WO2013062032A1 - Positive electrode material powder for lithium ion secondary batteries - Google Patents

Positive electrode material powder for lithium ion secondary batteries Download PDF

Info

Publication number
WO2013062032A1
WO2013062032A1 PCT/JP2012/077557 JP2012077557W WO2013062032A1 WO 2013062032 A1 WO2013062032 A1 WO 2013062032A1 JP 2012077557 W JP2012077557 W JP 2012077557W WO 2013062032 A1 WO2013062032 A1 WO 2013062032A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
material powder
electrode material
ion secondary
Prior art date
Application number
PCT/JP2012/077557
Other languages
French (fr)
Japanese (ja)
Inventor
知浩 永金
洋平 細田
結城 健
坂本 明彦
辰巳砂 昌弘
晃敏 林
敦 作田
Original Assignee
日本電気硝子株式会社
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 公立大学法人大阪府立大学 filed Critical 日本電気硝子株式会社
Publication of WO2013062032A1 publication Critical patent/WO2013062032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Lithium ion secondary batteries have established themselves as high-capacity and lightweight power supplies that are indispensable for portable electronic terminals and electric vehicles.
  • inorganic metal oxides such as lithium cobaltate (LiCoO 2 ) have been used for the positive electrode material powder of the lithium ion secondary battery.
  • LiCoO 2 lithium cobaltate
  • the first Li x M 1-y M ' y (XO z) primary particle diameter D 1 of the positive electrode material powder containing n crystals below 1.8 .mu.m the specific surface area of the positive electrode material powder Since it becomes large, it is possible to increase the number of sites that release and occlude lithium ions. Furthermore, the ratio D 2 / D 1 of the secondary particle diameter D 2 to the primary particle diameter D 1 by regulating the 5 below, in the case of preparing a positive electrode mix powder is mixed with the positive electrode material powder and solid electrolyte powder The solid electrolyte powder can be uniformly dispersed and adhered to the surface of the positive electrode material powder. Thereby, since the ion conductivity in the all-solid-state lithium ion secondary battery can be significantly improved (increase in internal resistance can be suppressed), it is possible to improve the discharge capacity.
  • the positive electrode material particles of the present invention are particularly effective when used in combination with a solid electrolyte.
  • M is preferably Fe or Mn or a mixture thereof.
  • M in the Li x M 1-y M ′ y (XO z ) n crystal is a transition metal in the first row of the periodic table, and is preferably Fe or Mn, particularly Fe, from the viewpoint of raw material costs. It is preferable. M may be a mixture of two or more elements.
  • M ′ is Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg, or Cu, and may be a mixture of these elements.
  • X is S, P, B or Si, particularly preferably P.
  • X is P
  • the ionic conductivity in the positive electrode material powder is increased, the internal resistance of the all-solid lithium ion secondary battery is small, and a good discharge capacity can be achieved.
  • the melting temperature may be appropriately adjusted so that the raw material powder is uniformly melted. Specifically, it is preferably 900 ° C. or higher, particularly 1000 ° C. or higher. Although an upper limit is not specifically limited, Since it will lead to an energy loss when too high, it is preferable that it is 1500 degrees C or less, especially 1400 degrees C or less.
  • the positive electrode material powder has a composition of mol%, Li 2 O 20-50%, Fe 2 O 3 5 ⁇ 40%, is preferably a crystalline or crystallized glass containing P 2 O 5 20 ⁇ 50% .
  • the reason for limiting the composition in this way will be described below.
  • Fe 2 O 3 is also a main component of Li x Fe 1-y M ′ y PO 4 crystal.
  • the content of Fe 2 O 3 is preferably 5 to 40%, 15 to 35%, 25 to 35%, particularly 31.6 to 34%. If the content of Fe 2 O 3 is too small, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate. On the other hand, if the content of Fe 2 O 3 is too large, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate and undesired Fe 2 O 3 crystals are likely to precipitate.
  • Examples of carbon include graphite, acetylene black, and amorphous carbon.
  • amorphous carbon those in which a CO bond peak and a CH bond peak causing a decrease in conductivity of the positive electrode material powder are not substantially detected in the FTIR analysis are preferable.
  • Examples of the organic compound include surfactants, carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids, glucose, and organic binders.
  • nonionics having a polyoxyalkylene chain such as polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, etc., which are particularly excellent in adsorptivity to the surface of inorganic powder. It is preferable that it is an ionic surfactant.
  • the addition amount of the surfactant is preferably 0.01 to 50 parts by weight, 0.1 to 50 parts by weight, 1 to 30 parts by weight, particularly 5 to 20 parts by weight with respect to 100 parts by weight of the positive electrode material powder. . If the addition amount of the surfactant is too small, the formation of the carbon-containing layer tends to be insufficient. On the other hand, when the addition amount of the surfactant is too large, the thickness of the carbon-containing layer is increased, the movement of lithium ions is hindered, and the discharge capacity tends to decrease. In addition, in a lithium ion secondary battery, the potential difference between the positive electrode and the negative electrode is reduced, and a desired electromotive force may not be obtained.
  • a glassy solid electrolyte is obtained by a method in which the raw material is melt-reacted and then rapidly cooled, a method in which the raw material is processed by a mechanical milling method (MM method), or the like. Further, a crystallized solid electrolyte is obtained by heat treatment. From the viewpoint of ion conductivity, a crystallized solid electrolyte is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A positive electrode material powder for lithium ion secondary batteries, which contains a crystal represented by general formula: LixM1-yM'y(XOz)n (wherein x, y, z and n respectively satisfy 0 < x ≤ 2, 0 ≤ y < 1, z = 3 or 4, 1 ≤ n ≤ 1.5; M represents at least one transition metal element of the first row of the periodic table; M' represents at least one element selected from among Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg and Cu; and X represents S, P, B or Si). The positive electrode material powder for lithium ion secondary batteries is characterized in that the primary particle diameter (D1) is 1.8 μm or less and the ratio of the secondary particle diameter (D2) to the primary particle diameter (D1), namely D2/D1 is 5 or less.

Description

リチウムイオン二次電池正極材料粉末Lithium ion secondary battery positive electrode material powder
 本発明は、携帯型電子機器や電気自動車等に用いられるリチウムイオン二次電池正極材料粉末(以下、単に「正極材料粉末」ともいう)に関する。特に、無機固体電解質などの不燃性の電解質を用いたリチウムイオン二次電池に好適なリチウムイオン二次電池正極材料粉末に関する。 The present invention relates to a lithium ion secondary battery positive electrode material powder (hereinafter, also simply referred to as “positive electrode material powder”) used for portable electronic devices, electric vehicles and the like. In particular, the present invention relates to a lithium ion secondary battery positive electrode material powder suitable for a lithium ion secondary battery using a nonflammable electrolyte such as an inorganic solid electrolyte.
 リチウムイオン二次電池は、携帯電子端末や電気自動車等に不可欠な、高容量で軽量な電源としての地位を確立している。リチウムイオン二次電池の正極材料粉末には、従来コバルト酸リチウム(LiCoO)等の無機金属酸化物が用いられてきた。しかし、近年の電子機器の高性能化による消費電力の増大に伴い、リチウムイオン二次電池の更なる高容量化が要求されている。また、環境保全問題やエネルギー問題の観点から、コバルト等の環境負荷の大きい材料から、より環境調和型の材料への転換が求められている。さらに、コバルト資源の枯渇問題が注目されており、価格も高騰する傾向にあることから、より安価な正極材料粉末への転換が望まれている。 Lithium ion secondary batteries have established themselves as high-capacity and lightweight power supplies that are indispensable for portable electronic terminals and electric vehicles. Conventionally, inorganic metal oxides such as lithium cobaltate (LiCoO 2 ) have been used for the positive electrode material powder of the lithium ion secondary battery. However, with the recent increase in power consumption due to higher performance of electronic devices, further increase in capacity of lithium ion secondary batteries is required. In addition, from the viewpoint of environmental conservation problems and energy problems, there is a demand for switching from materials with a large environmental load, such as cobalt, to more environmentally friendly materials. Furthermore, since the problem of depletion of cobalt resources has attracted attention and the price tends to rise, it is desired to switch to a cheaper cathode material powder.
 近年、コストおよび資源等の面で有利なことから、遷移金属を含有するリチウム化合物の中で一般式:Li1-yM’(XO(x、y、z、nはそれぞれ0<x≦2、0≦y<1、z=3または4、1≦n≦1.5であり、Mは周期律表の第一行の遷移金属、M’はNb、Ta、Ge、Sn、Al、Ga、Zn、MgまたはCu、XはS、P、BまたはSiである)で表されるポリアニオン系の結晶が注目されており、種々の研究および開発が進められている(例えば、特許文献1参照)。Li1-yM’(XOはLiCoOに比べて高温安定性に優れ、高温での安全な動作が期待される。また、リン酸イオンなどのポリアニオンを骨格とする構造であるため、充放電反応による構造劣化への耐性に優れるという特徴を有する。 In recent years, since it is advantageous in terms of cost and resources, among the lithium compounds containing transition metals, the general formula: Li x M 1-y M ′ y (XO z ) n (x, y, z, n is 0 <x ≦ 2, 0 ≦ y <1, z = 3 or 4, 1 ≦ n ≦ 1.5, M is a transition metal in the first row of the periodic table, and M ′ is Nb, Ta, Ge , Sn, Al, Ga, Zn, Mg, or Cu, and X is S, P, B, or Si) are attracting attention, and various researches and developments are underway ( For example, see Patent Document 1). Li x M 1-y M ′ y (XO z ) n is superior in stability to LiCoO 2 and is expected to operate safely at high temperatures. Moreover, since it is a structure having a polyanion such as a phosphate ion as a skeleton, it has a feature of being excellent in resistance to structural deterioration due to a charge / discharge reaction.
 ところで、リチウムイオン二次電池の電解質には可燃性の有機溶媒が使用されており、発火等の危険性が伴う。この問題を抜本的な解決するため、近年、可燃性の有機溶媒電解質に代えて、不燃性の電解質が提案されている。 By the way, a flammable organic solvent is used for the electrolyte of the lithium ion secondary battery, and there is a risk of ignition. In order to fundamentally solve this problem, incombustible electrolytes have been proposed in place of combustible organic solvent electrolytes in recent years.
 不燃性の電解質の代表例としては、無機物であるリチウムイオン伝導性固体電解質を挙げることができる。無機の固体電解質を用いると、安全性を高めることができるのみならず、電池を薄膜化して電子回路と集積化することが可能となる。さらに、無機固体電解質はイオン選択性を有することから、サイクル寿命や保存寿命等も改善することができ、電池の信頼性も向上させることができる。これまでに、正極材料粉末としてLiCoOを用いた全固体リチウムイオン二次電池では、良好な電池特性が得られることが報告されている(例えば、非特許文献1参照)。 A typical example of a nonflammable electrolyte is a lithium ion conductive solid electrolyte which is an inorganic substance. When an inorganic solid electrolyte is used, not only can safety be improved, but the battery can be thinned and integrated with an electronic circuit. Furthermore, since the inorganic solid electrolyte has ion selectivity, the cycle life and the storage life can be improved, and the reliability of the battery can be improved. Until now, it has been reported that good battery characteristics can be obtained in an all-solid-state lithium ion secondary battery using LiCoO 2 as a positive electrode material powder (see, for example, Non-Patent Document 1).
 なお、電解質のイオン選択性と電池特性の関係は以下のように説明される。 Incidentally, the relationship between the ion selectivity of the electrolyte and the battery characteristics is explained as follows.
 液体電解質を使用したリチウムイオン二次電池において、充放電サイクルに伴う容量低下や自己放電の原因の多くは、電池内で生じる副反応に起因する。具体的には、液体電解質中では、リチウムイオン二次電池の電極反応に寄与するリチウムイオン以外にも、陰イオンあるいは溶媒分子、さらには不純物等も移動を行う。これらの物質が、高い酸化力を有する正極、あるいは、高い還元力を有する負極表面に拡散すると、酸化または還元される。このような副反応が電池特性の低下を引き起こす場合がある。 In lithium ion secondary batteries using liquid electrolytes, many of the causes of capacity reduction and self-discharge associated with charge / discharge cycles are due to side reactions occurring in the battery. Specifically, in the liquid electrolyte, in addition to the lithium ions that contribute to the electrode reaction of the lithium ion secondary battery, anions, solvent molecules, impurities, and the like also move. When these substances diffuse to the surface of the positive electrode having a high oxidizing power or the negative electrode having a high reducing power, they are oxidized or reduced. Such a side reaction may cause deterioration of battery characteristics.
 液体電解質はイオン選択性がないため、液体電解質を使用した電池では、上記の副反応が生じやすい。それに対して、無機固体電解質はイオン選択性を有する。すなわち、リチウムイオン伝導性の無機固体電解質中を移動するものは、基本的にリチウムイオンのみである。従って、液体電解質中のように、リチウムイオン以外の物質が電極表面で副反応を起こすことがほとんどない。そのため、無機固体電解質を用いたリチウムイオン二次電池(全固体リチウムイオン二次電池)は、長寿命、かつ、低自己放電という特徴を有する。 Since the liquid electrolyte has no ion selectivity, the above side reaction is likely to occur in a battery using the liquid electrolyte. On the other hand, the inorganic solid electrolyte has ion selectivity. That is, only lithium ions move through the lithium ion conductive inorganic solid electrolyte. Therefore, unlike the liquid electrolyte, a substance other than lithium ions hardly causes a side reaction on the electrode surface. Therefore, a lithium ion secondary battery (all solid lithium ion secondary battery) using an inorganic solid electrolyte has characteristics of long life and low self-discharge.
特開平9-134725号公報JP-A-9-134725
 Li1-yM’(XOを用いた全固体リチウムイオン二次電池は、既述の通り、今後のリチウムイオン二次電池の需要拡大に対して、環境面および資源コストの点で優れているものの、Li1-yM’(XOは、固体電解質との組み合わせにおいて、エネルギー密度や出力密度が、正極材料粉末本来の性能(理論値)に対して著しく低いという問題がある。このため、Li1-yM’(XOを用いた、良好な出力特性を有する全固体リチウムイオン二次電池は、これまでに得られていないのが現状である。 As described above, the all-solid-state lithium ion secondary battery using Li x M 1-y M ′ y (XO z ) n is the environmental and resource cost in response to future demand for lithium ion secondary batteries. Li x M 1-y M ′ y (XO z ) n is superior to the original performance (theoretical value) in terms of energy density and power density when combined with a solid electrolyte. There is a problem that it is extremely low. Therefore, at present, no all-solid-state lithium ion secondary battery using Li x M 1-y M ′ y (XO z ) n and having good output characteristics has been obtained so far.
 上記課題に鑑み、本発明は、環境面および資源コストの点で優れており、かつ、固体電解質との組み合わせにおいても、良好な出力特性を達成することが可能なリチウムイオン二次電池正極材料粉末を提供することを目的とする。 In view of the above problems, the present invention is superior in terms of environmental aspects and resource costs, and is capable of achieving good output characteristics even in combination with a solid electrolyte. The purpose is to provide.
 本発明は、一般式:Li1-yM’(XO(x、y、z、nはそれぞれ0<x≦2、0≦y<1、z=3または4、1≦n≦1.5であり、Mは周期律表の第一行の遷移金属の少なくとも1種、M’はNb、Ta、Ge、Sn、Al、Ga、Zn、MgまたはCuの少なくとも1種、XはS、P、BまたはSiである)で表される結晶を含有するリチウムイオン二次電池正極材料粉末であって、一次粒子径Dが1.8μm以下であり、かつ、一次粒子径Dと二次粒子径Dの比D/Dが5以下であることを特徴とするリチウムイオン二次電池正極材料粉末に関する。 The present invention has the general formula: Li x M 1-y M ′ y (XO z ) n (x, y, z, n are 0 <x ≦ 2, 0 ≦ y <1, z = 3 or 4, 1 ≦ n ≦ 1.5, M is at least one transition metal in the first row of the periodic table, M ′ is at least one of Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg, or Cu , X is S, a lithium ion secondary battery positive electrode material powder containing crystal represented by P, a B or Si), a primary particle diameter D 1 is less than or equal to 1.8 .mu.m, and the primary particle The present invention relates to a positive electrode material powder for a lithium ion secondary battery, wherein the ratio D 2 / D 1 of the diameter D 1 and the secondary particle diameter D 2 is 5 or less.
 一般に正極材料粉末は、その一次粒子径が小さいほど電池反応に有利なことが知られている。しかしながら、本発明者らの調査によると、Li1-yM’(XO系正極材料粉末においては、単に一次粒子を細かくしただけでは一次粒子の集合体が形成されやすくなり、固体電解質との混合状態が不均質化するため、かえって電池出力特性が低下することが明らかになった。このため、Li1-yM’(XO系正極材料粉末を用いて出力特性に優れた全固体電池を得るためには、一次粒子径Dのみならず、一次粒子径Dに対する二次粒子径Dの比D/Dも制御することが重要な要件となる。 In general, it is known that the positive electrode material powder is more advantageous for battery reaction as its primary particle size is smaller. However, according to the investigation by the present inventors, in the Li x M 1-y M ′ y (XO z ) n- based positive electrode material powder, an aggregate of primary particles tends to be formed simply by making the primary particles fine. It became clear that the battery output characteristics deteriorated because the mixed state with the solid electrolyte became inhomogeneous. For this reason, in order to obtain an all solid state battery having excellent output characteristics using Li x M 1-y M ′ y (XO z ) n- based positive electrode material powder, not only the primary particle diameter D 1 but also the primary particle diameter D ratio D 2 / D 1 of 1 relative to the secondary particle diameter D 2 can also be controlled is an important requirement.
 具体的には、まずLi1-yM’(XO結晶を含有する正極材料粉末の一次粒子径Dを1.8μm以下にすることにより、正極材料粉末の比表面積が大きくなることから、リチウムイオンの放出および吸蔵を行うサイトを多くすることができる。さらに、一次粒子径Dに対する二次粒子径Dの比D/Dを5以下に規制することにより、正極材料粉末と固体電解質粉末と混合して正極合材粉末を作製した際に、正極材料粉末表面に均質に固体電解質粉末を分散、付着させることができる。これにより、全固体リチウムイオン二次電池におけるイオン伝導性を大幅に改善することができる(内部抵抗の上昇を抑制できる)ため、放電容量を向上させることが可能となる。 Specifically, by the first Li x M 1-y M ' y (XO z) primary particle diameter D 1 of the positive electrode material powder containing n crystals below 1.8 .mu.m, the specific surface area of the positive electrode material powder Since it becomes large, it is possible to increase the number of sites that release and occlude lithium ions. Furthermore, the ratio D 2 / D 1 of the secondary particle diameter D 2 to the primary particle diameter D 1 by regulating the 5 below, in the case of preparing a positive electrode mix powder is mixed with the positive electrode material powder and solid electrolyte powder The solid electrolyte powder can be uniformly dispersed and adhered to the surface of the positive electrode material powder. Thereby, since the ion conductivity in the all-solid-state lithium ion secondary battery can be significantly improved (increase in internal resistance can be suppressed), it is possible to improve the discharge capacity.
 なお、液体電解質を使用した場合は、D/Dがある程度大きい場合であっても、二次粒子が有する空隙に液体電解質が侵入して、正極材料粉末との接触面積が十分に確保されるため、イオン伝導性にはあまり影響を与えない。したがって、本発明の正極材料粒子は、固体電解質と組み合わせて使用する場合に、特に有効であると言える。 When a liquid electrolyte is used, even if D 2 / D 1 is large to some extent, the liquid electrolyte penetrates into the voids of the secondary particles, and a sufficient contact area with the positive electrode material powder is ensured. Therefore, the ion conductivity is not significantly affected. Therefore, it can be said that the positive electrode material particles of the present invention are particularly effective when used in combination with a solid electrolyte.
 本発明において、一次粒子径Dは電子顕微鏡の観察画像から算出した値を指す。具体的には、電子顕微鏡画像から20個の正極材料粉末粒子をランダムに選択し、それらの粒子径の平均値から算出したものである。なお、扁平な粒子については、長径と短径の平均値を粒子径とする。一方、二次粒子径Dはレーザー回折散乱法により測定されたD50値(体積基準の平均粒子径)をいう。 In the present invention, the primary particle diameter D 1 refers to the value calculated from the electron microscopic observation image. Specifically, 20 positive electrode material powder particles are randomly selected from an electron microscope image and calculated from an average value of their particle diameters. In addition, about flat particle | grains, let the average value of a long diameter and a short diameter be a particle diameter. On the other hand, the secondary particle diameter D 2 refers measured D 50 value using a laser diffraction scattering method (average particle diameter on a volume basis).
 第二に、本発明のリチウムイオン二次電池正極材料粉末は、MがFeもしくはMnまたはその混合物であることが好ましい。 Second, in the lithium ion secondary battery positive electrode material powder of the present invention, M is preferably Fe or Mn or a mixture thereof.
 当該構成によれば、正極材料粉末を低コストで製造することが可能となる。 According to this configuration, the positive electrode material powder can be manufactured at low cost.
 第三に、本発明のリチウムイオン二次電池正極材料粉末は、XがPであることが好ましい。 Third, in the lithium ion secondary battery positive electrode material powder of the present invention, X is preferably P.
 当該構成によれば、正極材料粉末内のイオン伝導性が高いため、全固体リチウムイオン二次電池の内部抵抗が小さく、良好な放電容量を達成することが可能となる。 According to this configuration, since the ion conductivity in the positive electrode material powder is high, the internal resistance of the all-solid-state lithium ion secondary battery is small, and it is possible to achieve a good discharge capacity.
 第四に、本発明は、前記いずれかのリチウムイオン二次電池正極材料粉末粒子と、固体電解質粉末とを含有することを特徴とするリチウムイオン二次電池正極合材粉末に関する。 Fourthly, the present invention relates to a lithium ion secondary battery positive electrode mixture powder comprising any one of the above lithium ion secondary battery positive electrode material powder particles and a solid electrolyte powder.
 第五に、本発明のリチウムイオン二次電池正極合材粉末は、固体電解質粉末が硫化物系固体電解質粉末からなることが好ましい。 Fifth, in the lithium ion secondary battery positive electrode mixture powder of the present invention, the solid electrolyte powder is preferably composed of a sulfide-based solid electrolyte powder.
 当該構成によれば、固体電解質粉末の電気伝導度が高くなるため、全固体リチウムイオン二次電池の内部抵抗が小さくなり、さらに良好な放電容量を達成することが可能となる。 According to this configuration, since the electric conductivity of the solid electrolyte powder is increased, the internal resistance of the all-solid-state lithium ion secondary battery is reduced, and a better discharge capacity can be achieved.
 第六に、本発明は、前記いずれかのリチウムイオン二次電池正極合材粉末を含有する正極と、固体電解質粉末を含有する電解質層とを備えることを特徴とするリチウムイオン二次電池に関する。 Sixth, the present invention relates to a lithium ion secondary battery comprising: a positive electrode containing any one of the above lithium ion secondary battery positive electrode mixture powder; and an electrolyte layer containing a solid electrolyte powder.
 本発明によれば、環境面および資源コストの点で優れており、かつ、固体電解質との組み合わせにおいても、良好な出力特性を達成することが可能なリチウムイオン二次電池正極材料粉末を提供することが可能となる。 According to the present invention, there is provided a positive electrode material powder for a lithium ion secondary battery that is excellent in terms of environmental aspects and resource costs, and can achieve good output characteristics even in combination with a solid electrolyte. It becomes possible.
実施例1において充放電試験を行った際の放電電位と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the discharge potential at the time of performing a charging / discharging test in Example 1, and discharge capacity. 比較例1において充放電試験を行った際の放電電位と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the discharge potential at the time of performing a charging / discharging test in the comparative example 1, and discharge capacity. 比較例2において充放電試験を行った際の放電電位と放電容量との関係を示すグラフである。It is a graph which shows the relationship between the discharge potential at the time of performing a charging / discharging test in the comparative example 2, and discharge capacity.
 本発明のリチウムイオン二次電池正極材料粉末は一般式:Li1-yM’(XOで表される結晶を含有するリチウムイオン二次電池正極材料粉末であって、一次粒子径Dが1.8μm以下であり、かつ、一次粒子径Dと二次粒子径Dの比D/Dが5以下であることを特徴とする。 The lithium ion secondary battery positive electrode material powder of the present invention is a lithium ion secondary battery positive electrode material powder containing crystals represented by the general formula: Li x M 1-y M ′ y (XO z ) n , The particle diameter D 1 is 1.8 μm or less, and the ratio D 2 / D 1 between the primary particle diameter D 1 and the secondary particle diameter D 2 is 5 or less.
 正極材料粉末の一次粒子径Dは1.8μm以下、1.6μm以下、特に1.4μm以下であることが好ましい。一次粒子径Dが大きすぎると、正極材料粉末の比表面積が小さくなってリチウムイオンが拡散しにくくなるとともに、内部抵抗が大きくなり、放電容量が低下する傾向がある。一方、下限は特に限定されないが、小さすぎると、正極材料粉末粒子同士の凝集力が強くなるため、D/Dが大きくなる傾向がある。その結果、電極の内部抵抗が高くなり放電容量が低下しやすくなる。したがって、正極材料粉末の一次粒子径Dは0.05μm以上、特に0.1μm以上であることが好ましい。 The primary particle diameter D 1 of the positive electrode material powder is 1.8μm or less, 1.6 [mu] m or less, more preferably 1.4μm or less. When the primary particle diameter D 1 is too large, with a lithium ion it is hardly diffused smaller the specific surface area of the positive electrode material powder, the internal resistance increases, the discharge capacity tends to decrease. On the other hand, the lower limit is not particularly limited, but if it is too small, the cohesive force between the positive electrode material powder particles becomes strong, so that D 2 / D 1 tends to increase. As a result, the internal resistance of the electrode increases and the discharge capacity tends to decrease. Therefore, it is preferable primary particle diameter D 1 of the positive electrode material powder is 0.05μm or more, especially 0.1μm or more.
 正極材料粉末の一次粒子径Dと二次粒子径Dの比D/Dは5以下、4以下、特に3以下であることが好ましい。D/Dが大きすぎると、正極材料粉末の隙間に固体電解質粉末が分散、付着しにくくなり、リチウムイオンの拡散パスが寸断されるため、全固体リチウムイオン二次電池の放電容量が低下する傾向がある。 The ratio D 2 / D 1 of the primary particle diameter D 1 of the positive electrode material powder and the secondary particle diameter D 2 is 5 or less, 4 or less, and particularly preferably 3 or less. If D 2 / D 1 is too large, the solid electrolyte powder is difficult to disperse and adhere to the gaps between the positive electrode material powders, and the lithium ion diffusion path is cut off, so the discharge capacity of the all-solid lithium ion secondary battery decreases. Tend to.
 Li1-yM’(XO結晶におけるMは周期律表の第一行の遷移金属であり、原料コストの観点から、FeまたはMnであることが好ましく、特にFeであることが好ましい。Mは2種以上の元素の混合物であっても構わない。 M in the Li x M 1-y M ′ y (XO z ) n crystal is a transition metal in the first row of the periodic table, and is preferably Fe or Mn, particularly Fe, from the viewpoint of raw material costs. It is preferable. M may be a mixture of two or more elements.
 M’はNb、Ta、Ge、Sn、Al、Ga、Zn、MgまたはCuであり、これら元素の混合物であっても構わない。 M ′ is Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg, or Cu, and may be a mixture of these elements.
 XはS、P、BまたはSiであり、特にPであることが好ましい。XがPであることにより、正極材料粉末内のイオン伝導性が高くなり、全固体リチウムイオン二次電池の内部抵抗が小さく、良好な放電容量を達成することが可能となる。 X is S, P, B or Si, particularly preferably P. When X is P, the ionic conductivity in the positive electrode material powder is increased, the internal resistance of the all-solid lithium ion secondary battery is small, and a good discharge capacity can be achieved.
 x、y、z、nはそれぞれ0<x≦2、0≦y<1、z=3または4、1≦n≦1.5である。なおzは、XがBのときは3、XがS、PまたはSiのときは4である。 X, y, z, and n are 0 <x ≦ 2, 0 ≦ y <1, z = 3 or 4, and 1 ≦ n ≦ 1.5, respectively. Z is 3 when X is B, and 4 when X is S, P or Si.
 本発明のリチウムイオン二次電池正極材料粉末の比表面積は5m/g以上、15m/g以上、特に25m/g以上であることが好ましい。正極材料粉末の比表面積が当該範囲を満たすことにより、正極材料粉末と固体電解質粉末との接触面積が大きくなって、リチウムイオンおよび電子の授受が容易となり、放電容量を向上させることができる。一方、上限は特に限定されないが、大きすぎると正極材料粉末表面に水分が吸着しやすくなり、充放電中に電池性能低下の原因になるおそれがある。したがって、正極材料粉末の比表面積は100m/g以下、80m/g以下、特に60m/g以下であることが好ましい。 The specific surface area of the positive electrode material powder of the lithium ion secondary battery of the present invention is preferably 5 m 2 / g or more, 15 m 2 / g or more, particularly preferably 25 m 2 / g or more. When the specific surface area of the positive electrode material powder satisfies the above range, the contact area between the positive electrode material powder and the solid electrolyte powder is increased, lithium ion and electron can be easily transferred, and the discharge capacity can be improved. On the other hand, the upper limit is not particularly limited, but if it is too large, moisture tends to be adsorbed on the surface of the positive electrode material powder, which may cause a decrease in battery performance during charging and discharging. Therefore, the specific surface area of the positive electrode material powder is preferably 100 m 2 / g or less, 80 m 2 / g or less, and particularly preferably 60 m 2 / g or less.
 正極材料粉末中において、Li1-yM’(XO結晶の含有量は20質量%以上、50質量%以上、特に70質量%以上であることが好ましい。Li1-yM’(XO結晶の含有量が少なすぎると、放電容量に劣る傾向がある。なお、上限については特に限定されないが、現実的には99質量%以下、さらには95質量%以下である。 In the positive electrode material powder, the content of Li x M 1-y M ′ y (XO z ) n crystal is preferably 20% by mass or more, 50% by mass or more, and particularly preferably 70% by mass or more. When the content of Li x M 1-y M ' y (XO z) n crystals is too small, there tends to be inferior in discharge capacity. In addition, although it does not specifically limit about an upper limit, In reality, it is 99 mass% or less, Furthermore, it is 95 mass% or less.
 Li1-yM’(XO結晶の結晶子サイズは小さいほど、正極材料粉末の粒子径を小さくすることが可能となり、電気伝導性を向上させることができる。具体的には、結晶子サイズは100nm以下、特に80nm以下であることが好ましい。下限については特に限定されないが、現実的には1nm以上、さらには10nm以上である。なお、結晶子サイズは粉末X線回折の解析結果から、シェラーの式に従って求められる。 As the crystallite size of the Li x M 1-y M ′ y (XO z ) n crystal is smaller, the particle diameter of the positive electrode material powder can be reduced, and the electrical conductivity can be improved. Specifically, the crystallite size is preferably 100 nm or less, particularly preferably 80 nm or less. The lower limit is not particularly limited, but is actually 1 nm or more, and further 10 nm or more. The crystallite size is determined according to Scherrer's formula from the analysis result of powder X-ray diffraction.
 本発明のリチウムイオン二次電池正極材料粉末は、タップ密度が0.3g/ml以上、特に0.5g/ml以上であることが好ましい。これにより、正極材料粉末と固体電解質粉末の接触面積が大きくなり、また正極材料粉末粒子の流動性が高くなるため、正極材料粉末と固体電解質粉末の正極合材粉末にした際に、空隙率を低くすることができる。上限は概ね真比重に相当する値になるが、粉末の粒塊化を考慮すると、現実的には5g/ml以下、特に4g/ml以下である。 The lithium ion secondary battery positive electrode material powder of the present invention preferably has a tap density of 0.3 g / ml or more, particularly 0.5 g / ml or more. As a result, the contact area between the positive electrode material powder and the solid electrolyte powder is increased, and the fluidity of the positive electrode material powder particles is increased. Therefore, when the positive electrode material powder is mixed with the positive electrode material powder and the solid electrolyte powder, the porosity is reduced. Can be lowered. The upper limit is approximately a value corresponding to the true specific gravity, but in consideration of the agglomeration of the powder, it is practically 5 g / ml or less, particularly 4 g / ml or less.
 なお、本発明においてタップ密度は、タッピングストローク:10mm、タッピング回数:250回、タッピング速度:2回/1秒のタッピング条件により測定された値をいう。 In the present invention, the tap density is a value measured under tapping conditions of tapping stroke: 10 mm, tapping frequency: 250 times, tapping speed: 2 times / second.
 Li1-yM’(XO結晶を含む正極材料粉末は、原料粉末を調合し、得られた原料粉末を用いて、固相反応プロセス、水熱合成プロセス、溶融プロセス、ゾル-ゲルプロセス、溶液ミストの火炎中への噴霧等の化学気相合成プロセス、メカノケミカルプロセス等により得られる。特に、溶融プロセスで得られたLi1-yM’(XO結晶を含む正極材料粉末は、高速充放電性能に優れるため、好ましい。 The positive electrode material powder containing Li x M 1-y M ′ y (XO z ) n crystal is prepared by preparing a raw material powder, and using the obtained raw material powder, a solid phase reaction process, a hydrothermal synthesis process, a melting process, It can be obtained by a sol-gel process, a chemical vapor synthesis process such as spraying a solution mist into a flame, a mechanochemical process, or the like. In particular, a positive electrode material powder containing Li x M 1-y M ′ y (XO z ) n crystal obtained by a melting process is preferable because it has excellent high-speed charge / discharge performance.
 具体的には、正極材料粉末は、(1)原料粉末を溶融してガラス化する工程、および、(2)溶融ガラスを成形後、粉砕する工程、を含む方法により作製される。当該方法によれば、Li1-yM’(XO結晶を含む均質な正極材料粉末を低コストで製造することが可能となる。 Specifically, the positive electrode material powder is produced by a method including (1) a step of melting and vitrifying the raw material powder, and (2) a step of pulverizing the molten glass after molding. According to this method, it is possible to produce a homogeneous positive electrode material powder containing Li x M 1-y M ′ y (XO z ) n crystal at low cost.
 工程(1)において、溶融温度は原料粉末が均質に溶融されるよう適宜調整すればよい。具体的には、900℃以上、特に1000℃以上であることが好ましい。上限は特に限定されないが、高すぎるとエネルギーロスにつながるため、1500℃以下、特に1400℃以下であることが好ましい。 In step (1), the melting temperature may be appropriately adjusted so that the raw material powder is uniformly melted. Specifically, it is preferably 900 ° C. or higher, particularly 1000 ° C. or higher. Although an upper limit is not specifically limited, Since it will lead to an energy loss when too high, it is preferable that it is 1500 degrees C or less, especially 1400 degrees C or less.
 工程(2)において、溶融ガラスを成形する方法としては特に限定されない。例えば、溶融ガラスを一対の冷却ロール間に流し込み、急冷しながらフィルム状に成形してもよいし、あるいは、溶融ガラスを鋳型に流し出し、インゴット状に成形しても構わない。 In the step (2), the method for forming molten glass is not particularly limited. For example, the molten glass may be poured between a pair of cooling rolls and formed into a film shape while rapidly cooling, or the molten glass may be poured out into a mold and formed into an ingot shape.
 また、工程(2)における成形体の粉砕方法は特に限定されず、ボールミルやビーズミル等の一般的な粉砕装置を用いることできる。なお、成形体を粉砕する工程と、後述するカーボンや界面活性剤等を混合する工程を同時に行ってもよい。このようにすれば、工程数が減り、コストダウンを図ることができる。 Further, the method for pulverizing the molded body in the step (2) is not particularly limited, and a general pulverizing apparatus such as a ball mill or a bead mill can be used. In addition, you may perform simultaneously the process of grind | pulverizing a molded object, and the process of mixing carbon, surfactant, etc. which are mentioned later. In this way, the number of processes can be reduced and the cost can be reduced.
 Li1-yM’(XO結晶において、MがFe元素、XがP元素からなる場合、正極材料粉末は、組成としてモル%で、LiO 20~50%、Fe 5~40%、P 20~50%を含有する結晶または結晶化ガラスであることが好ましい。組成をこのように限定した理由を以下に説明する。 In a Li x M 1-y M ′ y (XO z ) n crystal, when M is composed of Fe element and X is composed of P element, the positive electrode material powder has a composition of mol%, Li 2 O 20-50%, Fe 2 O 3 5 ~ 40%, is preferably a crystalline or crystallized glass containing P 2 O 5 20 ~ 50% . The reason for limiting the composition in this way will be described below.
 LiOはLiFe1-yM’PO結晶の主成分である。LiOの含有量は20~50%、特に25~45%であることが好ましい。LiOの含有量が少なすぎる、あるいは、多すぎると、LiFe1-yM’PO結晶が析出しにくくなる。 Li 2 O is a main component of Li x Fe 1-y M ′ y PO 4 crystal. The Li 2 O content is preferably 20 to 50%, particularly preferably 25 to 45%. When the content of Li 2 O is too small or too large, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate.
 FeもLiFe1-yM’PO結晶の主成分である。Feの含有量は5~40%、15~35%、25~35%、特に31.6~34%であることが好ましい。Feの含有量が少なすぎると、LiFe1-yM’PO結晶が析出しにくくなる。一方、Feの含有量が多すぎると、LiFe1-yM’PO結晶が析出しにくくなるとともに、望まないFe結晶が析出しやすくなる。 Fe 2 O 3 is also a main component of Li x Fe 1-y M ′ y PO 4 crystal. The content of Fe 2 O 3 is preferably 5 to 40%, 15 to 35%, 25 to 35%, particularly 31.6 to 34%. If the content of Fe 2 O 3 is too small, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate. On the other hand, if the content of Fe 2 O 3 is too large, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate and undesired Fe 2 O 3 crystals are likely to precipitate.
 PもLiFe1-yM’PO結晶の主成分である。Pの含有量は20~50%、特に25~45%であることが好ましい。Pの含有量が少なすぎる、あるいは、多すぎると、LiFe1-yM’PO結晶が析出しにくくなる。 P 2 O 5 is also a main component of Li x Fe 1-y M ′ y PO 4 crystal. The content of P 2 O 5 is preferably 20 to 50%, particularly preferably 25 to 45%. When the content of P 2 O 5 is too small or too large, Li x Fe 1-y M ′ y PO 4 crystals are difficult to precipitate.
 また上記成分以外に、ガラス形成能を向上させる成分として、例えばNb、V、SiO、B、GeO、Al、Ga、SbまたはBiを添加してもよい。これらの成分は合量で0~25%、特に0.1~25%であることが好ましい。上記成分の合量が少なすぎると、上記効果が得られにくく、多すぎると、LiFe1-yM’PO結晶の析出量が低下しやすくなる。 In addition to the above components, examples of components that improve glass forming ability include Nb 2 O 5 , V 2 O 5 , SiO 2 , B 2 O 3 , GeO 2 , Al 2 O 3 , Ga 2 O 3 , and Sb 2 O. 3 or Bi 2 O 3 may be added. The total amount of these components is preferably 0 to 25%, particularly preferably 0.1 to 25%. If the total amount of the above components is too small, it is difficult to obtain the above effect, and if it is too large, the amount of Li x Fe 1-y M ′ y PO 4 crystals precipitated tends to decrease.
 なかでも、Nbは均質なガラスを得るために有効な成分である。Nbの含有量は0.05~10%、0.1~5%、特に0.2~3%であることが好ましい。Nbの含有量が少なすぎると、均質なガラスが得られにくい。一方、Nbの含有量が多すぎると、結晶化の際にニオブ酸鉄等の異種結晶が析出して、充放電特性が低下する傾向がある。 Among these, Nb 2 O 5 is an effective component for obtaining a homogeneous glass. The content of Nb 2 O 5 is preferably 0.05 to 10%, 0.1 to 5%, particularly preferably 0.2 to 3%. If the content of Nb 2 O 5 is too small, it is difficult to obtain a homogeneous glass. On the other hand, when the content of Nb 2 O 5 is too large, the heterogeneous crystals such niobate iron upon crystallization is deposited, charge-discharge characteristics tend to deteriorate.
 本発明のリチウムイオン二次電池正極材料粉末は、表面をカーボンを含む被覆層(以下、「カーボン含有層」ともいう)で被覆することが好ましい。カーボン含有層で被覆することにより、電子伝導性を高められ、放電容量を向上させることができる。 The lithium ion secondary battery positive electrode material powder of the present invention is preferably coated on the surface with a coating layer containing carbon (hereinafter also referred to as “carbon-containing layer”). By covering with the carbon-containing layer, the electron conductivity can be increased and the discharge capacity can be improved.
 この場合、正極材料粉末に占めるカーボン含有層の割合は0.01~10質量%、0.1~8質量%、特に0.5~5質量%であることが好ましい。カーボン含有層の割合が少なすぎると、カーボン含有層の形成が不十分となる傾向がある。一方、カーボン含有層の割合が多すぎると、正極活物質として機能するLi1-yM’(XO結晶の含有量が相対的に少なくなり、正極材料粉末単位質量当たりの放電容量が小さくなる傾向がある。 In this case, the proportion of the carbon-containing layer in the positive electrode material powder is preferably 0.01 to 10% by mass, 0.1 to 8% by mass, and particularly preferably 0.5 to 5% by mass. If the proportion of the carbon-containing layer is too small, the formation of the carbon-containing layer tends to be insufficient. On the other hand, when the proportion of the carbon-containing layer is too large, the content of Li x M 1-y M ′ y (XO z ) n crystal functioning as the positive electrode active material becomes relatively small, and the amount per unit mass of the positive electrode material powder The discharge capacity tends to be small.
 正極材料粉末表面をカーボン含有層で被覆する方法としては、正極材料粉末にカーボンまたは有機化合物を添加し、不活性または還元雰囲気にて熱処理を行うことが好ましい。カーボンおよび有機化合物は、熱処理後もLi1-yM’(XO結晶を含む正極活物質粒子表面に炭素質皮膜として残留し、導電性を付与するための導電活物質としての役割も有する。 As a method of coating the surface of the positive electrode material powder with the carbon-containing layer, it is preferable to add carbon or an organic compound to the positive electrode material powder and perform heat treatment in an inert or reducing atmosphere. Carbon and an organic compound remain as a carbonaceous film on the surface of the positive electrode active material particles containing Li x M 1-y M ′ y (XO z ) n crystal even after heat treatment, and serve as a conductive active material for imparting conductivity. Also has a role.
 カーボンとしては、グラファイト、アセチレンブラック、アモルファスカーボン等が挙げられる。なお、アモルファスカーボンとしては、FTIR分析において、正極材料粉末の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。有機化合物としては、界面活性剤、脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸、グルコースおよび有機バインダー等が挙げられる。 Examples of carbon include graphite, acetylene black, and amorphous carbon. As the amorphous carbon, those in which a CO bond peak and a CH bond peak causing a decrease in conductivity of the positive electrode material powder are not substantially detected in the FTIR analysis are preferable. Examples of the organic compound include surfactants, carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids, glucose, and organic binders.
 界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤および非イオン性界面活性剤のいずれでもよいが、特に、無機粉末表面への吸着性に優れた非イオン性界面活性剤が好ましい。 As the surfactant, any of a cationic surfactant, an anionic surfactant, an amphoteric surfactant and a nonionic surfactant may be used, and in particular, a nonionic having excellent adsorptivity to the surface of the inorganic powder. A surfactant is preferred.
 非イオン性界面活性剤としては、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、アルキルグルコシド、ポリオキシアルキレンアルキルグルコシド、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレン脂肪酸エーテル、ポリオキシアルキレンアリルエーテル、ポリオキシアルキレンソルビタン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシアルキレンブロック共重合体、脂肪酸アルカノールアミド、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、脂肪アルコールエトキシレート等が挙げられる。なかでも、無機粉末表面への吸着性に特に優れた、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステル等のポリオキシアルキレン鎖を有する非イオン性界面活性剤であることが好ましい。 Nonionic surfactants include polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl ether, alkyl glucoside, polyoxyalkylene alkyl glucoside, sucrose fatty acid ester, sorbitan fatty acid ester, polyoxyalkylene fatty acid ester, polyoxyalkylene fatty acid Ether, polyoxyalkylene allyl ether, polyoxyalkylene sorbitan fatty acid ester, polyoxyethylene polyoxypropylene ether, polyoxyethylene polyoxypropylene glycol, polyoxyalkylene block copolymer, fatty acid alkanolamide, glycerin fatty acid ester, propylene glycol fatty acid Examples thereof include esters and fatty alcohol ethoxylates. Among these, nonionics having a polyoxyalkylene chain, such as polyoxyalkylene alkyl phenyl ether, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, etc., which are particularly excellent in adsorptivity to the surface of inorganic powder. It is preferable that it is an ionic surfactant.
 界面活性剤の質量平均分子量は100~10000、200~5000、特に300~3000であることが好ましい。界面活性剤の質量平均分子量が小さすぎると、ファンデルワールス力が小さくなって正極材料粉末表面に対する界面活性剤の吸着力が小さくなるため、カーボン含有層の厚みにムラができやすくなる。一方、界面活性剤の質量平均分子量が大きすぎると、分子の立体障害が大きくなって、正極材料粉末表面に吸着しにくくなり、カーボン含有層が形成されにくくなる。 The mass average molecular weight of the surfactant is preferably 100 to 10,000, 200 to 5,000, particularly 300 to 3,000. If the mass average molecular weight of the surfactant is too small, the van der Waals force becomes small and the adsorption force of the surfactant to the surface of the positive electrode material powder becomes small, so that the thickness of the carbon-containing layer tends to be uneven. On the other hand, if the mass average molecular weight of the surfactant is too large, the steric hindrance of the molecules will increase, making it difficult to adsorb on the surface of the positive electrode material powder, making it difficult to form a carbon-containing layer.
 界面活性剤の添加量は、正極材料粉末100質量部に対して0.01~50質量部、0.1~50質量部、1~30質量部、特に5~20質量部であることが好ましい。界面活性剤の添加量が少なすぎると、カーボン含有層の形成が不十分になる傾向がある。一方、界面活性剤の添加量が多すぎると、カーボン含有層の厚みが大きくなってリチウムイオンの移動が妨げられ、放電容量が低下する傾向がある。また、リチウムイオン二次電池において正極と負極の電位差が小さくなり、所望の起電力が得られなくなるおそれがある。 The addition amount of the surfactant is preferably 0.01 to 50 parts by weight, 0.1 to 50 parts by weight, 1 to 30 parts by weight, particularly 5 to 20 parts by weight with respect to 100 parts by weight of the positive electrode material powder. . If the addition amount of the surfactant is too small, the formation of the carbon-containing layer tends to be insufficient. On the other hand, when the addition amount of the surfactant is too large, the thickness of the carbon-containing layer is increased, the movement of lithium ions is hindered, and the discharge capacity tends to decrease. In addition, in a lithium ion secondary battery, the potential difference between the positive electrode and the negative electrode is reduced, and a desired electromotive force may not be obtained.
 固体電解質粉末としては、特に限定はなく、本技術分野にて公知のものが使用できるが、硫化物系固体電解質粉末を使用することが好ましい。これにより、固体電解質粉末の電気伝導度が高くなるため、全固体リチウムイオン二次電池の内部抵抗が小さくなり、さらに良好な放電容量を達成することが可能となる。 The solid electrolyte powder is not particularly limited, and those known in this technical field can be used, but it is preferable to use a sulfide-based solid electrolyte powder. Thereby, since the electrical conductivity of the solid electrolyte powder is increased, the internal resistance of the all-solid-state lithium ion secondary battery is reduced, and it is possible to achieve a better discharge capacity.
 硫化物系固体電解質粉末としては、例えば硫黄原子(S)、リン原子(P)およびリチウム原子(Li)からなるガラス粉末や結晶化ガラス粉末が挙げられる。当該ガラス粉末または結晶化ガラス粉末はAl、B、Si、Ge等の他の原子を含んでいてもよい。 Examples of the sulfide-based solid electrolyte powder include glass powder and crystallized glass powder composed of sulfur atoms (S), phosphorus atoms (P), and lithium atoms (Li). The glass powder or crystallized glass powder may contain other atoms such as Al, B, Si, and Ge.
 固体電解質粉末の原料としては、硫化リチウム(LiS)および五硫化二リン(P);または、硫化リチウム、単体リンおよび単体硫黄;さらには、硫化リチウム、五硫化二リン、単体リンおよび/または単体硫黄等の組み合わせが挙げられる。原料としてはその他に、P、SiS、B、GeS、Al、P、LiPO、LiSiO、LiI等を使用しても良い。また、有機化合物や有機・無機両化合物からなる材料を使用しても良い。 As a raw material of the solid electrolyte powder, lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ); or lithium sulfide, simple phosphorus and simple sulfur; and further, lithium sulfide, diphosphorus pentasulfide, simple substance A combination of phosphorus and / or elemental sulfur may be used. In addition, P 2 S 3 , SiS 2 , B 2 S 3 , GeS 2 , Al 2 S 3 , P 2 O 5 , Li 3 PO 4 , Li 4 SiO 4 , LiI, etc. may be used as the raw material. . Moreover, you may use the material which consists of an organic compound and both organic and inorganic compounds.
 原料の配合について、例えば、硫化リチウムと五硫化二リンを混合する場合、モル比は、通常LiS:P=50:50~87.5:12.5、好ましくはLiS:P=60:40~80:20、特に好ましくはLiS:P=70:30~80:20である。 Regarding the blending of the raw materials, for example, when lithium sulfide and diphosphorus pentasulfide are mixed, the molar ratio is usually Li 2 S: P 2 S 5 = 50: 50 to 87.5: 12.5, preferably Li 2 S. : P 2 S 5 = 60: 40 to 80:20, particularly preferably Li 2 S: P 2 S 5 = 70: 30 to 80:20.
 上記の原料を溶融反応させた後に急冷する方法や、原料をメカニカルミリング法(MM法)により処理する方法等により、ガラス状の固体電解質を得る。さらに熱処理することにより結晶化した固体電解質が得られる。イオン伝導性の観点からは、結晶化した固体電解質が好ましい。 A glassy solid electrolyte is obtained by a method in which the raw material is melt-reacted and then rapidly cooled, a method in which the raw material is processed by a mechanical milling method (MM method), or the like. Further, a crystallized solid electrolyte is obtained by heat treatment. From the viewpoint of ion conductivity, a crystallized solid electrolyte is preferable.
 固体電解質粉末の平均粒子径(D50)は、0.01~50μm、0.1~10μm、特に0.1~7μmであることが好ましい。固体電解質粉末の平均粒子径が小さすぎると、二次凝集が起こりやすく、イオン伝導性が低下するおそれがある。また、正極材料粉末と均一に混合することが難しくなる。一方、固体電解質粉末の平均粒子径が大きすぎると、イオン伝導性が低下するおそれがある。 The average particle diameter (D 50 ) of the solid electrolyte powder is preferably 0.01 to 50 μm, 0.1 to 10 μm, particularly preferably 0.1 to 7 μm. If the average particle size of the solid electrolyte powder is too small, secondary aggregation is likely to occur, and ion conductivity may be reduced. Moreover, it becomes difficult to mix with positive electrode material powder uniformly. On the other hand, if the average particle size of the solid electrolyte powder is too large, the ion conductivity may be reduced.
 本発明の正極合材粉末において、正極活物質粒子と固体電解質粉末の混合比は、充放電容量とイオン伝導性を考慮して適宜調整される。具体的には、正極活物質粒子と固体電解質粉末の混合比(質量比)は95:5~30:70、特に90:10~40:60であることが好ましい。 In the positive electrode mixture powder of the present invention, the mixing ratio of the positive electrode active material particles and the solid electrolyte powder is appropriately adjusted in consideration of charge / discharge capacity and ion conductivity. Specifically, the mixing ratio (mass ratio) of the positive electrode active material particles and the solid electrolyte powder is preferably 95: 5 to 30:70, particularly 90:10 to 40:60.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 (実施例1)
 (1)無機粉末の作製
 メタリン酸リチウム(LiPO)、炭酸リチウム(LiCO)、酸化第二鉄(Fe)および酸化ニオブ(Nb)を原料とし、モル%で、LiO 35.1%、Fe 32.2%、P 32.2%、Nb 0.5%の組成となるように原料粉末を調合し、1250℃にて1時間、大気雰囲気中にて溶融を行った。その後、一対のロールに溶融ガラスを流し込み、急冷しながらフィルム状に成形することにより、結晶性ガラスを作製した。ここで、「結晶性ガラス」とは、熱処理により結晶を析出する性質を有するガラスをいう。
Example 1
(1) Preparation of inorganic powder Using lithium metaphosphate (LiPO 3 ), lithium carbonate (Li 2 CO 3 ), ferric oxide (Fe 2 O 3 ) and niobium oxide (Nb 2 O 5 ) as raw materials, , Li 2 O 35.1%, Fe 2 O 3 32.2%, P 2 O 5 32.2%, Nb 2 O 5 0.5% composition of raw material powder, For 1 hour in the air atmosphere. Thereafter, molten glass was poured into a pair of rolls and formed into a film shape while rapidly cooling to produce crystalline glass. Here, “crystalline glass” refers to glass having the property of precipitating crystals by heat treatment.
 得られた結晶性ガラスを800℃で30分熱処理して結晶化させた後、φ20mmのAl玉石を使用したボールミル粉砕を5時間、次にφ5mmのZrO玉石を使用したアルコール中でのボールミル粉砕を40時間、さらにφ0.3mmのZrOビーズを使用したアルコール中でのビーズミル粉砕を8時間行い、平均粒子径(D50)が0.5μmの結晶化ガラス粉末を得た。 The obtained crystalline glass was crystallized by heat treatment at 800 ° C. for 30 minutes, followed by ball milling using Al 2 O 3 cobblestone of φ20 mm for 5 hours, and then in alcohol using ZrO 2 boulder of φ5 mm. Was milled for 40 hours, and bead milling for 8 hours in alcohol using ZrO 2 beads having a diameter of 0.3 mm to obtain a crystallized glass powder having an average particle size (D 50 ) of 0.5 μm.
 (2)リチウムイオン二次電池正極材料粉末の作製
 結晶化ガラス粉末100質量部に対して、カーボン源として非イオン性界面活性剤であるポリエチレンオキシドノニルフェニルエーテル(HLB値:13.3 質量平均分子量:660)を11.8質量部(グラファイト換算7質量部に相当)および純水を60質量部十分に混合した後、100℃で約1時間乾燥させた。その後、800℃にて30分間熱処理を行うことにより、結晶化ガラス粉末表面にカーボン含有層が形成されてなる正極材料粉末を得た。得られた正極材料粉末について粉末X線回折パターンを確認したところ、LiFePO由来の回折線が確認された。なお、正極材料粉末の一次粒子径Dは0.2μm、二次粒子径Dは0.5μm、一次粒子径Dと二次粒子径Dの比D/Dは2.5であった。
(2) Preparation of lithium ion secondary battery positive electrode material powder Polyethylene oxide nonylphenyl ether (HLB value: 13.3 mass average molecular weight) which is a nonionic surfactant as a carbon source with respect to 100 mass parts of crystallized glass powder. : 660) 11.8 parts by mass (corresponding to 7 parts by mass in terms of graphite) and 60 parts by mass of pure water were sufficiently mixed and then dried at 100 ° C. for about 1 hour. Thereafter, a heat treatment was performed at 800 ° C. for 30 minutes to obtain a positive electrode material powder having a carbon-containing layer formed on the surface of the crystallized glass powder. When the positive electrode material powder obtained was confirmed by a powder X-ray diffraction pattern, the diffraction line from LiFePO 4 was confirmed. The primary particle diameter D 1 of the positive electrode material powder is 0.2 μm, the secondary particle diameter D 2 is 0.5 μm, and the ratio D 2 / D 1 between the primary particle diameter D 1 and the secondary particle diameter D 2 is 2.5. Met.
 (3)リチウムイオン二次電池正極材料粉末の評価
 得られた正極材料粉末と、LiS-Pからなる固体電解質粉末(LiSとPとのモル比80:20)と、アセチレンブラックとを、40:60:6の質量比で混合した。得られた混合物10mgを360MPaの圧力でプレスすることで、直径10mm、厚さ約50μmのペレット(正極)を得た。
(3) Evaluation of positive electrode material powder of lithium ion secondary battery The obtained positive electrode material powder and a solid electrolyte powder composed of Li 2 S—P 2 S 5 (Molar ratio of Li 2 S and P 2 S 5 80:20 ) And acetylene black were mixed at a mass ratio of 40: 60: 6. 10 mg of the obtained mixture was pressed at a pressure of 360 MPa to obtain pellets (positive electrode) having a diameter of 10 mm and a thickness of about 50 μm.
 また、上記固体電解質粉末80mgを360MPaの圧力でプレスすることで、直径10mm、厚さ0.5mmのペレット(電解質層)を得た。 Further, 80 mg of the solid electrolyte powder was pressed at a pressure of 360 MPa to obtain pellets (electrolyte layer) having a diameter of 10 mm and a thickness of 0.5 mm.
 上記正極および電解質層、さらに負極として厚さ0.1mmのインジウムシートを積層し、240MPaの圧力でプレスすることで全固体リチウム二次電池を得た。 An all-solid lithium secondary battery was obtained by laminating an indium sheet having a thickness of 0.1 mm as the positive electrode and the electrolyte layer, and further pressing the electrode at a pressure of 240 MPa.
 得られた二次電池を用いて13μA/cmの電流密度で充放電を行った場合の放電容量は110mAh/gで、理論容量の65%であった。このときの、放電電位と放電容量との関係を図1に示す。 When charging / discharging was carried out at a current density of 13 μA / cm 2 using the obtained secondary battery, the discharge capacity was 110 mAh / g, which was 65% of the theoretical capacity. The relationship between the discharge potential and the discharge capacity at this time is shown in FIG.
 (比較例1)
 正極材料粉末として、市販のLiFePO(天津STL製、D=0.5μm、D=2.7μm、D/D=5.4)を使用したこと以外は実施例1と同様にして全固体リチウム二次電池を得た。
(Comparative Example 1)
Example 1 except that commercially available LiFePO 4 (manufactured by Tianjin STL, D 1 = 0.5 μm, D 2 = 2.7 μm, D 2 / D 1 = 5.4) was used as the positive electrode material powder. Thus, an all solid lithium secondary battery was obtained.
 得られた二次電池を6.4μA/cm2の電流密度で充放電を行った場合の放電容量は40mAh/gで、理論容量の24%であった。このときの、放電電位と放電容量との関係を図2に示す。 When the obtained secondary battery was charged and discharged at a current density of 6.4 μA / cm 2 , the discharge capacity was 40 mAh / g, which was 24% of the theoretical capacity. The relationship between the discharge potential and the discharge capacity at this time is shown in FIG.
 (比較例2)
 結晶化ガラスに対して、φ20mmのAl玉石を使用したボールミル粉砕を5時間、次にφ5mmのZrO玉石を使用したエタノール中でのボールミル粉砕を15時間行い、平均粒子径2μmの結晶化ガラス粉末を得た以外は、実施例1と同様にして正極材料粉末を得た。得られた正極材料粉末の一次粒子径Dは2μm、二次粒子径Dは2.6μm、一次粒子径Dと二次粒子径Dの比D/Dは1.3であった。
(Comparative Example 2)
The crystallized glass was subjected to ball milling using Al 2 O 3 boulders with a diameter of 20 mm for 5 hours, followed by ball milling in ethanol using ZrO 2 boulders with a diameter of 5 mm for 15 hours to obtain crystals having an average particle diameter of 2 μm. A positive electrode material powder was obtained in the same manner as in Example 1 except that a vitrified glass powder was obtained. The primary particle diameter D 1 of the obtained positive electrode material powder is 2 μm, the secondary particle diameter D 1 is 2.6 μm, and the ratio D 2 / D 1 between the primary particle diameter D 1 and the secondary particle diameter D 2 is 1.3. there were.
 さらに、得られた正極材料粉末を用いて、実施例1と同様にして全固体リチウム二次電池を得た。 Furthermore, using the obtained positive electrode material powder, an all solid lithium secondary battery was obtained in the same manner as in Example 1.
 得られた二次電池を13μA/cm2の電流密度で充放電を行った場合の放電容量は38mAh/gで、理論容量の22%であった。このときの、放電電位と放電容量との関係を図3に示す。 When the obtained secondary battery was charged and discharged at a current density of 13 μA / cm 2 , the discharge capacity was 38 mAh / g, which was 22% of the theoretical capacity. The relationship between the discharge potential and the discharge capacity at this time is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図1~3から明らかなように、実施例1における電池は放電容量が110mAh/gと優れていたのに対し、比較例1および2の電池は放電容量が40mAh/g以下と劣っていた。 As is clear from Table 1 and FIGS. 1 to 3, the battery of Example 1 was excellent in discharge capacity of 110 mAh / g, whereas the batteries of Comparative Examples 1 and 2 were inferior in discharge capacity of 40 mAh / g or less. It was.
 本発明のリチウムイオン二次電池用正極材料粉末およびリチウムイオン二次電池正極合材粉末は、ノートパソコンや携帯電話等の携帯型電子機器や電気自動車等に使用されるリチウムイオン二次電池の電極材料として好適である。 The positive electrode material powder for a lithium ion secondary battery and the positive electrode mixture powder for a lithium ion secondary battery of the present invention are electrodes of a lithium ion secondary battery used for portable electronic devices such as notebook computers and mobile phones, and electric vehicles. Suitable as a material.

Claims (6)

  1.  一般式:Li1-yM’(XO(x、y、z、nはそれぞれ0<x≦2、0≦y<1、z=3または4、1≦n≦1.5であり、Mは周期律表の第一行の遷移金属の少なくとも1種、M’はNb、Ta、Ge、Sn、Al、Ga、Zn、MgまたはCuの少なくとも1種、XはS、P、BまたはSiである)で表される結晶を含有するリチウムイオン二次電池正極材料粉末であって、
     一次粒子径Dが1.8μm以下であり、かつ、一次粒子径Dと二次粒子径Dの比D/Dが5以下であることを特徴とするリチウムイオン二次電池正極材料粉末。
    General formula: Li x M 1-y M ′ y (XO z ) n (x, y, z, n are 0 <x ≦ 2, 0 ≦ y <1, z = 3 or 4, 1 ≦ n ≦ 1 respectively. M is at least one transition metal in the first row of the periodic table, M ′ is at least one of Nb, Ta, Ge, Sn, Al, Ga, Zn, Mg or Cu, and X is S , P, B, or Si), and a lithium ion secondary battery positive electrode material powder containing a crystal represented by:
    The primary particle diameter D 1 is less than or equal to 1.8 .mu.m, and a lithium ion secondary battery positive electrode, characterized in that the ratio D 2 / D 1 of the primary particle diameter D 1 and the secondary particle diameter D 2 is 5 or less Material powder.
  2.  MがFeもしくはMnまたはその混合物であることを特徴とする請求項1に記載のリチウムイオン二次電池正極材料粉末。 The lithium ion secondary battery positive electrode material powder according to claim 1, wherein M is Fe or Mn or a mixture thereof.
  3.  XがPであることを特徴とする請求項1または2に記載のリチウムイオン二次電池正極材料粉末。 X is P, The lithium ion secondary battery positive electrode material powder of Claim 1 or 2 characterized by the above-mentioned.
  4.  請求項1~3のいずれかに記載のリチウムイオン二次電池正極材料粉末と、固体電解質粉末とを含有することを特徴とするリチウムイオン二次電池正極合材粉末。 A lithium ion secondary battery positive electrode mixture powder comprising the lithium ion secondary battery positive electrode material powder according to any one of claims 1 to 3 and a solid electrolyte powder.
  5.  固体電解質粉末が硫化物系固体電解質粉末であることを特徴とする請求項4に記載のリチウムイオン二次電池正極合材粉末。 The lithium ion secondary battery positive electrode mixture powder according to claim 4, wherein the solid electrolyte powder is a sulfide-based solid electrolyte powder.
  6.  請求項4または5に記載のリチウムイオン二次電池正極合材粉末を含有する正極と、固体電解質粉末を含有する電解質層とを備えることを特徴とするリチウムイオン二次電池。
     
    A lithium ion secondary battery comprising a positive electrode containing the lithium ion secondary battery positive electrode mixture powder according to claim 4 and an electrolyte layer containing a solid electrolyte powder.
PCT/JP2012/077557 2011-10-28 2012-10-25 Positive electrode material powder for lithium ion secondary batteries WO2013062032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-237115 2011-10-28
JP2011237115A JP2013097892A (en) 2011-10-28 2011-10-28 Powder of lithium ion secondary battery anode material

Publications (1)

Publication Number Publication Date
WO2013062032A1 true WO2013062032A1 (en) 2013-05-02

Family

ID=48167858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077557 WO2013062032A1 (en) 2011-10-28 2012-10-25 Positive electrode material powder for lithium ion secondary batteries

Country Status (2)

Country Link
JP (1) JP2013097892A (en)
WO (1) WO2013062032A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074978A (en) * 2018-09-27 2020-12-11 三井金属矿业株式会社 Active material, positive electrode mixture and all-solid-state battery using same
EP4160736A4 (en) * 2020-05-26 2023-07-26 Nissan Motor Co., Ltd. Secondary battery positive electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274192B2 (en) * 2015-11-30 2018-02-07 トヨタ自動車株式会社 Positive electrode active material, all solid state battery, and method for producing all solid state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047412A (en) * 2006-08-15 2008-02-28 Nagaoka Univ Of Technology Precursor glass for lithium secondary battery positive electrode material, positive electrode material, and manufacturing method of them
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2010211990A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Charge and discharge control method of lithium ion secondary battery, secondary battery system, and hybrid automobile
JP2011113783A (en) * 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile
WO2011129224A1 (en) * 2010-04-13 2011-10-20 日本電気硝子株式会社 Lithium-ion secondary-battery positive electrode material and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047412A (en) * 2006-08-15 2008-02-28 Nagaoka Univ Of Technology Precursor glass for lithium secondary battery positive electrode material, positive electrode material, and manufacturing method of them
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2010211990A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Charge and discharge control method of lithium ion secondary battery, secondary battery system, and hybrid automobile
JP2011113783A (en) * 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile
WO2011129224A1 (en) * 2010-04-13 2011-10-20 日本電気硝子株式会社 Lithium-ion secondary-battery positive electrode material and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074978A (en) * 2018-09-27 2020-12-11 三井金属矿业株式会社 Active material, positive electrode mixture and all-solid-state battery using same
EP4160736A4 (en) * 2020-05-26 2023-07-26 Nissan Motor Co., Ltd. Secondary battery positive electrode

Also Published As

Publication number Publication date
JP2013097892A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5720589B2 (en) All solid battery
CN105938894B (en) The manufacturing method of electrode body
JP5842918B2 (en) Method for producing solid electrolyte fine particles
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
CN115832288A (en) Positive electrode active material for sodium ion secondary battery
KR102444648B1 (en) Positive electrode active material for sodium ion secondary batteries and method for producing same
CN111868994A (en) Solid-state battery electrolyte with improved stability to cathode materials
JP2011238594A (en) Cathode material for lithium ion secondary battery and method for manufacturing the same
JP6124062B2 (en) Positive electrode material for power storage device and method for producing the same
CN110556523B (en) Positive electrode mixture, all-solid-state battery, method for producing positive electrode mixture, and method for producing all-solid-state battery
JP2017157473A (en) Lithium ion secondary battery
JP2019040752A (en) All solid secondary battery
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
WO2013062032A1 (en) Positive electrode material powder for lithium ion secondary batteries
JP7448875B2 (en) Sodium ion secondary battery parts and sodium ion secondary batteries
WO2013035831A1 (en) Method for producing a lithium ion secondary battery positive electrode material
JP2019179731A (en) All solid-state battery negative electrode and all solid lithium secondary battery
WO2012081522A1 (en) Precursor glass for lithium ion secondary battery positive electrode material and crystallized glass for lithium ion secondary battery positive electrode material
JP6183590B2 (en) Negative electrode active material for power storage device and method for producing the same
JP5892364B2 (en) Method for producing oxide material
JP5652132B2 (en) Inorganic solid electrolyte and lithium secondary battery
WO2024128295A1 (en) Method for producing positive electrode material for power storage devices
WO2016136555A1 (en) Positive electrode active material for alkali ion secondary batteries
CN118451566A (en) Positive electrode active material for sodium ion secondary battery
WO2020235291A1 (en) Electrode composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844412

Country of ref document: EP

Kind code of ref document: A1