JP2009140910A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2009140910A
JP2009140910A JP2008268328A JP2008268328A JP2009140910A JP 2009140910 A JP2009140910 A JP 2009140910A JP 2008268328 A JP2008268328 A JP 2008268328A JP 2008268328 A JP2008268328 A JP 2008268328A JP 2009140910 A JP2009140910 A JP 2009140910A
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
active material
electrode active
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008268328A
Other languages
Japanese (ja)
Other versions
JP5299860B2 (en
Inventor
Shigeto Okada
重人 岡田
Eiji Kobayashi
栄次 小林
Kazuhiro Yamamoto
一博 山本
Toshihiro Yoshida
俊広 吉田
Yosuke Sato
洋介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kyushu University NUC
Original Assignee
NGK Insulators Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kyushu University NUC filed Critical NGK Insulators Ltd
Priority to JP2008268328A priority Critical patent/JP5299860B2/en
Priority to US12/267,668 priority patent/US20090123846A1/en
Priority to EP08253683.0A priority patent/EP2058881B1/en
Publication of JP2009140910A publication Critical patent/JP2009140910A/en
Application granted granted Critical
Publication of JP5299860B2 publication Critical patent/JP5299860B2/en
Priority to US14/219,478 priority patent/US9209486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid battery for charge and discharge operation even with all solid by expanding an interface area where an electrode active material and an all-solid electrolyte are jointed and by lowering the interface reaction resistance. <P>SOLUTION: The all-solid battery combining an electrode active material and a solid electrolyte includes a solid electrolyte calcined body 14 of plate-shape consisting of ceramics containing a solid electrolyte 12, a first electrode layer 18 (for example, a positive electrode) which is formed by calcining and integrating on one face of the solid electrolyte calcined body 14 and by mixing and heating calcination of an electrode active material 16 and the solid electrolyte 12, and a second electrode layer 20 (for example, a negative electrode) which is formed by calcining and integrating on the other face of the solid electrolyte calcined body 14 and by mixing and heating calcination of the electrode active material 16 and the solid electrolyte 12. The solid electrolyte material added in the first electrode layer 18 and the second electrode layer 20 is an amorphous polyanion compound. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極活物質と固体電解質との組み合わせによる全固体電池に関する。   The present invention relates to an all-solid battery using a combination of an electrode active material and a solid electrolyte.

近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた有機溶媒等の液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。   In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as power sources has been greatly expanded. In a battery used for such an application, a liquid electrolyte (electrolytic solution) such as an organic solvent using a flammable organic solvent as a diluent solvent has been conventionally used as a medium for moving ions. A battery using such an electrolytic solution may cause problems such as leakage of the electrolytic solution, ignition, and explosion.

このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体である焼結したセラミックスにより形成されることから、発火や漏液の心配がない上、また、腐食による電池性能の劣化等の問題も生じ難いものである。なかでも、全固体リチウム二次電池は、容易に高エネルギー密度とすることが可能な二次電池として各方面で盛んに研究が行われている(例えば特許文献1、2及び非特許文献1参照)。   In order to solve these problems, in order to ensure intrinsic safety, development of an all-solid-state battery in which a solid electrolyte is used instead of a liquid electrolyte and all other elements are made of solid is being promoted. ing. Such an all-solid battery is made of sintered ceramics whose electrolyte is solid, so there is no concern of ignition or leakage, and problems such as deterioration of battery performance due to corrosion are unlikely to occur. is there. In particular, all-solid lithium secondary batteries have been actively studied in various fields as secondary batteries that can easily have a high energy density (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1). ).

特開2000−311710号公報JP 2000-311710 A 特開2005−63958号公報JP 2005-63958 A 福島裕介、外4名、「Li2S−P2S5系ガラス電解質の軟化融着を利用した全固体電池の電極−電解質界面の作製」化学電池材料研究会ミーティング講演要旨集 Vol.9th, Page.51−52 2007.6.11発行Yusuke Fukushima and 4 others, "Preparation of electrode-electrolyte interface of all-solid-state battery using soft fusion of Li2S-P2S5 glass electrolyte" Vol. 9th, Page. Issued 51-52 2007.6.11

上述した特許文献2には、薄膜固体リチウムイオン二次電池が開示されている。特許文献2記載の二次電池は、可撓性のある固体電解質の表面にスパッタによる薄膜で正負極の活物質が形成された、曲げたりできることが特徴の薄膜電池である。この電池は電極が薄膜により形成されることで実現するものであるため、電極部分に用いられる活物質量の制限から容量が得にくいという問題があった。   Patent Document 2 described above discloses a thin film solid lithium ion secondary battery. The secondary battery described in Patent Document 2 is a thin film battery characterized in that a positive and negative active material is formed by sputtering on a surface of a flexible solid electrolyte and can be bent. Since this battery is realized by forming the electrode with a thin film, there is a problem that it is difficult to obtain a capacity due to the amount of active material used for the electrode portion.

次に、非特許文献1には、ガラス電解質の軟化融着を利用した電解質と電極活物質の複合体による電極−電解質界面の作製に関する報告がされている。本報告ではガラス電解質の融着効果から電解質粒子間の抵抗が低減する効果の確認が報告されている。電解質と活物質の材料間の反応に関しても異相が確認されていない旨の報告がある。   Next, Non-Patent Document 1 reports on the production of an electrode-electrolyte interface using a composite of an electrolyte and an electrode active material utilizing softening and fusion of a glass electrolyte. In this report, it has been reported that the resistance between the electrolyte particles is reduced due to the fusion effect of the glass electrolyte. There is a report that no heterogeneous phase has been confirmed for the reaction between the electrolyte and the active material.

但し、全固体電池として正負極を備えた構成の記載がなく、電解質−電極活物質界面での反応抵抗低減が実現したかは不明な上、異相の生成がない点と電池特性との具体的な関係の記載も特になく、全固体電池での充放電可否に関しても不明である。加えて硫化物の電解質を使用しており、大気(空気)に対し不安定であることが予想される。破損等で大気に触れた場合には毒性のガスが発生する可能性も考えられ、安全性が確立されているとはいえないという問題点があった。   However, there is no description of a configuration having positive and negative electrodes as an all-solid-state battery, and it is unclear whether the reaction resistance has been reduced at the electrolyte-electrode active material interface. There is also no particular description of the relationship, and it is unclear as to whether or not charge / discharge is possible in an all solid state battery. In addition, it uses sulfide electrolytes and is expected to be unstable to the atmosphere (air). There is a possibility that toxic gas may be generated when exposed to the atmosphere due to damage or the like, and there has been a problem that safety has not been established.

本発明により解決する課題は、電池の内部抵抗の一端を占める電極活物質と固体電解質との界面を充放電に伴い電子及びLiイオンが移動する際の抵抗(以下、界面反応抵抗と記す)を、固体電解質を用いた全固体電池の系において低抵抗化するための手法に関するものである。   The problem to be solved by the present invention is the resistance (hereinafter referred to as interfacial reaction resistance) when electrons and Li ions move along the charge / discharge at the interface between the electrode active material that occupies one end of the internal resistance of the battery and the solid electrolyte. The present invention relates to a technique for reducing the resistance in an all-solid battery system using a solid electrolyte.

例えば、従来の電解液を用いたリチウムイオン電池においては、電極活物質は固体であるが、電解質が有機溶媒に溶解された液体であるため、電極活物質の粒子間に容易にしみ込むことができ、上記のような電極層内への電解質ネットワークが形成され、低い界面反応抵抗が実現されている。   For example, in a lithium ion battery using a conventional electrolytic solution, the electrode active material is a solid, but the electrolyte is a liquid dissolved in an organic solvent, so that it can easily penetrate between the particles of the electrode active material. An electrolyte network is formed in the electrode layer as described above, and a low interfacial reaction resistance is realized.

本発明で問題にしている界面反応抵抗について、粒子レベルでの接合する単位面積当たりの反応抵抗というのは、使用する活物質と電解質の材料の組み合わせによってある程度決まるものである。この粒子間で接合する面積が増えれば増えるほど、等価回路的には抵抗が並列接続されることになり、電池全体で見た場合の界面反応抵抗が下がり、電池としての内部抵抗が低下することになる。よって電解質−活物質間の界面反応抵抗を下げる方法としては、(1)Liイオンの移動がよりスムーズに行うことのできる材料の組み合わせを選択することと、(2)同じ電極容積内において電解質−活物質間が接合する界面面積を拡大することの2点によりなされる。   Regarding the interfacial reaction resistance which is a problem in the present invention, the reaction resistance per unit area to be joined at the particle level is determined to some extent by the combination of the active material and the electrolyte material to be used. The larger the area that is joined between the particles, the more resistance is connected in parallel in terms of equivalent circuit, and the interfacial reaction resistance when viewed from the whole battery is lowered, and the internal resistance as a battery is lowered. become. Therefore, as a method of reducing the interfacial reaction resistance between the electrolyte and the active material, (1) selecting a combination of materials that can move Li ions more smoothly, and (2) electrolyte in the same electrode volume— This is done by two points of expanding the interface area where the active materials are joined.

本発明は、(1)に関し、ポリアニオンが共通した電極活物質と固体電解質の組み合わせ、あるいは、リン酸化合物からなる電極活物質と固体電解質の組み合わせを用いるとともに、(2)に関し、電極活物質と混合された電解質で電極層内にネットワークを形成すると、電極活物質と固体電解質とが接合する界面面積が飛躍的に拡大することで、界面反応抵抗を下げられるというものである。   The present invention relates to (1) using a combination of an electrode active material and a solid electrolyte having a common polyanion, or a combination of an electrode active material comprising a phosphoric acid compound and a solid electrolyte. When a network is formed in the electrode layer with the mixed electrolyte, the interfacial area where the electrode active material and the solid electrolyte are joined is drastically increased, so that the interfacial reaction resistance can be lowered.

一方、特許文献1には、「電極活物質の粒子間に固体電解質材料からなる無機酸化物が三次元ネットワークを構成するように介在させたことを特徴とする固体電解質電池」が開示されている。そこで、本発明者らは、Liイオンの移動がよりスムーズに行うことのできる材料の組み合わせとして、ポリアニオンが共通であるリン酸化合物からなる電極活物質と固体電解質の組合せを選択し、固体電解質を電極活物質粒子間に介在させた電極構造の全固体電池の作製を試みた。しかし、その結果は、電極層内へ電極活物質と混合した状態で焼付けるため、活物質と電解質が反応してXRD(X線回折)観察上で電極活物質のピーク強度低下や異相が生成するといった現象が起こった。この状態の活物質を電解液による理想的な系において、活物質の充放電能力を測定した結果、充放電可能な容量が大幅に低下し、活物質が本来充放電することができる理論容量までの充放電ができなくなっていた。すなわち、電極活物質自体が容量低下してしまうという問題が生じた。   On the other hand, Patent Document 1 discloses a “solid electrolyte battery characterized by interposing an inorganic oxide made of a solid electrolyte material between particles of an electrode active material so as to form a three-dimensional network”. . Therefore, the present inventors selected a combination of an electrode active material made of a phosphate compound having a common polyanion and a solid electrolyte as a combination of materials that can move Li ions more smoothly. An attempt was made to produce an all-solid battery having an electrode structure interposed between electrode active material particles. However, the result is that the electrode layer is baked in a mixed state with the electrode active material, so that the active material reacts with the electrolyte and the peak intensity of the electrode active material is reduced or a different phase is generated on XRD (X-ray diffraction) observation. A phenomenon that happened. As a result of measuring the charge / discharge capacity of the active material in an ideal system using the active material in this state with an electrolyte, the chargeable / dischargeable capacity is greatly reduced, and the active material can be charged / discharged up to the theoretical capacity. Can no longer charge or discharge. That is, there is a problem that the capacity of the electrode active material itself is reduced.

そこで、今度は、電極活物質と固体電解質との反応を抑制するために焼付け時の温度を下げる試みを行ったが、今度は固体電解質同士の粒子間での焼結が進まず、固体電解質粒子間の粒界抵抗が増大し、且つ、電極活物質と固体電解質との接合する界面面積についても拡大されずに、結果固体電解質における粒界抵抗と、電極活物質と固体電解質との界面反応抵抗の両抵抗ともに下げることができなくなり、その結果全固体電池としては充放電容量を得ない(充放電しない)という問題があった。   Therefore, this time, in order to suppress the reaction between the electrode active material and the solid electrolyte, an attempt was made to lower the temperature during baking, but this time the solid electrolyte particles were not sintered and the solid electrolyte particles did not progress. The intergranular resistance between the electrode active material and the solid electrolyte is increased, and the interfacial area where the electrode active material and the solid electrolyte are joined is not enlarged. As a result, the grain boundary resistance in the solid electrolyte and the interfacial reaction resistance between the electrode active material and the solid electrolyte are increased. As a result, there was a problem that the charge / discharge capacity was not obtained (not charged / discharged) as an all-solid-state battery.

