WO2013065106A1 - 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法 - Google Patents

方向指示灯制御装置、方向指示装置および方向指示装置の制御方法 Download PDF

Info

Publication number
WO2013065106A1
WO2013065106A1 PCT/JP2011/075093 JP2011075093W WO2013065106A1 WO 2013065106 A1 WO2013065106 A1 WO 2013065106A1 JP 2011075093 W JP2011075093 W JP 2011075093W WO 2013065106 A1 WO2013065106 A1 WO 2013065106A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
current
leak detection
signal
direction indicator
Prior art date
Application number
PCT/JP2011/075093
Other languages
English (en)
French (fr)
Inventor
久保田 健一
英之 小野
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to CN201180029017.4A priority Critical patent/CN104040889A/zh
Priority to US13/811,869 priority patent/US8773028B2/en
Priority to EP11864606.6A priority patent/EP2775617A4/en
Priority to PCT/JP2011/075093 priority patent/WO2013065106A1/ja
Priority to JP2012542712A priority patent/JP5341262B1/ja
Publication of WO2013065106A1 publication Critical patent/WO2013065106A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • B60Q11/005Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00 for lighting devices, e.g. indicating if lamps are burning or not
    • B60Q11/007Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00 for lighting devices, e.g. indicating if lamps are burning or not the lighting devices indicating change of drive direction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines

Definitions

  • the present invention relates to a direction indicator lamp control device, a direction indicator device, and a direction control device control method using an LED element as a direction indicator lamp.
  • This direction indicating device includes a diode D101, a capacitive element C101, a direction indicating switch SW, a left direction indicating lamp 102L, a right direction indicating lamp 102R, an internal power supply 103, an oscillator 104a, and a buffer 104b.
  • the left direction indicator lamp 102L includes a left front bulb 102LF and a left rear bulb 102LR connected in parallel.
  • the right direction indicator lamp 102R includes a right front lamp 102RF and a right rear lamp 102RR connected in parallel.
  • the diode D101 and the capacitor C101 function as a bootstrap circuit.
  • this direction indicator will be explained.
  • the direction indicating switch SW is turned on to the L terminal side
  • the negative terminal of the capacitive element C101 is grounded via the light bulbs 102LF and 102LR. Therefore, current flows from the battery B to the capacitive element C101 via the diode D101, and the capacitive element C101 is charged.
  • the internal power supply voltage Vcc is supplied from the positive terminal of the capacitive element C101, and the internal power supply 103, the oscillator 104a, the buffer 104b, and the comparator COMP101 to which the reference voltage VS is supplied are started. .
  • the internal power supply 103 generates a voltage V101 and the like supplied to the comparator COMP101.
  • the activated oscillator 104a generates an oscillation pulse signal.
  • the buffer 104b buffers the oscillation pulse signal and outputs a pulse signal.
  • the N-type MOS transistor NM101 causes a drive current having a magnitude corresponding to the amplitude of the pulse signal supplied to the gate to flow from the drain to which the power supply voltage VDD is supplied to the source.
  • the drive current flows to the light bulbs 102LF and 102LR of the direction indicator lamp 102L via the current detection resistor R101 and the direction indicator switch SW. Thereby, the direction indicator lamp 102L blinks at the cycle of the oscillation pulse signal.
  • the direction indicating switch SW is a mechanical switch. For this reason, when an inexpensive part having low waterproof performance is used as the direction indicating switch SW, a leakage current may flow through moisture even when the direction indicating switch SW is off. Then, the direction indicating device starts operation by this leakage current. However, since the leakage current is smaller than the current necessary for lighting the light bulbs 102LF, 102LR, 102RF, and 102RR, the blinking of the direction indicator lights 102L and 102R cannot be visually recognized, and this is not a problem in practical use.
  • a direction indicating device described in JP1-90831A is also known as a device similar to the above direction indicating device.
  • LED elements instead of the light bulbs as the direction indicating lamps 102L and 102R of the direction indicating device.
  • the LED element may emit light with a visible brightness due to the leakage current of the direction indicating switch SW. That is, the direction indicator lights 102L and 102R may blink even though the direction indicator switch SW is turned off.
  • the present invention provides a direction indication lamp control device, a direction indication device, and a control method for the direction indication device that make it difficult to visually recognize the lighting of an LED element as a direction indication lamp when a leak current flows through the direction indication switch. Objective.
  • a direction indicator lamp control device for controlling a direction indicator lamp composed of LED elements connected in parallel, A pulse signal generator for generating a pulse signal of a predetermined period; One end to which a power supply voltage is supplied, a control terminal to which the pulse signal is supplied, and the other end that outputs a drive current having a magnitude corresponding to the amplitude of the pulse signal.
  • a current control element connected to one end of the direction indicating switch, and the other end of the direction indicating switch connected to the direction indicating lamp;
  • a leak detector that reduces the amplitude of the pulse signal in the pulse signal generator when the drive current corresponding to the pulse wave of the pulse signal is equal to or less than a leak detection current value during a leak detection period; It is characterized by providing.
  • the leak detection current value is smaller than the drive current corresponding to the pulse wave of the pulse signal when the direction indicating switch is on, and is equal to or greater than the leakage current of the direction indicating switch that can flow when the direction indicating switch is off. There may be.
  • the leak detection period may be shorter than a time during which a pulse wave of the pulse signal is output when the direction indicating switch is on.
  • the pulse signal generator An oscillator that generates an internal oscillation pulse signal of the predetermined period, buffers the internal oscillation pulse signal, and outputs an oscillation pulse signal; A buffer for buffering the oscillation pulse signal and outputting the pulse signal,
  • the leak detection unit A low current detection comparator that outputs a low current detection signal when the drive current is less than or equal to the leak detection current value;
  • a leak detection signal output unit that outputs a leak detection signal when the low current detection signal is output during the leak detection period and is reset at a timing when a pulse wave of the internal oscillation pulse signal is generated; ,
  • the oscillator may stop outputting the oscillation pulse signal while the leak detection signal is output from the leak detection signal output unit.
  • the oscillator is An oscillation pulse signal output terminal for outputting the oscillation pulse signal; A switch element that short-circuits the oscillation pulse signal output terminal to one end of the direction indicating switch while the leak detection signal is output from the leak detection signal output unit.
  • the pulse signal generator An oscillator that generates an internal oscillation pulse signal of the predetermined period, buffers the internal oscillation pulse signal, and outputs an oscillation pulse signal; A buffer for buffering the oscillation pulse signal and outputting the pulse signal,
  • the leak detection unit A comparator that outputs a low current detection signal when the drive current is less than or equal to the leak detection current value;
  • a leak detection signal output unit that outputs the leak detection signal when the low current detection signal is output during the leak detection period and is reset at a timing at which a pulse wave of the internal oscillation pulse signal is generated. And
  • the oscillator stops outputting the oscillation pulse signal, and after a certain period of time, The output of the oscillation pulse signal may be resumed.
  • the time during which the pulse wave of the pulse signal is output when the direction indicating switch is on is 0.25 seconds to 0.5 seconds,
  • the leak detection period may be 200 microseconds or less.
  • a current clamping unit that reduces the amplitude of the pulse signal to limit the drive current to the current upper limit when the drive current exceeds a current upper limit
  • a voltage clamp unit that reduces the amplitude of the pulse signal and limits the reference voltage to the voltage upper limit value when a reference voltage at one end of the direction indicating switch exceeds the voltage upper limit value
  • the disconnection detection signal is output.
  • the current upper limit value may be smaller than the driving current that can flow to the direction indicator lamp when the reference voltage is the voltage upper limit value.
  • the current upper limit value may be larger than the drive current flowing in the direction indicator lamp when the reference voltage is the voltage upper limit value when it is assumed that any of the LED elements is disconnected.
  • the disconnection detection value may be larger than the drive current flowing in the direction indicator lamp when the reference voltage is the voltage upper limit value when it is assumed that any of the LED elements is disconnected.
  • the pulse signal generation unit operates using a potential difference between an internal power supply voltage supplied from an external bootstrap circuit and the reference voltage as a power supply,
  • the bootstrap circuit may generate the internal power supply voltage based on the reference voltage when the direction indicating switch is on.
  • the bootstrap circuit is A rectifying element to which the power supply voltage is applied to one end; A capacitive element having one end connected to the other end of the rectifying element and the other end connected to one end of the direction indicating switch; The voltage at one end of the capacitive element may be the internal power supply voltage, and the voltage at the other end of the capacitive element may be the reference voltage.
  • the current control element may be composed of an N-type MOS transistor having a drain supplied with the power supply voltage, a gate supplied with the pulse signal, and a source connected to the direction indicating switch. .
  • a direction indicating device includes: A pulse signal generator for generating a pulse signal of a predetermined period; A current control element having one end to which a power supply voltage is supplied, a control terminal to which the pulse signal is supplied, and the other end that outputs a drive current having a magnitude corresponding to the amplitude of the pulse signal; A direction indicating switch having one end connected to the other end of the current control element; A direction indicator lamp composed of LED elements connected in parallel, one end connected to the other end of the direction indicator switch, and the other end grounded; A leak detector that reduces the amplitude of the pulse signal in the pulse signal generator when the drive current corresponding to the pulse wave of the pulse signal is equal to or less than a leak detection current value during a leak detection period; It is characterized by providing.
  • the leak detection current value is smaller than the drive current corresponding to the pulse wave of the pulse signal when the direction indicating switch is on, and is equal to or greater than the leakage current of the direction indicating switch that can flow when the direction indicating switch is off. There may be.
  • the leak detection period may be shorter than a time during which a pulse wave of the pulse signal is output when the direction indicating switch is on.
  • a method for controlling a direction indicating device includes: Outputs a pulse signal generation unit that generates a pulse signal of a predetermined cycle, one end to which a power supply voltage is supplied, a control terminal to which the pulse signal is supplied, and a drive current having a magnitude corresponding to the amplitude of the pulse signal The other end of the current control element, a direction indicating switch having one end connected to the other end of the current control element, and an LED element connected in parallel.
  • the leak detection current value is smaller than the drive current corresponding to the pulse wave of the pulse signal when the direction indicating switch is on, and is equal to or greater than the leakage current of the direction indicating switch that can flow when the direction indicating switch is off. There may be.
  • the leak detection period may be shorter than a time during which a pulse wave of the pulse signal is output when the direction indicating switch is on.
  • the leak detection unit when the drive current corresponding to the pulse wave of the pulse signal is equal to or less than the leak detection current value during the leak detection period, the leak detection unit reduces the amplitude of the pulse signal. .
  • the amplitude of the pulse signal can be reduced and the drive current can be reduced. Accordingly, since the time during which the LED element is lit can be limited by the leakage current, it is difficult to visually recognize the lighting of the LED element due to the leakage current.
  • FIG. 1 is a circuit diagram of a direction indicating device according to Embodiment 1 of the present invention. It is a wave form diagram of the direction indicator which concerns on Example 1 of this invention. It is a circuit diagram of the direction indication apparatus which concerns on Example 3 of this invention. It is a figure explaining the operating point of the direction indicator which concerns on Example 3 of this invention. It is another figure explaining the operating point of the direction indicator which concerns on Example 3 of this invention. It is a wave form diagram of the direction indicator which concerns on Example 3 of this invention. It is a circuit diagram of the direction indication apparatus which concerns on Example 4 of this invention. It is a circuit diagram of the conventional direction indicator.
  • FIG. 1 is a circuit diagram of a direction indicating device according to Embodiment 1 of the present invention.
  • the direction indicating device includes a bootstrap circuit 1, a direction indicating switch SW, direction indicating lamps 2L and 2R, an internal power supply 3, a pulse signal generating unit 4, an N-type MOS transistor (current). Control element) NM1, a current detection resistor R1, and a leak detection unit 9.
  • This direction indicating device is used for a motorcycle, for example.
  • the internal power supply 3, the pulse signal generation unit 4, the N-type MOS transistor NM 1, and the leak detection unit 9 are configured as a direction indicator lamp control device (blinker relay) 10.
  • the direction indicator lamp control device 10 can be configured as a semiconductor integrated circuit, for example.
  • the bootstrap circuit 1 includes a diode (rectifier element) D1 and a capacitor element C1.
  • the diode D1 the power supply voltage VDD from the power supply B is applied to the anode (one end).
  • Capacitance element C1 has one end connected to the cathode (the other end) of diode D1, and the other end connected to one end of direction indicating switch SW.
  • the direction indicating switch SW can short-circuit between one end and the L terminal (the other end) or between one end and the R terminal (the other end).
  • the direction indicating switch SW is a mechanical switch.
  • the left direction indicator lamp 2L includes a left front LED element LF and a left rear LED element LR connected in parallel.
  • the right direction indicator lamp 2R includes a right front LED element RF and a right rear LED element RR connected in parallel.
  • each LED element LF, LR, RF, RR is composed of two LEDs connected in series.
  • the anode side (one end) is connected to the L terminal of the direction indication switch SW, and the cathode side (the other end) is grounded.
  • the anode side (one end) is connected to the R terminal of the direction indication switch SW, and the cathode side (the other end) is grounded.
  • the internal power supply voltage Vcc is supplied to the internal power supply voltage terminal 10b of the direction indicator lamp control device 10, and the reference voltage VS is supplied to the reference voltage terminal 10d of the direction indicator light control device 10.
  • the internal power supply 3 is activated using the potential difference between the internal power supply voltage Vcc and the reference voltage VS as a power supply, and generates a bias voltage based on the reference voltage VS.
  • the generated bias voltage is supplied to each part in the direction indicator control device 10.
  • the pulse signal generation unit 4 is activated using the potential difference between the internal power supply voltage Vcc and the reference voltage VS as a power supply, and generates a pulse signal P having a predetermined cycle (for example, 0.5 to 1 second). For example, the duty ratio of the pulse signal P is around 50%.
  • the pulse signal generation unit 4 includes an oscillator 4a and a buffer 4b.
  • the oscillator 4a generates the internal oscillation pulse signal PI having the predetermined cycle, buffers the internal oscillation pulse signal PI, and outputs it as an oscillation pulse signal.
  • the oscillator 4a stops outputting the oscillation pulse signal while the leak detection signal S2 is being output from the leak detection signal output unit 9a. Specifically, the oscillator 4a directs the oscillation pulse signal output terminal 4a1 that outputs an oscillation pulse signal and the oscillation pulse signal output terminal 4a1 to indicate the direction while the leak detection signal output unit 9a outputs the leak detection signal S2.
  • a switch element (not shown) that is short-circuited to one end of the switch SW (that is, the reference voltage VS).
  • the buffer 4b buffers the oscillation pulse signal from the oscillator 4a and generates a pulse signal P.
  • the pulse signal P can take an amplitude from the reference voltage VS to the internal power supply voltage Vcc.
  • the N-type MOS transistor NM1 is connected to the power supply voltage terminal 10a of the direction indicating lamp control device 10, and is supplied with a drain (one end) to which the power supply voltage VDD is supplied, a gate (control terminal) to which the pulse signal P is supplied, and a pulse A source (the other end) that outputs a drive current I having a magnitude corresponding to the amplitude of the signal P.
  • the source of the N-type MOS transistor NM1 is connected to the current output terminal 10c of the direction indicator control device 10.
  • a current detection resistor R1 is provided between the source of the N-type MOS transistor NM1 and one end of the direction indicating switch SW.
  • the current detection resistor R1 is connected between the current output terminal 10c and one end of the direction indicating switch SW.
  • the drive current I flows to the LED elements LF and LR of the direction indicator lamp 2L or the LED elements RF and RR of the direction indicator lamp 2R via the direction indicator switch SW. Thereby, the direction indicator lamp 2L or 2R blinks at the cycle of the oscillation pulse signal.
  • the leak detection unit 9 sets the amplitude of the pulse signal P to the pulse signal generation unit 4. Reduce.
  • the leak detection current value I1 is smaller than the drive current I corresponding to the pulse wave of the pulse signal P when the direction indicating switch SW is on, and is greater than or equal to the leakage current of the direction indicating switch SW that can flow when the direction indicating switch SW is off. is there.
  • the leak detection period T1 is shorter than the time (for example, about 0.5 to 1 second) during which the pulse wave of the pulse signal P is output when the direction indicating switch SW is on.
  • the leak detection period T1 is 200 microseconds or less.
  • the appropriate leak detection period T1 varies depending on the characteristics of the LED elements LF, LR, RF, and RR, the period of the pulse signal P, and the like.
  • the leak detection period T1 is preferably determined in consideration of the influence of noise.
  • the leak detection unit 9 includes a low current detection comparator COMP9 and a leak detection signal output unit 9a.
  • the low current detection comparator COMP9 compares the voltage across the current detection resistor R1 with the voltage V9 corresponding to the leak detection current value I1, and the drive current I is less than or equal to the leak detection current value I1. To output a low current detection signal S1. That is, in the low current detection comparator COMP9, the inverting input terminal is connected to the current output terminal 10c, and the voltage V9 based on the reference voltage VS is supplied to the inverting input terminal.
  • the leak detection signal output unit 9a outputs the leak detection signal S2 when the low current detection signal S1 is output during the leak detection period T1. That is, the leak detection signal output unit 9a functions as a filter that ignores the low current detection signal S1 that is less than the leak detection period T1.
  • the leak detection signal output unit 9a is reset at a timing when the internal oscillation pulse signal PI is supplied from the oscillator 4a and a pulse wave of the internal oscillation pulse signal PI is generated.
  • FIG. 2 is a waveform diagram of the direction indicating device according to the first embodiment of the present invention.
  • FIG. 2 shows the driving current I flowing through the direction indicator lamp 2L, the low current detection signal S1, the leak detection signal S2 when the direction indication switch SW is turned on at the time t10 after the direction indication switch SW is turned on.
  • the time change of the pulse signal P is shown.
  • the direction indicating switch SW that has been turned off after time t10 passes a leak current.
  • the low current detection signal S1, the leak detection signal S2, and the pulse signal P indicate changes with respect to the reference voltage VS. That is, the low level (L) in the figure indicates that it is substantially equal to the reference voltage VS.
  • the drive current I changes in a pulse shape with the cycle of the pulse signal P, and the direction indicator lamp 2L also blinks with the cycle.
  • the maximum value of the drive current I is determined by the amplitude of the pulse signal P. As described above, for example, this period is an arbitrary value of 0.5 to 1 second, that is, the blinking frequency is an arbitrary value of 1 to 2 Hz.
  • the low-current detection comparator COMP9 outputs the high-level low-current detection signal S1 during a period when the drive current I is not flowing (for example, from time t8 to t10). Then, when the low current detection signal S1 is output during the leak detection period T1, the leak detection signal output unit 9a outputs a high level leak detection signal S2 (for example, time t9).
  • the oscillator 4a shorts the oscillation pulse signal output terminal 4a1 to the reference voltage VS while the leak detection signal S2 is being output, so that no pulse wave is output.
  • the leak detection signal output unit 9a is reset at the timing (time t10) when the pulse wave of the internal oscillation pulse signal PI (not shown) is generated, and the leak detection signal S2 becomes low level.
  • the pulse wave of the pulse signal P is not output from time t8 to time t10, the operation of the leak detection unit 9 affects the blinking operation when the direction indicating switch SW is on. There is no.
  • the bootstrap circuit 1 continues to operate due to a leak current flowing from one end of the direction indicating switch SW to, for example, the L terminal, that is, the direction indicating device continues to operate.
  • the leak current is about 100 mA, for example.
  • the pulse wave of the pulse signal P is output even though the direction indicating switch SW is turned off. Accordingly, the N-type MOS transistor NM1 outputs the drive current I. However, the driving current I at this time is limited to the leakage current of the direction indicating switch SW.
  • the low-current detection comparator COMP9 continues to output a high-level low-current detection signal S1 because the drive current I is less than or equal to the leakage detection current value I1.
  • the leak detection signal output unit 9a outputs the high level leak detection signal S2 because the low current detection signal S1 is output during the leak detection period T1.
  • the oscillator 4a shorts the oscillation pulse signal output terminal 4a1 to the reference voltage VS so that the pulse wave of the oscillation pulse signal, that is, the pulse wave of the pulse signal P is not output. .
  • the drive current I is not output after time t11. Therefore, the period during which the drive current I is output, that is, the period during which the direction indicator lamp 2L is lit is limited to the leak detection period T1.
  • the oscillator 4a does not output the pulse wave of the oscillation pulse signal, but outputs the internal oscillation pulse signal PI.
  • the leak detection signal output unit 9a is reset at time t12 when the pulse wave of the internal oscillation pulse signal PI is generated, and the leak detection signal S2 becomes low level.
  • the pulse wave of the pulse signal P is output and the drive current I is also output.
  • the drive current I is not output after time t13 when the leak detection period T1 has elapsed.
  • the duty ratio of the pulse signal P is changed to be small. Therefore, the driving current I also changes in a pulse shape with the changed duty ratio, and the lighting time of the LED element becomes, for example, 200 microseconds or less. Accordingly, since the time during which the LED element is lit can be limited by the leakage current, it is difficult to visually recognize the lighting of the LED element due to the leakage current.
  • the leak detection unit 9 causes the drive current I corresponding to the pulse wave of the pulse signal P to be equal to or less than the leak detection current value I1 during the leak detection period T1.
  • the amplitude of the pulse signal P is reduced.
  • the amplitude of the pulse signal P can be reduced to zero, and the drive current I can be reduced to zero. Therefore, since the time during which the LED element is lit by the leak current can be limited to the leak detection period T1, it is difficult to visually recognize the lighting of the LED element due to the leak current.
  • Embodiment 2 differs from Embodiment 1 in the operation of the oscillator 4a when the leak detection signal S2 is output. That is, when the leak detection signal S2 is output from the leak detection signal output unit 9a while outputting the pulse wave of the oscillation pulse signal, the oscillator 4a according to the second embodiment stops outputting the oscillation pulse signal, After a certain period, the oscillation pulse signal output is automatically restarted.
  • the other circuit configuration is the same as that of the first embodiment shown in FIG.
  • the direction indicator lamp 2L or 2R stops the blinking operation for a certain period.
  • the blinking operation is stopped for a certain period after time t11, so that the pulse signal P and the drive current I are not output from time t12 to t13. Therefore, since the time during which the LED element is lit by the leak current can be limited to the leak detection period T1, it is difficult to visually recognize the lighting of the LED element due to the leak current. Thus, also in this embodiment, the same effect as that of Embodiment 1 can be obtained.
  • Example 3 detects the disconnection of the LED element in addition to Example 1.
  • FIG. 3 is a circuit diagram of the direction indicating device according to the third embodiment of the present invention.
  • the direction indicating device in addition to the direction indicating device of the first embodiment, the direction indicating device further includes a current clamp unit 5, a voltage clamp unit 6, a disconnection detecting unit 7, and resistors R2 and R3. .
  • the function of the oscillator 4Aa is different from the function of the oscillator 4a of the first embodiment. Since the other circuit configuration is the same as that of the first embodiment shown in FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the internal power supply 3, the pulse signal generation unit 4A, the N-type MOS transistor NM1, the current clamp unit 5, the voltage clamp unit 6, the disconnection detection unit 7, and the leak detection unit 9 are used as the direction indicator lamp control device 10A. It is configured.
  • the current clamp unit 5 reduces the amplitude of the pulse signal P and limits the drive current I to the current upper limit value Imax when the drive current I exceeds the current upper limit value Imax.
  • the current clamp unit 5 includes a first comparator COMP1 and an N-type MOS transistor (first transistor) NM2.
  • the first comparator COMP1 compares the voltage across the current detection resistor R1 with the first voltage corresponding to the current upper limit value Imax. That is, in the first comparator COMP1, the non-inverting input terminal is connected to the current output terminal 10c, and the first voltage V1 based on the reference voltage VS is supplied to the inverting input terminal.
  • the N-type MOS transistor NM2 is connected to the gate (control terminal) to which the comparison result of the first comparator COMP1 is supplied, the drain (one end) connected to the gate of the N-type MOS transistor NM1, and the reference voltage terminal 10d. And a source (the other end) to which the reference voltage VS is supplied.
  • the voltage clamp unit 6 When the reference voltage VS exceeds the voltage upper limit value VSmax, the voltage clamp unit 6 reduces the amplitude of the pulse signal P and limits the reference voltage VS to the voltage upper limit value VSmax.
  • the voltage clamp unit 6 includes a second comparator COMP2 and an N-type MOS transistor (second transistor) NM3.
  • the second comparator COMP2 compares the reference voltage VS with the voltage upper limit value Vmax.
  • the second comparator COMP2 has a non-inverting input terminal connected to the divided reference voltage terminal 10e to which the divided reference voltage VS ′ corresponding to the reference voltage VS is supplied, and corresponds to the voltage upper limit value Vmax.
  • the second voltage V2 is supplied to the inverting input terminal.
  • the second voltage V2 is a voltage with reference to the ground GND.
  • the resistors R2 and R3 are connected in series between the reference voltage terminal 10d and the ground GND, and the divided reference voltage terminal 10e is connected to a connection point between the resistors R2 and R3.
  • the N-type MOS transistor NM3 includes a gate (control terminal) to which the comparison result of the second comparator COMP2 is supplied, a drain (one end) connected to the gate of the N-type MOS transistor NM1, and a ground terminal 10f. And a source (the other end) connected to the ground GND.
  • the disconnection detection unit 7 outputs the disconnection detection signal Sd when the drive current I corresponding to the pulse wave of the pulse signal P becomes equal to or less than the disconnection detection value Id less than the current upper limit value Imax.
  • the disconnection detection value Id is the voltage of the reference voltage VS when it is assumed that one of the LED elements LF and LR of the direction indicator lamp 2L (or one of the LED elements RF and RR of the direction indicator lamp 2R) is disconnected. It is larger than the drive current I flowing through the direction indicator lamp 2L (or 2R) at the upper limit value VSmax.
  • the disconnection detection unit 7 includes a third comparator COMP3 and an AND circuit 7a.
  • the third comparator COMP3 compares the voltage across the current detection resistor R1 with the third voltage V3 corresponding to the disconnection detection value Id. That is, in the third comparator COMP3, the inverting input terminal is connected to the current output terminal 10c, and the third voltage V3 based on the reference voltage VS is supplied to the non-inverting input terminal.
  • the AND circuit 7a outputs the logical product of the comparison result of the third comparator COMP3 and the oscillation pulse signal (pulse signal P) as the disconnection detection signal Sd.
  • the disconnection detection signal Sd is supplied to the oscillator 4Aa.
  • the oscillator 4Aa changes the cycle of the oscillation pulse signal after the high-level disconnection detection signal Sd is output. That is, the pulse signal generation unit 4A changes the cycle of the pulse signal P after the high-level disconnection detection signal Sd is output.
  • the period of the pulse signal P may be shortened (for example, 0.25 to 1 / (2.4) seconds) or may be lengthened.
  • the pulse signal generation unit 4A may fix the pulse signal P to the high level so that the drive current I continuously flows after the high-level disconnection detection signal Sd is output.
  • the oscillator 4Aa is configured by adding a function based on the disconnection detection signal Sd to the oscillator 4a of the first embodiment.
  • FIG. 4 is a diagram for explaining the operating point of the direction indicating device according to the third embodiment of the present invention.
  • the direction indicator lamp 2L will be described.
  • FIG. 4 shows a characteristic line indicating the relationship between the drive current I flowing through the direction indicator lamp 2L and the reference voltage VS applied to the direction indicator lamp 2L when the two LED elements LF and LR of the direction indicator lamp 2L are lit ( A characteristic line IV2 (two lights)) and a case where one of the LED elements of the direction indicator lamp 2L is disconnected and one LED element is lit (characteristic line IV1 (one light)) are shown.
  • the current upper limit value Imax is smaller than the drive current I that can flow through the direction indicator lamp 2L when the reference voltage VS is the voltage upper limit value VSmax on the characteristic line IV2. Further, the current upper limit value Imax is a drive current that flows through the direction indicator lamp 2L when the reference voltage VS is the voltage upper limit value VSmax on the characteristic line IV1, assuming that any of the LED elements of the direction indicator lamp 2L is disconnected. Greater than I.
  • the drive current I becomes the current upper limit value Imax
  • the reference voltage VS becomes a value lower than the voltage upper limit value VSmax. It operates at an operating point OP2 on the characteristic line IV2.
  • the reference voltage VS is the voltage upper limit value VSmax, and the operation is performed at the operating point OP1 on the characteristic line IV1 where the drive current I is smaller than the current upper limit value Imax.
  • FIG. 5 shows characteristic lines similar to those in FIG. 4 with respect to LED elements in which current flows when the reference voltage VS is equal to or higher than the forward voltage. Even when the characteristics of the LED element are different from the example of FIG. 4 as shown in FIG. 5, the current upper limit value Imax and the voltage upper limit value VSmax may be set in the same manner as described above.
  • the operation of the direction indicating device will be described, for example, when the direction indicating lamp 2L blinks.
  • FIG. 6 is a waveform diagram of the direction indicating device according to the third embodiment of the present invention.
  • FIG. 6 shows temporal changes in the drive current I flowing through the direction indicator lamp 2L and the reference voltage VS applied to the direction indicator lamp 2L when the direction indicator switch SW is turned on to the L terminal side.
  • one of the LED elements of the direction indicator lamp 2L is disconnected at time t1.
  • the current clamp unit 5 reduces the amplitude of the pulse signal P and limits the drive current I to the current upper limit value Imax. That is, constant current control is performed.
  • the N-type MOS transistor NM3 of the voltage clamp unit 6 is off and does not affect the control of the amplitude of the pulse signal P.
  • the drive current I and the reference voltage VS change in a pulse shape at the cycle of the pulse signal P, and the direction indicator lamp 2L also blinks at the cycle.
  • this period is an arbitrary value of 0.5 to 1 second, that is, the blinking frequency is an arbitrary value of 1 to 2 Hz.
  • the operating point OP2 in FIG. 4 moves to the operating point OP1 as described above. That is, when the reference voltage VS exceeds the voltage upper limit value VSmax, the voltage clamp unit 6 reduces the amplitude of the pulse signal P and limits the reference voltage VS to the voltage upper limit value VSmax. That is, constant voltage control is performed. At this time, the N-type MOS transistor NM2 of the current clamp unit 5 is off and does not affect the control of the amplitude of the pulse signal P.
  • the disconnection detector 7 detects the high level disconnection detection signal Sd. Is output.
  • the period after the change is an arbitrary value of 0.25 to 1 / (2.4) seconds, that is, the frequency is an arbitrary value of 2.4 to 4 Hz.
  • the drive current I and the reference voltage VS also change in a pulse shape in the cycle after the change, and the direction indicator lamp 2L also blinks in that cycle.
  • the pulse signal P is limited to the current upper limit value Imax by reducing the amplitude of.
  • the voltage clamp unit 6 reduces the amplitude of the pulse signal P to generate the reference voltage VS.
  • the upper limit value VSmax is limited. Further, the current upper limit value Imax is made smaller than the drive current I that can flow to the direction indicator lamp 2L or 2R when the reference voltage VS is the voltage upper limit value VSmax.
  • the reference voltage VS does not reach the voltage upper limit value VSmax during normal operation so that the drive current I becomes the current upper limit value Imax. Be controlled. That is, since a constant current flows through the LED elements LF and LR or RF and RR, it is possible to extend the lifetime of these LED elements and to stabilize the amount of light.
  • the current flows to the direction indicator lamp 2L (or 2R) at a certain reference voltage VS. Since the obtained drive current I is smaller than that during normal operation, the reference voltage VS is controlled to be the voltage upper limit value VSmax without the drive current I reaching the current upper limit value Imax.
  • the reference voltage VS is limited to the voltage upper limit value VSmax, so that the drive current I flowing through the remaining LED elements can be limited. Therefore, the lifetime of the remaining LED element can be extended.
  • the leak detection unit 9 reduces the amplitude of the pulse signal P to zero, thereby reducing the drive current I to zero. Can be reduced. Therefore, since the time during which the LED element is lit by the leak current can be limited to the leak detection period T1, it is difficult to visually recognize the lighting of the LED element due to the leak current.
  • This example is different from Example 3 in the configuration of the disconnection detection unit.
  • FIG. 7 is a circuit diagram of a direction indicating device according to Embodiment 4 of the present invention. As illustrated in FIG. 7, the direction indicator lamp control device 10B includes a disconnection detection unit 7A instead of the disconnection detection unit 7 of the third embodiment. Since the other circuit configuration is the same as that of the third embodiment shown in FIG. 3, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the disconnection detector 7A outputs a disconnection detection signal Sd when the reference voltage VS becomes equal to the voltage upper limit value VSmax.
  • the disconnection detection unit 7A includes a fourth comparator COMP4.
  • the fourth comparator COMP4 the comparison result of the second comparator COMP2 is supplied to the non-inverting input terminal, and the fourth voltage V4 corresponding to the voltage upper limit value VSmax is supplied to the inverting input terminal. Output as signal Sd.
  • the fourth voltage V4 is a voltage with reference to the ground GND.
  • the operation waveform of this direction indicating device is the same as in FIG. That is, after time t1 when the disconnection occurs, the reference voltage VS when the direction indicator lamp 2L or 2R is turned on is controlled to the voltage upper limit value VSmax. During the period when the reference voltage VS is controlled to the voltage upper limit value VSmax, the comparison result of the second comparator COMP2 is higher than the low level. Therefore, this state is detected by the fourth comparator COMP4, and a high-level disconnection detection signal Sd is output. Thereby, the blinking cycle of the direction indicator lamp 2L or 2R can be changed to notify the user or the like of the disconnection of the LED element.
  • the turn signal lamp control device 10, 10A, 10B may be configured using a bipolar transistor.
  • the number of LED elements constituting each of the direction indicator lamps 2L and 2R may be three or more.
  • the number of LEDs constituting each LED element LF, LR, RF, RR may be one or three or more.
  • the present invention is not limited thereto.
  • control was performed so that a current flows through the capacitive element C1 when the power supply voltage VDD is higher than the internal power supply voltage Vcc, and a current from the capacitive element C1 is cut off when the power supply voltage VDD is lower than the internal power supply voltage Vcc.
  • a transistor that functions as a rectifying element may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 方向指示スイッチにリーク電流が流れた場合に方向指示灯としてのLED素子の点灯を視認し難くできる方向指示灯制御装置を提供する。方向指示灯制御装置は、並列接続されたLED素子で構成された方向指示灯を制御する。方向指示灯制御装置は、所定の周期のパルス信号を生成するパルス信号生成部と、電源電圧が供給される一端と、パルス信号が供給される制御端子と、パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有し、当該他端は外部の方向指示スイッチの一端に接続され、当該方向指示スイッチの他端は前記方向指示灯に接続される、電流制御素子と、パルス信号のパルス波に対応した駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、パルス信号生成部にパルス信号の振幅を低下させるリーク検出部と、を備える。

Description

方向指示灯制御装置、方向指示装置および方向指示装置の制御方法
 本発明は、方向指示灯としてLED素子を用いた方向指示灯制御装置、方向指示装置および方向指示装置の制御方法に関する。
 自動二輪車用の方向指示装置として、例えば、図8に示されるものが知られている。この方向指示装置は、ダイオードD101と、容量素子C101と、方向指示スイッチSWと、左側用の方向指示灯102Lと、右側用の方向指示灯102Rと、内部電源103と、発振器104aと、バッファ104bと、N型MOSトランジスタNM101と、断線検出用の比較器COMP101と、電流検出抵抗R101と、を備える。左側用の方向指示灯102Lは、並列接続された左前側用の電球102LFと左後側用の電球102LRを有する。右側用の方向指示灯102Rは、並列接続された右前側用の電球102RFと右後側用の電球102RRを有する。ダイオードD101と容量素子C101は、ブートストラップ回路として機能する。
 この方向指示装置の動作を説明する。例えば、方向指示スイッチSWがL端子側にオンになると、容量素子C101の負側の端子が電球102LF,102LRを介して接地される。そのため、バッテリBからダイオードD101を介して容量素子C101に電流が流れて、容量素子C101が充電される。これにより、容量素子C101の正側の端子から内部電源電圧Vccが供給され、その負側の端子から基準電圧VSが供給される内部電源103、発振器104a、バッファ104b及び比較器COMP101が起動される。内部電源103は、比較器COMP101に供給される電圧V101等を生成する。
 起動した発振器104aは発振パルス信号を生成する。バッファ104bは発振パルス信号をバッファしてパルス信号を出力する。N型MOSトランジスタNM101は、ゲートに供給されたパルス信号の振幅に応じた大きさの駆動電流を、電源電圧VDDが供給されたドレインからソースに流す。駆動電流は、電流検出抵抗R101と方向指示スイッチSWを介して方向指示灯102Lの電球102LF,102LRに流れる。これにより、方向指示灯102Lは、発振パルス信号の周期で点滅する。
 この方向指示装置において、前後用の電球102LF,102RFの何れかが断線した場合、駆動電流が減少する。よって、駆動電流の減少による電源電圧VDDの上昇を検出した比較器COMP101は、発振器104aを制御して、発振パルス信号の周期を変化させる。これにより、方向指示灯102Lの点滅周期が変化するので、使用者等に電球の断線を知らせることができる。
 また、方向指示スイッチSWは、機械式のスイッチである。そのため、方向指示スイッチSWとして防水性能が低い廉価な部品が用いられると、方向指示スイッチSWがオフであっても水分を介してリーク電流が流れてしまう場合がある。すると、このリーク電流によって方向指示装置は動作を開始する。ところが、リーク電流は電球102LF,102LR,102RF,102RRを点灯させるために必要な電流より小さいため、方向指示灯102L,102Rの点滅を視認することはできず、実用上は問題にならない。
 上記方向指示装置に類似した装置として、JP1-90831Aに記載の方向指示装置も知られている。
 ところで、方向指示装置の方向指示灯102L,102Rとして、電球に代えてLED素子を用いることが望まれている。
 しかしながら、LED素子の発光効率は電球に比して格段に高いため、方向指示スイッチSWのリーク電流によって視認可能な明るさでLED素子が発光してしまう恐れがある。即ち、方向指示スイッチSWをオフにしているにも拘らず、方向指示灯102L,102Rが点滅してしまう恐れがある。
 本発明は、方向指示スイッチにリーク電流が流れた場合に方向指示灯としてのLED素子の点灯を視認し難くできる方向指示灯制御装置、方向指示装置および方向指示装置の制御方法を提供することを目的とする。
 本発明の一態様に係る実施例に従った方向指示灯制御装置は、
 並列接続されたLED素子で構成された方向指示灯を制御する方向指示灯制御装置であって、
 所定の周期のパルス信号を生成するパルス信号生成部と、
 電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有し、当該他端は外部の方向指示スイッチの一端に接続され、当該方向指示スイッチの他端は前記方向指示灯に接続される、電流制御素子と、
 前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させるリーク検出部と、を備えることを特徴とする。
 また、前記方向指示灯制御装置において、
 前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上であってもよい。
 また、前記方向指示灯制御装置において、
 前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短くてもよい。
 また、前記方向指示灯制御装置において、
 パルス信号生成部は、
 前記所定の周期の内部発振パルス信号を生成し、当該内部発振パルス信号をバッファして発振パルス信号を出力する発振器と、
 前記発振パルス信号をバッファして前記パルス信号として出力するバッファと、を有し、
 前記リーク検出部は、
 前記駆動電流が前記リーク検出電流値以下である場合に低電流検出信号を出力する低電流検出用比較器と、
 前記低電流検出信号が前記リーク検出期間の間出力された場合にリーク検出信号を出力し、前記内部発振パルス信号のパルス波が発生するタイミングでリセットされるリーク検出信号出力部と、を有し、
 前記発振器は、前記リーク検出信号出力部から前記リーク検出信号が出力されている間、前記発振パルス信号の出力を停止してもよい。
 また、前記方向指示灯制御装置において、
 前記発振器は、
 前記発振パルス信号を出力する発振パルス信号出力端子と、
 前記リーク検出信号出力部から前記リーク検出信号が出力されている間、前記発振パルス信号出力端子を前記方向指示スイッチの一端に短絡するスイッチ素子と、を有してもよい。
 また、前記方向指示灯制御装置において、
 パルス信号生成部は、
 前記所定の周期の内部発振パルス信号を生成し、当該内部発振パルス信号をバッファして発振パルス信号を出力する発振器と、
 前記発振パルス信号をバッファして前記パルス信号として出力するバッファと、を有し、
 前記リーク検出部は、
 前記駆動電流が前記リーク検出電流値以下である場合に低電流検出信号を出力する比較器と、
 前記低電流検出信号が前記リーク検出期間の間出力された場合に前記リーク検出信号を出力し、前記内部発振パルス信号のパルス波が発生するタイミングでリセットされるリーク検出信号出力部と、を有し、
 前記発振器は、前記発振パルス信号のパルス波を出力している間に前記リーク検出信号出力部から前記リーク検出信号が出力された場合、前記発振パルス信号の出力を停止して、一定期間後、前記発振パルス信号の出力を再開してもよい。
 また、前記方向指示灯制御装置において、
 前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間は、0.25秒から0.5秒であり、
 前記リーク検出期間は、200マイクロ秒以下であってもよい。
 また、前記方向指示灯制御装置において、
 前記駆動電流が電流上限値を超えた場合に、前記パルス信号の振幅を低減させて前記駆動電流を前記電流上限値に制限する電流クランプ部と、
 前記方向指示スイッチの一端の基準電圧が電圧上限値を超えた場合に、前記パルス信号の振幅を低減させて前記基準電圧を前記電圧上限値に制限する電圧クランプ部と、
 前記パルス信号のパルス波に対応した前記駆動電流が前記電流上限値未満の断線検出値以下になった場合、または、前記基準電圧が前記電圧上限値と等しくなった場合に、断線検出信号を出力する断線検出部と、を備え、
 前記電流上限値は、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れ得る前記駆動電流より小さくてもよい。
 また、前記方向指示灯制御装置において、
 前記電流上限値は、前記LED素子の何れかが断線したと仮定した場合に、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れる前記駆動電流より大きくてもよい。
 また、前記方向指示灯制御装置において、
 前記断線検出値は、前記LED素子の何れかが断線したと仮定した場合に、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れる前記駆動電流より大きくてもよい。
 また、前記方向指示灯制御装置において、
 前記パルス信号生成部は、外部のブートストラップ回路から供給された内部電源電圧と前記基準電圧との電位差を電源として動作し、
 前記ブートストラップ回路は、前記方向指示スイッチがオンの時に前記基準電圧に基づいて前記内部電源電圧を生成してもよい。
 また、前記方向指示灯制御装置において、
 前記ブートストラップ回路は、
 前記電源電圧が一端に加えられる整流素子と、
 前記整流素子の他端に一端が接続され、前記方向指示スイッチの一端に他端が接続された容量素子と、を有し、
 前記容量素子の一端の電圧が前記内部電源電圧であり、前記容量素子の他端の電圧が前記基準電圧であってもよい。
 また、前記方向指示灯制御装置において、
 前記電流制御素子は、前記電源電圧が供給されたドレインと、前記パルス信号が供給されたゲートと、前記方向指示スイッチに接続されたソースと、を有するN型MOSトランジスタで構成されていてもよい。
 本発明の一態様に係る実施例に従った方向指示装置は、
 所定の周期のパルス信号を生成するパルス信号生成部と、
 電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有する電流制御素子と、
 前記電流制御素子の他端に一端が接続された方向指示スイッチと、
 並列接続されたLED素子で構成され、前記方向指示スイッチの他端に一端が接続され、他端が接地された方向指示灯と、
 前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させるリーク検出部と、を備えることを特徴とする。
 また、前記方向指示装置において、
 前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上であってもよい。
 また、前記方向指示装置において、
 前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短くてもよい。
 本発明の一態様に係る実施例に従った方向指示装置の制御方法は、
 所定の周期のパルス信号を生成するパルス信号生成部と、電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有する電流制御素子と、前記電流制御素子の他端に一端が接続された方向指示スイッチと、並列接続されたLED素子で構成され、前記方向指示スイッチの他端に一端が接続され、他端が接地された方向指示灯と、を備える方向指示装置の制御方法であって、
 前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させることを特徴とする。
 また、前記方向指示装置の制御方法において、
 前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上であってもよい。
 また、前記方向指示装置の制御方法において、
 前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短くてもよい。
 本発明によれば、リーク検出部により、パルス信号のパルス波に対応した駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、パルス信号の振幅を低下させるようにしている。これにより、オフ状態の方向指示スイッチにリーク電流が流れた場合、パルス信号の振幅を低下させて、駆動電流を減少させることができる。従って、リーク電流によりLED素子が点灯している時間を制限できるので、リーク電流によるLED素子の点灯を視認し難くできる。
本発明の実施例1に係る方向指示装置の回路図である。 本発明の実施例1に係る方向指示装置の波形図である。 本発明の実施例3に係る方向指示装置の回路図である。 本発明の実施例3に係る方向指示装置の動作点を説明する図である。 本発明の実施例3に係る方向指示装置の動作点を説明する他の図である。 本発明の実施例3に係る方向指示装置の波形図である。 本発明の実施例4に係る方向指示装置の回路図である。 従来の方向指示装置の回路図である。
 以下、本発明に係る各実施例について図面に基づいて説明する。
 図1は、本発明の実施例1に係る方向指示装置の回路図である。図1に示すように、方向指示装置は、ブートストラップ回路1と、方向指示スイッチSWと、方向指示灯2L,2Rと、内部電源3と、パルス信号生成部4と、N型MOSトランジスタ(電流制御素子)NM1と、電流検出抵抗R1と、リーク検出部9と、を備える。この方向指示装置は、例えば、自動二輪車に用いられる。
 内部電源3と、パルス信号生成部4と、N型MOSトランジスタNM1と、リーク検出部9は、方向指示灯制御装置(ウィンカーリレー)10として構成されている。方向指示灯制御装置10は、例えば、半導体集積回路として構成可能である。
 ブートストラップ回路1は、ダイオード(整流素子)D1と、容量素子C1と、を有する。ダイオードD1は、電源Bからの電源電圧VDDがアノード(一端)に加えられる。容量素子C1は、ダイオードD1のカソード(他端)に一端が接続され、方向指示スイッチSWの一端に他端が接続されている。
 方向指示スイッチSWは、一端とL端子(他端)との間、又は、一端とR端子(他端)との間を短絡可能になっている。方向指示スイッチSWは、機械式のスイッチである。
 左側用の方向指示灯2Lは、並列接続された左前側用のLED素子LFと左後側用のLED素子LRで構成されている。右側用の方向指示灯2Rは、並列接続された右前側用のLED素子RFと右後側用のLED素子RRで構成されている。本実施例では、各LED素子LF,LR,RF,RRは直列接続された2つのLEDで構成されている。
 方向指示灯2Lは、方向指示スイッチSWのL端子にアノード側(一端)が接続され、カソード側(他端)が接地されている。方向指示灯2Rは、方向指示スイッチSWのR端子にアノード側(一端)が接続され、カソード側(他端)が接地されている。
 このような構成により、方向指示スイッチSWがL端子側又はR端子側にオンになると、電源Bから、ダイオードD1と、容量素子C1と、方向指示スイッチSWと、方向指示灯2L又は2Rとを介して接地GNDに電流が流れる。これにより、容量素子C1が充電され、ブートストラップ回路1は、容量素子C1の他端の電圧である基準電圧VSに基づいて、容量素子C1の一端の電圧である内部電源電圧Vccを生成する。基準電圧VSが変化しても、(内部電源電圧Vcc)-(基準電圧VS)は、ほぼ一定に保たれる。
 内部電源電圧Vccは方向指示灯制御装置10の内部電源電圧端子10bに供給され、基準電圧VSは方向指示灯制御装置10の基準電圧端子10dに供給される。
 内部電源3は、内部電源電圧Vccと基準電圧VSとの電位差を電源として起動し、基準電圧VSを基準としたバイアス電圧を生成する。生成されたバイアス電圧は、方向指示灯制御装置10内の各部に供給される。
 パルス信号生成部4は、内部電源電圧Vccと基準電圧VSとの電位差を電源として起動し、所定の周期(例えば、0.5~1秒)のパルス信号Pを生成する。例えば、パルス信号Pのデューティ比は50%前後である。具体的には、パルス信号生成部4は、発振器4aと、バッファ4bとを有する。
 発振器4aは、上記所定の周期の内部発振パルス信号PIを生成し、当該内部発振パルス信号PIをバッファして発振パルス信号として出力する。発振器4aは、リーク検出信号出力部9aからリーク検出信号S2が出力されている間、発振パルス信号の出力を停止する。具体的には、発振器4aは、発振パルス信号を出力する発振パルス信号出力端子4a1と、リーク検出信号出力部9aからリーク検出信号S2が出力されている間、発振パルス信号出力端子4a1を方向指示スイッチSWの一端(即ち基準電圧VS)に短絡するスイッチ素子(図示せず)と、を有する。
 バッファ4bは、発振器4aからの発振パルス信号をバッファしてパルス信号Pを生成する。パルス信号Pは、基準電圧VSから内部電源電圧Vccまでの振幅を取り得る。
 N型MOSトランジスタNM1は、方向指示灯制御装置10の電源電圧端子10aに接続されて電源電圧VDDが供給されるドレイン(一端)と、パルス信号Pが供給されるゲート(制御端子)と、パルス信号Pの振幅に応じた大きさの駆動電流Iを出力するソース(他端)と、を有する。N型MOSトランジスタNM1のソースは、方向指示灯制御装置10の電流出力端子10cに接続されている。
 N型MOSトランジスタNM1のソースと方向指示スイッチSWの一端との間に電流検出抵抗R1が設けられている。本実施例では、電流検出抵抗R1は、電流出力端子10cと方向指示スイッチSWの一端との間に接続されている。
 このような構成により、駆動電流Iは、方向指示スイッチSWを介して、方向指示灯2LのLED素子LF,LR、又は、方向指示灯2RのLED素子RF,RRに流れる。これにより、方向指示灯2L又は2Rは、発振パルス信号の周期で点滅する。
 リーク検出部9は、パルス信号Pのパルス波に対応した駆動電流Iが、リーク検出期間T1の間、リーク検出電流値I1以下である場合に、パルス信号生成部4にパルス信号Pの振幅を低下させる。
 リーク検出電流値I1は、方向指示スイッチSWがオンの時のパルス信号Pのパルス波に対応した駆動電流Iより小さく、方向指示スイッチSWがオフの時に流れ得る方向指示スイッチSWのリーク電流以上である。
 リーク検出期間T1は、方向指示スイッチSWがオンの時にパルス信号Pのパルス波が出力されている時間(例えば、約0.5~1秒)より短い。本実施例では、例えば、リーク検出期間T1は200マイクロ秒以下である。ただし、適切なリーク検出期間T1は、LED素子LF,LR,RF,RRの特性や、パルス信号Pの周期などに依存して変化する。また、リーク検出期間T1が短すぎる場合には、外部からのノイズによって誤動作する可能性もあるため、リーク検出期間T1はノイズの影響も考慮して決定することが好ましい。
 具体的には、リーク検出部9は、低電流検出用比較器COMP9と、リーク検出信号出力部9aと、を有する。低電流検出用比較器COMP9は、電流検出抵抗R1の両端間の電圧と、リーク検出電流値I1に対応した電圧V9と、を比較して、駆動電流Iがリーク検出電流値I1以下である場合に低電流検出信号S1を出力する。つまり、低電流検出用比較器COMP9は、電流出力端子10cに反転入力端子が接続され、基準電圧VSを基準とした電圧V9が反転入力端子に供給されている。
 リーク検出信号出力部9aは、低電流検出信号S1がリーク検出期間T1の間出力された場合にリーク検出信号S2を出力する。つまり、リーク検出信号出力部9aは、リーク検出期間T1未満の低電流検出信号S1を無視するフィルタとして機能する。また、リーク検出信号出力部9aは、発振器4aから内部発振パルス信号PIが供給され、内部発振パルス信号PIのパルス波が発生するタイミングでリセットされる。
 次に、波形図を参照して、方向指示装置の動作を説明する。
 図2は、本発明の実施例1に係る方向指示装置の波形図である。図2は、方向指示スイッチSWがL端子側にオンになった後、時刻t10でオフになった場合の、方向指示灯2Lに流れる駆動電流I、低電流検出信号S1、リーク検出信号S2及びパルス信号Pの時間変化を示している。図示する例では、時刻t10以降、オフになった方向指示スイッチSWはリーク電流を流している。また、低電流検出信号S1、リーク検出信号S2及びパルス信号Pは、基準電圧VSに対する変化を示している。つまり、図中のローレベル(L)は、基準電圧VSとほぼ等しいことを表している。
 図示するように、時刻t10までは、駆動電流Iはパルス信号Pの周期でパルス状に変化して、方向指示灯2Lもその周期で点滅する。駆動電流Iの最大値は、パルス信号Pの振幅によって決定されている。前述のように、例えば、この周期は0.5~1秒の任意の値であり、即ち、点滅周波数は1~2Hzの任意の値である。
 この時刻t10までにおいても、低電流検出用比較器COMP9は、駆動電流Iが流れていない期間(例えば、時刻t8~t10等)に、ハイレベルの低電流検出信号S1を出力する。そして、リーク検出信号出力部9aは、低電流検出信号S1がリーク検出期間T1の間出力されると、ハイレベルのリーク検出信号S2を出力する(例えば、時刻t9)。発振器4aは、リーク検出信号S2が出力されている間、発振パルス信号出力端子4a1を基準電圧VSに短絡して、パルス波が出力されないようにする。続いて、リーク検出信号出力部9aは、内部発振パルス信号PI(図示せず)のパルス波が発生するタイミング(時刻t10)でリセットされてリーク検出信号S2はローレベルになる。しかし、この時刻t8~t10において、そもそもパルス信号Pのパルス波は出力されていないため、このようなリーク検出部9の動作は、方向指示スイッチSWがオンの場合の点滅動作に影響を及ぼすことはない。
 方向指示スイッチSWがオフした時刻t10以降、方向指示スイッチSWの一端から例えばL端子に流れるリーク電流により、ブートストラップ回路1は動作を続け、即ち方向指示装置は動作を続ける。リーク電流は、例えば、約100mAである。
 つまり、時刻t10において、方向指示スイッチSWがオフしているにも拘らずパルス信号Pのパルス波が出力される。従って、N型MOSトランジスタNM1は駆動電流Iを出力する。ただし、この時の駆動電流Iは、方向指示スイッチSWのリーク電流に制限されている。
 低電流検出用比較器COMP9は、駆動電流Iがリーク検出電流値I1以下であるため、引き続きハイレベルの低電流検出信号S1を出力する。
 その後、時刻t11に、リーク検出信号出力部9aは、低電流検出信号S1がリーク検出期間T1の間出力されたため、ハイレベルのリーク検出信号S2を出力する。発振器4aは、リーク検出信号S2が出力されている間、発振パルス信号出力端子4a1を基準電圧VSに短絡して、発振パルス信号のパルス波、即ちパルス信号Pのパルス波が出力されないようにする。これにより、時刻t11以降、駆動電流Iは出力されない。よって、駆動電流Iが出力される期間、即ち方向指示灯2Lが点灯する期間は、リーク検出期間T1に制限される。
 なお、時刻t11以降、発振器4aは、発振パルス信号のパルス波を出力しないが、内部発振パルス信号PIは出力している。
 その後、リーク検出信号出力部9aは、内部発振パルス信号PIのパルス波が発生するタイミングである時刻t12にリセットされて、リーク検出信号S2はローレベルになる。
 従って、パルス信号Pのパルス波が出力されて、駆動電流Iも出力される。しかし、以上と同様の動作により、リーク検出期間T1が経過した時刻t13以降、駆動電流Iは出力されないようになる。
 このように、時刻t10以降、パルス信号Pのデューティ比が小さく変更される。そのため、駆動電流Iもその変更後のデューティ比でパルス状に変化して、LED素子の点灯時間が例えば200マイクロ秒以下になる。従って、リーク電流によりLED素子が点灯している時間を制限できるので、リーク電流によるLED素子の点灯を視認し難くできる。
 以上で説明した様に、本実施例によれば、リーク検出部9により、パルス信号Pのパルス波に対応した駆動電流Iが、リーク検出期間T1の間、リーク検出電流値I1以下である場合に、パルス信号Pの振幅を低下させるようにしている。これにより、オフ状態の方向指示スイッチSWにリーク電流が流れた場合、パルス信号Pの振幅をゼロに低下させて、駆動電流Iをゼロに減少させることができる。従って、リーク電流によりLED素子が点灯している時間をリーク検出期間T1に制限できるので、リーク電流によるLED素子の点灯を視認し難くできる。
 実施例2は、リーク検出信号S2が出力された場合の発振器4aの動作が実施例1と異なる。つまり、実施例2の発振器4aは、発振パルス信号のパルス波を出力している間にリーク検出信号出力部9aからリーク検出信号S2が出力された場合、発振パルス信号の出力を停止して、一定期間後、発振パルス信号の出力を自動的に再開する。その他の回路構成は、図1の実施例1と同一であるため、図示及び説明を省略する。
 これにより、リーク検出信号S2が出力された場合、方向指示灯2L又は2Rは、一定期間、点滅動作を停止する。例えば、図2において、時刻t11以降の一定期間、点滅動作を停止して、時刻t12~t13においてもパルス信号P及び駆動電流Iを出力しないようにする。従って、リーク電流によりLED素子が点灯している時間をリーク検出期間T1に制限できるので、リーク電流によるLED素子の点灯を視認し難くできる。
 このように、本実施例においても、実施例1と同様の効果が得られる。
 実施例3は、実施例1に加え、LED素子の断線を検出するようにしている。
 図3は、本発明の実施例3に係る方向指示装置の回路図である。図3に示すように、この方向指示装置は、実施例1の方向指示装置に加え、電流クランプ部5と、電圧クランプ部6と、断線検出部7と、抵抗R2,R3と、をさらに備える。また、発振器4Aaの機能が、実施例1の発振器4aの機能と異なる。その他の回路構成は、図1の実施例1と同一であるため、同一の要素に同一の符号を付して説明を省略する。
 内部電源3と、パルス信号生成部4Aと、N型MOSトランジスタNM1と、電流クランプ部5と、電圧クランプ部6と、断線検出部7と、リーク検出部9は、方向指示灯制御装置10Aとして構成されている。
 電流クランプ部5は、駆動電流Iが電流上限値Imaxを超えた場合に、パルス信号Pの振幅を低減させて駆動電流Iを電流上限値Imaxに制限する。具体的には、電流クランプ部5は、第1の比較器COMP1と、N型MOSトランジスタ(第1のトランジスタ)NM2と、を有する。
 第1の比較器COMP1は、電流検出抵抗R1の両端間の電圧と、電流上限値Imaxに対応した第1電圧と、を比較する。つまり、第1の比較器COMP1は、電流出力端子10cに非反転入力端子が接続され、基準電圧VSを基準とした第1電圧V1が反転入力端子に供給されている。
 N型MOSトランジスタNM2は、第1の比較器COMP1の比較結果が供給されるゲート(制御端子)と、N型MOSトランジスタNM1のゲートに接続されたドレイン(一端)と、基準電圧端子10dに接続されて基準電圧VSが供給されるソース(他端)と、を含む。
 電圧クランプ部6は、基準電圧VSが電圧上限値VSmaxを超えた場合に、パルス信号Pの振幅を低減させて基準電圧VSを電圧上限値VSmaxに制限する。具体的には、電圧クランプ部6は、第2の比較器COMP2と、N型MOSトランジスタ(第2のトランジスタ)NM3と、を有する。
 第2の比較器COMP2は、基準電圧VSと、電圧上限値Vmaxと、を比較する。本実施例では、第2の比較器COMP2は、基準電圧VSに対応する分圧基準電圧VS’が供給される分圧基準電圧端子10eに非反転入力端子が接続され、電圧上限値Vmaxに対応する第2電圧V2が反転入力端子に供給されている。第2電圧V2は、接地GNDを基準とした電圧である。抵抗R2と抵抗R3は、基準電圧端子10dと接地GNDとの間に直列接続されており、分圧基準電圧端子10eは、抵抗R2と抵抗R3との接続点に接続されている。
 N型MOSトランジスタNM3は、第2の比較器COMP2の比較結果が供給されるゲート(制御端子)と、N型MOSトランジスタNM1のゲートに接続されたドレイン(一端)と、接地端子10fを介して接地GNDに接続されたソース(他端)と、を含む。
 断線検出部7は、パルス信号Pのパルス波に対応した駆動電流Iが電流上限値Imax未満の断線検出値Id以下になった場合に、断線検出信号Sdを出力する。断線検出値Idは、方向指示灯2LのLED素子LF,LRの何れか(又は、方向指示灯2RのLED素子RF,RRの何れか)が断線したと仮定した場合に、基準電圧VSが電圧上限値VSmaxの時に方向指示灯2L(又は2R)に流れる駆動電流Iより大きい。
 具体的には、断線検出部7は、第3の比較器COMP3と、論理積回路7aと、を有する。第3の比較器COMP3は、電流検出抵抗R1の両端間の電圧と、断線検出値Idに対応した第3電圧V3と、を比較する。つまり、第3の比較器COMP3は、電流出力端子10cに反転入力端子が接続され、基準電圧VSを基準とした第3電圧V3が非反転入力端子に供給されている。
 論理積回路7aは、第3の比較器COMP3の比較結果と発振パルス信号(パルス信号P)との論理積を断線検出信号Sdとして出力する。
 断線検出信号Sdは、発振器4Aaに供給される。発振器4Aaは、ハイレベルの断線検出信号Sdが出力された後、発振パルス信号の周期を変化させる。即ち、パルス信号生成部4Aは、ハイレベルの断線検出信号Sdが出力された後、パルス信号Pの周期を変化させる。パルス信号Pの周期は、短くしてもよく(例えば、0.25~1/(2.4)秒)、長くしてもよい。あるいは、パルス信号生成部4Aは、ハイレベルの断線検出信号Sdが出力された後、駆動電流Iが連続的に流れるようにパルス信号Pをハイレベルに固定してもよい。
 発振器4Aaは、実施例1の発振器4aに、この断線検出信号Sdに基づく機能を追加して構成されている。
 次に、電流上限値Imaxと電圧上限値VSmaxの関係について説明する。
 図4は、本発明の実施例3に係る方向指示装置の動作点を説明する図である。ここでは、方向指示灯2Lについて説明する。図4は、方向指示灯2Lに流れる駆動電流Iと、方向指示灯2Lに加わる基準電圧VSとの関係を示す特性線を、方向指示灯2Lの2つのLED素子LF,LRが点灯する場合(特性線IV2(2灯))と、方向指示灯2LのLED素子の何れかが断線し、1つのLED素子が点灯する場合(特性線IV1(1灯))とについて示している。
 図示するように、電流上限値Imaxは、特性線IV2上において基準電圧VSが電圧上限値VSmaxの時に方向指示灯2Lに流れ得る駆動電流Iより小さい。また、電流上限値Imaxは、方向指示灯2LのLED素子の何れかが断線したと仮定した場合に、特性線IV1上において基準電圧VSが電圧上限値VSmaxの時に方向指示灯2Lに流れる駆動電流Iより大きい。
 このように電流上限値Imaxと電圧上限値VSmaxを設定することで、2つのLED素子が点灯する場合、駆動電流Iが電流上限値Imaxとなり、基準電圧VSが電圧上限値VSmaxより低い値となる特性線IV2上の動作点OP2で動作する。また、1つのLED素子が点灯する場合、基準電圧VSが電圧上限値VSmaxとなり、駆動電流Iが電流上限値Imaxより小さい値となる特性線IV1上の動作点OP1で動作する。
 また、図5は、基準電圧VSが順方向電圧以上になると電流が流れるようなLED素子に関して、図4と同様の特性線を示している。図5のようにLED素子の特性が図4の例と異なる場合であっても、電流上限値Imaxと電圧上限値VSmaxは、以上の説明と同様に設定すればよい。
 次に、方向指示装置の動作を、例えば方向指示灯2Lが点滅する場合について説明する。
 図6は、本発明の実施例3に係る方向指示装置の波形図である。図6は、方向指示スイッチSWがL端子側にオンになった時の、方向指示灯2Lに流れる駆動電流Iと、方向指示灯2Lに加わる基準電圧VSとの時間変化を示している。図示する例では、時刻t1で方向指示灯2Lの何れかのLED素子が断線している。
 時刻t1までは、前述のように、図4の動作点OP2で動作する。つまり、電流クランプ部5は、駆動電流Iが電流上限値Imaxを超えた場合に、パルス信号Pの振幅を低減させて駆動電流Iを電流上限値Imaxに制限する。即ち、定電流制御される。このとき、電圧クランプ部6のN型MOSトランジスタNM3はオフしており、パルス信号Pの振幅の制御に影響しない。
 図示するように、駆動電流I及び基準電圧VSは、パルス信号Pの周期でパルス状に変化して、方向指示灯2Lもその周期で点滅する。前述のように、例えば、この周期は0.5~1秒の任意の値であり、即ち、点滅周波数は1~2Hzの任意の値である。
 断線が発生した時刻t1以降、前述のように、図4の動作点OP2が動作点OP1に移動する。つまり、電圧クランプ部6は、基準電圧VSが電圧上限値VSmaxを超えた場合に、パルス信号Pの振幅を低減させて基準電圧VSを電圧上限値VSmaxに制限する。即ち、定電圧制御される。このとき、電流クランプ部5のN型MOSトランジスタNM2はオフしており、パルス信号Pの振幅の制御に影響しない。
 方向指示灯2Lの点灯時の駆動電流I、即ちパルス信号Pのパルス波に対応した駆動電流Iが断線検出値Id以下になっている期間に、断線検出部7はハイレベルの断線検出信号Sdを出力する。
 これにより、パルス信号Pの周期は変更される。前述のように、例えば、変更後の周期は0.25~1/(2.4)秒の任意の値であり、即ち、周波数は2.4~4Hzの任意の値である。そのため、駆動電流I及び基準電圧VSもその変更後の周期でパルス状に変化して、方向指示灯2Lもその周期で点滅する。方向指示灯2Lの点滅周期を通常時と異なるようにすることで、使用者等にLED素子の断線を知らせることができる。
 以上で説明した様に、本実施例によれば、電流クランプ部5により、LED素子LF,LR又はRF,RRに供給される駆動電流Iが電流上限値Imaxを超えた場合に、パルス信号Pの振幅を低減させて駆動電流Iを電流上限値Imaxに制限するようにしている。加えて、電圧クランプ部6により、LED素子LF,LR又はRF,RRに印加される基準電圧VSが電圧上限値VSmaxを超えた場合に、パルス信号Pの振幅を低減させて基準電圧VSを電圧上限値VSmaxに制限するようにしている。また、電流上限値Imaxは、基準電圧VSが電圧上限値VSmaxの時に方向指示灯2L又は2Rに流れ得る駆動電流Iより小さいようにしている。
 このような関係に電流上限値Imaxと電圧上限値VSmaxを設定したことにより、通常動作時は、基準電圧VSが電圧上限値VSmaxに達することなく、駆動電流Iが電流上限値Imaxになるように制御される。即ち、LED素子LF,LR又はRF,RRに定電流が流れるので、これらLED素子を長寿命化させ、且つ、光量を安定化させることができる。
 一方、並列接続されたLED素子LF,LRの何れか(又は、並列接続されたLED素子RF,RRの何れか)が断線した場合、ある基準電圧VSにおいて方向指示灯2L(又は2R)に流れ得る駆動電流Iが通常動作時よりも減少するので、駆動電流Iが電流上限値Imaxに達することなく、基準電圧VSが電圧上限値VSmaxになるように制御される。
 よって、パルス信号Pのパルス波に対応した駆動電流Iが電流上限値Imax未満の断線検出値Id以下になった場合に、LED素子の断線を検出できる。
 さらに、何れかのLED素子が断線した場合であっても、基準電圧VSが電圧上限値VSmaxに制限されるため、残ったLED素子に流れる駆動電流Iを制限できる。従って、その残ったLED素子の寿命を長くできる。
 以上に加え、実施例1と同様に、オフ状態の方向指示スイッチSWにリーク電流が流れた場合、リーク検出部9により、パルス信号Pの振幅をゼロに低下させて、駆動電流Iをゼロに減少させることができる。従って、リーク電流によりLED素子が点灯している時間をリーク検出期間T1に制限できるので、リーク電流によるLED素子の点灯を視認し難くできる。
 本実施例は、断線検出部の構成が実施例3と異なる。
 図7は、本発明の実施例4に係る方向指示装置の回路図である。図7に示すように、方向指示灯制御装置10Bは、実施例3の断線検出部7に代えて、断線検出部7Aを備える。その他の回路構成は、図3の実施例3と同一であるため、同一の要素に同一の符号を付して説明を省略する。
 断線検出部7Aは、基準電圧VSが電圧上限値VSmaxと等しくなった場合に、断線検出信号Sdを出力する。具体的には、断線検出部7Aは第4の比較器COMP4を有する。第4の比較器COMP4は、第2の比較器COMP2の比較結果が非反転入力端子に供給され、電圧上限値VSmaxに対応した第4電圧V4が反転入力端子に供給され、比較結果を断線検出信号Sdとして出力する。第4電圧V4は、接地GNDを基準とした電圧である。
 この方向指示装置の動作波形は、図6と同一である。即ち、断線が発生した時刻t1以降、方向指示灯2L又は2Rの点灯時の基準電圧VSが電圧上限値VSmaxに制御される。基準電圧VSが電圧上限値VSmaxに制御されている期間、第2の比較器COMP2の比較結果はローレベルよりも高くなっている。従って、この状態を第4の比較器COMP4が検出して、ハイレベルの断線検出信号Sdが出力される。これにより、方向指示灯2L又は2Rの点滅周期を変化させて、使用者等にLED素子の断線を知らせることができる。
 即ち、本実施例によっても、実施例3と同様の効果が得られる。
 以上、本発明の実施例を詳述してきたが、具体的な構成は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々に変形して実施することができる。
 例えば、MOSトランジスタに代えて、バイポーラトランジスタを用いて方向指示灯制御装置10,10A,10Bを構成してもよい。
 また、各方向指示灯2L,2Rを構成するLED素子の数は、3個以上でもよい。各LED素子LF,LR,RF,RRを構成するLEDの数は、1個でもよく、3個以上でもよい。
 また、ブートストラップ回路1にダイオードD1を用いる一例について説明したが、これに限られない。ダイオードD1に代えて、電源電圧VDDが内部電源電圧Vccより高い時に容量素子C1に電流を流し、電源電圧VDDが内部電源電圧Vccより低い時に容量素子C1からの電流を遮断するように制御された、整流素子として機能するトランジスタを用いてもよい。
1 ブートストラップ回路
SW 方向指示スイッチ
2L,2R 方向指示灯
LF,LR,RF,RR LED素子
3 内部電源
4,4A パルス信号生成部
4a,4Aa 発振器
4b バッファ
5 電流クランプ部
6 電圧クランプ部
7,7A 断線検出部
9 リーク検出部
9a リーク検出信号出力部
10,10A,10B 方向指示灯制御装置
R1 電流検出抵抗
R2,R3 抵抗
D1 ダイオード(整流素子)
C1 容量素子
NM1 N型MOSトランジスタ(電流制御素子)
NM2 N型MOSトランジスタ(第1のトランジスタ)
NM3 N型MOSトランジスタ(第2のトランジスタ)
COMP1 第1の比較器
COMP2 第2の比較器
COMP3 第3の比較器
COMP4 第4の比較器
COMP9 低電流検出用比較器

Claims (19)

  1.  並列接続されたLED素子で構成された方向指示灯を制御する方向指示灯制御装置であって、
     所定の周期のパルス信号を生成するパルス信号生成部と、
     電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有し、当該他端は外部の方向指示スイッチの一端に接続され、当該方向指示スイッチの他端は前記方向指示灯に接続される、電流制御素子と、
     前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させるリーク検出部と、を備える
     ことを特徴とする方向指示灯制御装置。
  2.  前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上である
     ことを特徴とする請求項1に記載の方向指示灯制御装置。
  3.  前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短い
     ことを特徴とする請求項1または請求項2に記載の方向指示灯制御装置。
  4.  パルス信号生成部は、
     前記所定の周期の内部発振パルス信号を生成し、当該内部発振パルス信号をバッファして発振パルス信号を出力する発振器と、
     前記発振パルス信号をバッファして前記パルス信号として出力するバッファと、を有し、
     前記リーク検出部は、
     前記駆動電流が前記リーク検出電流値以下である場合に低電流検出信号を出力する低電流検出用比較器と、
     前記低電流検出信号が前記リーク検出期間の間出力された場合にリーク検出信号を出力し、前記内部発振パルス信号のパルス波が発生するタイミングでリセットされるリーク検出信号出力部と、を有し、
     前記発振器は、前記リーク検出信号出力部から前記リーク検出信号が出力されている間、前記発振パルス信号の出力を停止する
     ことを特徴とする請求項1から請求項3の何れかに記載の方向指示灯制御装置。
  5.  前記発振器は、
     前記発振パルス信号を出力する発振パルス信号出力端子と、
     前記リーク検出信号出力部から前記リーク検出信号が出力されている間、前記発振パルス信号出力端子を前記方向指示スイッチの一端に短絡するスイッチ素子と、を有する
     ことを特徴とする請求項4に記載の方向指示灯制御装置。
  6.  パルス信号生成部は、
     前記所定の周期の内部発振パルス信号を生成し、当該内部発振パルス信号をバッファして発振パルス信号を出力する発振器と、
     前記発振パルス信号をバッファして前記パルス信号として出力するバッファと、を有し、
     前記リーク検出部は、
     前記駆動電流が前記リーク検出電流値以下である場合に低電流検出信号を出力する比較器と、
     前記低電流検出信号が前記リーク検出期間の間出力された場合に前記リーク検出信号を出力し、前記内部発振パルス信号のパルス波が発生するタイミングでリセットされるリーク検出信号出力部と、を有し、
     前記発振器は、前記発振パルス信号のパルス波を出力している間に前記リーク検出信号出力部から前記リーク検出信号が出力された場合、前記発振パルス信号の出力を停止して、一定期間後、前記発振パルス信号の出力を再開する
     ことを特徴とする請求項1から請求項3の何れかに記載の方向指示灯制御装置。
  7.  前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間は、0.25秒から0.5秒であり、
     前記リーク検出期間は、200マイクロ秒以下である
     ことを特徴とする請求項1から請求項6の何れかに記載の方向指示灯制御装置。
  8.  前記駆動電流が電流上限値を超えた場合に、前記パルス信号の振幅を低減させて前記駆動電流を前記電流上限値に制限する電流クランプ部と、
     前記方向指示スイッチの一端の基準電圧が電圧上限値を超えた場合に、前記パルス信号の振幅を低減させて前記基準電圧を前記電圧上限値に制限する電圧クランプ部と、
     前記パルス信号のパルス波に対応した前記駆動電流が前記電流上限値未満の断線検出値以下になった場合、または、前記基準電圧が前記電圧上限値と等しくなった場合に、断線検出信号を出力する断線検出部と、を備え、
     前記電流上限値は、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れ得る前記駆動電流より小さい
     ことを特徴とする請求項1から請求項7の何れかに方向指示灯制御装置。
  9.  前記電流上限値は、前記LED素子の何れかが断線したと仮定した場合に、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れる前記駆動電流より大きい
     ことを特徴とする請求項8に記載の方向指示灯制御装置。
  10.  前記断線検出値は、前記LED素子の何れかが断線したと仮定した場合に、前記基準電圧が前記電圧上限値の時に前記方向指示灯に流れる前記駆動電流より大きい
     ことを特徴とする請求項8または請求項9に記載の方向指示灯制御装置。
  11.  前記パルス信号生成部は、外部のブートストラップ回路から供給された内部電源電圧と前記基準電圧との電位差を電源として動作し、
     前記ブートストラップ回路は、前記方向指示スイッチがオンの時に前記基準電圧に基づいて前記内部電源電圧を生成する
     ことを特徴とする請求項1から請求項10の何れかに記載の方向指示灯制御装置。
  12.  前記ブートストラップ回路は、
     前記電源電圧が一端に加えられる整流素子と、
     前記整流素子の他端に一端が接続され、前記方向指示スイッチの一端に他端が接続された容量素子と、を有し、
     前記容量素子の一端の電圧が前記内部電源電圧であり、前記容量素子の他端の電圧が前記基準電圧である
     ことを特徴とする請求項11に記載の方向指示灯制御装置。
  13.  前記電流制御素子は、前記電源電圧が供給されたドレインと、前記パルス信号が供給されたゲートと、前記方向指示スイッチに接続されたソースと、を有するN型MOSトランジスタで構成されている
     ことを特徴とする請求項11または請求項12に記載の方向指示灯制御装置。
  14.  所定の周期のパルス信号を生成するパルス信号生成部と、
     電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有する電流制御素子と、
     前記電流制御素子の他端に一端が接続された方向指示スイッチと、
     並列接続されたLED素子で構成され、前記方向指示スイッチの他端に一端が接続され、他端が接地された方向指示灯と、
     前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させるリーク検出部と、を備える
     ことを特徴とする方向指示装置。
  15.  前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上である
     ことを特徴とする請求項14に記載の方向指示装置。
  16.  前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短い
     ことを特徴とする請求項14または請求項15に記載の方向指示装置。
  17.  所定の周期のパルス信号を生成するパルス信号生成部と、電源電圧が供給される一端と、前記パルス信号が供給される制御端子と、前記パルス信号の振幅に応じた大きさの駆動電流を出力する他端と、を有する電流制御素子と、前記電流制御素子の他端に一端が接続された方向指示スイッチと、並列接続されたLED素子で構成され、前記方向指示スイッチの他端に一端が接続され、他端が接地された方向指示灯と、を備える方向指示装置の制御方法であって、
     前記パルス信号のパルス波に対応した前記駆動電流が、リーク検出期間の間、リーク検出電流値以下である場合に、前記パルス信号生成部に前記パルス信号の振幅を低下させる
     ことを特徴とする方向指示装置の制御方法。
  18.  前記リーク検出電流値は、前記方向指示スイッチがオンの時の前記パルス信号のパルス波に対応した前記駆動電流より小さく、前記方向指示スイッチがオフの時に流れ得る当該方向指示スイッチのリーク電流以上である
     ことを特徴とする請求項17に記載の方向指示装置の制御方法。
  19.  前記リーク検出期間は、前記方向指示スイッチがオンの時に前記パルス信号のパルス波が出力されている時間より短い
     ことを特徴とする請求項17または請求項18に記載の方向指示装置の制御方法。
PCT/JP2011/075093 2011-10-31 2011-10-31 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法 WO2013065106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180029017.4A CN104040889A (zh) 2011-10-31 2011-10-31 方向指示灯控制装置、方向指示装置及方向指示装置的控制方法
US13/811,869 US8773028B2 (en) 2011-10-31 2011-10-31 Direction indication lamp control device, direction indication device, and method of controlling direction indication device
EP11864606.6A EP2775617A4 (en) 2011-10-31 2011-10-31 INDICATOR CONTROL DEVICE, INDICATOR DEVICE AND METHOD OF CONTROLLING THE DEVICE
PCT/JP2011/075093 WO2013065106A1 (ja) 2011-10-31 2011-10-31 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法
JP2012542712A JP5341262B1 (ja) 2011-10-31 2011-10-31 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075093 WO2013065106A1 (ja) 2011-10-31 2011-10-31 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法

Publications (1)

Publication Number Publication Date
WO2013065106A1 true WO2013065106A1 (ja) 2013-05-10

Family

ID=48191502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075093 WO2013065106A1 (ja) 2011-10-31 2011-10-31 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法

Country Status (5)

Country Link
US (1) US8773028B2 (ja)
EP (1) EP2775617A4 (ja)
JP (1) JP5341262B1 (ja)
CN (1) CN104040889A (ja)
WO (1) WO2013065106A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208787A1 (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
JP2017214018A (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
JP2017214017A (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
WO2020121864A1 (ja) * 2018-12-14 2020-06-18 ローム株式会社 ランプ制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9216686B2 (en) * 2011-03-31 2015-12-22 Honda Motor Co., Ltd. Vehicle lighting control system
EP2881286B1 (en) * 2012-08-06 2018-05-23 Shindengen Electric Manufacturing Co., Ltd. Direction-indication device
US8963706B2 (en) * 2012-08-06 2015-02-24 Shindengen Electric Manufacturing Co., Ltd. Direction indicating apparatus
JP6566511B2 (ja) * 2015-04-07 2019-08-28 株式会社小糸製作所 点灯回路
CN106982490B (zh) * 2017-03-30 2018-11-27 绍兴市强明电器制造有限公司 一种电子节能灯用集成控制电路
DE102019208464A1 (de) * 2019-06-11 2020-12-17 Robert Bosch Gmbh Signalpegelanzeige für ein Audiogerät und Audiogerät

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490831A (en) 1987-09-30 1989-04-07 Shindengen Electric Mfg Electronic direction indicator
JP2005343409A (ja) * 2004-06-07 2005-12-15 Mitsubishi Motors Corp 車両の灯具構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605090B2 (ja) * 1977-12-01 1985-02-08 株式会社デンソー 車両用点滅装置
DE2826795A1 (de) * 1978-06-19 1980-02-07 Bosch Gmbh Robert Ueberlast-schutzschaltung fuer eine signalsteuereinrichtung, insbesondere zum ansteuern von fahrzeug-blinkleuchten
DE3118240C2 (de) * 1981-05-08 1984-08-02 Telefunken electronic GmbH, 7100 Heilbronn Blinkgeber
JP2004155392A (ja) * 2002-11-08 2004-06-03 Anden 車両用方向指示装置
JP3979270B2 (ja) * 2002-11-15 2007-09-19 アンデン株式会社 車両用方向指示装置およびそれに用いられるフラッシャ回路
US7123136B2 (en) * 2003-10-06 2006-10-17 Anden Co., Ltd. Indicator system having multiple LEDs
EP1544042A1 (en) * 2003-12-19 2005-06-22 Nissan Technical Centre Europe Ltd Control circuit for controlling the supply of power to hazard warning lamps
JP4459147B2 (ja) * 2005-09-30 2010-04-28 株式会社ミツバ 車両用灯体の故障検出装置及び灯体ユニット
JP5405202B2 (ja) * 2009-06-17 2014-02-05 新電元工業株式会社 ランプ駆動装置およびランプの断線検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490831A (en) 1987-09-30 1989-04-07 Shindengen Electric Mfg Electronic direction indicator
JP2005343409A (ja) * 2004-06-07 2005-12-15 Mitsubishi Motors Corp 車両の灯具構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775617A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208787A1 (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
JP2017214018A (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
JP2017214017A (ja) * 2016-06-01 2017-12-07 株式会社ミツバ 灯体制御装置及び灯体点灯システム
CN109070792A (zh) * 2016-06-01 2018-12-21 株式会社美姿把 灯具控制装置及灯具点亮系统
CN109070792B (zh) * 2016-06-01 2021-11-16 株式会社美姿把 灯具控制装置及灯具点亮系统
WO2020121864A1 (ja) * 2018-12-14 2020-06-18 ローム株式会社 ランプ制御装置
CN113226904A (zh) * 2018-12-14 2021-08-06 罗姆股份有限公司 灯控制装置
JPWO2020121864A1 (ja) * 2018-12-14 2021-11-04 ローム株式会社 ランプ制御装置
JP7291725B2 (ja) 2018-12-14 2023-06-15 ローム株式会社 ランプ制御装置
US11919441B2 (en) 2018-12-14 2024-03-05 Rohm Co., Ltd. Lamp control device

Also Published As

Publication number Publication date
JP5341262B1 (ja) 2013-11-13
CN104040889A (zh) 2014-09-10
JPWO2013065106A1 (ja) 2015-04-02
US8773028B2 (en) 2014-07-08
EP2775617A4 (en) 2015-08-12
US20130147377A1 (en) 2013-06-13
EP2775617A1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2013065106A1 (ja) 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法
JP5426057B1 (ja) 方向指示装置
JP2010170704A (ja) 車両用灯具の点灯制御装置
JP5502238B1 (ja) 方向指示装置
JP5341263B1 (ja) 方向指示灯制御装置、方向指示装置および方向指示装置の制御方法
JP5295435B1 (ja) 方向指示灯制御装置、方向指示装置および方向指示装置の断線検出方法
US10624164B2 (en) Electronic ballast-based device for controlling electronic control circuit and lighting lamp
JP6291720B2 (ja) Led異常検出装置
JP2016100884A (ja) ドライバ回路及びドライバ回路の制御方法
JP6513825B2 (ja) Led用点灯装置、およびled用点灯装置の制御方法
JP6718229B2 (ja) 点灯装置、車両用灯具
JP2016103368A (ja) 点灯回路、車両用灯具
JP2016141340A (ja) 車両用方向指示装置
JP2015080999A (ja) 車両用灯具
JP2020100180A (ja) 光源の点灯制御装置、車両用灯具
JP2002008889A (ja) 放電ランプ点灯装置
TW201515506A (zh) 發光控制電路
JP2008218314A (ja) 保安球点灯装置
JP2009130609A (ja) リモコン及びトイレ機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012542712

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011864606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011864606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13811869

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE