JP2016146301A - Positive electrode material for lithium secondary battery and manufacturing method of the same - Google Patents

Positive electrode material for lithium secondary battery and manufacturing method of the same Download PDF

Info

Publication number
JP2016146301A
JP2016146301A JP2015023606A JP2015023606A JP2016146301A JP 2016146301 A JP2016146301 A JP 2016146301A JP 2015023606 A JP2015023606 A JP 2015023606A JP 2015023606 A JP2015023606 A JP 2015023606A JP 2016146301 A JP2016146301 A JP 2016146301A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
lithium ion
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023606A
Other languages
Japanese (ja)
Other versions
JP6341516B2 (en
Inventor
紘貴 富田
Hirotaka Tomita
紘貴 富田
隆徳 馬原
Takanori Umahara
隆徳 馬原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2015023606A priority Critical patent/JP6341516B2/en
Publication of JP2016146301A publication Critical patent/JP2016146301A/en
Application granted granted Critical
Publication of JP6341516B2 publication Critical patent/JP6341516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode material for a lithium secondary battery excellent in lithium ion conductivity while suppressing cost increase and a manufacturing method of the same.SOLUTION: A positive electrode material 10 for a lithium secondary battery includes a positive electrode active material 1 and a lithium ion conduction body 2. The positive electrode active material 1 is at least one of lithium manganese iron phosphate and lithium iron phosphate. The lithium ion conduction body 2 is lithium aluminum titanium phosphate. The positive electrode active material 1 and the lithium ion conduction body 2 both exhibit particulate.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム二次電池用正極材料およびその製造方法に関する。   The present invention relates to a positive electrode material for a lithium secondary battery and a method for producing the same.

リチウム二次電池に用いる正極材料の中でも、安定性に優れるとともに、資源的に豊富な元素で構成されることにより、コストを抑えることが可能なリン酸鉄リチウム、リン酸マンガン鉄リチウム、リン酸マンガンリチウム等(以下、これらをまとめて、適宜「LFP等」という)の材料が、これからの有力な正極材料の候補として注目を集めている。   Among the positive electrode materials used in lithium secondary batteries, lithium iron phosphate, lithium manganese iron phosphate, and phosphoric acid are excellent in stability and can be reduced in cost by being composed of resource-rich elements. Materials such as manganese lithium (hereinafter, collectively referred to as “LFP etc.” as appropriate) are attracting attention as potential candidates for future positive electrode materials.

しかしながら、LFP等は、リチウムイオンの拡散方向が一次元であるため、リチウムイオンを二次元に拡散させる層状の正極材料や、三次元に拡散させるスピネル型の正極材料と比較し、リチウムイオンの拡散性に乏しい。
加えて、LFP等は、電子伝導性が低いことから、粒子状を呈するLFP等の表面に炭素を被覆させる必要がある。しかし、LFP等の表面を炭素で被覆すると、リチウムイオンの拡散性をさらに低下させることとなる。
つまり、リチウム二次電池の正極材料としてLFP等を採用する場合、リチウムイオンの拡散性が低いという問題、言い換えると、リチウムイオン伝導性が悪いという問題を解消する必要がある。
However, since LFP and the like have a one-dimensional diffusion direction of lithium ions, lithium ion diffusion compared to a layered positive electrode material that diffuses lithium ions two-dimensionally or a spinel-type positive electrode material that diffuses lithium ions three-dimensionally. Poor sex.
In addition, since LFP or the like has low electron conductivity, it is necessary to coat carbon on the surface of LFP or the like that exhibits a particulate shape. However, when the surface of LFP or the like is covered with carbon, the diffusibility of lithium ions is further reduced.
That is, when LFP or the like is employed as the positive electrode material of the lithium secondary battery, it is necessary to solve the problem of low lithium ion diffusibility, in other words, the problem of poor lithium ion conductivity.

上記のような事情を勘案し、次のような技術が提案されている。
例えば、特許文献1には、LiMnPO等からなる粒子の表面を、LiPO(但し、EはFe、Niの群から選択される1種または2種、0<y≦2、0<z≦1.5)とLiTi複合酸化物とを含む被覆層により被覆してなることを特徴とする電極活物質が開示されている。
In consideration of the above circumstances, the following technologies have been proposed.
For example, Patent Document 1 discloses that the surface of a particle made of LiMnPO 4 or the like is Li y E z PO 4 (where E is one or two selected from the group of Fe and Ni, 0 <y ≦ 2, An electrode active material characterized by being coated with a coating layer containing 0 <z ≦ 1.5) and a LiTi composite oxide is disclosed.

特開2013−69567号JP 2013-69567 A

しかしながら、特許文献1に開示された技術によると、リン酸マンガンリチウム等の微細な粒子の表面に均一に所定の物質を被覆させる必要があるため、製造工程数が増加するだけでなく、被覆処理を施すための特殊な装置・設備が必要となる。その結果、特許文献1に開示された技術によると、製造工程数の増加、および、装置・設備の投資に伴った、正極材料のコストの上昇は避けられない。   However, according to the technique disclosed in Patent Document 1, it is necessary to uniformly coat a predetermined substance on the surface of fine particles such as lithium manganese phosphate. Special equipment / equipment for applying As a result, according to the technique disclosed in Patent Document 1, an increase in the number of manufacturing steps and an increase in the cost of the positive electrode material due to investment in equipment and facilities are inevitable.

そこで、本発明は、コストの上昇を抑制しつつ、リチウムイオン伝導性に優れたリチウム二次電池用正極材料およびその製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the positive electrode material for lithium secondary batteries excellent in lithium ion conductivity, and its manufacturing method, suppressing the raise in cost.

前記課題を解決するため、本発明の発明者らは、粒子状を呈するリン酸鉄リチウム、リン酸マンガン鉄リチウムに対して、粒子状を呈するリチウムイオン伝導体を混合した状態とする、つまり、被覆という手段を採用せずに両者を複合化することによって、リチウムイオン伝導性を高めることができることを見出し、本発明を創出した。   In order to solve the above problems, the inventors of the present invention are in a state in which a lithium ion conductor in a particulate form is mixed with lithium iron phosphate in a particulate form and lithium iron manganese phosphate, that is, The present inventors have found that lithium ion conductivity can be enhanced by combining both without adopting the means of coating.

すなわち、本発明に係るリチウム二次電池用正極材料は、正極活物質と、リチウムイオン伝導体と、を含有し、前記正極活物質は、リン酸マンガン鉄リチウムおよびリン酸鉄リチウムの少なくとも1種であり、前記リチウムイオン伝導体は、リン酸リチウムアルミニウムチタンであって、前記正極活物質および前記リチウムイオン伝導体は、それぞれ粒子状を呈していることを特徴とする。   That is, the positive electrode material for a lithium secondary battery according to the present invention contains a positive electrode active material and a lithium ion conductor, and the positive electrode active material is at least one of lithium iron manganese phosphate and lithium iron phosphate. The lithium ion conductor is lithium aluminum titanium phosphate, and the positive electrode active material and the lithium ion conductor are each in the form of particles.

また、本発明に係るリチウム二次電池用正極材料は、前記正極活物質が、リン酸マンガン鉄リチウムであることが好ましい。   In the positive electrode material for a lithium secondary battery according to the present invention, the positive electrode active material is preferably lithium manganese iron phosphate.

また、本発明に係るリチウム二次電池用正極材料は、前記正極活物質が、リン酸鉄リチウムであり、前記正極活物質と前記リチウムイオン伝導体の合計に対する前記リチウムイオン伝導体の比率は、2mol%以上であることが好ましい。   Further, in the positive electrode material for a lithium secondary battery according to the present invention, the positive electrode active material is lithium iron phosphate, and the ratio of the lithium ion conductor to the total of the positive electrode active material and the lithium ion conductor is: It is preferable that it is 2 mol% or more.

本発明に係るリチウム二次電池用正極材料の製造方法は、正極活物質の前駆体とリチウムイオン伝導体の前駆体とを混合し、粉砕する混合粉砕工程と、前記混合粉砕工程後の粉砕物に対して焼成を行う焼成工程と、を含み、前記正極活性物質は、リン酸マンガン鉄リチウムおよびリン酸鉄リチウムの少なくとも1種であり、前記リチウムイオン伝導体は、リン酸リチウムアルミニウムチタンであることを特徴とする。   The method for producing a positive electrode material for a lithium secondary battery according to the present invention includes a mixing and pulverizing step of mixing and pulverizing a precursor of a positive electrode active material and a precursor of a lithium ion conductor; A positive electrode active material is at least one of lithium manganese iron phosphate and lithium iron phosphate, and the lithium ion conductor is lithium aluminum titanium phosphate. It is characterized by that.

また、本発明に係るリチウム二次電池用正極材料の製造方法は、前記焼成工程が、所定温度で焼成を行う一次焼成工程と、前記所定温度よりも高い温度で焼成を行う二次焼成工程と、からなり、前記一次焼成工程と前記二次焼成工程との間に、炭素原料を混合する炭素混合工程を含むことが好ましい。   The method for producing a positive electrode material for a lithium secondary battery according to the present invention includes: a primary firing step in which the firing step performs firing at a predetermined temperature; and a secondary firing step in which firing is performed at a temperature higher than the predetermined temperature. It is preferable that a carbon mixing step of mixing a carbon raw material is included between the primary baking step and the secondary baking step.

本発明に係るリチウム二次電池用正極材料によると、正極活物質と、リチウムイオン伝導体とが、それぞれ粒子状を呈することから、被覆処理の必要がないため、コストの上昇を抑制することができる。
また、本発明に係るリチウム二次電池用正極材料によると、正極活物質に隣接する粒子状のリチウムイオン伝導体がリチウムイオンの拡散を助けるため、リチウムイオン伝導性を向上させることができる。
According to the positive electrode material for a lithium secondary battery according to the present invention, since the positive electrode active material and the lithium ion conductor are each in the form of particles, there is no need for a coating treatment, which can suppress an increase in cost. it can.
In addition, according to the positive electrode material for a lithium secondary battery according to the present invention, the particulate lithium ion conductor adjacent to the positive electrode active material helps the diffusion of lithium ions, so that the lithium ion conductivity can be improved.

本発明に係るリチウム二次電池用正極材料の製造方法によると、正極活物質に対してリチウムイオン伝導体を被覆する工程を必要としないことから、製造工程数の増加、および、装置・設備の投資を回避することができる。その結果、本発明に係るリチウム二次電池用正極材料の製造方法によると、コストの上昇を抑制しつつリチウム二次電池用正極材料を製造することができる。
また、本発明に係るリチウム二次電池用正極材料の製造方法によると、混合粉砕工程において正極活物質の前駆体だけでなく、リチウムイオン伝導体の前駆体を混合・粉砕していることから、正極活物質とリチウムイオン伝導体をそれぞれ粒子状とすることができる。その結果、本発明に係るリチウム二次電池用正極材料の製造方法によると、正極活物質に隣接する粒子状のリチウムイオン伝導体がリチウムイオンの拡散を助けるため、リチウムイオン伝導性が向上したリチウム二次電池用正極材料を製造することができる。
According to the method for manufacturing a positive electrode material for a lithium secondary battery according to the present invention, since the step of coating the lithium ion conductor on the positive electrode active material is not required, the number of manufacturing steps is increased, and Investment can be avoided. As a result, according to the method for manufacturing a positive electrode material for a lithium secondary battery according to the present invention, the positive electrode material for a lithium secondary battery can be manufactured while suppressing an increase in cost.
In addition, according to the method for producing a positive electrode material for a lithium secondary battery according to the present invention, not only the positive electrode active material precursor but also the lithium ion conductor precursor is mixed and pulverized in the mixing and pulverization step. The positive electrode active material and the lithium ion conductor can each be in the form of particles. As a result, according to the method for manufacturing a positive electrode material for a lithium secondary battery according to the present invention, the particulate lithium ion conductor adjacent to the positive electrode active material helps the diffusion of lithium ions, so that lithium ion conductivity is improved. A positive electrode material for a secondary battery can be manufactured.

本実施形態に係るリチウム二次電池用正極材料の模式図である。It is a schematic diagram of the positive electrode material for lithium secondary batteries which concerns on this embodiment. 本実施形態に係るリチウム二次電池用正極材料の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the positive electrode material for lithium secondary batteries which concerns on this embodiment. 正極活物質としてリン酸マンガン鉄リチウムを用いた場合の放電曲線(1C放電)を示すグラフである。It is a graph which shows the discharge curve (1C discharge) at the time of using lithium manganese iron phosphate as a positive electrode active material. 正極活物質としてリン酸鉄リチウムを用いた場合の放電曲線(5C放電)を示すグラフである。It is a graph which shows the discharge curve (5C discharge) at the time of using lithium iron phosphate as a positive electrode active material. 図4の放電開始直後の部分を拡大したグラフである。It is the graph which expanded the part immediately after the discharge start of FIG.

以下、本発明に係るリチウム二次電池用正極材料(以下、適宜「正極材料」という)および製造方法を実施するための形態について、図面を参照して説明する。   Hereinafter, a positive electrode material for a lithium secondary battery according to the present invention (hereinafter, appropriately referred to as “positive electrode material”) and a mode for carrying out a manufacturing method will be described with reference to the drawings.

[リチウム二次電池]
最初に、本実施形態に係る正極材料の適用対象であるリチウム二次電池について、説明する。
適用対象となる「リチウム二次電池」とは、充放電の際にリチウムイオン(Li)がイオン伝導を担う電池であり、正極、負極、電解質等の部材を含んで構成される。そして、適用対象となるリチウム二次電池は、正極以外の部材の材質や構成等については特に限定されない。
例えば、負極として、炭素系材料、金属酸化物系材料、シリコン系材料、スズ系合金材料等の様々な材料を用いたリチウム二次電池が適用対象となる。また、電解質として、有機電解液系、イオン液体系、固体電解質系といった様々な電解質を用いたリチウム二次電池も適用対象となる。
[Lithium secondary battery]
First, a lithium secondary battery to which the positive electrode material according to this embodiment is applied will be described.
The “lithium secondary battery” to be applied is a battery in which lithium ions (Li + ) are responsible for ion conduction during charging and discharging, and includes members such as a positive electrode, a negative electrode, and an electrolyte. And the lithium secondary battery used as application object is not specifically limited about the material, structure, etc. of members other than a positive electrode.
For example, lithium secondary batteries using various materials such as a carbon-based material, a metal oxide-based material, a silicon-based material, and a tin-based alloy material are applicable as the negative electrode. Further, lithium secondary batteries using various electrolytes such as an organic electrolyte system, an ionic liquid system, and a solid electrolyte system are also applicable.

[リチウム二次電池用正極材料]
本実施形態に係る正極材料は、前記したリチウム二次電池の正極の材料となる物質である。具体的には、正極材料は、集電体である金属箔に塗工されることにより正極を構成する。
[Positive electrode material for lithium secondary batteries]
The positive electrode material according to the present embodiment is a substance that becomes a positive electrode material of the above-described lithium secondary battery. Specifically, the positive electrode material constitutes the positive electrode by being applied to a metal foil that is a current collector.

図1に示すように、正極材料10は、正極活物質1と、リチウムイオン伝導体2と、を含んで構成される。そして、正極材料10に含まれる正極活物質1およびリチウムイオン伝導体2は、それぞれ粒子状を呈する。
ここで、「それぞれ粒子状を呈する」とは、粒子状の正極活物質1の表面がリチウムイオン伝導体2によって完全に被覆されているといった状態を除外する意図の規定である。そして、この「粒子状」とは、形状を球に限定するものではなく、ラグビーボールのような長球でも、表面が凸凹であったり突起が存在したりするような略球(略長球)であってもよい。
図1では省略しているが、正極活物質1は、炭素により被覆されていてもよい。また、図1では、正極活物質1とリチウムイオン伝導体2とは同じサイズとなっているが、当然、異なるサイズであってもよい。
なお、正極材料10の正極活物質1やリチウムイオン伝導体2の形状(粒子状)については、例えば、走査型電子顕微鏡(SEM)、走査透過電子顕微鏡(STEM)、もしくは透過型電子顕微鏡(TEM)などで確認することができる。
As shown in FIG. 1, the positive electrode material 10 includes a positive electrode active material 1 and a lithium ion conductor 2. The positive electrode active material 1 and the lithium ion conductor 2 included in the positive electrode material 10 are each in the form of particles.
Here, “respectively in the form of particles” is a stipulation that excludes a state where the surface of the particulate positive electrode active material 1 is completely covered with the lithium ion conductor 2. The term “particulate” does not limit the shape to a sphere, and it may be a long sphere such as a rugby ball. It may be.
Although omitted in FIG. 1, the positive electrode active material 1 may be coated with carbon. In FIG. 1, the positive electrode active material 1 and the lithium ion conductor 2 have the same size, but may naturally have different sizes.
In addition, about the shape (particulate form) of the positive electrode active material 1 and the lithium ion conductor 2 of the positive electrode material 10, for example, a scanning electron microscope (SEM), a scanning transmission electron microscope (STEM), or a transmission electron microscope (TEM) ) Etc.

(正極活物質)
正極活物質1は、正極側において、充放電反応に直接関与する物質である。詳細には、正極活物質1は、放電時において、リチウムイオンの挿入反応が生じ、充電時において、リチウムイオンの脱離反応が生じる物質である。
そして、正極活物質1は、リン酸マンガン鉄リチウム(以下、適宜「LMFP」という)およびリン酸鉄リチウム(以下、適宜「LFP」という)の少なくとも1種で構成される。
(Positive electrode active material)
The positive electrode active material 1 is a substance that directly participates in the charge / discharge reaction on the positive electrode side. Specifically, the positive electrode active material 1 is a substance in which a lithium ion insertion reaction occurs during discharge and a lithium ion desorption reaction occurs during charging.
The positive electrode active material 1 is composed of at least one of lithium iron manganese phosphate (hereinafter referred to as “LMFP” as appropriate) and lithium iron phosphate (hereinafter referred to as “LFP” as appropriate).

LMFPは、LiMn1-xFexPO(nは0<n≦1、Xは0<X≦1を満たす)という組成式で示すことができる。
一方、LFPは、LiFePO(nは0<n≦1を満たす)という組成式で示すことができる。
なお、LMFPとLFPは、併せてLiMnFe(1−X)PO(nは0<n≦1、Xは0≦X≦1を満たす)という組成式で示すこともできる。
LMFP is, Li n Mn 1-x Fe x PO 4 (n is 0 <n ≦ 1, X satisfies 0 <X ≦ 1) can be represented by the composition formula of.
On the other hand, LFP can be represented by a composition formula of Li n FePO 4 (n satisfies 0 <n ≦ 1).
Note that LMFP and LFP can also be represented by a compositional formula: Li n Mn X Fe (1-X) PO 4 (n satisfies 0 <n ≦ 1, X satisfies 0 ≦ X ≦ 1).

(カーボンコート)
粒子状を呈する正極活物質1は、炭素により被覆(カーボンコート)されていてもよい。特に、LFPよりも電子伝導性の低いLMFPを用いる場合、電子伝導性を向上させるべく、正極活物質1はカーボンコートされているのが好ましい。
(Carbon coat)
The positive electrode active material 1 having a particulate shape may be coated with carbon (carbon coating). In particular, when LMFP having a lower electronic conductivity than LFP is used, the positive electrode active material 1 is preferably carbon-coated in order to improve the electronic conductivity.

(リチウムイオン伝導体)
リチウムイオン伝導体2は、正極材料10内において、リチウムイオンの拡散を助ける働きをする物質である。詳細には、このリチウムイオン伝導体2が、リチウムイオンの伝導経路となることにより、隣接する正極活物質1からのリチウムイオンが拡散し易くなる結果、正極材料10全体のリチウムイオン伝導性を向上させることとなると考える。
そして、リチウムイオン伝導体2は、リン酸リチウムアルミニウムチタン(以下、適宜「LTAP」という)であって、Li1+XTi2−XAl(PO(Xは0<X≦1を満たす)という組成式で示すことができ、例えば、Li1.3Ti1.7Al0.3(POという組成式のものを挙げることができる。また、LTAPは、ナシコン型の結晶構造を有する。
(Lithium ion conductor)
The lithium ion conductor 2 is a substance that functions to assist the diffusion of lithium ions in the positive electrode material 10. Specifically, the lithium ion conductor 2 becomes a lithium ion conduction path, so that lithium ions from the adjacent positive electrode active material 1 are easily diffused. As a result, the lithium ion conductivity of the entire positive electrode material 10 is improved. I think that will be.
The lithium ion conductor 2 is lithium aluminum titanium phosphate (hereinafter referred to as “LTAP” as appropriate), and Li 1 + X Ti 2−X Al X (PO 4 ) 3 (X satisfies 0 <X ≦ 1). For example, a composition formula of Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 can be given. LTAP also has a NASICON crystal structure.

(リチウムイオン伝導体の含有量)
リチウムイオン伝導体の含有量は、リチウムイオンの拡散という効果を十分に得るために、所定量以上であるのが好ましい。一方、リチウムイオン伝導体の含有量は、多過ぎても前記の効果が飽和するとともに、リチウム二次電池の充放電容量が低下する虞がある。
詳細には、正極活物質としてLFPを用いる場合において、正極活物質とリチウムイオン伝導体の合計モル数に対するリチウムイオン伝導体のモル数の比率(=リチウムイオン伝導体のモル数/(正極活物質のモル数+リチウムイオン伝導体のモル数)×100)は2mol%以上であるのが好ましい。
(Lithium ion conductor content)
The content of the lithium ion conductor is preferably a predetermined amount or more in order to sufficiently obtain the effect of lithium ion diffusion. On the other hand, if the content of the lithium ion conductor is too large, the above effects are saturated and the charge / discharge capacity of the lithium secondary battery may be reduced.
Specifically, when LFP is used as the positive electrode active material, the ratio of the number of moles of the lithium ion conductor to the total number of moles of the positive electrode active material and the lithium ion conductor (= number of moles of lithium ion conductor / (positive electrode active material). The number of moles of lithium + number of moles of lithium ion conductor) × 100) is preferably 2 mol% or more.

(その他の材料)
本実施形態に係る正極材料は、前記した正極活物質およびリチウムイオン伝導体以外にも、公知のバインダや、導電剤(導電助剤)等を含んでいてもよい。
また、本実施形態に係る正極材料は、前記した正極活物質とは異なる正極活物質をさらに含んでいてもよい。
(Other materials)
The positive electrode material according to this embodiment may contain a known binder, a conductive agent (conductive auxiliary agent), and the like in addition to the positive electrode active material and the lithium ion conductor.
Further, the positive electrode material according to the present embodiment may further include a positive electrode active material different from the above-described positive electrode active material.

次に、本実施形態に係るリチウム二次電池用正極材料の製造方法について、図2を参照しながら説明する。
[リチウム二次電池用正極材料の製造方法]
本実施形態に係る正極材料の製造方法は、混合粉砕工程S1と、焼成工程S2・S4と、を含む。そして、本実施形態に係る正極材料の製造方法は、焼成工程が一次焼成工程S2と、二次焼成工程S4とからなり、一次焼成工程S2と二次焼成工程S4との間に炭素混合工程S3を含んでいてもよい。さらに、本実施形態に係る正極材料の製造方法は、二次焼成工程S4の後に、分級工程S5を含んでいてもよい。
Next, a method for producing a positive electrode material for a lithium secondary battery according to this embodiment will be described with reference to FIG.
[Method for producing positive electrode material for lithium secondary battery]
The method for producing a positive electrode material according to the present embodiment includes a mixing and grinding step S1 and firing steps S2 and S4. And the manufacturing method of the positive electrode material which concerns on this embodiment has a baking process consisting of primary baking process S2 and secondary baking process S4, and carbon mixing process S3 between primary baking process S2 and secondary baking process S4. May be included. Furthermore, the manufacturing method of the positive electrode material according to the present embodiment may include a classification step S5 after the secondary firing step S4.

なお、本実施形態に係る正極材料の製造方法において、焼成処理を一度に行うことも可能である。しかしながら、焼成工程S2・S4を一次焼成工程S2と二次焼成工程S4の2工程に分けるとともに、両工程の間に炭素混合工程S3を行うことにより、電子伝導性に優れた正極材料を製造することができる点において好ましい。
よって、以下では、焼成処理S2・S4を2工程で行い、両工程の間に炭素混合工程S3が含まれる場合の正極材料の製造方法について、工程毎に説明する。
In addition, in the manufacturing method of the positive electrode material according to the present embodiment, it is possible to perform the baking treatment at a time. However, the firing steps S2 and S4 are divided into two steps, a primary firing step S2 and a secondary firing step S4, and a carbon mixing step S3 is performed between the two steps to produce a positive electrode material excellent in electronic conductivity. It is preferable in that it can be performed.
Therefore, in the following, the manufacturing method of the positive electrode material when the firing treatments S2 and S4 are performed in two steps and the carbon mixing step S3 is included between the two steps will be described for each step.

(混合粉砕工程)
混合粉砕工程S1とは、正極活物質の前駆体とリチウムイオン伝導体の前駆体とを混合し、粉砕する工程である。
例えば、混合粉砕工程S1では、正極活物質の前駆体とリチウムイオン伝導体の前駆体に対し、乾式または湿式のビーズミル(ボールミル)、擂潰機等を用いて60分程度、混合・粉砕処理を施せばよい。
なお、混合粉砕工程S1において、正極活物質の前駆体とリチウムイオン伝導体の前駆体とを混合し、粉砕することにより、最終的に得られる正極材料中の正極活物質およびリチウムイオン伝導体をそれぞれ粒子状にすることができる。
(Mixing and grinding process)
The mixing and pulverizing step S1 is a step of mixing and pulverizing the positive electrode active material precursor and the lithium ion conductor precursor.
For example, in the mixing and pulverizing step S1, the precursor of the positive electrode active material and the precursor of the lithium ion conductor are mixed and pulverized for about 60 minutes using a dry or wet bead mill (ball mill) or a pulverizer. Just give it.
In the mixing and pulverization step S1, the positive electrode active material and the lithium ion conductor in the positive electrode material finally obtained by mixing and pulverizing the precursor of the positive electrode active material and the precursor of the lithium ion conductor are obtained. Each can be in the form of particles.

(混合粉砕工程:原料)
混合粉砕工程S1において使用する原料(LMFPの原料、LFPの原料、LTAPの原料)は、詳細には以下のとおりである。
LMFPの原料(前駆体)について、リチウム導入用の原料としては、例えば、LiOH等の水和物、LiCO等の炭酸塩や炭酸水素塩、LiCl等の塩化物を含むハロゲン化物、LiNO等の硝酸塩、その他有機酸塩等のLiのみ目的の正極材料中に残留するようなLi含有分解揮発性化合物を用いることができる。リン酸リチウムやリン酸二水素リチウムなどのような二種類の元素が含まれているものを用いてもよい。また、鉄導入用の原料としては、例えば、水酸化物、炭酸塩や炭酸水素塩、塩化物等のハロゲン化物、硝酸塩、その他、Feのみが目的の正極材料中に残留するような分解揮発性化合物(例えば、シュウ酸塩や酢酸塩等の有機酸塩、アセチルアセトナート錯体類や、メタロセン錯体等の有機錯体等)のほか、リン酸塩やリン酸水素塩を用いることができる。また、マンガン導入用の原料としては、例えば、炭酸塩、リン酸塩、シュウ酸塩等を用いることができる。また、リン酸導入用の原料としては、例えば、無水リン酸P、リン酸HPO、およびリン酸イオンのみ正極材料中に残留するような分解揮発性リン酸塩やリン酸水素塩を用いることができる。
(Mixing and grinding process: raw material)
The raw materials (LMFP raw material, LFP raw material, LTAP raw material) used in the mixing and grinding step S1 are as follows in detail.
Regarding the raw material (precursor) of LMFP, examples of the raw material for introducing lithium include hydrates such as LiOH, carbonates and hydrogen carbonates such as Li 2 CO 3 , halides including chlorides such as LiCl, and LiNO. It is possible to use a Li-containing decomposition volatile compound such that only Li such as nitrate such as 3 and other organic acid salts remain in the target positive electrode material. A material containing two kinds of elements such as lithium phosphate and lithium dihydrogen phosphate may be used. In addition, as raw materials for introducing iron, for example, hydroxides, carbonates, bicarbonates, halides such as chlorides, nitrates, and other decomposition volatiles such that only Fe remains in the target cathode material. In addition to compounds (for example, organic acid salts such as oxalate and acetate, acetylacetonate complexes, and organic complexes such as metallocene complexes), phosphates and hydrogen phosphates can be used. Moreover, as a raw material for introducing manganese, for example, carbonate, phosphate, oxalate and the like can be used. Moreover, as raw materials for introducing phosphoric acid, for example, anhydrous phosphoric acid P 2 O 5 , phosphoric acid H 3 PO 4 , and decomposed volatile phosphates and phosphoric acid in which only phosphate ions remain in the positive electrode material Hydrogen salts can be used.

