向いている。このため、かご形回転子33が回転することで電機子巻線2に誘起される逆起電圧には3次高調波成分がより一層多く含有されることになる。そのため、商用交流電源20の電源周波数に同期した回転数の3分の1の回転数において回転数一定となるトルク領域が一段と拡大する。これにより、小風量であっても、より一層の高静圧化を実現した軸流送風機が得られる。
 また、永久磁石36は磁粉粒径の小さい異方性のサマリウム・鉄・窒素磁粉と、磁粉粒径の大きな異方性のネオジウム・鉄・ホウ素磁粉を混合したボンド磁石である。そして、永久磁石36は磁粉の充填率が向上することで、磁束密度が高くなる。さらに、ネオジウム・鉄・ホウ素磁粉がサマリウム・鉄・窒素磁粉の磁化反転を抑制する。そのため、永久磁石36は保持力が向上し、電源周波数に同期して回転するトルクが高くなるため、プロペラファン8は開放時の負荷曲線と閉切り時の負荷曲線の差を大きくとることが可能となる。従って、外風圧など機外圧力損失が増加しても、送風量の減少が極めて少なくできる軸流送風機が得られる。
 なお、上記実施の形態1~3では、始動コンデンサ12とPTCサーミスタ13とを設ける構成としたが、誘導機としての始動から同期機としての同期運転への移行に影響が無ければ、始動コンデンサ12とPTCサーミスタ13を省略してもよい。
 以上のように、本発明にかかる軸流送風機は、電源周波数に同期した回転数にて一定運転することによって、機外静圧が上昇しても、風量の減少が少ない。これにより、ブラシレスDCモータや特別な回路を搭載することなく、安価に適切な風量を確保することが要求される電気機器である換気装置、扇風機、冷蔵庫、エアコンなどの空気調和機、冷却ユニットなどへの搭載が有用である。
 1  換気装置
 2  電機子巻線
 2a  主巻線
 2b  補助巻線
 3,33  かご形回転子
 4  固定子
 4a  固定子鉄心
 5,35  導体バー
 6,36  永久磁石
 7  凸側
 8  プロペラファン
 9  シャフト
 10  運転コンデンサ
 11,21,31  電動機
 12  始動コンデンサ
 13  PTCサーミスタ
 14  壁
 15  小風量用運転コンデンサ
 16  商用交流電源接続部
 16a  小風量用接続部
 16b  大風量用接続部
 16c  共通接続部
 17  ティース
 18,28,38  軸流送風機
 20  商用交流電源
 25  大風量用運転コンデンサ
 37  凹側
 39  極間

Claims (8)

  1. 回転軸と、
    前記回転軸の少なくとも一端に接続したプロペラファンと、
    前記回転軸の外周に一体化され、複数の導体バーを有するかご形回転子と、
    前記かご形回転子に対向して位置し、電機子巻線を巻装した固定子とを備えるとともに、前記電機子巻線を商用交流電源接続部を介して商用交流電源に接続する軸流送風機であって、
    前記かご形回転子には、前記複数の導体バーを前記固定子との間に挟む位置に永久磁石を配置し、機外静圧ゼロから機外静圧が略最大になるまでの範囲で前記商用交流電源の電源周波数に同期した一定の回転数で運転することを特徴とする軸流送風機。
  2. 前記商用交流電源接続部は大風量用接続部と小風量用接続部とを有し、
    前記商用交流電源が前記大風量用接続部に接続された場合は、機外静圧ゼロから機外静圧が略最大になるまでの範囲で前記商用交流電源の電源周波数に同期した一定の回転数で運転し、前記商用交流電源が前記小風量用接続部に接続された場合は、前記導体バーに誘導電流を発生させて滑りに対応した回転で運転することを特徴とする請求項1に記載の軸流送風機。
  3. 前記商用交流電源が前記小風量用接続部に接続された場合は、機外静圧ゼロから機外静圧が略最大になるまでの範囲で前記商用交流電源の電源周波数に同期した回転数の3分の1の一定の回転数で運転することを特徴とする請求項2に記載の軸流送風機。
  4. 前記電機子巻線は主巻線と補助巻線から構成され、前記大風量用接続部は大風量用運転コンデンサを介して前記補助巻線と接続されており、前記小風量用接続部は前記大風量用運転コンデンサに小風量用コンデンサを直列接続して前記補助巻線と接続されたことを特徴とする請求項2または3に記載の軸流送風機。
  5. 前記複数の導体バーの本数は偶数とするとともに、前記永久磁石の極間中心線上の位置に前記導体バーが配置されていることを特徴とする請求項3記載の軸流送風機。
  6. 前記導体バーと前記永久磁石はスキューされていることを特徴とする請求項1に記載の軸流送風機。
  7. 前記永久磁石は異方性のサマリウム・鉄・窒素磁粉と異方性のネオジウム・鉄・ホウ素磁粉を混合したボンド磁石であることを特徴とする請求項1に記載の軸流送風機。
  8. 請求項1または2に記載の軸流送風機を搭載した電気機器。
PCT/JP2012/007179 2011-11-16 2012-11-08 軸流送風機およびそれを搭載した電気機器 WO2013073141A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280053126.4A CN103907268B (zh) 2011-11-16 2012-11-08 轴流风机和装载其的电设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011250358A JP5945686B2 (ja) 2011-11-16 2011-11-16 軸流送風機およびそれを搭載した電気機器
JP2011-250358 2011-11-16
JP2011-250359 2011-11-16
JP2011250359A JP5877325B2 (ja) 2011-11-16 2011-11-16 軸流送風機およびそれを搭載した電気機器
JP2012187183A JP6114906B2 (ja) 2012-08-28 2012-08-28 軸流送風機およびそれを搭載した電気機器
JP2012-187183 2012-08-28

Publications (1)

Publication Number Publication Date
WO2013073141A1 true WO2013073141A1 (ja) 2013-05-23

Family

ID=48429239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007179 WO2013073141A1 (ja) 2011-11-16 2012-11-08 軸流送風機およびそれを搭載した電気機器

Country Status (2)

Country Link
CN (1) CN103907268B (ja)
WO (1) WO2013073141A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308289A (ja) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd コンデンサ電動機の速度調節方法
JPH0946985A (ja) * 1995-08-03 1997-02-14 Japan Servo Co Ltd コンデンサモータの変速装置
JPH09148165A (ja) * 1995-11-24 1997-06-06 Minebea Co Ltd ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JPH10248219A (ja) * 1997-03-07 1998-09-14 Matsushita Refrig Co Ltd 自己始動形永久磁石式単相同期電動機
JP2004364434A (ja) * 2003-06-05 2004-12-24 Toshiba Corp モータ
JP2005192397A (ja) * 2001-03-30 2005-07-14 Sanyo Electric Co Ltd 誘導同期電動機
JP2011061933A (ja) * 2009-09-08 2011-03-24 Toshiba Corp 永久磁石式回転電機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132992B2 (ja) * 1995-10-31 2001-02-05 三菱電機株式会社 ロータ組立装置
ES2181598B1 (es) * 2001-07-10 2004-06-01 Cubigel, S.A. Un circuito de control para un motor electrico de induccion monofasico.
TWI288519B (en) * 2002-03-27 2007-10-11 Sanyo Electric Co Synchronous induction motor
JP2007527189A (ja) * 2003-07-09 2007-09-20 松下電器産業株式会社 誘導同期電動機とそれを用いた密閉型電動圧縮機
JP4849507B2 (ja) * 2005-05-26 2012-01-11 日立アプライアンス株式会社 自己始動式同期電動機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308289A (ja) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd コンデンサ電動機の速度調節方法
JPH0946985A (ja) * 1995-08-03 1997-02-14 Japan Servo Co Ltd コンデンサモータの変速装置
JPH09148165A (ja) * 1995-11-24 1997-06-06 Minebea Co Ltd ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JPH10248219A (ja) * 1997-03-07 1998-09-14 Matsushita Refrig Co Ltd 自己始動形永久磁石式単相同期電動機
JP2005192397A (ja) * 2001-03-30 2005-07-14 Sanyo Electric Co Ltd 誘導同期電動機
JP2004364434A (ja) * 2003-06-05 2004-12-24 Toshiba Corp モータ
JP2011061933A (ja) * 2009-09-08 2011-03-24 Toshiba Corp 永久磁石式回転電機

Also Published As

Publication number Publication date
CN103907268A (zh) 2014-07-02
CN103907268B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5816822B2 (ja) モータおよびそれを搭載した電気機器
US6788022B2 (en) Electric motor
CA2575888C (en) Methods and systems for emulating an induction motor utilizing an electronically commutated motor
JP5589506B2 (ja) 永久磁石モータ
JP5487649B2 (ja) ファンモータおよびこのファンモータを備えた送風機
US20100119389A1 (en) Modular, brushless motors and applications thereof
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
JP6270876B2 (ja) 同期電動機の駆動回路および、その駆動回路により駆動される同期電動機および、その同期電動機を用いた送風機および、その送風機を用いた空気調和機
US9559623B2 (en) Method of controlling an electrical machine
JP2000217287A (ja) 永久磁石形モ―タ及びコンプレッサ
US10267319B2 (en) Blower
WO2013073141A1 (ja) 軸流送風機およびそれを搭載した電気機器
JP3763462B2 (ja) 自己始動式同期電動機及びこれを用いた圧縮機
JP2014003799A (ja) ブラシレスモータ
JP6114906B2 (ja) 軸流送風機およびそれを搭載した電気機器
JP5945686B2 (ja) 軸流送風機およびそれを搭載した電気機器
JP5877325B2 (ja) 軸流送風機およびそれを搭載した電気機器
JPS6259544B2 (ja)
JP5484586B2 (ja) ファンモータ及びこれを備えた空気調和機
JP2012010537A (ja) クローポール型天井扇風機モータ
WO2020183523A1 (ja) モータ、ファン、および空気調和機
JP2014090565A (ja) 軸流送風機およびそれを搭載した電気機器
JP2013223395A (ja) 誘導電動機と送風装置およびそれを搭載した電気機器
WO2021117176A1 (ja) ロータ、電動機、ファン、及び空気調和機
WO2012046275A1 (ja) ファンモータ及びこれを備えた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850702

Country of ref document: EP

Kind code of ref document: A1