本発明はこのような課題を考慮してなされたものであり、全固体電池の電極層内において、固体電解質粒子間の粒界抵抗を低減しつつも、固体電解質と電極活物質との間の反応による容量低下を抑制し、その結果として、電極層内への電解質のネットワークを形成できるようにすると同時に、電極活物質と固体電解質の接合する界面面積も飛躍的に拡大して、界面反応抵抗を下げることができ、全固体でも充放電動作が可能な全固体電池を提供することを目的とする。   The present invention has been made in consideration of such problems, and in the electrode layer of the all-solid-state battery, while reducing the intergranular resistance between the solid electrolyte particles, the present invention has been achieved between the solid electrolyte and the electrode active material. Suppressing the capacity drop due to the reaction, and as a result, it is possible to form an electrolyte network in the electrode layer, and at the same time, the interface area where the electrode active material and the solid electrolyte are joined to each other is drastically expanded. An object of the present invention is to provide an all-solid-state battery that can be charged and discharged even in an all-solid state.

本発明者は、固体電解質と電極活物質を混合した電極構造を用いた全固体電池を検討していく過程において、使用する固体電解質材料と電極活物質材料の材料間での反応による電極活物質の結晶性の低下や、異相の形成により、電極活物質が本来充放電を行うことができる理論容量を下回る容量までしか充放電容量が得られなくなるような状態になることを見出し、これに基づき電極活物質が容量低下を生じる温度(Ty)と、固体電解質の焼成収縮開始温度(Tz)との間に、Ty>Tzの関係が成立する材料の組合せで、このTyとTzの間の温度域において電極層内における低抵抗を可能にする電解質ネットワークを実現すると共に、電解質−電極活物質との間の反応を抑制しつつ、接合する面積を拡大することが可能となり、両者の接合界面における界面反応抵抗の低減効果をもたらし、内部抵抗の低い全固体電池を実現することを見出した。   In the process of studying an all-solid battery using an electrode structure in which a solid electrolyte and an electrode active material are mixed, the present inventor has developed an electrode active material by a reaction between the solid electrolyte material and the electrode active material used. Based on this, it has been found that due to the lowering of crystallinity and the formation of heterogeneous phases, the electrode active material can only obtain charge / discharge capacity up to a capacity lower than the theoretical capacity that can be charged / discharged. The temperature between Ty and Tz is a combination of materials in which the relationship of Ty> Tz is established between the temperature (Ty) at which the electrode active material causes a decrease in capacity and the firing shrinkage start temperature (Tz) of the solid electrolyte. In addition to realizing an electrolyte network that enables low resistance in the electrode layer in the region, it is possible to expand the bonding area while suppressing the reaction between the electrolyte and the electrode active material. Resulted in reduction of the interface reaction resistance in case the interface, it was found to achieve a low internal resistance all solid state battery.

そして、本発明では、Liイオンの移動がよりスムーズに行うことのできる材料の組み合わせとして、ポリアニオンが共通であるリン酸化合物からなる電極活物質と固体電解質の組合せを選択し、リン酸化合物からなる固体電解質材料をガラス化した。具体例としてリン酸化合物の中でも高いイオン伝導度を持つといわれるNASICON型(ナシコン型)のLAGP固体電解質をガラス化した例においては、Tg(ガラス転移点)が約480℃、Tx(結晶化温度)が約590℃と、低い転移温度を有する材料を得ることができた(図10参照)。このガラス材料の焼成収縮開始温度を確認したところ、550℃から600℃の間であることが確認できた。次に、このガラス化した固体電解質と電極活物質との間で反応性を調査した結果、上記焼成収縮開始温度よりも十分高い温度域まで結晶性の低下がなく、異相も生成されないことが判明し、ポリアニオンが共通であるリン酸化合物系の材料でTy>Tzの関係を有する組合せを新たに見出した。   And in this invention, the combination of the electrode active material and solid electrolyte which consist of a phosphoric acid compound which has a common polyanion is selected as a combination of the material which can perform the movement of Li ion more smoothly, and consists of a phosphoric acid compound The solid electrolyte material was vitrified. As a specific example, in a case where a NASICON type LAGP solid electrolyte, which is said to have high ionic conductivity among phosphoric acid compounds, is vitrified, Tg (glass transition point) is about 480 ° C., Tx (crystallization temperature) ) Has a low transition temperature of about 590 ° C. (see FIG. 10). When the firing shrinkage start temperature of this glass material was confirmed, it was confirmed that it was between 550 ° C. and 600 ° C. Next, as a result of investigating the reactivity between the vitrified solid electrolyte and the electrode active material, it was found that there was no decrease in crystallinity up to a temperature range sufficiently higher than the firing shrinkage start temperature, and no heterogeneous phase was generated. The present inventors have newly found a combination of phosphate compounds based on a common polyanion and having a relationship of Ty> Tz.

この結果、固体電解質粒子間の接合に支障の無い範囲において、電極活物質と固体電解質との反応により電極活物質の充放電能力の低下を回避する条件範囲が生まれ、課題を解決するに至った。   As a result, within the range where there is no hindrance to the bonding between the solid electrolyte particles, a condition range that avoids a decrease in the charge / discharge capacity of the electrode active material due to the reaction between the electrode active material and the solid electrolyte was created, and the problem was solved .

そして、これを用いて混合電極とすることにより、全固体電池の電極層内において、固体電解質粒子間の粒界抵抗を低減しつつも、電極活物質の容量低下を抑制し、電極層内に電解質ネットワークを形成できたことにより、電極活物質と固体電解質の接合する界面面積を飛躍的に拡大して、界面反応抵抗を下げることができ、その結果、全固体でも充放電動作が可能な全固体電池を得ることができた。   And by using this as a mixed electrode, in the electrode layer of the all-solid-state battery, while reducing the intergranular resistance between the solid electrolyte particles, the capacity reduction of the electrode active material is suppressed, and the electrode layer By forming the electrolyte network, the interface area where the electrode active material and the solid electrolyte are joined can be greatly expanded, and the interface reaction resistance can be lowered. As a result, all solids can be charged and discharged. A solid battery could be obtained.

すなわち、第1の本発明に係る全固体電池は、電極活物質を含有する正負極の電極部と、固体電解質からなる電解質部と、正負極の集電部とを備えた全固体電池であって、ポリアニオンが共通した電極活物質と固体電解質との組み合わせによる全固体電池において、正負の何れか一方の電極部、もしくは正負両極の電極部は、前記電極活物質と前記固体電解質が混合されて構成され、前記電極部は、非晶質ポリアニオン化合物からなる固体電解質材料が電極活物質材料と混合され、加熱焼成してなることを特徴とする。   That is, the all solid state battery according to the first aspect of the present invention is an all solid state battery comprising a positive and negative electrode part containing an electrode active material, an electrolyte part made of a solid electrolyte, and a positive and negative electrode current collector. In an all solid state battery using a combination of an electrode active material having a common polyanion and a solid electrolyte, either the positive or negative electrode part or the positive and negative electrode part is a mixture of the electrode active material and the solid electrolyte. The electrode portion is formed by mixing a solid electrolyte material made of an amorphous polyanion compound with an electrode active material and heating and firing.

第2の本発明に係る全固体電池は、電極活物質を含有する正負極の電極部と、固体電解質からなる電解質部と、正負極の集電部とを備えた全固体電池であって、リン酸化合物からなる電極活物質と固体電解質との組み合わせによる全固体電池において、正負の何れか一方の電極部、もしくは正負両極の電極部は、前記電極活物質と前記固体電解質が混合されて構成され、前記電極部は、非晶質リン酸化合物からなる固体電解質材料が電極活物質材料と混合され、加熱焼成してなることを特徴とする。   An all solid state battery according to a second aspect of the present invention is an all solid state battery comprising a positive and negative electrode part containing an electrode active material, an electrolyte part made of a solid electrolyte, and a positive and negative current collector part, In an all-solid-state battery comprising a combination of an electrode active material made of a phosphoric acid compound and a solid electrolyte, either one of the positive and negative electrode parts or both positive and negative electrode parts are configured by mixing the electrode active material and the solid electrolyte. The electrode portion is characterized in that a solid electrolyte material made of an amorphous phosphate compound is mixed with an electrode active material and heated and fired.

そして、前記固体電解質材料と前記電極活物質材料との反応によって前記電極活物質が容量低下を生じる温度をTy、前記固体電解質材料の焼成収縮する温度をTzとしたとき、
Ty>Tz
の関係を有する。
And, when Ty is the temperature at which the electrode active material undergoes capacity reduction due to the reaction between the solid electrolyte material and the electrode active material, and Tz is the temperature at which the solid electrolyte material is fired and contracted,
Ty> Tz
Have the relationship.

ここで言う焼成収縮する温度を決定する焼成収縮した状態とは、当該材料の理論密度に対し相対密度70%以上に収縮する温度を焼成収縮する温度を指す。そして、Ty>Tzを満たす温度域としては、この焼成収縮が相対密度80%以上となる温度Tzであることがさらに望ましい。   The state of firing shrinkage that determines the temperature at which shrinkage occurs here refers to the temperature at which the shrinkage temperature is reduced to a relative density of 70% or more with respect to the theoretical density of the material. And as temperature range which satisfy | fills Ty> Tz, it is further more desirable that it is temperature Tz from which this baking shrinkage becomes a relative density of 80% or more.

次に、電極活物質が容量低下する温度を決定する容量低下とは、電極活物質材料が本来有する理論容量に対し、理論容量の50%を下回る容量までしか充放電容量が得られなくなる温度のことを指す。そして、Ty>Tzを満たす温度域としては、理論容量の80%以上の充放電容量が確保できる温度Tyであることがさらに望ましい。   Next, the capacity reduction that determines the temperature at which the capacity of the electrode active material decreases is the temperature at which the charge / discharge capacity can be obtained only to a capacity that is less than 50% of the theoretical capacity of the theoretical capacity of the electrode active material. Refers to that. The temperature range satisfying Ty> Tz is more preferably a temperature Ty that can secure a charge / discharge capacity of 80% or more of the theoretical capacity.

そして、第2の本発明において、リン酸化合物からなる前記固体電解質材料が、加熱焼成した後にナシコン型である材料であってもよい。この場合、リン酸化合物からなる前記固体電解質材料は、LAGP:Li1+xAlxGe2-x(PO43あるいはLATP:Li1+xAlxTi2-x(PO43を使用することができる。ここで、xは0≦x≦1である。 In the second aspect of the present invention, the solid electrolyte material made of a phosphoric acid compound may be a NASICON type material after being heated and fired. In this case, the solid electrolyte material made of a phosphoric acid compound is LAGP: Li 1 + x Al x Ge 2-x (PO 4 ) 3 or LATP: Li 1 + x Al x Ti 2-x (PO 4 ) 3 . Can be used. Here, x is 0 ≦ x ≦ 1.

また、第2の本発明において、前記電極活物質材料は、リン酸化合物からなり、且つ、ナシコン型材料であってもよい。この場合、リン酸化合物からなる前記電極活物質材料は、LVP:Lim2(PO43を使用することができる。ここで、mは1≦m≦5である。 In the second aspect of the present invention, the electrode active material may be made of a phosphate compound and may be a NASICON type material. In this case, the electrode active material comprising a phosphate compound, LVP: Li m V 2 ( PO 4) 3 may be used. Here, m is 1 ≦ m ≦ 5.

また、第2の本発明において、前記電極活物質のうち、正極活物質材料が、リン酸化合物からなり、且つ、オリビン型材料であってもよい。この場合、リン酸化合物からなる前記正極活物質材料は、LNP:LinNiPO4、LCP:LinCoPO4、LMP:LinMnPO4、LFP:LinFePO4のいずれかを使用することができる。ここで、nは0≦n≦1である。 In the second aspect of the present invention, the positive electrode active material of the electrode active material may be a phosphate compound and may be an olivine type material. In this case, the positive electrode active material comprising a phosphate compound, LNP: Li n NiPO 4, LCP: Li n CoPO 4, LMP: Li n MnPO 4, LFP: be used either Li n FePO 4 it can. Here, n is 0 ≦ n ≦ 1.

また、第2の本発明において、前記固体電解質材料と電極活物質材料が、共に加熱焼成した後にナシコン型である材料であってもよい。   In the second aspect of the present invention, the solid electrolyte material and the electrode active material may be NASICON type materials after being heated and fired together.

また、第2の本発明において、前記固体電解質材料と前記電極活物質材料が、共にナシコン型材料であって、前記固体電解質材料がLAGP:Li1+xAlxGe2-x(PO43、前記電極活物質材料が正負極ともにLVP:Lim2(PO43であるシンメトリ構造を有するようにしてもよい。ここで、xは0≦x≦1であり、更に好ましくは0.3≦x≦0.7、mは1≦m≦5である。 In the second aspect of the present invention, the solid electrolyte material and the electrode active material are both NASICON type materials, and the solid electrolyte material is LAGP: Li 1 + x Al x Ge 2-x (PO 4 ). 3. The electrode active material may have a symmetry structure in which both positive and negative electrodes are LVP: Li m V 2 (PO 4 ) 3 . Here, x is 0 ≦ x ≦ 1, more preferably 0.3 ≦ x ≦ 0.7, and m is 1 ≦ m ≦ 5.

そして、上述した第1及び第2の本発明において、前記電極部は、加圧された状態で加熱焼成されて構成されていてもよい。この場合、加圧下での焼成により、電極部内部で緻密な微構造の構築が実現可能となり、電極活物質・固体電解質間の界面面積が増大し、界面電荷移動抵抗の低減効果が得られる。   In the first and second aspects of the present invention described above, the electrode portion may be configured to be heated and fired in a pressurized state. In this case, by firing under pressure, it is possible to construct a fine microstructure inside the electrode part, and the interface area between the electrode active material and the solid electrolyte is increased, and the effect of reducing the interface charge transfer resistance is obtained.

また、上述した第1及び第2の本発明において、前記正負の何れか一方の電極部、もしくは正負両極の電極部が、印刷ペーストにより形成され、不活性雰囲気下で加熱焼成されて構成されていてもよい。この場合、バインダ成分の炭化によって、電極部内の電子伝導性を確保することができる。電子伝導助剤として用いられるカーボン部材を積極的に添加することなく、電極部内に電子伝導性を付与することが可能となる。   In the first and second aspects of the present invention described above, either one of the positive and negative electrode portions or the positive and negative electrode portions is formed of a printing paste, and is heated and fired in an inert atmosphere. May be. In this case, the electron conductivity in the electrode portion can be ensured by carbonization of the binder component. Electron conductivity can be imparted to the electrode portion without positively adding a carbon member used as an electron conduction aid.

以上説明したように、本発明に係る全固体電池によれば、全固体電池の電極層内において、固体電解質粒子間の粒界抵抗を低減しつつも、電極活物質の容量低下を抑制することができる。   As described above, according to the all solid state battery of the present invention, in the electrode layer of the all solid state battery, while suppressing the grain boundary resistance between the solid electrolyte particles, it suppresses the capacity reduction of the electrode active material. Can do.

また、電極層内への電解質のネットワークを形成できることから、電極活物質と固体電解質の接合する界面面積を飛躍的に拡大することができ、これにより、界面反応抵抗を下げることができ、全固体でも充放電動作が可能なものとなる。   In addition, since an electrolyte network can be formed in the electrode layer, the interface area where the electrode active material and the solid electrolyte are joined can be dramatically increased, thereby reducing the interfacial reaction resistance and reducing the total solid However, charge / discharge operation is possible.

以下、本発明に係る全固体電池の実施の形態例を図1〜図26を参照しながら説明する。   Embodiments of an all-solid battery according to the present invention will be described below with reference to FIGS.

本実施の形態に係る全固体電池10は、図1に示すように、電極活物質と固体電解質との組み合わせによる全固体電池であって、固体電解質12を含有するセラミックスからなる板状の固体電解質焼成体14と、この固体電解質焼成体14の一方の面に焼成一体化して形成され、電極活物質16と固体電解質12とを混合し、加熱焼成してなる第1電極層18(例えば正極)と、固体電解質焼成体14の他方の面に焼成一体化して形成され、電極活物質16と固体電解質12とを混合し、加熱焼成してなる第2電極層20(例えば負極)と、第1電極層18に電気的に接続された第1集電極24と、第2電極層20に電気的に接続された第2集電極26とを有する。   As shown in FIG. 1, an all-solid battery 10 according to the present embodiment is an all-solid battery that is a combination of an electrode active material and a solid electrolyte, and is a plate-like solid electrolyte made of ceramics containing a solid electrolyte 12. The first electrode layer 18 (for example, positive electrode) formed by firing and integrating with the fired body 14 and one surface of the solid electrolyte fired body 14, mixing the electrode active material 16 and the solid electrolyte 12, and heating and firing. A second electrode layer 20 (for example, a negative electrode) formed by mixing and firing the electrode active material 16 and the solid electrolyte 12 on the other surface of the solid electrolyte fired body 14; A first collector electrode 24 electrically connected to the electrode layer 18 and a second collector electrode 26 electrically connected to the second electrode layer 20 are included.

固体電解質焼成体14は、全固体電池10において、正極と負極とを隔てるように配置されるもので、実質的な固体電解質部分となる。固体電解質焼成体14を構成するセラミックスに含有される固体電解質12の種類については特に制限はなく、従来から公知の固体電解質を用いることができる。例えば可動イオンとしてのリチウムを含むものを好適に用いることができ、Li3PO4をはじめ、Li3PO4に窒素を混ぜたLiPON、Li2S−SiS2、Li2S−P25、Li2S−B23等のリチウムイオン伝導性ガラス状固体電解質や、これらのガラスにLiI等のハロゲン化リチウム、Li3PO4等のリチウム酸素酸塩をドープしたリチウムイオン伝導性固体電解質等を挙げることができる。なかでも、リチウムとチタンと酸素を含むチタン酸化物型の固体電解質、例えばLixLayTiO3(但し、xは0≦x≦1、yは0≦y≦1)及びナシコン型のリン酸化合物、例えばLi1+xAlxGe2-x(PO43やLi1+xAlxTi2-x(PO43(但し、xは0≦x≦1)等は酸素雰囲気下での焼成においても安定な性能を示すため好ましい。 The solid electrolyte fired body 14 is disposed so as to separate the positive electrode and the negative electrode in the all-solid-state battery 10 and is a substantial solid electrolyte portion. There is no restriction | limiting in particular about the kind of solid electrolyte 12 contained in the ceramics which comprise the solid electrolyte sintered body 14, A conventionally well-known solid electrolyte can be used. For example, a material containing lithium as a mobile ion can be preferably used, and Li 3 PO 4 , Li 3 PO 4 in which nitrogen is mixed with Li 3 PO 4 , Li 2 S—SiS 2 , Li 2 S—P 2 S 5. Lithium ion conductive glassy solid electrolytes such as Li 2 S—B 2 S 3 , and lithium ion conductive solids doped with lithium halides such as LiI and lithium oxyacid salts such as Li 3 PO 4 on these glasses An electrolyte etc. can be mentioned. In particular, a titanium oxide type solid electrolyte containing lithium, titanium and oxygen, for example, Li x La y TiO 3 (where x is 0 ≦ x ≦ 1, y is 0 ≦ y ≦ 1) and NASICON type phosphoric acid. Compounds such as Li 1 + x Al x Ge 2-x (PO 4 ) 3 and Li 1 + x Al x Ti 2-x (PO 4 ) 3 (where x is 0 ≦ x ≦ 1) are in an oxygen atmosphere. It is preferable because it exhibits stable performance even in baking at.

固体電解質焼成体14の厚みは、特に制限はないが、好ましくは5μm〜1mm、さらに好ましくは5μm〜100μmである。   The thickness of the solid electrolyte fired body 14 is not particularly limited, but is preferably 5 μm to 1 mm, and more preferably 5 μm to 100 μm.

第1電極層18及び第2電極層20は、固体電解質12を構成する多数の粉末粒子が焼結によってつながって、その表面から内部にかけて三次元的に連通する多数の細孔が形成された多孔体の形態となっており、さらに、この多孔体の多数の細孔に電極活物質16が充填されたような形態になっている。この固体電解質12を構成する多数の粉末粒子が焼結によってつながって構成される多孔体のことを「電解質ネットワーク」とも記す。   The first electrode layer 18 and the second electrode layer 20 are porous in which many powder particles constituting the solid electrolyte 12 are connected by sintering, and a large number of pores communicating three-dimensionally from the surface to the inside are formed. Further, the electrode active material 16 is filled in a large number of pores of the porous body. A porous body formed by sintering a large number of powder particles constituting the solid electrolyte 12 is also referred to as an “electrolyte network”.

第1電極層18及び第2電極層20の厚みは、特に制限はないが、好ましくは5μm〜1mm、さらに好ましくは5μm〜500μmである。   The thicknesses of the first electrode layer 18 and the second electrode layer 20 are not particularly limited, but are preferably 5 μm to 1 mm, and more preferably 5 μm to 500 μm.

固体電解質焼成体14に第1電極層18及び第2電極層20を形成する方法としては、第1電極層18を構成するための第1ペーストと、第2電極層20を構成するための第2ペーストとを固体電解質焼成体14にスクリーン印刷法等で印刷して第1電極層18及び第2電極層20となる電極パターンを形成する。   As a method for forming the first electrode layer 18 and the second electrode layer 20 on the solid electrolyte fired body 14, a first paste for constituting the first electrode layer 18 and a first paste for constituting the second electrode layer 20 are used. The two pastes are printed on the solid electrolyte fired body 14 by a screen printing method or the like to form electrode patterns to be the first electrode layer 18 and the second electrode layer 20.

第1ペースト及び第2ペーストは、後述する電極活物質材料の粉末と、固体電解質材料の粉末に、有機溶剤に溶解したバインダを適量投入し、混練して調製することができる。   The first paste and the second paste can be prepared by adding an appropriate amount of a binder dissolved in an organic solvent to an electrode active material material powder and a solid electrolyte material powder, which will be described later, and kneading them.

そして、固体電解質焼成体14に印刷形成された第1ペースト及び第2ペーストによる電極パターンを、固体電解質焼成体14を作製する際の温度よりも低い温度にて焼成することによって、第1電極層18及び第2電極層20とすることができる。このとき、第1電極層18及び第2電極層20は、多孔体の多数の細孔に電極活物質16が充填されたような形態となる。   Then, the first electrode layer is formed by firing the electrode pattern formed by printing the first paste and the second paste on the solid electrolyte fired body 14 at a temperature lower than the temperature at which the solid electrolyte fired body 14 is produced. 18 and the second electrode layer 20. At this time, the 1st electrode layer 18 and the 2nd electrode layer 20 become a form where the electrode active material 16 was filled with many pores of the porous body.

なお、上述の例では、固体電解質焼成体14に形成される第1電極層18及び第2電極層20を共に電極活物質16と固体電解質12とを混合したセラミックスにて構成した例を示したが、その他、図2に示す他の実施の形態に係る全固体電池10aのように、例えば第2電極層20を金属LiやLi合金等の金属膜22によって構成するようにしてもよい。   In the above example, the first electrode layer 18 and the second electrode layer 20 formed on the solid electrolyte fired body 14 are both made of ceramics in which the electrode active material 16 and the solid electrolyte 12 are mixed. However, as in the all-solid battery 10a according to another embodiment shown in FIG. 2, for example, the second electrode layer 20 may be constituted by a metal film 22 such as metal Li or Li alloy.

そして、本実施の形態において、第1電極層18及び第2電極層20は、これら第1電極層18及び第2電極層20に添加される固体電解質材料が非晶質ポリアニオン化合物であり、且つ、加熱焼成して構成されている。   In the present embodiment, the first electrode layer 18 and the second electrode layer 20 are such that the solid electrolyte material added to the first electrode layer 18 and the second electrode layer 20 is an amorphous polyanion compound, and It is configured by heating and baking.

また、本実施の形態において、第1電極層18及び第2電極層20は、これら第1電極層18及び第2電極層20に添加される固体電解質材料が非晶質リン酸化合物であり、且つ、加熱焼成して構成されている。   In the present embodiment, the first electrode layer 18 and the second electrode layer 20 are such that the solid electrolyte material added to the first electrode layer 18 and the second electrode layer 20 is an amorphous phosphate compound, And it is configured by heating and firing.

リン酸化合物からなる固体電解質材料は、加熱焼成した後にナシコン型である材料を用いることができ、特に、LAGP:Li1+xAlxGe2-x(PO43あるいは、LATP:Li1+xAlxTi2-x(PO43を用いることが好ましい。ここで、xは0≦x≦1である。 The solid electrolyte material made of a phosphoric acid compound can be a NASICON type material after being heated and fired. In particular, LAGP: Li 1 + x Al x Ge 2-x (PO 4 ) 3 or LATP: Li 1 It is preferable to use + x Al x Ti 2-x (PO 4 ) 3 . Here, x is 0 ≦ x ≦ 1.

リン酸化合物からなる電極活物質材料は、ナシコン型材料を用いることができ、特に、LVP:Lim2(PO43を用いることが好ましい。ここで、mは1≦m≦5である。 The electrode active material comprising a phosphate compound, may be a Nasicon type material, in particular, LVP: it is preferable to use a Li m V 2 (PO 4) 3. Here, m is 1 ≦ m ≦ 5.

リン酸化合物からなる正極活物質材料は、オリビン型材料を用いることができ、特に、LNP:LinNiPO4、LCP:LinCoPO4、LMP:LinMnPO4、LFP:LinFePO4のいずれかを用いることが好ましい。ここで、nは0≦n≦1である。 Positive electrode active material comprising a phosphate compound, may be an olivine type material, in particular, LNP: Li n NiPO 4, LCP: Li n CoPO 4, LMP: Li n MnPO 4, LFP: the Li n FePO 4 It is preferable to use either one. Here, n is 0 ≦ n ≦ 1.

また、本実施の形態においては、リン酸化合物からなる固体電解質材料と電極活物質材料として、共に加熱焼成した後にナシコン型である材料を用いることができる。この場合、固体電解質材料がLAGP:Li1+xAlxGe2-x(PO43、電極活物質材料が正極及び負極共にLVP:Lim2(PO43であるシンメトリ構造を用いることが好ましい。ここで、xは0≦x≦1であり、更に好ましくは0.3≦x≦0.7、mは1≦m≦5である。 In the present embodiment, as the solid electrolyte material made of a phosphoric acid compound and the electrode active material, a NASICON type material can be used after being heated and fired together. In this case, the solid electrolyte material is LAGP: Li 1 + x Al x Ge 2-x (PO 4 ) 3 , and the electrode active material is LVP: Li m V 2 (PO 4 ) 3 for both positive and negative electrodes. It is preferable to use it. Here, x is 0 ≦ x ≦ 1, more preferably 0.3 ≦ x ≦ 0.7, and m is 1 ≦ m ≦ 5.

このように、本実施の形態においては、全固体電池10の第1電極層18内及び第2電極層20内において、固体電解質粒子間の粒界抵抗を低減しつつも、電極活物質16との間の反応による異相生成を抑制することができる。   As described above, in the present embodiment, in the first electrode layer 18 and the second electrode layer 20 of the all solid state battery 10, the electrode active material 16 and the electrode active material 16 are reduced while reducing the intergranular resistance between the solid electrolyte particles. It is possible to suppress the generation of a heterogeneous phase due to the reaction between.

また、第1電極層18内及び第2電極層20内への電解質ネットワークを形成できることから、電極活物質16と固体電解質12の接合する界面面積を飛躍的に拡大することができ、これにより、界面反応抵抗を下げることができ、全固体電池10でも充放電動作が可能なものとなる。   Moreover, since the electrolyte network into the 1st electrode layer 18 and the 2nd electrode layer 20 can be formed, the interface area which the electrode active material 16 and the solid electrolyte 12 join can be expanded greatly, Thereby, The interface reaction resistance can be lowered, and the all-solid battery 10 can be charged and discharged.

さらに、第1電極層18及び第2電極層20は、加圧された状態で加熱焼成されて構成されていることが好ましい。これにより、加圧下での焼成により、電極部内部で緻密な微構造の構築が実現可能となり、電極活物質・固体電解質間の界面面積が増大し、界面電荷移動抵抗の低減効果が得られる。   Furthermore, the first electrode layer 18 and the second electrode layer 20 are preferably configured by being heated and fired in a pressurized state. As a result, by firing under pressure, it is possible to construct a dense microstructure inside the electrode part, and the interface area between the electrode active material and the solid electrolyte is increased, and the effect of reducing the interface charge transfer resistance is obtained.

加圧された状態で加熱焼成する方法は、高温と等方的な圧力を混合物に同時に加えながら熱処理を行う方法(HIP:Hot Isostatic Pressing)や、焼成治具に収容し、1軸方向にプレス加圧しながら焼成治具ごと熱処理する方法(ホットプレス法)等がある。HIPによる方法は、例えばアルゴン等のガスを圧力媒体として用いることで混合物に対して等方的な圧力を加えることができる。   The method of heating and baking in a pressurized state includes a method of performing heat treatment while simultaneously applying high temperature and isotropic pressure to the mixture (HIP: Hot Isostatic Pressing), and storing in a baking jig and pressing in a uniaxial direction. There is a method (hot press method) of heat-treating the entire firing jig while applying pressure. In the HIP method, for example, an isotropic pressure can be applied to the mixture by using a gas such as argon as a pressure medium.

また、第1電極層18及び/又は第2電極層20を、印刷ペーストにより形成し、Ar等の不活性雰囲気下で加熱焼成して構成することにより、バインダ成分の炭化によって、第1電極層18及び/又は第2電極層20内の電子伝導性を確保することができる。この場合、電子伝導助剤として用いられるカーボン部材を積極的に添加することなく、第1電極層18及び/又は第2電極層20内に電子伝導性を付与することが可能となる。   Further, the first electrode layer 18 and / or the second electrode layer 20 is formed by printing paste and is heated and fired in an inert atmosphere such as Ar, whereby the first electrode layer is formed by carbonization of the binder component. 18 and / or electron conductivity in the second electrode layer 20 can be ensured. In this case, electron conductivity can be imparted to the first electrode layer 18 and / or the second electrode layer 20 without positively adding a carbon member used as an electron conduction aid.

次に、本実施の形態に係る全固体電池10の実施例について詳細に説明する。   Next, examples of the all solid state battery 10 according to the present embodiment will be described in detail.

この実施例では、固体電解質材料と電極活物質材料として共にナシコン型リン酸化合物を用いた。具体的には、以下の通りである。
固体電解質材料:LAGP:Li1.5Al0.5Ge1.5(PO43
電極活物質材料:LVP:Li32(PO43
In this example, a NASICON phosphoric acid compound was used as both the solid electrolyte material and the electrode active material. Specifically, it is as follows.
Solid electrolyte material: LAGP: Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
Electrode active material: LVP: Li 3 V 2 (PO 4 ) 3

[結晶粉末の調製]
先ず、Li2CO3、GeO2、Al23及びNH42(PO43の粉末を化学量論組成で混合し、大気中、900℃で焼成する固相合成法により、固体電解質材料「Li1.5Al0.5Ge1.5(PO43」(LAGP)の結晶粉末(以下、LAGP結晶粉末を記す)を得た。
[Preparation of crystal powder]
First, a solid phase synthesis method in which powders of Li 2 CO 3 , GeO 2 , Al 2 O 3, and NH 4 H 2 (PO 4 ) 3 are mixed in a stoichiometric composition and fired at 900 ° C. in the atmosphere is performed. An electrolyte material “Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ” (LAGP) crystal powder (hereinafter referred to as LAGP crystal powder) was obtained.

また、Li2CO3、V23及びNH42(PO43の粉末を化学量論組成で混合し、Ar(アルゴン)気流中、930℃で焼成する固相合成法により、正極(負極)活物質「Li32(PO43」(LVP)の結晶粉末(以下、LVP結晶粉末を記す)を得た。 Further, by a solid phase synthesis method in which powders of Li 2 CO 3 , V 2 O 3 and NH 4 H 2 (PO 4 ) 3 are mixed in a stoichiometric composition and fired at 930 ° C. in an Ar (argon) stream. A crystal powder of the positive electrode (negative electrode) active material “Li 3 V 2 (PO 4 ) 3 ” (LVP) (hereinafter referred to as LVP crystal powder) was obtained.

[固体電解質焼成体の作製]
上述のようにして得られたLAGP結晶粉末を金型プレス成形により直径16mm、厚み約1mmの圧粉ペレットに成形した。プレスの成形圧力は500kg/cm2で行った。このペレットを大気雰囲気中840℃にて焼成して、LAGPの固体電解質焼成体ペレットを得た。
[Production of solid electrolyte fired body]
The LAGP crystal powder obtained as described above was molded into compacted pellets having a diameter of 16 mm and a thickness of about 1 mm by die press molding. The pressing pressure was 500 kg / cm 2 . The pellet was fired at 840 ° C. in an air atmosphere to obtain a LAGP solid electrolyte fired body pellet.

[ガラス粉末の調製(LAGP固体電解質のガラス化)]
固相法により得たLAGP結晶粉末をPt坩堝に入れ、1200℃に加熱した大気炉中に投入。1時間保持した後に取り出し氷水により急冷しガラス化したLAGPを得た。これを乳鉢、及びボールミル等で粉砕し、微粒化したLAGPガラス粉末を得た。
[Preparation of Glass Powder (Vitrification of LAGP Solid Electrolyte)]
The LAGP crystal powder obtained by the solid phase method is put in a Pt crucible and put in an atmospheric furnace heated to 1200 ° C. After holding for 1 hour, it was taken out and rapidly cooled with ice water to obtain a vitrified LAGP. This was pulverized with a mortar, a ball mill or the like to obtain a finely divided LAGP glass powder.

[固体電解質の焼結性の比較]
LAGP結晶粉末を使用した固体電解質ペレット(以下、結晶LAGP固体電解質と記す)と、LAGPガラス粉末を使用した固体電解質ペレット(以下、ガラス化LAGP固体電解質と記す)を作製し、それぞれをAr(アルゴン)雰囲気で異なる焼成温度による焼結状態の比較を行った。それぞれの破断面による断面SEM観察の結果を図3〜図9に示し、Ar雰囲気焼成下での焼成収縮をまとめたグラフを図11及び図12に示す。
[Comparison of sinterability of solid electrolytes]
Solid electrolyte pellets using LAGP crystal powder (hereinafter referred to as crystalline LAGP solid electrolyte) and solid electrolyte pellets using LAGP glass powder (hereinafter referred to as vitrified LAGP solid electrolyte) were prepared, and Ar (argon) ) Comparison of sintering states at different firing temperatures in the atmosphere. 3 to 9 show the results of cross-sectional SEM observation of the respective fracture surfaces, and FIGS. 11 and 12 show graphs summarizing the firing shrinkage under Ar atmosphere firing.

図3〜図5は、結晶LAGP固体電解質の焼成温度を600℃、700℃、800℃としたときの断面SEM写真を示す。図3〜図5において、各上段は×1000の倍率によるSEM写真を示し、各下段は×5000の倍率によるSEM写真を示す。図6〜図9は、ガラス化LAGP固体電解質の焼成温度を550℃、600℃、650℃、700℃としたときの断面SEM写真を示す。図6〜図9において、各上段は×1000の倍率によるSEM写真を示し、各下段は×5000の倍率によるSEM写真を示す。   3 to 5 show cross-sectional SEM photographs when the firing temperature of the crystalline LAGP solid electrolyte is 600 ° C, 700 ° C, and 800 ° C. 3 to 5, each upper row shows an SEM photograph at a magnification of × 1000, and each lower row shows an SEM photograph at a magnification of × 5000. 6 to 9 show cross-sectional SEM photographs when the firing temperature of the vitrified LAGP solid electrolyte is 550 ° C, 600 ° C, 650 ° C, and 700 ° C. 6-9, each upper stage shows the SEM photograph by the magnification of x1000, and each lower stage shows the SEM photograph by the magnification of x5000.

また、図10は、不活性雰囲気(N2雰囲気)中におけるガラス化LAGP固体電解質のDTA(示差熱分析)の特性を示す。この図10からガラス化LAGP固体電解質は、Tg(ガラス転移点)が約480℃、Tx(結晶化温度)が約590℃と、低い転移温度を有する材料であることがわかる。 FIG. 10 shows the DTA (differential thermal analysis) characteristics of the vitrified LAGP solid electrolyte in an inert atmosphere (N 2 atmosphere). From FIG. 10, it can be seen that the vitrified LAGP solid electrolyte is a material having a low transition temperature of Tg (glass transition point) of about 480 ° C. and Tx (crystallization temperature) of about 590 ° C.

さらに、図11は、結晶LAGP固体電解質の焼成温度に対する焼成収縮(%)の変化と固体電解質の内部インピーダンスをみたものである。図12は、ガラス化LAGP固体電解質の焼成温度に対する焼成収縮(%)の変化と固体電解質の内部インピーダンスをみたものである。LAGP固体電解質の焼成収縮を「●」のプロットで示し、固体電解質の内部インピーダンスを粒内抵抗と粒界抵抗に分けて棒グラフにて示した。   Further, FIG. 11 shows changes in the firing shrinkage (%) with respect to the firing temperature of the crystalline LAGP solid electrolyte and the internal impedance of the solid electrolyte. FIG. 12 shows changes in the firing shrinkage (%) with respect to the firing temperature of the vitrified LAGP solid electrolyte and the internal impedance of the solid electrolyte. The firing shrinkage of the LAGP solid electrolyte is shown by a plot “●”, and the internal impedance of the solid electrolyte is shown by a bar graph divided into intragranular resistance and grain boundary resistance.

図3〜図5及び図11から、結晶LAGP固体電解質では700℃までは粉末粒子の形状がそのまま残り焼結が進んでおらず、内部インピーダンスにおいても粒界抵抗が非常に高いままであることがわかる。一方、LAGPガラス粉末を用いた水準(ガラス化LAGP固体電解質)では、図6〜図9及び図12に示すように、600℃以上で焼成収縮が進んでいて、粒子間の結合が良好に行われており、内部インピーダンスにおいても粒界抵抗が大幅に低下していることがわかる。   From FIG. 3 to FIG. 5 and FIG. 11, in the crystalline LAGP solid electrolyte, the shape of the powder particles remains as it is up to 700 ° C., and the sintering does not proceed, and the grain boundary resistance remains very high even in the internal impedance. Recognize. On the other hand, at the level using LAGP glass powder (vitrified LAGP solid electrolyte), as shown in FIG. 6 to FIG. 9 and FIG. It can be seen that the grain boundary resistance is greatly reduced even in the internal impedance.

[電解質−電極活物質間の反応性と電極活物質の充放電容量との関係]
次に、LAGP結晶粉末とLVP結晶粉末の混合物に、後に電解液による評価を行うためにアセチレンブラックを電子伝導助剤として加え、混合した混合粉末ペレットを作製し、Ar雰囲気で異なる焼成温度により焼成して焼成体を得た。得られた焼成体で、まず、XRD(X線回折)測定を行った。測定結果を図13に示す。この図13において、■で示す部分はLVPの結晶構造を同定するLi3Fe2(PO43のピークを示し、▲で示す部分はLAGPの結晶構造を同定するLiGe2(PO43のピークを示す。なお、LAGPやLVPはICDDデータの登録がないため、同じ結晶構造を持つこれら物質で同定を行った。この測定結果から、LAGP結晶粉末で焼結が確認された700℃及び800℃では、LAGPとLVPに起因するピーク以外の複数のリン酸縮合塩由来の異相ピークが発生しはじめることが確認された。
[Relationship between reactivity between electrolyte and electrode active material and charge / discharge capacity of electrode active material]
Next, acetylene black is added to the mixture of the LAGP crystal powder and the LVP crystal powder as an electron conduction auxiliary agent for later evaluation with an electrolytic solution to produce a mixed powder pellet, which is fired at different firing temperatures in an Ar atmosphere. Thus, a fired body was obtained. First, XRD (X-ray diffraction) measurement was performed on the obtained fired body. The measurement results are shown in FIG. In FIG. 13, the part indicated by ■ indicates the peak of Li 3 Fe 2 (PO 4 ) 3 that identifies the crystal structure of LVP, and the part indicated by ▲ indicates LiGe 2 (PO 4 ) 3 that identifies the crystal structure of LAGP. The peak is shown. In addition, since LAGP and LVP have no registration of ICDD data, identification was performed with these substances having the same crystal structure. From this measurement result, it was confirmed that at 700 ° C. and 800 ° C. where the sintering was confirmed with the LAGP crystal powder, heterogeneous peaks derived from a plurality of phosphate condensed salts other than the peaks caused by LAGP and LVP began to occur. .

次に、電極活物質の充放電容量と正極活物質のピーク強度、及び異相ピーク強度との関係を確認した。具体的には、各温度で焼成した混合粉末の焼成体ペレットを粉砕して用い、これを正極として、電解液(1モル/リットル濃度のLiClO4/EC+DEC(体積比1:1)溶液)と負極に金属Liを用いた液系リチウムイオン電池と同様の構成により、正極活物質としての充放電能力(容量)を測定した。ちなみにLVPは充放電可能な理論容量がおよそ130mAh/gとされる材料である。この測定結果をXRD測定(図13参照)で確認した正極活物質のメインピーク(a)のピーク強度(ピーク高さ)と、異相ピークの中で同定された、図13において○で示すLiVP27のメインピーク(b)の強度(ピーク高さ)との関係を図14に示す。この図14において、正極活物質の充放電容量の変化を「■」のプロットで示す。また、(a)の正極活物質のメインピーク強度及び(b)の異相ピーク強度を棒グラフで示す。この測定結果から、正極活物質自体のピーク強度低下、及び正極活物質を構成する物質:バナジウムに関係する異相の出現と電極活物質の充放電容量の低下とが一致し、高温焼成時の固体電解質−電極活物質間の反応による容量低下が電極活物質の充放電能力の低下を引き起こしているという実態が確認された。おそらく電極活物質が先に同定されたLiVP27に変化しているものと考えられる。そして、LAGP結晶粉末で焼結の進行が確認された700℃、及び800℃では、電極活物質の本来充放電が可能とされる理論容量を大きく下回る充放電容量までしか得られないことが確認できた。 Next, the relationship between the charge / discharge capacity of the electrode active material, the peak intensity of the positive electrode active material, and the heterophase peak intensity was confirmed. Specifically, the sintered powder pellets of the mixed powder fired at each temperature are pulverized and used as a positive electrode, and an electrolyte (1 mol / liter concentration LiClO 4 / EC + DEC (volume ratio 1: 1) solution) and The charge / discharge capacity (capacity) as a positive electrode active material was measured with the same configuration as a liquid lithium ion battery using metal Li as the negative electrode. Incidentally, LVP is a material whose chargeable / dischargeable theoretical capacity is about 130 mAh / g. The results of this measurement were confirmed by XRD measurement (see FIG. 13). The peak intensity (peak height) of the main peak (a) of the positive electrode active material and the LiVP 2 identified by ○ in FIG. The relationship with the intensity (peak height) of the main peak (b) of O 7 is shown in FIG. In FIG. 14, the change in the charge / discharge capacity of the positive electrode active material is indicated by a plot of “■”. Further, the main peak intensity of the positive electrode active material (a) and the heterophasic peak intensity (b) are shown in a bar graph. From this measurement result, the decrease in the peak intensity of the positive electrode active material itself, the appearance of the heterogeneous phase related to the material constituting the positive electrode active material: vanadium, and the decrease in the charge / discharge capacity of the electrode active material coincide, and the solid at high temperature firing It was confirmed that the capacity decrease due to the reaction between the electrolyte and the electrode active material caused the charge / discharge capacity of the electrode active material to decrease. Probably, the electrode active material is considered to have changed to LiVP 2 O 7 previously identified. And at 700 ° C and 800 ° C where the progress of the sintering was confirmed with the LAGP crystal powder, it was confirmed that only a charge / discharge capacity significantly lower than the theoretical capacity at which the charge / discharge of the electrode active material can be achieved is obtained. did it.

今度は、LAGPガラス粉末とLVP結晶粉末の混合物に、後に電解液による評価を行うためにアセチレンブラックを電子伝導助剤として加え、混合した混合粉末ペレットを作製し、Ar雰囲気で異なる焼成温度により焼成して焼成体を得た。得られた焼成体のXRD(X線回折)測定と、この焼成体を用いて電解液の系で測定した電極活物質の充放電能力評価を行った。XRD測定結果を図15に示し、充放電能力評価を図16に示す。プロットの見方は図13及び図14と同様である。   This time, acetylene black is added to the mixture of the LAGP glass powder and the LVP crystal powder as an electron conduction auxiliary agent for later evaluation with an electrolytic solution to produce a mixed powder pellet, which is fired at different firing temperatures in an Ar atmosphere. Thus, a fired body was obtained. The XRD (X-ray diffraction) measurement of the obtained fired body and the charge / discharge capacity evaluation of the electrode active material measured in the electrolyte system using this fired body were performed. An XRD measurement result is shown in FIG. 15, and charge / discharge capability evaluation is shown in FIG. The way of viewing the plot is the same as in FIGS. 13 and 14.

図15からもわかるように、600℃近傍では、LAGPガラス粉末で粒子間の良好な結合が確認でき、しかも、図16にも示すように、電極活物質のピーク強度が維持され、且つ、異相の形成がなく、電極活物質が本来充放電可能とされる理論容量に近い充放電容量が確認できた。この結果、ポリアニオンが共通であるリン酸化合物からなるこれら材料の組み合わせが、固体電解質−電極活物質間の反応による電極活物質が容量低下を生じる温度>固体電解質の焼成収縮開始温度の関係を有する材料系であることが見出された。   As can be seen from FIG. 15, in the vicinity of 600 ° C., good bonding between the particles can be confirmed with the LAGP glass powder, and the peak intensity of the electrode active material is maintained as shown in FIG. Thus, the charge / discharge capacity close to the theoretical capacity at which the electrode active material was originally chargeable / dischargeable was confirmed. As a result, the combination of these materials composed of a phosphate compound having a common polyanion has the relationship that the temperature at which the electrode active material undergoes capacity reduction due to the reaction between the solid electrolyte and the electrode active material> the firing shrinkage start temperature of the solid electrolyte. It was found to be a material system.

[全固体電池の作製]
次に、これら材料の組み合わせにより、電極活物質と固体電解質が混合された電極であって、電極に添加する当該固体電解質材料が非晶質ポリアニオン化合物でリン酸化合物であるLAGP固体電解質を用い、固体電解質と電極活物質の混合電極からなり、加熱焼成してなる電極を有する全固体電池を作製した。比較例としては、結晶質のLAGP固体電解質を用いて全固体電池を作製した。実施例及び比較例の具体的な構成を以下に示す。
[Production of all-solid-state batteries]
Next, an electrode in which an electrode active material and a solid electrolyte are mixed by a combination of these materials, and the solid electrolyte material added to the electrode is an amorphous polyanion compound and a LAGP solid electrolyte that is a phosphate compound, An all-solid battery having an electrode formed of a mixed electrode of a solid electrolyte and an electrode active material and having been heated and fired was produced. As a comparative example, an all-solid battery was fabricated using a crystalline LAGP solid electrolyte. Specific configurations of Examples and Comparative Examples are shown below.

(実施例1)
LAGPガラス粉末と、LVP結晶粉末に、有機溶剤に溶解したバインダを適量投入し乳鉢で混練してスクリーン印刷用の電極ペーストとした。基体となる直径13mm、厚み1mmの固体電解質焼成体の両面に、上述のように調製した電極ペーストを用いて直径12mmの電極パターンを印刷・乾燥して、正極及び負極の電極を形成した。
(Example 1)
An appropriate amount of a binder dissolved in an organic solvent was added to LAGP glass powder and LVP crystal powder and kneaded in a mortar to obtain an electrode paste for screen printing. A positive electrode and a negative electrode were formed by printing and drying an electrode pattern having a diameter of 12 mm on both surfaces of a solid electrolyte fired body having a diameter of 13 mm and a thickness of 1 mm as a substrate, using the electrode paste prepared as described above.

次に、Ar雰囲気の焼成炉により600℃で2時間焼成して、電極を固体電解質基体の両面に焼付した。   Next, the electrode was baked on both surfaces of the solid electrolyte substrate by baking at 600 ° C. for 2 hours in a baking furnace in an Ar atmosphere.

次に、得られた焼成体の両方の表面に、集電の目的で厚み約500オングストロームの金(Au)スパッタ膜を形成した。 Next, a gold (Au) sputtered film having a thickness of about 500 angstroms was formed on both surfaces of the obtained fired body for the purpose of current collection.

焼成後の正極電極膜厚は約20μmで、約2mgの活物質量であった。この正極活物質量により単位重量当たりの充放電容量を算出しグラフ化した。   The film thickness of the positive electrode after firing was about 20 μm, and the amount of active material was about 2 mg. The charge / discharge capacity per unit weight was calculated from the amount of the positive electrode active material and plotted.

(実施例2)
LAGPガラス粉末と、LVP結晶粉末に、有機溶剤に溶解したバインダを適量投入し乳鉢で混練してスクリーン印刷用の電極ペーストとした。上述のように基体となる固体電解質焼成体の両面に、調製した電極ペーストを用いて電極パターンを印刷・乾燥して、正極及び負極の電極を形成した。
(Example 2)
An appropriate amount of a binder dissolved in an organic solvent was added to LAGP glass powder and LVP crystal powder and kneaded in a mortar to obtain an electrode paste for screen printing. As described above, the electrode pattern was printed and dried using the prepared electrode paste on both surfaces of the solid electrolyte fired body to be the base, thereby forming positive and negative electrodes.

次に、Ar雰囲気の焼成炉により600℃で40時間焼成して、電極を固体電解質基体の両面に焼付し、得られた焼成体の両表面にAuスパッタ膜を形成した。   Next, firing was performed at 600 ° C. for 40 hours in a firing furnace in an Ar atmosphere, the electrodes were baked on both surfaces of the solid electrolyte substrate, and Au sputtered films were formed on both surfaces of the obtained fired body.

同じく、焼成後の正極電極膜厚は約20μmで、約2mgの活物質量であった。   Similarly, the thickness of the positive electrode after firing was about 20 μm, and the amount of active material was about 2 mg.

(比較例1)
LAGP結晶粉末と、LVP結晶粉末に、有機溶剤に溶解したバインダを適量投入し乳鉢で混練してスクリーン印刷用の電極ペーストとした。上述のように基体となる固体電解質焼成体の両面に、調製した電極ペーストを用いて電極パターンを印刷・乾燥して、正極及び負極の電極を形成した。
(Comparative Example 1)
An appropriate amount of a binder dissolved in an organic solvent was added to the LAGP crystal powder and the LVP crystal powder, and kneaded in a mortar to obtain an electrode paste for screen printing. As described above, the electrode pattern was printed and dried using the prepared electrode paste on both surfaces of the solid electrolyte fired body to be the base, thereby forming positive and negative electrodes.

次に、Ar雰囲気の焼成炉により600℃で2時間焼成して、電極を固体電解質基体の両面に焼付し、得られた焼成体の両表面にAuスパッタ膜を形成した。   Next, firing was performed at 600 ° C. for 2 hours in a firing furnace in an Ar atmosphere, and the electrodes were baked on both surfaces of the solid electrolyte substrate, and Au sputtered films were formed on both surfaces of the obtained fired body.

同じく焼成後の正極電極膜厚は約20μmで、約2mgの活物質量であった。   Similarly, the film thickness of the positive electrode after firing was about 20 μm, and the amount of active material was about 2 mg.

(比較例2)
LAGP結晶粉末と、LVP結晶粉末に、有機溶剤に溶解したバインダを適量投入し乳鉢で混練してスクリーン印刷用の電極ペーストとした。上述のように基体となる固体電解質焼成体の両面に、調製した電極ペーストを用いて電極パターンを印刷・乾燥して、正極及び負極の電極を形成した。
(Comparative Example 2)
An appropriate amount of a binder dissolved in an organic solvent was added to the LAGP crystal powder and the LVP crystal powder, and kneaded in a mortar to obtain an electrode paste for screen printing. As described above, the electrode pattern was printed and dried using the prepared electrode paste on both surfaces of the solid electrolyte fired body to be the base, thereby forming positive and negative electrodes.

次に、Ar雰囲気の焼成炉により700℃で2時間焼成して、電極を固体電解質基体の両面に焼付し、得られた焼成体の両表面にAuスパッタ膜を形成した。   Next, firing was performed at 700 ° C. for 2 hours in a firing furnace in an Ar atmosphere, and the electrodes were baked on both surfaces of the solid electrolyte base, and Au sputtered films were formed on both surfaces of the obtained fired body.

同じく焼成後の正極電極膜厚は約20μmで、約2mgの活物質量であった。   Similarly, the film thickness of the positive electrode after firing was about 20 μm, and the amount of active material was about 2 mg.

[交流インピーダンスの測定]
交流インピーダンスの測定は、ソーラートロン社製の1287型ポテンショ/ガルバノスタット(商品名)と1255B型周波数応答アナライザ(商品名)を組合せて使用した。測定周波数は、1MHzから0.1Hzまでとし、測定信号電圧10mVにて測定した。
[Measurement of AC impedance]
The measurement of AC impedance was performed using a combination of Solartron 1287 type potentio / galvanostat (trade name) and 1255B type frequency response analyzer (trade name). The measurement frequency was 1 MHz to 0.1 Hz, and measurement was performed at a measurement signal voltage of 10 mV.

[充放電特性の評価]
得られた全固体電池に、CCCV(Constant Current Constant Voltage)方式にて充放電を行い、全固体電池の充放電評価を行った。具体的には、実施例1及び実施例2については、定電流9μA/cm2にて2.4Vカットオフまで充電後、2.4V定電圧にて0.9μA/cm2の電流値まで充電し、放電特性は、定電流9μA/cm2にて0.1Vカットオフまで放電後、0.1V定電圧にて0.9μA/cm2の電流値まで放電した。比較例1及び比較例2については、定電流0.9μA/cm2にて2.4Vカットオフまで充電後、2.4V定電圧にて0.45μA/cm2の電流値まで充電し、放電特性は、定電流0.9μA/cm2にて0.1Vカットオフまで放電後、0.1V定電圧にて0.45μA/cm2の電流値まで放電した。
[Evaluation of charge / discharge characteristics]
The obtained all solid state battery was charged and discharged by a CCCV (Constant Current Constant Voltage) method, and the charge and discharge evaluation of the all solid state battery was performed. Specifically, for Examples 1 and 2, was charged at a constant current 9 .mu.A / cm 2 to 2.4V cutoff charged at 2.4V constant voltage until the current value of 0.9μA / cm 2 and, discharge characteristics, and was discharged at a constant current of 9 .mu.A / cm 2 to 0.1V cutoff was discharged at 0.1V constant voltage until the current value of 0.9μA / cm 2. Comparative Example 1 and Comparative Example 2, was charged at a constant current 0.9μA / cm 2 to 2.4V cutoff was charged at 2.4V constant voltage until the current value of 0.45μA / cm 2, discharge properties, and was discharged at a constant current of 0.9μA / cm 2 to 0.1V cutoff was discharged at 0.1V constant voltage until the current value of 0.45μA / cm 2.

(評価)
得られた混合電極からなる全固体セラミックス電池セルについて、電気的な評価には、真空加熱乾燥した上でグローブボックス内で2032型のコイン電池型パッケージに組み込んだ状態で行った。実施例1、実施例2、比較例1及び比較例2の充放電特性を図17、図19、図21及び図23に示す。また、実施例1、実施例2、比較例1及び比較例2の交流インピーダンスを図18、図20、図22及び図24に示す。交流インピーダンス波形では、横軸にインピーダンスの実部Z’、縦軸にインピーダンスの虚部Z’’を示し、測定周波数1kHz及び1Hzを●で示した。
(Evaluation)
The all-solid-state ceramic battery cell comprising the obtained mixed electrode was subjected to electrical evaluation in a state where it was vacuum-heated and dried and incorporated in a 2032 type coin battery type package in a glove box. The charge / discharge characteristics of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 are shown in FIGS. 17, 19, 21 and 23. Moreover, the alternating current impedance of Example 1, Example 2, Comparative example 1, and Comparative example 2 is shown in FIG.18, FIG.20, FIG.22 and FIG. In the AC impedance waveform, the horizontal axis indicates the real part Z ′ of the impedance, the vertical axis indicates the imaginary part Z ″ of the impedance, and the measurement frequencies of 1 kHz and 1 Hz are indicated by ●.

(考察)
充放電容量を比較すると、比較例1及び2は共に、内部抵抗が高く充放電もほとんどできない状態であった。比較例1では交流インピーダンス波形より、粒界抵抗に相当する1kHzより高周波側で形成される円弧が大きいことから、固体電解質の粒子間接合が十分出来ていない。そのため、固体電解質−電極活物質間の反応界面面積も不十分であることに起因し、充放電がほとんど出来ていないと考えられる。一方の比較例2では、交流インピーダンス波形より、反応界面抵抗に相当する1kHz以下の低周波側で形成される円弧が大きいことから、固体電解質−電極活物質の接合界面における異相の生成や、電極活物質の容量低下が原因で充放電がほとんど出来ていないと考えられる。
(Discussion)
Comparing the charge / discharge capacities, both Comparative Examples 1 and 2 were in a state where internal resistance was high and charge / discharge could hardly be performed. In Comparative Example 1, since the arc formed on the higher frequency side than 1 kHz corresponding to the grain boundary resistance is larger than the AC impedance waveform, the solid electrolyte is not sufficiently bonded between particles. Therefore, it is considered that charging / discharging is hardly performed due to the insufficient reaction interface area between the solid electrolyte and the electrode active material. On the other hand, in Comparative Example 2, since the arc formed on the low frequency side of 1 kHz or less corresponding to the reaction interface resistance is larger than the AC impedance waveform, the generation of a different phase at the solid electrolyte-electrode active material junction interface, It is thought that charging / discharging is hardly performed due to a decrease in the capacity of the active material.

一方、実施例1では、内部抵抗が低く充放電も約20mAh/gに、さらに実施例2では約40mAh/gと明らかに差の生じる結果となった。これは、交流インピーダンス波形から、粒界抵抗、界面反応抵抗の両方で低インピーダンスを実現、固体電解質と電極活物質の間で、反応による異相生成や活物質の容量低下といった異常を生じない領域において、電極層内の固体電解質間の粒子間が結合し、同時に固体電解質と電極活物質の接合界面も良好に形成され、その面積が拡大したことで界面反応抵抗が低減されたことにより、内部抵抗が低減できた結果、充放電が可能になったものと考えられる。   On the other hand, in Example 1, the internal resistance was low and charging / discharging was also about 20 mAh / g, and in Example 2, the result was clearly about 40 mAh / g. This is because the AC impedance waveform realizes low impedance in both grain boundary resistance and interfacial reaction resistance, and in the region where no abnormalities such as generation of heterogeneous phase due to reaction or capacity reduction of active material occur between the solid electrolyte and electrode active material In addition, the particles between the solid electrolytes in the electrode layer are bonded, and at the same time, the bonding interface between the solid electrolyte and the electrode active material is well formed. As a result, it is considered that charging / discharging became possible.

(実施例3)
次に、実施例3に係る全固体電池を作製して、その充放電特性及び交流インピーダンス特性を測定した。
(Example 3)
Next, an all solid state battery according to Example 3 was produced, and its charge / discharge characteristics and AC impedance characteristics were measured.

実施例3に係る全固体電池は、先ず、上述した実施例1と同様に、LAGPガラス粉末と、LVP結晶粉末に、有機溶剤に溶解したバインダを適量投入し、乳鉢で混練してスクリーン印刷用の電極ペーストとした。基体となる直径13mm、厚み1mmの固体電解質焼成体の両面に、上述のように調製した電極ペーストを用いて直径12mmの電極パターンを印刷・乾燥して、正極及び負極の電極を形成した。   In the all solid state battery according to Example 3, first, as in Example 1 described above, an appropriate amount of a binder dissolved in an organic solvent is added to LAGP glass powder and LVP crystal powder, and the mixture is kneaded in a mortar for screen printing. Electrode paste. A positive electrode and a negative electrode were formed by printing and drying an electrode pattern having a diameter of 12 mm on both surfaces of a solid electrolyte fired body having a diameter of 13 mm and a thickness of 1 mm as a substrate, using the electrode paste prepared as described above.

次に、Ar雰囲気のホットプレス炉により600℃で40Hrの焼成プロファイルで、荷重500kg/cm2を厚み方向に加えた状態で焼成を実施し、電極部を固体電解質基体の両面に焼き付けた。得られた焼成体の両方の表面に、集電の目的で厚み約500オングストロームの金(Au)スパッタ膜を形成した。 Next, firing was performed in a hot press furnace in an Ar atmosphere with a firing profile of 600 hours at 600 ° C. with a load of 500 kg / cm 2 applied in the thickness direction, and the electrode portions were baked on both surfaces of the solid electrolyte substrate. A gold (Au) sputtered film having a thickness of about 500 angstroms was formed on both surfaces of the obtained fired body for the purpose of current collection.

焼成後の正極電極膜厚は、実施例1と同様に、約20μmで、約2mgの活物質量であった。   The film thickness of the positive electrode after firing was about 20 μm as in Example 1, and the amount of active material was about 2 mg.

[交流インピーダンスの測定]
交流インピーダンスの測定は、実施例1と同様に、ソーラートロン社製の1287型ポテンショ/ガルバノスタット(商品名)と1255B型周波数応答アナライザ(商品名)を組合せて使用した。測定周波数は、1MHzから0.1Hzまでとし、測定信号電圧10mVにて測定した。
[Measurement of AC impedance]
In the same manner as in Example 1, the AC impedance was measured by combining a 1287 type potentio / galvanostat (trade name) manufactured by Solartron and a 1255B type frequency response analyzer (trade name). The measurement frequency was 1 MHz to 0.1 Hz, and measurement was performed at a measurement signal voltage of 10 mV.

[充放電特性の評価]
得られた全固体電池に、CCCV方式にて充放電を行い、全固体電池の充放電評価を行った。具体的には、実施例3について、定電流90μA/cm2にて2.4Vカットオフまで充電後、2.4V定電圧にて0.9μA/cm2の電流値まで充電し、放電特性は、定電流90μA/cm2にて0.1Vカットオフまで放電後、0.1V定電圧にて0.9μA/cm2の電流値まで放電した。
[Evaluation of charge / discharge characteristics]
The obtained all solid state battery was charged and discharged by the CCCV method, and the charge and discharge evaluation of the all solid state battery was performed. Specifically, for example 3, was charged at a constant current 90 .mu.A / cm 2 to 2.4V cutoff was charged at 2.4V constant voltage until the current value of 0.9μA / cm 2, discharge characteristics , and was discharged at a constant current of 90 .mu.A / cm 2 to 0.1V cutoff was discharged at 0.1V constant voltage until the current value of 0.9μA / cm 2.

(評価)
得られた混合電極からなる全固体セラミックス電池セルについて、電気的な評価には、真空加熱乾燥した上でグローブボックス内で2032型のコイン電池型パッケージに組み込んだ状態で行った。実施例3の充放電特性を図25に示し、交流インピーダンスを図26に示す。交流インピーダンス波形では、横軸にインピーダンスの実部Z’、縦軸にインピーダンスの虚部Z’’を示し、測定周波数1kHz及び1Hzを●で示した。
(Evaluation)
The all-solid-state ceramic battery cell comprising the obtained mixed electrode was subjected to electrical evaluation in a state where it was vacuum-heated and dried and incorporated in a 2032 type coin battery type package in a glove box. The charge / discharge characteristics of Example 3 are shown in FIG. 25, and the AC impedance is shown in FIG. In the AC impedance waveform, the horizontal axis indicates the real part Z ′ of the impedance, the vertical axis indicates the imaginary part Z ″ of the impedance, and the measurement frequencies of 1 kHz and 1 Hz are indicated by ●.

(考察)
実施例3は、図26からもわかるように、内部抵抗が低減されている。得られた内部抵抗低減効果は、内部抵抗における反応抵抗(界面電荷移動抵抗)部分での低下がほとんどを占めていることから、緻密化が進み、電極活物質と固体電解質との接合界面面積の拡大によるものと考えられる。
(Discussion)
In Example 3, as can be seen from FIG. 26, the internal resistance is reduced. The reduction effect of the internal resistance obtained is mostly due to the decrease in the reaction resistance (interfacial charge transfer resistance) portion of the internal resistance, so that the densification has progressed and the junction interface area between the electrode active material and the solid electrolyte is reduced. This is thought to be due to expansion.

なお、本発明に係る全固体電池は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The all-solid-state battery according to the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

本実施の形態に係る全固体電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the all-solid-state battery which concerns on this Embodiment. 本実施の形態に係る全固体電池の変形例の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the modification of the all-solid-state battery which concerns on this Embodiment. 結晶LAGP固体電解質をAr雰囲気で異なる焼成温度(600℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintered state by the sintering temperature (600 degreeC) from which crystal | crystallization LAGP solid electrolyte differs by Ar atmosphere. 結晶LAGP固体電解質をAr雰囲気で異なる焼成温度(700℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintering state by the sintering temperature (700 degreeC) from which a crystalline LAGP solid electrolyte is different in Ar atmosphere. 結晶LAGP固体電解質をAr雰囲気で異なる焼成温度(800℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintered state by the sintering temperature (800 degreeC) from which crystal | crystallization LAGP solid electrolyte differs by Ar atmosphere. ガラス化LAGP固体電解質をAr雰囲気で異なる焼成温度(550℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintering state by the calcination temperature (550 degreeC) from which vitrification LAGP solid electrolyte is different in Ar atmosphere. ガラス化LAGP固体電解質をAr雰囲気で異なる焼成温度(600℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintering state by the calcination temperature (600 degreeC) from which vitrification LAGP solid electrolyte differs by Ar atmosphere. ガラス化LAGP固体電解質をAr雰囲気で異なる焼成温度(650℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintering state by the calcination temperature (650 degreeC) from which vitrification LAGP solid electrolyte differs by Ar atmosphere. ガラス化LAGP固体電解質をAr雰囲気で異なる焼成温度(700℃)による焼結状態の断面SEM写真を示す図である。It is a figure which shows the cross-sectional SEM photograph of the sintering state by vitrification temperature (700 degreeC) from which vitrification LAGP solid electrolyte is different in Ar atmosphere. ガラス化LAGP固体電解質のDTA(示差熱分析)の特性を示すグラフである。It is a graph which shows the characteristic of DTA (differential thermal analysis) of vitrification LAGP solid electrolyte. 結晶LAGP固体電解質の焼成温度に対する焼成収縮の変化と内部インピーダンスの関係をみた特性図である。It is the characteristic view which looked at the relationship of the baking shrinkage with respect to the calcination temperature of a crystalline LAGP solid electrolyte, and the internal impedance. ガラス化LAGP固体電解質の焼成温度に対する焼成収縮の変化と内部インピーダンスの関係をみた特性図である。It is the characteristic view which looked at the relationship of the baking shrinkage with respect to the calcination temperature of a vitrified LAGP solid electrolyte, and the internal impedance. LAGP結晶粉末とLVP結晶粉末の混合粉末ペレットによる焼成体のXRD(X線回折)特性を示す図である。It is a figure which shows the XRD (X-ray diffraction) characteristic of the sintered body by the mixed powder pellet of a LAGP crystal powder and a LVP crystal powder. LAGP結晶粉末とLVP結晶粉末の混合粉末ペレットの焼成体による正極活物質のメインピークのピーク強度(ピーク高さ)と、異相ピークの中で同定されたLiVP27のメインピークの強度(ピーク高さ)との関係と、正極活物質の放電容量の変化を示す特性図である。The intensity (peak height) of the main peak of the positive electrode active material by the sintered body of the mixed powder pellet of LAGP crystal powder and LVP crystal powder, and the intensity (peak) of the main peak of LiVP 2 O 7 identified in the heterophasic peak FIG. 6 is a characteristic diagram showing a relationship between the height and the discharge capacity of the positive electrode active material. LAGPガラス粉末とLVP結晶粉末の混合粉末ペレットによる焼成体のXRD(X線回折)特性を示す図である。It is a figure which shows the XRD (X-ray diffraction) characteristic of the sintered body by the mixed powder pellet of a LAGP glass powder and a LVP crystal powder. LAGPガラス粉末とLVP結晶粉末の混合粉末ペレットの焼成体による正極活物質のメインピークのピーク強度(ピーク高さ)と、異相ピークの中で同定されたLiVP27のメインピークの強度(ピーク高さ)との関係と、正極活物質の放電容量の変化を示す特性図である。The peak intensity (peak height) of the positive electrode active material by the fired body of the mixed powder pellet of LAGP glass powder and LVP crystal powder, and the intensity (peak) of the main peak of LiVP 2 O 7 identified in the heterophasic peak FIG. 6 is a characteristic diagram showing a relationship between the height and the discharge capacity of the positive electrode active material. LAGPガラス粉末を用いた実施例1の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of Example 1 using a LAGP glass powder. 実施例1の交流インピーダンス特性を示すグラフである。3 is a graph showing AC impedance characteristics of Example 1. LAGPガラス粉末を用いた実施例2の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of Example 2 using a LAGP glass powder. 実施例2の交流インピーダンス特性を示すグラフである。6 is a graph showing AC impedance characteristics of Example 2. LAGP結晶粉末を用いた比較例1の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the comparative example 1 using a LAGP crystal powder. 比較例1の交流インピーダンス特性を示すグラフである。5 is a graph showing AC impedance characteristics of Comparative Example 1. LAGP結晶粉末を用いた比較例2の充放電特性を示すグラフである。It is a graph which shows the charging / discharging characteristic of the comparative example 2 using a LAGP crystal powder. 比較例2の交流インピーダンス特性を示すグラフである。10 is a graph showing AC impedance characteristics of Comparative Example 2. 実施例3の充放電特性を示すグラフである。6 is a graph showing charge / discharge characteristics of Example 3. 実施例3の交流インピーダンス特性を示すグラフである。6 is a graph showing AC impedance characteristics of Example 3.

符号の説明Explanation of symbols

10、10a…全固体電池 12…固体電解質
14…固体電解質焼成体 16…電極活物質
18…第1電極層(正極) 20…第2電極層(負極)
24…第1集電極 26…第2集電極
DESCRIPTION OF SYMBOLS 10, 10a ... All-solid-state battery 12 ... Solid electrolyte 14 ... Solid electrolyte sintered body 16 ... Electrode active material 18 ... 1st electrode layer (positive electrode) 20 ... 2nd electrode layer (negative electrode)
24 ... 1st collector electrode 26 ... 2nd collector electrode

Claims (17)

電極活物質を含有する正負極の電極部と、固体電解質からなる電解質部と、正負極の集電部とを備えた全固体電池であって、
ポリアニオンが共通した電極活物質と固体電解質との組み合わせによる全固体電池において、
正負の何れか一方の電極部、もしくは正負両極の電極部は、前記電極活物質と前記固体電解質が混合されて構成され、
前記電極部は、非晶質ポリアニオン化合物からなる固体電解質材料が電極活物質材料と混合され、加熱焼成してなることを特徴とする全固体電池。
An all-solid battery comprising a positive and negative electrode part containing an electrode active material, an electrolyte part made of a solid electrolyte, and a positive and negative current collector part,
In an all-solid-state battery using a combination of an electrode active material with a common polyanion and a solid electrolyte,
One of the positive and negative electrode parts, or both positive and negative electrode parts are configured by mixing the electrode active material and the solid electrolyte,
The all-solid-state battery, wherein the electrode part is formed by mixing a solid electrolyte material made of an amorphous polyanion compound with an electrode active material and heating and firing.
電極活物質を含有する正負極の電極部と、固体電解質からなる電解質部と、正負極の集電部とを備えた全固体電池であって、
リン酸化合物からなる電極活物質と固体電解質との組み合わせによる全固体電池において、
正負の何れか一方の電極部、もしくは正負両極の電極部は、前記電極活物質と前記固体電解質が混合されて構成され、
前記電極部は、非晶質リン酸化合物からなる固体電解質材料が電極活物質材料と混合され、加熱焼成してなることを特徴とする全固体電池。
An all-solid battery comprising a positive and negative electrode part containing an electrode active material, an electrolyte part made of a solid electrolyte, and a positive and negative current collector part,
In an all-solid-state battery using a combination of an electrode active material composed of a phosphate compound and a solid electrolyte,
One of the positive and negative electrode parts, or both positive and negative electrode parts are configured by mixing the electrode active material and the solid electrolyte,
The all-solid battery, wherein the electrode part is formed by mixing a solid electrolyte material made of an amorphous phosphate compound with an electrode active material and heating and firing.
請求項1又は2記載の全固体電池において、
前記固体電解質材料と前記電極活物質材料との反応によって前記電極活物質が容量低下を生じる温度をTy、前記固体電解質材料の焼成収縮する温度をTzとしたとき、
Ty>Tz
の関係を有することを特徴とする全固体電池。
The all-solid-state battery according to claim 1 or 2,
When the temperature at which the electrode active material undergoes a capacity decrease due to the reaction between the solid electrolyte material and the electrode active material is Ty, and the temperature at which the solid electrolyte material is fired and contracted is Tz,
Ty> Tz
All-solid-state battery characterized by having the following relationship.
請求項3記載の全固体電池において、
前記固体電解質材料の焼成収縮する温度が、前記固体電解質材料の理論密度に対し、70%以上の相対密度に収縮する温度をTzとした関係を有することを特徴とする全固体電池。
The all-solid-state battery according to claim 3,
The all-solid-state battery, wherein the solid electrolyte material has a relationship in which the temperature at which the solid electrolyte material is fired and contracted is Tz, the temperature at which the solid electrolyte material contracts to a relative density of 70% or more with respect to the theoretical density of the solid electrolyte material.
請求項2記載の全固体電池において、
リン酸化合物からなる前記固体電解質材料が、加熱焼成した後にナシコン型である材料であることを特徴とする全固体電池。
The all solid state battery according to claim 2,
An all-solid battery, wherein the solid electrolyte material made of a phosphoric acid compound is a NASICON type material after being heated and fired.
請求項5記載の全固体電池において、
リン酸化合物からなる前記固体電解質材料が
LAGP:Li1+xAlxGe2-x(PO43
であることを特徴とする全固体電池。
[但し、xは0≦x≦1である。]
The all-solid-state battery according to claim 5,
The solid electrolyte material made of a phosphoric acid compound is LAGP: Li 1 + x Al x Ge 2-x (PO 4 ) 3
All-solid-state battery characterized by being.
[However, x is 0 ≦ x ≦ 1. ]
請求項5記載の全固体電池において、
リン酸化合物からなる前記固体電解質材料が
LATP:Li1+xAlxTi2-x(PO43
であることを特徴とする全固体電池。
[但し、xは0≦x≦1である。]
The all-solid-state battery according to claim 5,
The solid electrolyte material made of a phosphoric acid compound is LATP: Li 1 + x Al x Ti 2-x (PO 4 ) 3
All-solid-state battery characterized by being.
[However, x is 0 ≦ x ≦ 1. ]
請求項2〜7のいずれか1項に記載の全固体電池において、
前記電極活物質材料は、リン酸化合物からなり、且つ、ナシコン型材料であることを特徴とする全固体電池。
In the all-solid-state battery of any one of Claims 2-7,
The all-solid-state battery, wherein the electrode active material is made of a phosphoric acid compound and is a NASICON type material.
請求項8記載の全固体電池において、
リン酸化合物からなる前記電極活物質材料が
LVP:Lim2(PO43
[但し、mは1≦m≦5である。]
であることを特徴とする全固体電池。
The all-solid-state battery according to claim 8,
The electrode active material is LVP comprising the phosphate compound: Li m V 2 (PO 4 ) 3
[However, m is 1 ≦ m ≦ 5. ]
All-solid-state battery characterized by being.
請求項2〜7のいずれか1項に記載の全固体電池において、
前記電極活物質のうち、正極活物質材料が、リン酸化合物からなり、且つ、オリビン型材料であることを特徴とする全固体電池。
In the all-solid-state battery of any one of Claims 2-7,
An all-solid-state battery characterized in that, among the electrode active materials, a positive electrode active material is made of a phosphate compound and is an olivine type material.
請求項10記載の全固体電池において、
リン酸化合物からなる前記正極活物質材料が
LNP:LinNiPO4
LCP:LinCoPO4
LMP:LinMnPO4
LFP:LinFePO4
のいずれかであることを特徴とする全固体電池。
[但し、nは0≦n≦1である。]
The all-solid-state battery according to claim 10,
Wherein comprising the phosphate compound positive electrode active material is LNP: Li n NiPO 4
LCP: Li n CoPO 4
LMP: Li n MnPO 4
LFP: Li n FePO 4
All-solid-state battery characterized by the above-mentioned.
[However, n is 0 ≦ n ≦ 1. ]
請求項2〜5のいずれか1項に記載の全固体電池において、
前記固体電解質材料と前記電極活物質材料が、共にナシコン型材料であることを特徴とする全固体電池。
In the all-solid-state battery of any one of Claims 2-5,
The solid electrolyte material and the electrode active material are both NASICON type materials.
請求項2〜5のいずれか1項に記載の全固体電池において、
前記固体電解質材料と前記電極活物質材料が、共に加熱焼成した後にナシコン型である材料であって、
前記固体電解質材料がLAGP:Li1+xAlxGe2-x(PO43、前記電極活物質材料が正負極ともにLVP:Lim2(PO43であるシンメトリ構造を有することを特徴とする全固体電池。
[但し、xは0≦x≦1、mは1≦m≦5である。]
In the all-solid-state battery of any one of Claims 2-5,
The solid electrolyte material and the electrode active material are both NASICON type materials after being heated and fired,
The solid electrolyte material is LAGP: Li 1 + x Al x Ge 2-x (PO 4) 3, wherein the electrode active material is LVP both positive and negative electrodes: Li m V 2 (PO 4 ) having a symmetry structure is 3 All-solid battery characterized by.
[However, x is 0 ≦ x ≦ 1, and m is 1 ≦ m ≦ 5. ]
請求項1記載の全固体電池において、
前記電解質部分に用いる前記固体電解質材料が非晶質ポリアニオン化合物であり、加熱焼成してなることを特徴とする全固体電池。
The all-solid-state battery according to claim 1,
An all-solid-state battery, wherein the solid electrolyte material used for the electrolyte portion is an amorphous polyanion compound and is fired and fired.
請求項2記載の全固体電池において、
前記電解質部分に用いる前記固体電解質材料が非晶質リン酸化合物であり、加熱焼成してなることを特徴とする全固体電池。
The all solid state battery according to claim 2,
The all-solid-state battery, wherein the solid electrolyte material used for the electrolyte portion is an amorphous phosphoric acid compound and is heated and fired.
請求項1〜15のいずれか1項に記載の全固体電池において、
前記電極部は、加圧された状態で加熱焼成されて構成されていることを特徴とする全固体電池。
In the all-solid-state battery of any one of Claims 1-15,
The all-solid-state battery, wherein the electrode part is configured by being heated and fired in a pressurized state.
請求項1〜16のいずれか1項に記載の全固体電池において、
前記正負の何れか一方の電極部、もしくは正負両極の電極部が、印刷ペーストにより形成され、不活性雰囲気下で加熱焼成されて構成されていることを特徴とする全固体電池。
In the all-solid-state battery of any one of Claims 1-16,
An all-solid-state battery characterized in that any one of the positive and negative electrode portions or both positive and negative electrode portions is formed of a printing paste and is heated and fired in an inert atmosphere.
JP2008268328A 2007-11-12 2008-10-17 All solid battery Active JP5299860B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008268328A JP5299860B2 (en) 2007-11-12 2008-10-17 All solid battery
US12/267,668 US20090123846A1 (en) 2007-11-12 2008-11-10 All-solid-state cell
EP08253683.0A EP2058881B1 (en) 2007-11-12 2008-11-11 All-solid-state cell
US14/219,478 US9209486B2 (en) 2007-11-12 2014-03-19 All-solid-state cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007293681 2007-11-12
JP2007293681 2007-11-12
JP2008268328A JP5299860B2 (en) 2007-11-12 2008-10-17 All solid battery

Publications (2)

Publication Number Publication Date
JP2009140910A true JP2009140910A (en) 2009-06-25
JP5299860B2 JP5299860B2 (en) 2013-09-25

Family

ID=40871303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268328A Active JP5299860B2 (en) 2007-11-12 2008-10-17 All solid battery

Country Status (1)

Country Link
JP (1) JP5299860B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2010225390A (en) * 2009-03-23 2010-10-07 Ngk Insulators Ltd All-solid battery and its manufacturing method
WO2011065388A1 (en) * 2009-11-27 2011-06-03 株式会社 村田製作所 Solid-state battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
WO2013051478A1 (en) 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
WO2013062032A1 (en) * 2011-10-28 2013-05-02 日本電気硝子株式会社 Positive electrode material powder for lithium ion secondary batteries
US9413033B2 (en) 2012-09-19 2016-08-09 Ohara Inc. All-solid lithium ion secondary battery
JP2016146301A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Positive electrode material for lithium secondary battery and manufacturing method of the same
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
JP2018037341A (en) * 2016-09-01 2018-03-08 Fdk株式会社 Method for manufacturing all-solid battery
WO2018062080A1 (en) * 2016-09-29 2018-04-05 Tdk株式会社 All-solid lithium ion secondary cell
WO2018062079A1 (en) * 2016-09-29 2018-04-05 Tdk株式会社 Active substance and all-solid-state lithium-ion secondary cell
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
WO2019078307A1 (en) * 2017-10-20 2019-04-25 セントラル硝子株式会社 Composite electrode and all solid lithium battery
WO2019221140A1 (en) * 2018-05-17 2019-11-21 日本碍子株式会社 Lithium secondary battery
JP2020514948A (en) * 2016-12-21 2020-05-21 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
CN111615771A (en) * 2018-04-11 2020-09-01 宝马股份公司 Solid electrolyte material for electrochemical secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299101A (en) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd Solid electrolyte and lithium battery using the same
JP2000251938A (en) * 1999-02-25 2000-09-14 Kyocera Corp Manufacture of all solid lithium battery
JP2000311710A (en) * 1999-04-27 2000-11-07 Kyocera Corp Solid electrolyte battery and its manufacture
JP2001102056A (en) * 1999-07-29 2001-04-13 Kyocera Corp Lithium cell
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2007134305A (en) * 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299101A (en) * 1992-02-18 1993-11-12 Sanyo Electric Co Ltd Solid electrolyte and lithium battery using the same
JP2000251938A (en) * 1999-02-25 2000-09-14 Kyocera Corp Manufacture of all solid lithium battery
JP2000311710A (en) * 1999-04-27 2000-11-07 Kyocera Corp Solid electrolyte battery and its manufacture
JP2001102056A (en) * 1999-07-29 2001-04-13 Kyocera Corp Lithium cell
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2007134305A (en) * 2005-10-13 2007-05-31 Ohara Inc Lithium ion conductive solid electrolyte and method for manufacturing same
JP2007258148A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007258165A (en) * 2006-02-24 2007-10-04 Ngk Insulators Ltd All-solid battery
JP2007294429A (en) * 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2010225390A (en) * 2009-03-23 2010-10-07 Ngk Insulators Ltd All-solid battery and its manufacturing method
JPWO2011065388A1 (en) * 2009-11-27 2013-04-18 株式会社村田製作所 Solid battery
WO2011065388A1 (en) * 2009-11-27 2011-06-03 株式会社 村田製作所 Solid-state battery
JP5403066B2 (en) * 2009-11-27 2014-01-29 株式会社村田製作所 Solid battery
WO2012043566A1 (en) * 2010-09-28 2012-04-05 トヨタ自動車株式会社 Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
JPWO2012043566A1 (en) * 2010-09-28 2014-02-24 トヨタ自動車株式会社 Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
KR101463701B1 (en) * 2010-09-28 2014-11-19 도요타 지도샤(주) Sintered body for use in battery, method for manufacturing sintered body for use in battery, and all-solid-state lithium battery
JP5754442B2 (en) * 2010-09-28 2015-07-29 トヨタ自動車株式会社 Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
WO2013051478A1 (en) 2011-10-06 2013-04-11 ソニー株式会社 Battery and method for manufacturing same
US9917326B2 (en) 2011-10-06 2018-03-13 Murata Manufacturing Co., Ltd. Battery and method of manufacturing the same
WO2013062032A1 (en) * 2011-10-28 2013-05-02 日本電気硝子株式会社 Positive electrode material powder for lithium ion secondary batteries
US9413033B2 (en) 2012-09-19 2016-08-09 Ohara Inc. All-solid lithium ion secondary battery
JP2017531297A (en) * 2014-10-15 2017-10-19 サクティ3 インコーポレイテッド Amorphous cathode material for battery devices
JP2016146301A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Positive electrode material for lithium secondary battery and manufacturing method of the same
JP2018037341A (en) * 2016-09-01 2018-03-08 Fdk株式会社 Method for manufacturing all-solid battery
JPWO2018062079A1 (en) * 2016-09-29 2019-07-25 Tdk株式会社 Active material and all solid lithium ion secondary battery
WO2018062079A1 (en) * 2016-09-29 2018-04-05 Tdk株式会社 Active substance and all-solid-state lithium-ion secondary cell
WO2018062080A1 (en) * 2016-09-29 2018-04-05 Tdk株式会社 All-solid lithium ion secondary cell
JP7127540B2 (en) 2016-09-29 2022-08-30 Tdk株式会社 All-solid-state lithium-ion secondary battery
JP2020514948A (en) * 2016-12-21 2020-05-21 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
JP7181866B2 (en) 2016-12-21 2022-12-01 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング All-solid-state lithium-ion storage battery and manufacturing method thereof
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
WO2019078307A1 (en) * 2017-10-20 2019-04-25 セントラル硝子株式会社 Composite electrode and all solid lithium battery
CN111615771A (en) * 2018-04-11 2020-09-01 宝马股份公司 Solid electrolyte material for electrochemical secondary battery
JP2021518033A (en) * 2018-04-11 2021-07-29 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト Solid electrolyte material
JP7280882B2 (en) 2018-04-11 2023-05-24 バイエリシエ・モトーレンウエルケ・アクチエンゲゼルシヤフト solid electrolyte material
WO2019221140A1 (en) * 2018-05-17 2019-11-21 日本碍子株式会社 Lithium secondary battery
JP6643528B1 (en) * 2018-05-17 2020-02-12 日本碍子株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP5299860B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5299860B2 (en) All solid battery
JP5358825B2 (en) All solid battery
JP5304168B2 (en) All solid battery
US9209484B2 (en) All-solid-state cell
KR102410194B1 (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
JP6861942B2 (en) Solid electrolyte sheet and its manufacturing method, and sodium ion all-solid-state secondary battery
US9209486B2 (en) All-solid-state cell
KR20130034010A (en) Method for preparing a solid-state battery by sintering under pulsating current
JPWO2013137224A1 (en) All-solid battery and method for manufacturing the same
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP2018190695A (en) All-solid-state battery
KR20170133316A (en) Lithium ion conductors, solid electrolyte layers, electrodes, batteries and electronic devices
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
WO2011111555A1 (en) All-solid secondary cell and method for producing same
WO2018198494A1 (en) All-solid-state battery
JP2010225390A (en) All-solid battery and its manufacturing method
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP2021097034A (en) Member for power storage device, all-solid battery, and method of manufacturing member for power storage device
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
JP7070833B2 (en) Solid electrolyte sheet and its manufacturing method, and all-solid-state secondary battery
WO2023127546A1 (en) Solid electrolyte sheet and method for producing same
CN111699582B (en) All-solid battery
JP2022100362A (en) Electrode-attached solid electrolyte sheet
JP2022147896A (en) Solid state battery and manufacturing method of the solid state battery
JP2019140065A (en) Method for manufacturing all-solid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5299860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350