LFPの原料(前駆体)について、リン酸導入用の原料、鉄導入用の原料、リチウム導入用の原料としては、前記のLMFPの原料と同様のものを用いることができる。   Regarding the LFP raw material (precursor), the same raw material for introducing phosphoric acid, the raw material for introducing iron, and the raw material for introducing lithium can be the same as the raw material for LFP.

LTAPの原料(前駆体)について、アルミニウム導入用の原料としては、例えば、酸化アルミニウム、水酸化アルミニウム等を用いることができる。また、チタン導入用の原料としては、例えば、酸化チタン、ハロゲン化チタン等を用いることができる。酸化チタンには、ルチル型、アナターゼ型があるが、アナターゼ型の方がより反応性が良く、好ましい。なお、リチウム導入用の原料や、リン酸導入用の原料については、前記のLMFPの原料と同様のものを用いることができる。   Regarding the LTAP raw material (precursor), examples of the raw material for introducing aluminum include aluminum oxide and aluminum hydroxide. Moreover, as a raw material for introducing titanium, for example, titanium oxide, titanium halide or the like can be used. Titanium oxide includes a rutile type and an anatase type, and the anatase type is more reactive and preferable. As the raw material for introducing lithium and the raw material for introducing phosphoric acid, the same materials as those for the above-mentioned LMFP can be used.

LMFPの原料とLTAPの原料を使用する場合、LFPの原料とLTAPの原料を使用する場合のいずれの場合であっても、リチウムおよびリン酸が重複するが、リチウムおよびリン酸導入用の原料は共通の原料を用いても異種の原料を用いてもよい。
なお、混合粉砕工程S1では、前記のLMFPの原料、LFPの原料、LTAPの原料以外にも、例えば、スクロース、アスコルビン酸等の炭素化合物を還元剤として添加してもよい。
Lithium and phosphoric acid overlap in both cases where LFP raw material and LTAP raw material are used, and when LFP raw material and LTAP raw material are used. A common raw material or a different raw material may be used.
In the mixing and pulverizing step S1, a carbon compound such as sucrose or ascorbic acid may be added as a reducing agent in addition to the above-described LFP raw material, LFP raw material, and LTAP raw material.

(混合粉砕工程:原料の配合割合)
混合粉砕工程S1において使用するLMFPの原料(前駆体)の配合割合は特に限定されないが、例えば、「Li:Mn:Fe:P」の元素比が、「1〜1.1:1−x:x:1」(0≦x<1)となるように、前記の各原料を配合すればよい。
また、LFPの原料(前駆体)の配合割合も特に限定されないが、例えば、「Li:Fe:P」の元素比が、「1:1:1」となるように、前記の各原料を配合すればよい。
(Mixing and crushing process: mixing ratio of raw materials)
The blending ratio of the LMFP raw material (precursor) used in the mixing and grinding step S1 is not particularly limited. For example, the element ratio of “Li: Mn: Fe: P” is “1 to 1.1: 1−x: The above-mentioned raw materials may be blended so that “x: 1” (0 ≦ x <1).
Also, the mixing ratio of the LFP raw material (precursor) is not particularly limited. For example, the above raw materials are mixed so that the element ratio of “Li: Fe: P” is “1: 1: 1”. do it.

LTAPの原料(前駆体)の配合割合については、正極活物質とリチウムイオン伝導体の合計に対するリチウムイオン伝導体の比率が所定値(例えば、2mol%)以上となるように、前記の各原料を配合すればよい。
なお、炭素化合物を還元剤として添加する場合、炭素化合物の配合割合も特に限定されないが、全体重量(LMFPまたはLFPの原料の重量+LTAPの原料の重量+炭素化合物の重量)に対して0〜10wt%となるように配合すればよい。
Regarding the blending ratio of the LTAP raw material (precursor), the respective raw materials are adjusted so that the ratio of the lithium ion conductor to the total of the positive electrode active material and the lithium ion conductor is a predetermined value (for example, 2 mol%) or more. What is necessary is just to mix | blend.
In addition, when a carbon compound is added as a reducing agent, the mixing ratio of the carbon compound is not particularly limited, but is 0 to 10 wt with respect to the total weight (LMFP or LFP raw material weight + LTAP raw material weight + carbon compound weight). What is necessary is just to mix | blend so that it may become%.

(一次焼成工程)
一次焼成工程S2とは、混合粉砕工程S1で得られた粉砕物に対して一次焼成(仮焼成)を行う工程である。
そして、一次焼成工程S2は、粉砕物が加熱されることにより、最終的な正極活物質に至る前の中間的な状態まで反応する工程であり、その際、多くの場合は熱分解によるガスの発生を伴う。よって、一次焼成の焼成温度(到達温度)としては、ガスの大部分が放出し終わり、かつ正極活物質に至る反応が完全には進行しない温度、すなわち、より高温域での第二段階の二次焼成時に正極活物質中の構成元素の再拡散・均一化が起こる余地を残した温度を選択すればよい。
具体的には、一次焼成工程S2での焼成温度(到達温度)は、300℃以上600℃以下が好ましく、350℃以上500℃以下がさらに好ましい。
(Primary firing process)
The primary firing step S2 is a step of performing primary firing (temporary firing) on the pulverized product obtained in the mixing and grinding step S1.
The primary firing step S2 is a step in which the pulverized product is heated to react to an intermediate state before reaching the final positive electrode active material. Accompanied by outbreaks. Therefore, the firing temperature (final temperature) of the primary firing is a temperature at which most of the gas has been released and the reaction leading to the positive electrode active material does not proceed completely, that is, the second stage two in a higher temperature range. A temperature that leaves room for re-diffusion / homogenization of constituent elements in the positive electrode active material during the next firing may be selected.
Specifically, the firing temperature (attainment temperature) in the primary firing step S2 is preferably 300 ° C. or higher and 600 ° C. or lower, and more preferably 350 ° C. or higher and 500 ° C. or lower.

一次焼成工程S2での焼成時間(到達温度に達してからの保持時間)については、特に限定されないが、前記の反応が十分に起こる時間、例えば、1時間以上10時間以下が好ましい。
また、一次焼成工程S2での焼成雰囲気は、特に限定されないが、不純物である酸化体の生成防止や、残存する酸化体の還元を促すため、酸素ガス不存在下(不活性ガス雰囲気下)であるのが好ましい。
The firing time in the primary firing step S2 (the holding time after reaching the ultimate temperature) is not particularly limited, but is preferably a time during which the reaction occurs sufficiently, for example, 1 hour to 10 hours.
In addition, the firing atmosphere in the primary firing step S2 is not particularly limited, but in the absence of oxygen gas (in an inert gas atmosphere) in order to prevent the formation of oxidants as impurities and promote the reduction of remaining oxidants. Preferably there is.

(炭素混合工程)
炭素混合工程S3とは、正極活物質に炭素を被覆させるために、一次焼成工程S2後の焼成物に炭素原料を混合する工程である。なお、炭素混合工程S3において、炭素原料を混合させつつ、粉砕処理を行ってもよい。
(Carbon mixing process)
The carbon mixing step S3 is a step of mixing a carbon raw material into the fired product after the primary firing step S2 in order to coat the positive electrode active material with carbon. In the carbon mixing step S3, the pulverization process may be performed while mixing the carbon raw materials.

(炭素混合工程:原料)
炭素混合工程S3において混合する炭素原料としては、ビチューメン等が挙げられ、好ましくは軟化点が300℃以下の石炭ピッチ、特に好ましくは軟化点が200℃以下の石炭ピッチが挙げられる。軟化点の低い石炭ピッチを用いることにより、正極活物質が適切にカーボンコートされ製品の粒子群が均一になり、最終的に正極材料の充放電容量を増大させることができる。
(Carbon mixing process: raw material)
Examples of the carbon raw material to be mixed in the carbon mixing step S3 include bitumen and the like, preferably a coal pitch having a softening point of 300 ° C. or lower, particularly preferably a coal pitch having a softening point of 200 ° C. or lower. By using a coal pitch having a low softening point, the positive electrode active material is appropriately carbon-coated, the particle group of the product becomes uniform, and finally the charge / discharge capacity of the positive electrode material can be increased.

炭素原料は、正極活物質に適切にカーボンコートすることができるように、全体重量(一次焼成工程S2後の焼成物の重量+炭素原料の重量)に対して、2wt%以上8wt%以下となるように添加するのが好ましく、3wt%以上6wt%以下がさらに好ましい。   The carbon raw material is 2 wt% or more and 8 wt% or less with respect to the total weight (weight of the fired product after the primary firing step S2 + weight of the carbon raw material) so that the positive electrode active material can be appropriately carbon coated. It is preferable to add such that 3 wt% or more and 6 wt% or less is more preferable.

(二次焼成工程)
二次焼成工程S4とは、炭素混合工程S3の後の焼成物に、二次焼成(本焼成)を行う工程である。
そして、二次焼成工程S4においては、最終生成物の正極材料に至る反応を完全に進行させる必要がある。よって、二次焼成の焼成温度(到達温度)としては、前記の反応が完全に進行する温度を選択すればよい。
具体的には、二次焼成工程S4での焼成温度(到達温度)は、600℃以上800℃以下が好ましく、650℃以上780℃以下がさらに好ましい。
(Secondary firing process)
The secondary firing step S4 is a step of performing secondary firing (main firing) on the fired product after the carbon mixing step S3.
And in secondary baking process S4, it is necessary to advance reaction which reaches the positive electrode material of a final product completely. Therefore, what is necessary is just to select the temperature which the said reaction advances completely as a calcination temperature (attainment temperature) of secondary baking.
Specifically, the firing temperature (attainment temperature) in the secondary firing step S4 is preferably 600 ° C. or higher and 800 ° C. or lower, and more preferably 650 ° C. or higher and 780 ° C. or lower.

なお、二次焼成工程S4は、一次焼成工程S2と異なり、ガスの発生が殆ど起こらないことから、炭素混合工程S3において混合した炭素を、正極活物質に均一に被覆させやすくなる。   In the secondary firing step S4, unlike the primary firing step S2, the generation of gas hardly occurs. Therefore, the carbon mixed in the carbon mixing step S3 can be easily coated on the positive electrode active material.

二次焼成工程S4での焼成時間(到達温度に達してからの保持時間)については、特に限定されないが、前記の反応が十分に起こる時間、例えば、1時間以上10時間以下が好ましい。
また、二次焼成工程S4での焼成雰囲気は、特に限定されないが、不純物である酸化体の生成防止や、残存する酸化体の還元を促すため、酸素ガス不存在下(不活性ガス雰囲気下)であるのが好ましい。
The firing time in the secondary firing step S4 (holding time after reaching the reached temperature) is not particularly limited, but is preferably a time during which the above reaction occurs sufficiently, for example, 1 hour to 10 hours.
Further, the firing atmosphere in the secondary firing step S4 is not particularly limited, but in the absence of oxygen gas (in an inert gas atmosphere) in order to prevent the formation of oxidized oxidants and promote the reduction of remaining oxidants. Is preferred.

(分級工程)
分級工程S5とは、二次焼成工程S4で得られた焼成物から、粗大な粒子を除外するために、分級を行う工程である。
例えば、分級工程S5の分級処理は、ふるい機等により、直径30μm以上の粒子を除外すればよい。
(Classification process)
The classification step S5 is a step of performing classification in order to exclude coarse particles from the fired product obtained in the secondary firing step S4.
For example, in the classification process of the classification step S5, particles having a diameter of 30 μm or more may be excluded using a sieve or the like.

本実施形態に係るリチウム二次電池用正極材料の製造方法は、以上説明したとおりであるが、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、混合粉砕工程S1において湿式ビーズミルを用いて粉砕処理を行った場合は、混合粉砕工程S1の後に、粉砕物を乾燥する乾燥工程を含めてもよい。また、一次焼成工程S2、二次焼成工程S4の後に、焼成物を冷却する冷却工程を含めてもよい。さらに、分級工程S5の後に、正極材料を集電体に塗布するために、公知のバインダ、導電剤(導電助剤)等を混合するスラリー化工程を含めてもよい。   The manufacturing method of the positive electrode material for a lithium secondary battery according to the present embodiment is as described above, but includes other steps between or before and after each step within a range that does not adversely affect each step. May be. For example, when the pulverization process is performed using the wet bead mill in the mixing and pulverizing step S1, a drying step of drying the pulverized product may be included after the mixing and pulverizing step S1. Moreover, a cooling step for cooling the fired product may be included after the primary firing step S2 and the secondary firing step S4. Furthermore, after the classification step S5, a slurrying step of mixing a known binder, a conductive agent (conductive auxiliary agent) or the like may be included in order to apply the positive electrode material to the current collector.

また、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。   In addition, as for conditions that are not clearly shown in the respective steps, it is sufficient to use conventionally known conditions, and it is needless to say that the conditions can be appropriately changed as long as the effects obtained by the processing in the respective steps are exhibited.

次に、本発明に係るリチウム二次電池用正極材料およびその製造方法について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
なお、実施例1では、正極活物質としてリン酸マンガン鉄リチウムを用いた場合について説明する。
Next, the positive electrode material for a lithium secondary battery and the manufacturing method thereof according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.
In Example 1, the case where lithium manganese iron phosphate is used as the positive electrode active material will be described.

[正極材料の製造方法]
(供試材1)
供試材1の正極材料の製造方法を以下に示す。
まず、正極活物質の前駆体として、水酸化リチウム(LiOH・HO、東洋ケミカル社製)30.52gと、リン酸マンガン(Mn(PO・2HO、Budenheim社製)72.95gと、リン酸第二鉄(FePO・2HO、Budenheim社製)26.16gと、リン酸(HPO、キシダ化学社製)28.78gを準備した。なお、顆粒状の水酸化リチウムについては、D50(レーザ回折・散乱法に基づき測定した体積基準の50%粒子径)が100μm以下となるまで粉砕処理を実施した。
また、リチウムイオン伝導体の前駆体として、アナターゼ型酸化チタン(TiO、キシダ化学社製)2.85gと、酸化アルミニウム(Al、キシダ化学社製)0.32gを準備した。
また、還元剤として、アスコルビン酸(キシダ化学社製)6.4gを準備した。
[Method for producing positive electrode material]
(Sample 1)
The manufacturing method of the positive electrode material of the test material 1 is shown below.
First, as a positive electrode active material precursor, 30.52 g of lithium hydroxide (LiOH · H 2 O, manufactured by Toyo Chemical Co., Ltd.) and manganese phosphate (Mn 3 (PO 4 ) 2 · 2H 2 O, manufactured by Budenheim) and 72.95G, ferric phosphate (FePO 4 · 2H 2 O, manufactured by Budenheim Co.) and 26.16G, phosphoric acid (H 3 PO 4, Kishida chemical Co., Ltd.) was prepared 28.78G. The granular lithium hydroxide was pulverized until D50 (volume-based 50% particle diameter measured based on laser diffraction / scattering method) was 100 μm or less.
In addition, 2.85 g of anatase-type titanium oxide (TiO 2 , manufactured by Kishida Chemical Co., Ltd.) and 0.32 g of aluminum oxide (Al 2 O 3 , manufactured by Kishida Chemical Co., Ltd.) were prepared as precursors of the lithium ion conductor.
As a reducing agent, 6.4 g of ascorbic acid (manufactured by Kishida Chemical Co., Ltd.) was prepared.

そして、前記した正極活物質の前駆体、リチウムイオン伝導体の前駆体、および還元剤を、乾式粉砕機を用いて、5分間、混合・粉砕した。   Then, the precursor of the positive electrode active material, the precursor of the lithium ion conductor, and the reducing agent were mixed and pulverized for 5 minutes using a dry pulverizer.

粉砕物を、Nガス雰囲気下において、450℃まで昇温し4時間保持した(一次焼成)。そして、一次焼成後の焼成物に石炭ピッチ(MCP−200D:軟化点約200℃、JFEケミカル社製)を全体重量に対して4wt%添加し、乾式粉砕機で5分間粉砕した。その後、粉砕物をNガス雰囲気下において、720℃まで昇温し6時間保持した(二次焼成)。そして、二次焼成後の焼成物を冷却した後に解砕・分級(ふるいにより直径45μm以上のものを除外)した。
そして、解砕・分級後の焼成物、アセチレンブラック(デンカブラック(登録商標)、電気化学工業株式会社製、75%プレス品)、ポリフッ化ビニリデン(クレハバッテリーマテリアルズジャパン社製、#9100)を、86:7:7(質量比)の割合で混合した。次いで、得られた混合物をN−メチルピロリドン中で撹拌および混合することで、正極合剤スラリー(正極材料)を得た。
The pulverized product was heated to 450 ° C. and held for 4 hours in a N 2 gas atmosphere (primary firing). Then, 4 wt% of coal pitch (MCP-200D: softening point: about 200 ° C., manufactured by JFE Chemical Co., Ltd.) was added to the fired product after the primary firing, and pulverized for 5 minutes with a dry pulverizer. Thereafter, the pulverized product was heated to 720 ° C. and held for 6 hours under N 2 gas atmosphere (secondary firing). Then, the fired product after the secondary firing was cooled and then crushed and classified (excluding those having a diameter of 45 μm or more by sieving).
And the baked material after pulverization and classification, acetylene black (Denka Black (registered trademark), manufactured by Denki Kagaku Kogyo Co., Ltd., 75% press product), polyvinylidene fluoride (manufactured by Kureha Battery Materials Japan, # 9100) , 86: 7: 7 (mass ratio). Next, the obtained mixture was stirred and mixed in N-methylpyrrolidone to obtain a positive electrode mixture slurry (positive electrode material).

(供試材2)
供試材2の正極材料の製造方法について、供試材1の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、水酸化リチウム(LiOH・HO、東洋ケミカル社製)29.37gと、リン酸マンガン(Mn(PO・2HO、Budenheim社製)72.95gと、リン酸第二鉄(FePO・2HO、Budenheim社製)26.16gと、リン酸(HPO、キシダ化学社製)21.52gを準備した。なお、顆粒状の水酸化リチウムについては、D50(レーザ回折・散乱法に基づき測定した体積基準の50%粒子径)が100μm以下となるまで粉砕処理を実施した。
また、還元剤として、アスコルビン酸(キシダ化学社製)6.4gを準備した。
なお、供試材2は、リチウムイオン伝導体を用いない場合を想定したものである。
(Sample 2)
About the manufacturing method of the positive electrode material of the test material 2, only a different point from the manufacturing method of the positive electrode material of the test material 1 is shown below.
First, as a positive electrode active material precursor, 29.37 g of lithium hydroxide (LiOH · H 2 O, manufactured by Toyo Chemical Co.) and manganese phosphate (Mn 3 (PO 4 ) 2 · 2H 2 O, manufactured by Budenheim) and 72.95G, ferric phosphate (FePO 4 · 2H 2 O, manufactured by Budenheim Co.) and 26.16G, phosphoric acid (H 3 PO 4, Kishida chemical Co., Ltd.) was prepared 21.52G. The granular lithium hydroxide was pulverized until D50 (volume-based 50% particle diameter measured based on laser diffraction / scattering method) was 100 μm or less.
As a reducing agent, 6.4 g of ascorbic acid (manufactured by Kishida Chemical Co., Ltd.) was prepared.
In addition, the sample material 2 assumes the case where a lithium ion conductor is not used.

(供試材3)
供試材3の正極材料の製造方法について、供試材1の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、水酸化リチウム(LiOH・HO、東洋ケミカル社製)32.90gと、リン酸マンガン(Mn(PO・2HO、Budenheim社製)72.95gと、リン酸第二鉄(FePO・2HO、Budenheim社製)26.16gと、リン酸(HPO、和光純薬株式会社製)21.52gを準備した。なお、顆粒状の水酸化リチウムについては、D50(レーザ回折・散乱法に基づき測定した体積基準の50%粒子径)が100μm以下となるまで粉砕処理を実施した。
また、リチウムイオン伝導体の前駆体として、アナターゼ型酸化チタン(キシダ化学社製)8.39gを準備した。
また、還元剤として、アスコルビン酸(キシダ化学社製)6.4gを準備した。
なお、供試材3は、リチウムイオン伝導体としてチタン酸リチウム(以下、適宜「LTO」という)を用いる場合を想定したものである。
(Sample 3)
About the manufacturing method of the positive electrode material of the test material 3, only a different point from the manufacturing method of the positive electrode material of the test material 1 is shown below.
First, as a precursor of the positive electrode active material, lithium hydroxide (LiOH · H 2 O, manufactured by Toyo Chemical Co., Ltd.) 32.90 g and manganese phosphate (Mn 3 (PO 4 ) 2 · 2H 2 O, manufactured by Budenheim) and 72.95G, ferric phosphate (FePO 4 · 2H 2 O, Budenheim Co., Ltd.) and 26.16G, phosphoric acid (H 3 PO 4, manufactured by Wako pure Chemical Industries, Ltd.) was prepared 21.52G. The granular lithium hydroxide was pulverized until D50 (volume-based 50% particle diameter measured based on laser diffraction / scattering method) was 100 μm or less.
In addition, 8.39 g of anatase-type titanium oxide (manufactured by Kishida Chemical Co., Ltd.) was prepared as a precursor of a lithium ion conductor.
As a reducing agent, 6.4 g of ascorbic acid (manufactured by Kishida Chemical Co., Ltd.) was prepared.
The specimen 3 is assumed to use lithium titanate (hereinafter referred to as “LTO” as appropriate) as the lithium ion conductor.

[リチウム二次電池の製造方法]
前記した製造方法によって得られた正極材料を、集電体であるアルミニウム箔表面に塗布(塗布量:8mg/cm)した。そして、塗布後、乾燥させることにより、正極を製造した。
そして、ステンレス製コイン電池ケース(型番CR2032)に金属アルミニウム板、正負極集電体、前記正極および金属リチウム箔負極をセパレーター(セルガード社製)を介して組入れ、電解液として1MのLiPFを溶解したエチルメチルカーボネート/エチレンカーボネートの7/3混合電解液(キシダ化学社製)を満たして封入し、コイン型リチウム二次電池を製造した。
なお、正負極、隔膜、電解液等の一連の電池組立ては、アルゴン置換されたグローブボックス内で行った。
[Method for producing lithium secondary battery]
The positive electrode material obtained by the above-described manufacturing method was applied to the surface of an aluminum foil as a current collector (application amount: 8 mg / cm 2 ). And after application | coating, the positive electrode was manufactured by making it dry.
Then, a metal aluminum plate, a positive and negative electrode current collector, the positive electrode and a metal lithium foil negative electrode are incorporated into a stainless steel coin battery case (model number CR2032) via a separator (manufactured by Celgard), and 1M LiPF 6 is dissolved as an electrolytic solution. The coin-type lithium secondary battery was manufactured by filling and encapsulating the 7/3 mixed electrolyte of ethyl methyl carbonate / ethylene carbonate (Kishida Chemical Co., Ltd.).
In addition, a series of battery assemblies such as positive and negative electrodes, a diaphragm, and an electrolyte solution were performed in a glove box substituted with argon.

[放電特性の評価]
供試材1〜3のリチウム二次電池について、室温(25℃)において放電特性の評価を行った。
具体的には、放電容量と電池電圧との関係を示す放電曲線(1C放電)を作成した。なお、放電曲線は、1Cで放電させた場合のものであるが、この「1C」とは、電池の全容量を1時間で放電させる電流値のことである。
なお、図3において、実線は供試材1の放電曲線であり、点線は供試材2の放電曲線であり、1点鎖線は供試材3の放電曲線である。
[Evaluation of discharge characteristics]
About the lithium secondary battery of the test materials 1-3, discharge characteristics were evaluated at room temperature (25 degreeC).
Specifically, a discharge curve (1C discharge) showing the relationship between the discharge capacity and the battery voltage was created. In addition, although the discharge curve is a thing at the time of discharging at 1C, this "1C" is the electric current value which discharges the full capacity of a battery in 1 hour.
In FIG. 3, the solid line is the discharge curve of the specimen 1, the dotted line is the discharge curve of the specimen 2, and the one-dot chain line is the discharge curve of the specimen 3.

[結果の検討]
図3において、供試材1と供試材2との放電曲線を比較すると、供試材1の電池電圧の方が高くなっていることが確認できる。加えて、供試材1の放電曲線と縦横両軸で囲まれた面積が、供試材2の面積よりも広くなっていることが確認できる。
これらの結果から、リチウムイオン伝導体を含んだ供試材1は、リチウムイオン伝導体を含んでいない供試材2よりも、リチウムイオン伝導性が高くなった結果、作動電圧や放電容量を向上できたことがわかった。
[Examination of results]
In FIG. 3, when the discharge curves of the test material 1 and the test material 2 are compared, it can be confirmed that the battery voltage of the test material 1 is higher. In addition, it can be confirmed that the area surrounded by the discharge curve and the vertical and horizontal axes of the specimen 1 is wider than the area of the specimen 2.
From these results, the test material 1 including the lithium ion conductor has higher lithium ion conductivity than the test material 2 not including the lithium ion conductor, thereby improving the operating voltage and the discharge capacity. I understood that I was able to do it.

図3において、供試材2と供試材3との放電曲線を比較すると、供試材3の方が、電池電圧が低くなっていることが確認できる。
この結果から、リチウムイオン伝導体の中でも、LTOを用いた場合は、リチウムイオン伝導性を高めることができないことがわかった。
以上の供試材1〜3の結果より、正極活物質としてリン酸マンガン鉄リチウムを用いた場合、リチウムイオン伝導体として粒子状を呈するLTAPを用いることにより、リチウムイオン伝導性が高まり、その結果、作動電圧や放電容量を向上できることがわかった。
In FIG. 3, when the discharge curves of the test material 2 and the test material 3 are compared, it can be confirmed that the battery voltage of the test material 3 is lower.
From this result, it was found that lithium ion conductivity cannot be improved when LTO is used among lithium ion conductors.
From the results of the above test materials 1 to 3, when lithium manganese iron phosphate is used as the positive electrode active material, the lithium ion conductivity is increased by using LTAP having a particulate form as the lithium ion conductor. It was found that the operating voltage and discharge capacity can be improved.

次に、実施例2では、正極活物質としてリン酸鉄リチウムを用いた場合について説明する。   Next, Example 2 demonstrates the case where lithium iron phosphate is used as a positive electrode active material.

[正極材料の製造方法]
(供試材4)
供試材4の正極材料の製造方法について、供試材1の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、炭酸リチウム(LiCO、東洋ケミカル社製)113.17gと、シュウ酸鉄(FeC・2HO、湖北浩元社製)534.51gと、リン酸二水素アンモニウム(NHPO、下関三井化学社製)352.33gを準備した。これらを混合・粉砕して、405度まで昇温し4時間保持した(一次焼成)。そして、一次焼成後の焼成物に対して、炭素原料として石炭ピッチ(MCP−110C、JFEケミカル社製)を3.5wt%混合して、760度まで昇温し6時間保持した(二次焼成)。
なお、供試材4は、正極活物質とリチウムイオン伝導体の合計に対するリチウムイオン伝導体の比率が0mol%の場合を想定したものである。
[Method for producing positive electrode material]
(Sample 4)
About the manufacturing method of the positive electrode material of the test material 4, only a different point from the manufacturing method of the positive electrode material of the test material 1 is shown below.
First, as a positive electrode active material precursor, 113.17 g of lithium carbonate (Li 2 CO 3 , manufactured by Toyo Chemical Co., Ltd.) and iron oxalate (FeC 2 O 4 .2H 2 O, manufactured by Kohoku Komoto Co., Ltd.) 534.51 g Then, 352.33 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 , manufactured by Shimonoseki Mitsui Chemicals) was prepared. These were mixed and pulverized, heated to 405 degrees and held for 4 hours (primary firing). Then, 3.5 wt% of coal pitch (MCP-110C, manufactured by JFE Chemical Co., Ltd.) as a carbon raw material is mixed with the fired product after the primary firing, and the temperature is raised to 760 ° C. and held for 6 hours (secondary firing). ).
In addition, the test material 4 assumes the case where the ratio of the lithium ion conductor with respect to the sum total of a positive electrode active material and a lithium ion conductor is 0 mol%.

(供試材5)
供試材5の正極材料の製造方法について、供試材4の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、炭酸リチウム(LiCO、東洋ケミカル社製)114.64gと、シュウ酸鉄(FeC・2HO、湖北浩元社製)534.51gと、リン酸二水素アンモニウム(NHPO、下関三井化学社製)362.90g、また、リチウムイオン伝導体の前駆体として、酸化チタン(TiO、キシダ化学社製)4.16gと、酸化アルミニウム(Al、キシダ化学社製)0.47gを準備した。
なお、供試材5は、正極活物質とリチウムイオン伝導体の合計に対するリチウムイオン伝導体の比率が1mol%の場合を想定したものである。
(Sample 5)
About the manufacturing method of the positive electrode material of the test material 5, only a different point from the manufacturing method of the positive electrode material of the test material 4 is shown below.
First, as a positive electrode active material precursor, 114.64 g of lithium carbonate (Li 2 CO 3 , manufactured by Toyo Chemical Co., Ltd.) and iron oxalate (FeC 2 O 4 .2H 2 O, manufactured by Kohoku Komoto Co., Ltd.) 534.51 g 362.90 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 , manufactured by Shimonoseki Mitsui Chemicals), and 4.16 g of titanium oxide (TiO 2 , manufactured by Kishida Chemical Co., Ltd.) as a precursor of a lithium ion conductor. Then, 0.47 g of aluminum oxide (Al 2 O 3 , manufactured by Kishida Chemical Co., Ltd.) was prepared.
In addition, the sample material 5 assumes the case where the ratio of the lithium ion conductor with respect to the sum total of a positive electrode active material and a lithium ion conductor is 1 mol%.

(供試材6)
供試材6の正極材料の製造方法について、供試材4の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、炭酸リチウム(LiCO、東洋ケミカル社製)116.64gと、シュウ酸鉄(FeC・2HO、湖北浩元社製)534.51gと、リン酸二水素アンモニウム(NHH2PO、下関三井化学社製)373.47gを準備した。
また、リチウムイオン伝導体の前駆体として、酸化チタン(TiO、キシダ化学社製)8.32gと、酸化アルミニウム(Al、キシダ化学社製)0.94gを準備した。
なお、供試材6は、正極活物質とリチウムイオン伝導体の合計に対するリチウムイオン伝導体の比率が2mol%の場合を想定したものである。
(Sample 6)
About the manufacturing method of the positive electrode material of the test material 6, only a different point from the manufacturing method of the positive electrode material of the test material 4 is shown below.
First, as a positive electrode active material precursor, 116.64 g of lithium carbonate (Li 2 CO 3 , manufactured by Toyo Chemical Co., Ltd.) and iron oxalate (FeC 2 O 4 .2H 2 O, manufactured by Kohoku Komoto Co., Ltd.), 534.51 g Then, 373.47 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 , manufactured by Shimonoseki Mitsui Chemicals) was prepared.
Moreover, 8.32 g of titanium oxide (TiO 2 , manufactured by Kishida Chemical Co., Ltd.) and 0.94 g of aluminum oxide (Al 2 O 3 , manufactured by Kishida Chemical Co., Ltd.) were prepared as precursors of the lithium ion conductor.
In addition, the test material 6 assumes the case where the ratio of the lithium ion conductor with respect to the sum total of a positive electrode active material and a lithium ion conductor is 2 mol%.

(供試材7)
供試材7の正極材料の製造方法について、供試材4の正極材料の製造方法と異なる点のみを以下に示す。
まず、正極活物質の前駆体として、炭酸リチウム(LiCO、東洋ケミカル社製)117.58gと、シュウ酸鉄(FeC・2HO、湖北浩元社製)534.51gと、リン酸二水素アンモニウム(NHPO、下関三井化学社製)384.04gを準備した。
また、リチウムイオン伝導体の前駆体として、酸化チタン(TiO、キシダ化学社製)12.48gと、酸化アルミニウム(Al、キシダ化学社製)1.41gを準備した。
なお、供試材7は、正極活物質とリチウムイオン伝導体の合計に対するリチウムイオン伝導体の比率が3mol%の場合を想定したものである。
(Sample 7)
About the manufacturing method of the positive electrode material of the test material 7, only a different point from the manufacturing method of the positive electrode material of the test material 4 is shown below.
First, as a precursor of the positive electrode active material, lithium carbonate (Li 2 CO 3, manufactured by Toyo Chemical Co.) 117.58G and iron oxalate (FeC 2 O 4 · 2H 2 O, manufactured by Hubei Hiroshimotosha) 534.51G Then, 384.04 g of ammonium dihydrogen phosphate (NH 4 H 2 PO 4 , manufactured by Shimonoseki Mitsui Chemicals) was prepared.
Moreover, 12.48 g of titanium oxide (TiO 2 , manufactured by Kishida Chemical Co., Ltd.) and 1.41 g of aluminum oxide (Al 2 O 3 , manufactured by Kishida Chemical Co., Ltd.) were prepared as precursors of the lithium ion conductor.
In addition, the sample material 7 assumes the case where the ratio of the lithium ion conductor with respect to the sum total of a positive electrode active material and a lithium ion conductor is 3 mol%.

[リチウム二次電池の製造方法]
リチウム二次電池の製造方法については、実施例1と同じ条件で行った。
[Method for producing lithium secondary battery]
About the manufacturing method of a lithium secondary battery, it carried out on the same conditions as Example 1. FIG.

[放電特性の評価]
供試材4〜7のリチウム二次電池について、室温(25℃)において放電特性の評価を行った。
具体的には、放電容量と電池電圧との関係を示す放電曲線(5C放電)を作成した。なお、放電曲線は、5Cで放電させた場合のものを作成したが、ここで「1C」とは、電池の全容量を1時間で放電させる電流値のことであり、この「5C」とは、前記電流値の5倍の電流値のことである。
なお、図4、5において、点線は、供試材4の放電曲線であり、1点鎖線は供試材5の放電曲線であり、2点鎖線は供試材6の放電曲線であり、実線は供試材7の放電曲線である。
[Evaluation of discharge characteristics]
About the lithium secondary battery of the specimens 4-7, the discharge characteristic was evaluated at room temperature (25 degreeC).
Specifically, a discharge curve (5C discharge) showing the relationship between the discharge capacity and the battery voltage was created. The discharge curve was prepared when discharged at 5C. Here, "1C" is the current value that discharges the entire capacity of the battery in one hour. This "5C" The current value is five times the current value.
4 and 5, the dotted line is the discharge curve of the specimen 4, the one-dot chain line is the discharge curve of the specimen 5, and the two-dot chain line is the discharge curve of the specimen 6, which is a solid line Is a discharge curve of the specimen 7.

[結果の検討]
放電開始時の状態を示す図5において、供試材4と供試材5とは、ほとんど同じ電池電圧を示すが、供試材6と供試材7とは、供試材4と供試材5よりも電池電圧が高くなっていることが確認できる。
この結果から、リチウムイオン伝導体の含有量が2mol%以上であれば、リチウムイオン伝導率が高くなり、より確実に作動電圧を向上できることがわかった。
以上の供試材4〜7の結果より、正極活物質としてリン酸鉄リチウムを用いた場合、リチウムイオン伝導体として粒子状を呈するLTAPを2mol%以上含有させることにより、リチウムイオン伝導性が確実に高まり、その結果、作動電圧を向上できることがわかった。
[Examination of results]
In FIG. 5 showing the state at the start of discharge, the specimen 4 and specimen 5 show almost the same battery voltage, but the specimen 6 and specimen 7 are the specimen 4 and specimen. It can be confirmed that the battery voltage is higher than that of the material 5.
From this result, it was found that when the content of the lithium ion conductor is 2 mol% or more, the lithium ion conductivity is increased and the operating voltage can be improved more reliably.
From the results of the above test materials 4 to 7, when lithium iron phosphate is used as the positive electrode active material, the lithium ion conductivity is ensured by containing 2 mol% or more of LTAP that is in the form of particles as the lithium ion conductor. As a result, it was found that the operating voltage can be improved.

1 正極活物質
2 リチウムイオン伝導体
10 リチウム二次電池用正極材料(正極材料)
S1 混合粉砕工程
S2 一次焼成工程(焼成工程)
S3 炭素混合工程
S4 二次焼成工程(焼成工程)
S5 分級工程
DESCRIPTION OF SYMBOLS 1 Positive electrode active material 2 Lithium ion conductor 10 Positive electrode material (positive electrode material) for lithium secondary batteries
S1 mixing and grinding step S2 primary firing step (firing step)
S3 Carbon mixing process S4 Secondary firing process (firing process)
S5 classification process

Claims (5)

正極活物質と、リチウムイオン伝導体と、を含有し、
前記正極活物質は、リン酸マンガン鉄リチウムおよびリン酸鉄リチウムの少なくとも1種であり、前記リチウムイオン伝導体は、リン酸リチウムアルミニウムチタンであって、
前記正極活物質および前記リチウムイオン伝導体は、それぞれ粒子状を呈していることを特徴とするリチウム二次電池用正極材料。
Containing a positive electrode active material and a lithium ion conductor;
The positive electrode active material is at least one of lithium iron manganese phosphate and lithium iron phosphate, and the lithium ion conductor is lithium aluminum titanium phosphate,
The positive electrode material for a lithium secondary battery, wherein the positive electrode active material and the lithium ion conductor are each in the form of particles.
前記正極活物質は、リン酸マンガン鉄リチウムであることを特徴とする請求項1に記載のリチウム二次電池用正極材料。   The positive electrode material for a lithium secondary battery according to claim 1, wherein the positive electrode active material is lithium manganese iron phosphate. 前記正極活物質は、リン酸鉄リチウムであり、
前記正極活物質と前記リチウムイオン伝導体の合計に対する前記リチウムイオン伝導体の比率は、2mol%以上であることを特徴とする請求項1に記載のリチウム二次電池用正極材料。
The positive electrode active material is lithium iron phosphate,
2. The positive electrode material for a lithium secondary battery according to claim 1, wherein a ratio of the lithium ion conductor to a total of the positive electrode active material and the lithium ion conductor is 2 mol% or more.
正極活物質の前駆体とリチウムイオン伝導体の前駆体とを混合し、粉砕する混合粉砕工程と、
前記混合粉砕工程後の粉砕物に対して焼成を行う焼成工程と、
を含み、
前記正極活性物質は、リン酸マンガン鉄リチウムおよびリン酸鉄リチウムの少なくとも1種であり、前記リチウムイオン伝導体は、リン酸リチウムアルミニウムチタンであることを特徴とするリチウム二次電池用正極材料の製造方法。
Mixing and pulverizing step of mixing and pulverizing the precursor of the positive electrode active material and the precursor of the lithium ion conductor;
A firing step of firing the pulverized product after the mixing and grinding step;
Including
The positive electrode active material is at least one of lithium manganese iron phosphate and lithium iron phosphate, and the lithium ion conductor is lithium aluminum titanium phosphate. Production method.
前記焼成工程は、所定温度で焼成を行う一次焼成工程と、前記所定温度よりも高い温度で焼成を行う二次焼成工程と、からなり、
前記一次焼成工程と前記二次焼成工程との間に、炭素原料を混合する炭素混合工程を含むことを特徴とする請求項4に記載のリチウム二次電池用正極材料の製造方法。
The firing step includes a primary firing step for firing at a predetermined temperature and a secondary firing step for firing at a temperature higher than the predetermined temperature.
The method for producing a positive electrode material for a lithium secondary battery according to claim 4, further comprising a carbon mixing step of mixing a carbon raw material between the primary baking step and the secondary baking step.
JP2015023606A 2015-02-09 2015-02-09 Method for producing positive electrode material for lithium secondary battery Expired - Fee Related JP6341516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023606A JP6341516B2 (en) 2015-02-09 2015-02-09 Method for producing positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023606A JP6341516B2 (en) 2015-02-09 2015-02-09 Method for producing positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2016146301A true JP2016146301A (en) 2016-08-12
JP6341516B2 JP6341516B2 (en) 2018-06-13

Family

ID=56685480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023606A Expired - Fee Related JP6341516B2 (en) 2015-02-09 2015-02-09 Method for producing positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6341516B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090497B1 (en) * 2016-03-30 2017-03-08 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery
JP2017199643A (en) * 2016-03-30 2017-11-02 住友大阪セメント株式会社 Lithium ion secondary battery
CN107768632A (en) * 2017-10-16 2018-03-06 桑顿新能源科技有限公司 A kind of LATP monocrystalline high-voltage anode material and preparation method thereof
CN108063248A (en) * 2017-10-29 2018-05-22 佛山市德方纳米科技有限公司 Lithium iron phosphate positive material and preparation method thereof and lithium ion battery
CN109264691A (en) * 2018-10-19 2019-01-25 广东光华科技股份有限公司 A method of iron manganese phosphate for lithium is prepared by LiFePO4
JP2019040854A (en) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. Lithium manganese iron phosphate-based particulate for use in cathode of lithium battery, lithium manganese iron phosphate-based powdery material containing the same, and method for manufacturing the powdery material
US10566621B2 (en) 2016-03-30 2020-02-18 Sumitomo Osaka Cement Co., Ltd Lithium-ion secondary battery
JP2020155225A (en) * 2019-03-18 2020-09-24 太平洋セメント株式会社 Manufacturing method of composite positive electrode active material particles for all-solid lithium ion secondary battery
CN113659133A (en) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 Preparation method of high-compaction lithium ferric manganese phosphate cathode material
KR20210148810A (en) * 2020-05-29 2021-12-08 오유근 Manufacturing method of complex electrolyte for solid-state lithium secondary cell
CN115231612A (en) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 Method for preparing modified lithium titanate composite material and modified lithium titanate composite material
CN115676794A (en) * 2022-10-24 2023-02-03 广东邦普循环科技有限公司 Method for preparing lithium iron manganese phosphate cathode material by coprecipitation and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243662A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Positive active material for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery using the same
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2013229132A (en) * 2012-04-24 2013-11-07 Toyota Motor Corp Electrode sintered body and electrode sintered body manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243662A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Positive active material for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery using the same
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2013229132A (en) * 2012-04-24 2013-11-07 Toyota Motor Corp Electrode sintered body and electrode sintered body manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374221B2 (en) 2016-03-30 2022-06-28 Sumitomo Metal Mining Co., Ltd. Lithium-ion secondary battery
JP6090497B1 (en) * 2016-03-30 2017-03-08 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery
US10014522B2 (en) 2016-03-30 2018-07-03 Sumitomo Osaka Cement Co., Ltd. Cathode material for lithium-ion secondary battery
US10566621B2 (en) 2016-03-30 2020-02-18 Sumitomo Osaka Cement Co., Ltd Lithium-ion secondary battery
JP2017199643A (en) * 2016-03-30 2017-11-02 住友大阪セメント株式会社 Lithium ion secondary battery
JP2019040854A (en) * 2017-07-14 2019-03-14 泓辰電池材料有限公司Hcm Co., Ltd. Lithium manganese iron phosphate-based particulate for use in cathode of lithium battery, lithium manganese iron phosphate-based powdery material containing the same, and method for manufacturing the powdery material
CN107768632A (en) * 2017-10-16 2018-03-06 桑顿新能源科技有限公司 A kind of LATP monocrystalline high-voltage anode material and preparation method thereof
CN108063248B (en) * 2017-10-29 2020-05-26 佛山市德方纳米科技有限公司 Lithium iron phosphate anode material, preparation method thereof and lithium ion battery
CN108063248A (en) * 2017-10-29 2018-05-22 佛山市德方纳米科技有限公司 Lithium iron phosphate positive material and preparation method thereof and lithium ion battery
CN109264691A (en) * 2018-10-19 2019-01-25 广东光华科技股份有限公司 A method of iron manganese phosphate for lithium is prepared by LiFePO4
JP7152974B2 (en) 2019-03-18 2022-10-13 太平洋セメント株式会社 Method for producing composite positive electrode active material particles for all-solid lithium ion secondary battery
JP2020155225A (en) * 2019-03-18 2020-09-24 太平洋セメント株式会社 Manufacturing method of composite positive electrode active material particles for all-solid lithium ion secondary battery
KR20210148810A (en) * 2020-05-29 2021-12-08 오유근 Manufacturing method of complex electrolyte for solid-state lithium secondary cell
KR102554073B1 (en) * 2020-05-29 2023-07-13 오유근 Manufacturing method of complex electrolyte for solid-state lithium secondary cell
CN113659133A (en) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 Preparation method of high-compaction lithium ferric manganese phosphate cathode material
CN115231612A (en) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 Method for preparing modified lithium titanate composite material and modified lithium titanate composite material
CN115231612B (en) * 2022-09-20 2023-02-03 河北格力钛新能源有限公司 Method for preparing modified lithium titanate composite material and modified lithium titanate composite material
CN115676794B (en) * 2022-10-24 2024-01-09 广东邦普循环科技有限公司 Method for preparing lithium iron manganese phosphate positive electrode material by coprecipitation and application thereof
CN115676794A (en) * 2022-10-24 2023-02-03 广东邦普循环科技有限公司 Method for preparing lithium iron manganese phosphate cathode material by coprecipitation and application thereof

Also Published As

Publication number Publication date
JP6341516B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6341516B2 (en) Method for producing positive electrode material for lithium secondary battery
Wu et al. P2-type Na0. 66Ni0. 33–xZnxMn0. 67O2 as new high-voltage cathode materials for sodium-ion batteries
US9806339B2 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
JP5153189B2 (en) Method for producing lithium ion secondary battery positive electrode material
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
JP6724361B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
Kim et al. Multiple effects of Mg1–xNixO coating on P2-type Na0. 67Ni0. 33Mn0. 67O2 to generate highly stable cathodes for sodium-ion batteries
Wang et al. Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries
Opra et al. Fluorine substituted molybdenum oxide as cathode material for Li-ion battery
JPWO2019103037A1 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
JP7371364B2 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method, positive electrode for lithium ion secondary batteries, and lithium ion secondary batteries
Zhao et al. Synthesis and electrochemical performance of defected nano-micro structure sodium/lithium titanate composites materials for lithium-ion batteries
Moon et al. Coating lithium titanate anodes with a mixed ionic-electronic conductor for high-rate lithium-ion batteries
WO2022138702A1 (en) Spinel-type lithium manganese, method for producing same, and use of same
JP6389773B2 (en) Method for producing positive electrode material for lithium secondary battery
JP2010108603A (en) Manufacturing method of anode active material for lithium-ion battery
WO2021054467A1 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP7031296B2 (en) Manufacturing method of nickel composite oxide and positive electrode active material
TW201622216A (en) Positive electrode active material for storage device and method for producing positive electrode active material for storage device
JP6264410B2 (en) Non-aqueous secondary battery positive electrode composition and method for producing the same
WO2014181436A1 (en) Positive electrode active material for secondary batteries and secondary battery using same
JP2021009778A (en) Cathode active material for lithium ion secondary battery and method of producing the same, and, lithium ion secondary battery
Zhang et al. Zinc-substituted P2-type Na0. 67Ni0. 23Zn0. 1Mn0. 67O2 cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6341516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees