WO2013062032A1 - Poudre de matière d'électrode positive pour batteries secondaires au ion-lithium - Google Patents

Poudre de matière d'électrode positive pour batteries secondaires au ion-lithium Download PDF

Info

Publication number
WO2013062032A1
WO2013062032A1 PCT/JP2012/077557 JP2012077557W WO2013062032A1 WO 2013062032 A1 WO2013062032 A1 WO 2013062032A1 JP 2012077557 W JP2012077557 W JP 2012077557W WO 2013062032 A1 WO2013062032 A1 WO 2013062032A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
material powder
electrode material
ion secondary
Prior art date
Application number
PCT/JP2012/077557
Other languages
English (en)
Japanese (ja)
Inventor
知浩 永金
洋平 細田
結城 健
坂本 明彦
辰巳砂 昌弘
晃敏 林
敦 作田
Original Assignee
日本電気硝子株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 公立大学法人大阪府立大学 filed Critical 日本電気硝子株式会社
Publication of WO2013062032A1 publication Critical patent/WO2013062032A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium ion secondary batteries have established themselves as high-capacity and lightweight power supplies that are indispensable for portable electronic terminals and electric vehicles.
  • inorganic metal oxides such as lithium cobaltate (LiCoO 2 ) have been used for the positive electrode material powder of the lithium ion secondary battery.
  • LiCoO 2 lithium cobaltate
  • the first Li x M 1-y M ' y (XO z) primary particle diameter D 1 of the positive electrode material powder containing n crystals below 1.8 .mu.m the specific surface area of the positive electrode material powder Since it becomes large, it is possible to increase the number of sites that release and occlude lithium ions. Furthermore, the ratio D 2 / D 1 of the secondary particle diameter D 2 to the primary particle diameter D 1 by regulating the 5 below, in the case of preparing a positive electrode mix powder is mixed with the positive electrode material powder and solid electrolyte powder The solid electrolyte powder can be uniformly dispersed and adhered to the surface of the positive electrode material powder. Thereby, since the ion conductivity in the all-solid-state lithium ion secondary battery can be significantly improved (increase in internal resistance can be suppressed), it is possible to improve the discharge capacity.
  • the positive electrode material particles of the present invention are particularly effective when used in combination with a solid electrolyte.
  • M is preferably Fe or Mn or a mixture thereof.
  • M in the Li x M 1-y M ′ y (XO z ) n crystal is a transition metal in the first row of the periodic table, and is preferably Fe or Mn, particularly Fe, from the viewpoint of raw material costs. It is preferable. M may be a mixture of two or more elements.
  • M ′ is Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg, or Cu, and may be a mixture of these elements.
  • X is S, P, B or Si, particularly preferably P.
  • X is P
  • the ionic conductivity in the positive electrode material powder is increased, the internal resistance of the all-solid lithium ion secondary battery is small, and a good discharge capacity can be achieved.
  • the melting temperature may be appropriately adjusted so that the raw material powder is uniformly melted. Specifically, it is preferably 900 ° C. or higher, particularly 1000 ° C. or higher. Although an upper limit is not specifically limited, Since it will lead to an energy loss when too high, it is preferable that it is 1500 degrees C or less, especially 1400 degrees C or less.
  • the positive electrode material powder has a composition of mol%, Li 2 O 20-50%, Fe 2 O 3 5 ⁇ 40%, is preferably a crystalline or crystallized glass containing P 2 O 5 20 ⁇ 50% .
  • the reason for limiting the composition in this way will be described below.
  • Fe 2 O 3 is also a main component of Li x Fe 1-y M ′ y PO 4 crystal.
  • the content of Fe 2 O 3 is preferably 5 to 40%, 15 to 35%, 25 to 35%, particularly 31.6 to 34%. If the content of Fe 2 O 3 is too small, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate. On the other hand, if the content of Fe 2 O 3 is too large, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate and undesired Fe 2 O 3 crystals are likely to precipitate.
  • Examples of carbon include graphite, acetylene black, and amorphous carbon.
  • amorphous carbon those in which a CO bond peak and a CH bond peak causing a decrease in conductivity of the positive electrode material powder are not substantially detected in the FTIR analysis are preferable.
  • Examples of the organic compound include surfactants, carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids, glucose, and organic binders.
  • nonionics having a polyoxyalkylene chain such as polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, etc., which are particularly excellent in adsorptivity to the surface of inorganic powder. It is preferable that it is an ionic surfactant.
  • the addition amount of the surfactant is preferably 0.01 to 50 parts by weight, 0.1 to 50 parts by weight, 1 to 30 parts by weight, particularly 5 to 20 parts by weight with respect to 100 parts by weight of the positive electrode material powder. . If the addition amount of the surfactant is too small, the formation of the carbon-containing layer tends to be insufficient. On the other hand, when the addition amount of the surfactant is too large, the thickness of the carbon-containing layer is increased, the movement of lithium ions is hindered, and the discharge capacity tends to decrease. In addition, in a lithium ion secondary battery, the potential difference between the positive electrode and the negative electrode is reduced, and a desired electromotive force may not be obtained.
  • a glassy solid electrolyte is obtained by a method in which the raw material is melt-reacted and then rapidly cooled, a method in which the raw material is processed by a mechanical milling method (MM method), or the like. Further, a crystallized solid electrolyte is obtained by heat treatment. From the viewpoint of ion conductivity, a crystallized solid electrolyte is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention porte sur une poudre de matière d'électrode positive pour batteries secondaires au ion-lithium, qui contient un cristal représenté par la formule générale : LixM1-yM'y(XOz)n (x, y, z et n satisfaisant, respectivement, 0 < x ≤ 2, 0 ≤ y < 1, z = 3 ou 4, 1 ≤ n ≤ 1,5; M représentant au moins un élément de métal de transition de la première rangée du tableau périodique; M' représentant au moins un élément choisi parmi Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg et Cu; et X représentant S, P, B ou Si). La poudre de matière d'électrode positive pour batteries secondaires au ion-lithium est caractérisée en ce que le diamètre de particule primaire (D1) est de 1,8 μm ou moins et le rapport du diamètre de particule secondaire (D2) au diamètre de particule primaire (D1), à savoir D2/D1, est de 5 ou moins.
PCT/JP2012/077557 2011-10-28 2012-10-25 Poudre de matière d'électrode positive pour batteries secondaires au ion-lithium WO2013062032A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-237115 2011-10-28
JP2011237115A JP2013097892A (ja) 2011-10-28 2011-10-28 リチウムイオン二次電池正極材料粉末

Publications (1)

Publication Number Publication Date
WO2013062032A1 true WO2013062032A1 (fr) 2013-05-02

Family

ID=48167858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077557 WO2013062032A1 (fr) 2011-10-28 2012-10-25 Poudre de matière d'électrode positive pour batteries secondaires au ion-lithium

Country Status (2)

Country Link
JP (1) JP2013097892A (fr)
WO (1) WO2013062032A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074978A (zh) * 2018-09-27 2020-12-11 三井金属矿业株式会社 活性物质、使用了该活性物质的正极合剂和全固体电池
EP4160736A4 (fr) * 2020-05-26 2023-07-26 Nissan Motor Co., Ltd. Électrode positive de batterie secondaire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274192B2 (ja) * 2015-11-30 2018-02-07 トヨタ自動車株式会社 正極活物質、全固体電池及び全固体電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047412A (ja) * 2006-08-15 2008-02-28 Nagaoka Univ Of Technology リチウム二次電池正極材料用前駆体ガラス及び正極材料、並びにそれらの製造方法
JP2009140910A (ja) * 2007-11-12 2009-06-25 Kyushu Univ 全固体電池
JP2010211990A (ja) * 2009-03-09 2010-09-24 Toyota Motor Corp リチウムイオン二次電池の充放電制御方法、二次電池システム、及びハイブリッド自動車
JP2011113783A (ja) * 2009-11-26 2011-06-09 Sony Corp 非水電解質電池用正極活物質、非水電解質電池、高出力電子機器および自動車
WO2011129224A1 (fr) * 2010-04-13 2011-10-20 日本電気硝子株式会社 Matière pour électrode positive de batterie secondaire au lithium-ion et procédé de fabrication associé

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047412A (ja) * 2006-08-15 2008-02-28 Nagaoka Univ Of Technology リチウム二次電池正極材料用前駆体ガラス及び正極材料、並びにそれらの製造方法
JP2009140910A (ja) * 2007-11-12 2009-06-25 Kyushu Univ 全固体電池
JP2010211990A (ja) * 2009-03-09 2010-09-24 Toyota Motor Corp リチウムイオン二次電池の充放電制御方法、二次電池システム、及びハイブリッド自動車
JP2011113783A (ja) * 2009-11-26 2011-06-09 Sony Corp 非水電解質電池用正極活物質、非水電解質電池、高出力電子機器および自動車
WO2011129224A1 (fr) * 2010-04-13 2011-10-20 日本電気硝子株式会社 Matière pour électrode positive de batterie secondaire au lithium-ion et procédé de fabrication associé

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074978A (zh) * 2018-09-27 2020-12-11 三井金属矿业株式会社 活性物质、使用了该活性物质的正极合剂和全固体电池
EP4160736A4 (fr) * 2020-05-26 2023-07-26 Nissan Motor Co., Ltd. Électrode positive de batterie secondaire

Also Published As

Publication number Publication date
JP2013097892A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5720589B2 (ja) 全固体電池
CN105938894B (zh) 电极体的制造方法
JP5331419B2 (ja) リチウムイオン二次電池用正極材料およびその製造方法
JP5842918B2 (ja) 固体電解質微粒子の製造方法
JP7394757B2 (ja) 非晶質固体電解質およびそれを用いた全固体二次電池
CN115832288A (zh) 钠离子二次电池用正极活性物质
KR102444648B1 (ko) 나트륨 이온 이차전지용 정극 활물질 및 그 제조방법
CN111868994A (zh) 对于阴极材料具有提高稳定性的固态电池电解质
JP2011238594A (ja) リチウムイオン二次電池正極材料およびその製造方法
JP6124062B2 (ja) 蓄電デバイス用正極材料、およびその製造方法
CN110556523B (zh) 正极合剂、全固体电池、正极合剂的制造方法和全固体电池的制造方法
TWI699926B (zh) 鹼離子二次電池用正極活性物質
WO2013062032A1 (fr) Poudre de matière d&#39;électrode positive pour batteries secondaires au ion-lithium
JP2017157473A (ja) リチウムイオン二次電池
JP7448875B2 (ja) ナトリウムイオン二次電池用部材及びナトリウムイオン二次電池
JP2019040752A (ja) 全固体型二次電池
WO2013035831A1 (fr) Procédé de production de matière d&#39;électrode positive de batterie secondaire au lithium-ion
JP2019179731A (ja) 全固体電池負極及び全固体型リチウム二次電池
WO2012081522A1 (fr) Verre précurseur pour matière d&#39;électrode positive de batterie secondaire au lithium-ion et verre cristallisé pour matière d&#39;électrode positive de batterie secondaire au lithium-ion
JP6183590B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
JP5892364B2 (ja) 酸化物材料の製造方法
JP5652132B2 (ja) 無機固体電解質及びリチウム二次電池
WO2024128295A1 (fr) Procédé de production de matériau d&#39;électrode positive pour dispositifs de stockage d&#39;énergie
WO2016136555A1 (fr) Matériau actif d&#39;électrode positive pour batteries rechargeables alcalin-ion
WO2020235291A1 (fr) Matériau composite d&#39;électrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844412

Country of ref document: EP

Kind code of ref document: A1