JP2010108603A - Manufacturing method of anode active material for lithium-ion battery - Google Patents

Manufacturing method of anode active material for lithium-ion battery Download PDF

Info

Publication number
JP2010108603A
JP2010108603A JP2008276334A JP2008276334A JP2010108603A JP 2010108603 A JP2010108603 A JP 2010108603A JP 2008276334 A JP2008276334 A JP 2008276334A JP 2008276334 A JP2008276334 A JP 2008276334A JP 2010108603 A JP2010108603 A JP 2010108603A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
firing
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008276334A
Other languages
Japanese (ja)
Inventor
Katsuya Sawada
勝也 澤田
Takeshi Deguchi
剛 出口
Naoya Kobayashi
直哉 小林
Toru Inagaki
徹 稲垣
Sung-Soo Kim
性 洙 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Samsung SDI Co Ltd
Original Assignee
Tayca Corp
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp, Samsung SDI Co Ltd filed Critical Tayca Corp
Priority to JP2008276334A priority Critical patent/JP2010108603A/en
Priority to KR1020090100775A priority patent/KR101201752B1/en
Priority to US12/606,926 priority patent/US20100143800A1/en
Publication of JP2010108603A publication Critical patent/JP2010108603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an anode active material stable at storage etc., made of a composite oxide of lithium and transition metal, and capable of reacting under a safe inert atmosphere. <P>SOLUTION: The manufacturing method of the anode active material for lithium-ion battery is such that by adding and calcinating a carbon material during a manufacturing process of a compound, having the composition formula (1): Li<SB>a</SB>V<SB>b</SB>M<SB>c</SB>O<SB>2+d</SB>.... In the formula (1), the values of a, b, c showing the composition ratios should respectively be in the range of: 1≤a≤2.5, 0.5≤b≤1.5, 0≤c≤0.5, 0≤d≤0.5, and M should at least be one selected from among a group consisting of Mg, Al, Cr, Mo, Ti, W and Zr. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン電池用負極活物質の製造方法に関し、最終的に得られる負極活物質の中に残留することがほとんどない物質として、炭素材料など特定の物質を特定量添加し焼成することにより、経済的かつ安全な不活性雰囲気下で反応させることが可能であり、かつ異常な粒子成長を抑制した均一な粒度分布を持つLi−V−M複合酸化物の負極活物質の製造方法に関する。   The present invention relates to a method for producing a negative electrode active material for a lithium ion battery, and includes adding a specific amount of a specific material such as a carbon material as a material hardly remaining in the finally obtained negative electrode active material, and firing the material. Relates to a method for producing a negative electrode active material of Li-VM composite oxide which can be reacted in an economical and safe inert atmosphere and has a uniform particle size distribution in which abnormal particle growth is suppressed. .

近年の携帯用小型電子機器の普及に伴い、かかる電子機器の電源として他の電池に比べて高いエネルギー密度を有するリチウムイオン電池の開発が盛んに行われている。   With the spread of portable small electronic devices in recent years, lithium ion batteries having a higher energy density than other batteries have been actively developed as power sources for such electronic devices.

このリチウムイオン電池は、一般に負極材料として炭素材料を用いて、充放電時にLiイオン (Li+ ) を炭素 (黒鉛) の層間に出入りさせるものである。すなわち、充電時には負極の炭素材料に電子が送り込まれて炭素は負に帯電し、正極に吸蔵されていたLiイオンが脱離して負に帯電した負極の炭素材料に吸蔵 (インターカレート) される。逆に、放電時には負極の炭素材料に吸蔵されていたLiイオンが脱離 (デインターカレート) して、正極に吸蔵されるというものである。 This lithium ion battery generally uses a carbon material as a negative electrode material, and allows Li ions (Li + ) to enter and exit between carbon (graphite) layers during charge and discharge. That is, at the time of charging, electrons are sent to the carbon material of the negative electrode, the carbon is negatively charged, and Li ions stored in the positive electrode are desorbed and inserted (intercalated) into the negatively charged carbon material of the negative electrode. . On the other hand, during discharge, Li ions stored in the carbon material of the negative electrode are desorbed (deintercalated) and stored in the positive electrode.

また、近年では、負極に炭素材料を用いた場合、リチウムイオン電池の放電容量が小さいという欠点を克服するために、炭素材料の代わりにLi−V複合酸化物またはLi−Ti複合酸化物といったリチウムと遷移金属との複合酸化物を負極活物質に用いる方法が提案されている(特許文献1参照)。   In recent years, when a carbon material is used for the negative electrode, lithium such as Li—V composite oxide or Li—Ti composite oxide is used instead of the carbon material in order to overcome the disadvantage that the discharge capacity of the lithium ion battery is small. There has been proposed a method of using a composite oxide of a metal and a transition metal as a negative electrode active material (see Patent Document 1).

しかしながら、例えば負極にLi−V複合酸化物を用いる場合、一般的に従来の製造方法においては、アルゴンや窒素などの不活性雰囲気、または窒素/水素、アルゴン/水素などの還元雰囲気を用いて合成を実施しているケースが多く、焼成炉内の還元雰囲気の調整、安全面から必ずしも好ましい製造方法であると言えず負極活物質の量産には不向きであった(特許文献2−5参照)。   However, for example, when Li-V composite oxide is used for the negative electrode, in general, the conventional manufacturing method is synthesized using an inert atmosphere such as argon or nitrogen, or a reducing atmosphere such as nitrogen / hydrogen or argon / hydrogen. Therefore, it is not necessarily a preferable production method from the viewpoint of adjusting the reducing atmosphere in the firing furnace and safety, and is not suitable for mass production of the negative electrode active material (see Patent Document 2-5).

さらに合成のため、焼成温度を1000℃以上にする必要のあることから、異常な粒子成長が起こり易く、幅の広いブロードな粒度分布を持つものとなり、良好な特性を持つリチウムイオン活物質が得られないという問題もあった。   Furthermore, since it is necessary to set the firing temperature to 1000 ° C. or higher for synthesis, abnormal particle growth is likely to occur, and a broad and broad particle size distribution is obtained, thereby obtaining a lithium ion active material having good characteristics. There was also a problem that it was not possible.

特開平6−60867JP-A-6-60867 特開2006−128115JP 2006-128115 A 特開2003−68305JP 2003-68305 A 特開2005−216855JP 2005-216855 A 特開2002−216753JP 2002-216753 A

そこで、本発明は、上記の問題点に鑑み、安全な不活性雰囲気下で反応させることができ、かつ、均一な粒度分布を持つリチウムと遷移金属との複合酸化物からなる負極活物質の製造方法を提供することを目的とする。   Therefore, in view of the above problems, the present invention can produce a negative electrode active material comprising a composite oxide of lithium and a transition metal that can be reacted in a safe inert atmosphere and has a uniform particle size distribution. It aims to provide a method.

本発明者等は鋭意検討を重ねた結果、例えば炭素材料など焼成時に系外へ放出される物質を特定量添加し焼成することにより、該添加物質が最終的に得られる負極活物質に残留することがほとんどなく、水素などの還元性ガス雰囲気にせず、安全な不活性雰囲気下で反応させることが可能であり、さらに均一な粒度分布を持ったLi−V−M複合酸化物の負極活物質の製造方法に係る発明を完成させるに至った。   As a result of intensive studies, the present inventors, for example, add a specific amount of a substance released outside the system during firing, such as a carbon material, and the additive substance remains in the finally obtained negative electrode active material. Li-VM composite oxide negative electrode active material that can be reacted in a safe inert atmosphere without using a reducing gas atmosphere such as hydrogen. It came to complete invention concerning the manufacturing method of this.

具体的には、本発明は下記組成式(1)を有する化合物の製造工程において、炭素材料を添加し焼成することを特徴とするリチウムイオン電池用負極活物質の製造方法である。
Li2+d ・・・ 組成式(1)
(但し、上記組成式(1)において、組成比を示すa,b,c の値は、それぞれ、1≦a≦2.5、0.5≦b≦1.5、0≦c≦0.5、0≦d≦0.5の範囲内であり、Mは、Mg,Al、Cr、Mo、Ti、W、Zrからなる群より選択される少なくとも1つである)
Specifically, the present invention is a method for producing a negative electrode active material for a lithium ion battery, wherein a carbon material is added and calcined in a production process of a compound having the following composition formula (1).
Li a V b M c O 2 + d ··· composition formula (1)
(However, in the composition formula (1), the values of a, b, and c indicating the composition ratio are 1 ≦ a ≦ 2.5, 0.5 ≦ b ≦ 1.5, and 0 ≦ c ≦ 0. 5, 0 ≦ d ≦ 0.5, and M is at least one selected from the group consisting of Mg, Al, Cr, Mo, Ti, W, Zr)

組成式(1)の化合物を生成するために使用可能な原料の中、先ずバナジウム源として使用可能な原料は、バナジウム金属、VO、V2、V2、V25、NHVO等がある。これらのうち、経済性及び安定性、安全性の観点から、NHVOを使用することが望ましい。 Among the raw materials that can be used to produce the compound of the composition formula (1), the raw materials that can be used as the vanadium source are vanadium metal, VO, V 2 O 3 , V 2 O 4 , V 2 O 5 , NH. 4 VO 3 etc. Among these, it is desirable to use NH 4 VO 3 from the viewpoints of economy, stability, and safety.

また、同じくリチウム源として使用可能な原料は、LiO、LiCl、LiOH、炭酸リチウム(Li2CO)、酢酸リチウム等がある。これらのうち、経済性の観点などからLi2COを使用することが望ましい。 Similarly, raw materials that can be used as a lithium source include Li 2 O, LiCl, LiOH, lithium carbonate (Li 2 CO 3 ), lithium acetate, and the like. Among these, it is desirable to use Li 2 CO 3 from the viewpoint of economy.

また、M元素の使用可能な原料としては、Mg、Al、Cr、Mo、Ti、W、Zrからなる群より選択される金属を含む酸化物、または、前記の群で選択された金属を含む水酸化物、炭酸塩を使用することが可能である。例を挙げると、MgO、MgCO、Al(OH)、Al、Cr、MoO,TiO、WO、ZrOなどがある。 Moreover, as a raw material which can use M element, the oxide containing the metal selected from the group which consists of Mg, Al, Cr, Mo, Ti, W, Zr, or the metal selected from the said group is included. Hydroxides and carbonates can be used. Examples include MgO, MgCO 3 , Al (OH) 3 , Al 2 O 3 , Cr 2 O 3 , MoO 3 , TiO 2 , WO 3 and ZrO 2 .

本発明の製造工程において添加する炭素材料としては、例えば、カーボンブラック、石油ピッチ、天然黒鉛、人造黒鉛、鱗片状黒鉛等があるが、焼成時に還元剤的に働き、そして系外へ放出され最終的に得られる目的化合物に残留することがない等の理由から、カーボンブラックを使用することが望ましい。   Examples of the carbon material added in the production process of the present invention include carbon black, petroleum pitch, natural graphite, artificial graphite, and flake graphite. However, the carbon material works as a reducing agent during firing, and is released outside the system. For example, it is desirable to use carbon black because it does not remain in the objective compound obtained.

添加する炭素材料の量は、生成するLi−V−M複合酸化物に対して炭素として0.1〜5.0wt%であることが好ましい。添加量が多過ぎると粒子径が小さくなり、放電容量が低下するので好ましくない。逆に添加量が少な過ぎると還元作用が不十分であることに起因すると推察されるLi3VO4などの不純物が多く形成され、最終的に目的とする結晶構造を十分に構成できないために、負極活物質の電気特性が向上しなくなる。 The amount of the carbon material to be added is preferably 0.1 to 5.0 wt% as carbon with respect to the Li-VM composite oxide to be generated. If the amount added is too large, the particle size becomes small and the discharge capacity decreases, which is not preferable. On the contrary, if the addition amount is too small, a large amount of impurities such as Li 3 VO 4 presumed to be caused by insufficient reduction action, and ultimately the target crystal structure cannot be sufficiently constituted. The electrical characteristics of the negative electrode active material are not improved.

次に、本発明においてLi−V−M複合酸化物を製造する際の詳細について述べる。   Next, details of producing the Li-VM composite oxide in the present invention will be described.

使用する各構成金属原料化合物として、リチウム源に炭酸リチウム(Li2CO)、バナジウム源にメタバナジン酸アンモニウム(NHVO)、M金属源にチタンを選択し、酸化チタン(TiO2)を使用するものとして説明する。 As each constituent metal raw material compound to be used, lithium carbonate (Li 2 CO 3 ) is selected as the lithium source, ammonium metavanadate (NH 4 VO 3 ) is selected as the vanadium source, titanium is selected as the M metal source, and titanium oxide (TiO 2 ) is selected. It will be described as being used.

上記原料化合物を所定のモル比、すなわちLi:V:Ti = 1.10:0.89:0.01になるように秤量した後、混合を行う。混合は一般的な乾式混合方法でよく、ヘンシェルミキサーやプロシェアミキサー等を用いて実施することができる。   The raw material compounds are weighed so as to have a predetermined molar ratio, that is, Li: V: Ti = 1.10: 0.89: 0.01, and then mixed. Mixing may be performed by a general dry mixing method, and can be performed using a Henschel mixer, a Proshear mixer, or the like.

還元剤として働いていると考えられる炭素材料は、原料であるリチウム源、バナジウム源、チタン源と同時に混合してもよいが、原料金属化合物同士の反応を重視して、先に原料のみを混合した後、炭素材料を添加して再度混合するといった2段階に分けた混合方法を採用することがより好ましい。   The carbon material that is considered to work as a reducing agent may be mixed at the same time as the lithium source, vanadium source, and titanium source as raw materials, but only the raw materials are mixed first with emphasis on the reaction between the raw metal compounds. After that, it is more preferable to adopt a mixing method divided into two stages in which a carbon material is added and mixed again.

炭素材料の添加量は、炭素として0.1〜5.0wt%の範囲であるが、還元性と残留するカーボン量とのバランスを考慮すると、0.1〜2.0wt%であることがより好ましい。   The amount of carbon material added is in the range of 0.1 to 5.0 wt% as carbon, but considering the balance between reducing properties and the amount of carbon remaining, it is more preferably 0.1 to 2.0 wt%. preferable.

次に、上述された混合粉の焼成を行う。焼成には雰囲気炉を用いる。炉の形式は連続式でもバッチ式でも構わないが、大気の影響を避けるため、焼成中に特定気体を充満もしくは循環させることのできる炉を用いる必要がある。   Next, the mixed powder described above is fired. An atmosphere furnace is used for firing. The type of the furnace may be either a continuous type or a batch type, but in order to avoid the influence of the atmosphere, it is necessary to use a furnace that can be filled or circulated with a specific gas during firing.

焼成に際し炉内に充満させる雰囲気ガスとしては、He(ヘリウム)、Ar(アルゴン)、N(窒素)、不活性ガスや、H2(水素)、CO(一酸化炭素)、N/H混合ガス等の還元性ガスを用いることができる。還元性ガスを使用する場合、還元力が強すぎるため各原料が低価数化しやすくなり目的とする生成物が得られ難く、また最適な還元雰囲気を調整、維持することも困難である。特に、H2(水素)、CO(一酸化炭素)が混入しているガスは、連続焼成を行うことで滞留しやすく、粒子成長が抑制されてしまい目的とする粒子径まで成長しないため、不活性なN2ガスを使用するのが望ましい。 The atmosphere gas to be filled in the furnace during firing is He (helium), Ar (argon), N 2 (nitrogen), inert gas, H 2 (hydrogen), CO (carbon monoxide), N 2 / H. reducing gas, such as 2 mixed gas may be used. When the reducing gas is used, since the reducing power is too strong, each raw material is easily reduced in valence, it is difficult to obtain a target product, and it is difficult to adjust and maintain an optimal reducing atmosphere. In particular, a gas mixed with H 2 (hydrogen) and CO (carbon monoxide) tends to stay by performing continuous firing, and particle growth is suppressed, so that the target particle size does not grow. It is desirable to use an active N 2 gas.

焼成方法としては好ましくは700〜1300℃、より好ましくは1000〜1300℃の焼成温度で1段階で焼成を終了させる1段階焼成方法と、先ず700〜1300℃で予備的な焼成を行い、一度冷却し、好ましくは自動乳鉢等を用いて解砕を行った後、さらに1000〜1300℃で2段階目の焼成を行う2段階焼成方法とがあり、本発明ではいずれの焼成方法も適用可能である。   The firing method is preferably a one-step firing method in which firing is completed in one step at a firing temperature of 700 to 1300 ° C., more preferably 1000 to 1300 ° C. First, preliminary firing is performed at 700 to 1300 ° C., and then cooled once Preferably, after crushing using an automatic mortar or the like, there is a two-stage baking method in which the second stage baking is further performed at 1000 to 1300 ° C., and any baking method can be applied in the present invention. .

1段階の焼成のみでも目的とする生成物は得られるが、2段階に分けて焼成を行う方がさらに焼成後の粒子の均一性が優れており、より好ましい。2段階に分けて焼成を行うことにより粒子の特性が向上する理由は定かではないが、種々の条件で得られた粉体の電子顕微鏡による粒子の直接観察から、1回の焼成では、形状が不均一で粉体粒子のバラツキが多いが、2度目の焼成を行うことで粒子の均一性が保たれ、結果として電池性能が向上するものと考えられる。   The target product can be obtained by only one-step firing, but firing in two steps is more preferable because of excellent uniformity of particles after firing. The reason why the properties of the particles are improved by firing in two stages is not clear, but from direct observation of the particles with an electron microscope of the powder obtained under various conditions, the shape in one firing Although it is non-uniform and there are many variations in powder particles, it is considered that the uniformity of the particles is maintained by performing the second baking, and as a result, the battery performance is improved.

焼成温度については、温度が高過ぎるとLiの飛散が生じ易くなり、目的とする結晶構造を得ることが出来ず、また不純物も生じ易くなる。また、温度が低過ぎると、Li3VO4等目的としない構造の生成物が形成され、目的とする結晶構造を有する生成物を得ることが出来ない。 As for the firing temperature, if the temperature is too high, Li scattering is likely to occur, the target crystal structure cannot be obtained, and impurities are also likely to occur. On the other hand, if the temperature is too low, a product having a non-target structure such as Li 3 VO 4 is formed, and a product having a target crystal structure cannot be obtained.

したがって、1段階で焼成を終了させる場合の焼成温度又は2段階焼成方法における2段階目の焼成温度は700〜1300℃の範囲にあることが好ましく、より好ましくは1100〜1200℃である。また、前記焼成温度における保持時間は、2〜5時間保持することが適当である。ただし、2段階で焼成する場合の1段階目の焼成温度については、不純物の生成、ならびに粒子成長に影響すると考えられる原料からの炭酸ガス等の除去、また2段階目の焼成後の粒子径、および粒子の均一性を考慮すると、700〜1000℃の範囲であることが好ましい。   Therefore, the firing temperature when firing is completed in one stage or the second stage firing temperature in the two-stage firing method is preferably in the range of 700 to 1300 ° C, more preferably 1100 to 1200 ° C. The holding time at the firing temperature is suitably 2 to 5 hours. However, the firing temperature in the first stage when firing in two stages is about the generation of impurities, the removal of carbon dioxide gas from the raw material that is thought to affect the particle growth, the particle diameter after the second stage firing, In consideration of the uniformity of the particles, it is preferably in the range of 700 to 1000 ° C.

焼成後に得られた生成物は、その後、粉砕、分級することにより、目的とする大きさを有するLi−V−Ti複合酸化物からなるリチウムイオン電池用負極活物質へ調整される。なお、上記の製造工程を経て得られる粉体の粒子径は、一般的に5〜50μmの範囲に調整されることが好ましく、リチウムイオン電池用負極材料として電池に充填する場合は、10〜30μmの範囲に調整され、均一な粒度分布を持つことがより好ましい。   The product obtained after firing is then adjusted to a negative electrode active material for a lithium ion battery comprising a Li—V—Ti composite oxide having a desired size by pulverization and classification. In addition, it is preferable that the particle diameter of the powder obtained through the above manufacturing process is generally adjusted to a range of 5 to 50 μm. When filling a battery as a negative electrode material for a lithium ion battery, 10 to 30 μm. It is more preferable to have a uniform particle size distribution.

また、上記の製造工程を経て得られるLi−V−Ti複合酸化物からなる粉体のa軸とc軸の格子定数比(c/a)は、5.1〜5.2であることが好ましい。   Moreover, the lattice constant ratio (c / a) between the a-axis and the c-axis of the powder made of the Li—V—Ti composite oxide obtained through the above manufacturing process is 5.1 to 5.2. preferable.

本発明に係る製造方法を用いれば、炭素材料を添加し焼成することで還元性を高めることが可能であり、製造プロセス上での高い安全性を確保することができとともに、異常な粒子成長を抑制した均一な粒度分布を持つリチウムイオン負極活物質を製造することができる。また、炭素材料の添加量を増減させることで、粒子制御を行うことも可能である。さらに、焼成を2段階に分け、そして1段階目の焼成後に粉砕工程を導入することでより一層、粒子の均一性を高めることができるため、本発明による負極活物質が適用された電池の性能を向上させることができる。   If the production method according to the present invention is used, it is possible to increase the reducibility by adding and firing a carbon material, and it is possible to ensure high safety on the production process and to cause abnormal particle growth. A lithium ion negative electrode active material having a suppressed uniform particle size distribution can be produced. In addition, particle control can be performed by increasing or decreasing the amount of carbon material added. Furthermore, since the uniformity of the particles can be further improved by dividing the firing into two stages and introducing a pulverization process after the first stage firing, the performance of the battery to which the negative electrode active material according to the present invention is applied Can be improved.

以下、本発明を実施例により説明する。なお、本発明は以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not limited to the Example shown below, A various change is possible within the range which does not deviate from the technical idea of this invention.

〔実施例1〕
製造方法
メタバナジン酸アンモニウム(NHVO)〔STRATCOR社製〕、炭酸リチウム(Li2CO)〔FMC社製〕、酸化チタン(TiO2)〔テイカ社製〕、炭素材料としてアセチレンブラック〔電気化学工業社製〕をヘンシェルミキサーで混合し、混合粉末を調整した。混合時の金属化合物の混合モル比は、Li:V:Ti=1.1:0.89:0.01となるように調整し、添加する炭素材料の量は最終生成物の予想重量に対して2.0wt%とした。
[Example 1]
Production method Ammonium metavanadate (NH 4 VO 3 ) (manufactured by STRATCOR), lithium carbonate (Li 2 CO 3 ) (manufactured by FMC), titanium oxide (TiO 2 ) (manufactured by Teika), acetylene black [electricity] Chemical Industries, Ltd.] was mixed with a Henschel mixer to prepare a mixed powder. The mixing molar ratio of the metal compound at the time of mixing is adjusted to be Li: V: Ti = 1.1: 0.89: 0.01, and the amount of the carbon material to be added is based on the expected weight of the final product. 2.0 wt%.

この混合粉末を窒素雰囲気下、温度800℃、保持時間3時間の条件で焼成を行った(1段階目の焼成)。続いて、その焼成物を室温まで冷却し、自動乳鉢にて粉砕した後、窒素雰囲気下、温度1200℃、保持時間2時間の条件で焼成を行った(2段階目の焼成)。得られた焼成物を粉砕、分級することにより、負極活物質を得た。   The mixed powder was fired under a nitrogen atmosphere at a temperature of 800 ° C. and a holding time of 3 hours (first stage firing). Subsequently, the fired product was cooled to room temperature, pulverized in an automatic mortar, and then fired in a nitrogen atmosphere at a temperature of 1200 ° C. and a holding time of 2 hours (second stage firing). The obtained fired product was pulverized and classified to obtain a negative electrode active material.

測定方法
得られた物質(負極活物質)の粉体について、以下の測定装置を用いて物性の測定を行った。また、以下に示す実施例・比較例についても、得られた粉体について各々測定を行い、その結果を表1に記載した。
・X線回折装置:パナリティカル社製 X'Pert PRO−MRD PW3040/60を用い、下記の測定条件で測定後、c軸、a軸の格子定数を算出した。
(45kV、40mA(Cu)、anglue: 5〜110°、Scan speed: 0.104446°/S、Step size:0.0083556°)
・粒子径及び粒度分布:マイクロトラックMT-3000(日機装社製)で測定した。粒子径については50%平均粒子径(D50)を、粒度のバラツキ評価は、90%粒子径(D90)と10%粒子径(D10)との比率により評価した。
・比表面積:ユアサアイオニクス社製全自動表面積測定装置 マルチソーブ12を使用し、BETによる比表面積を測定した。
Measurement Method Physical properties of the obtained substance (negative electrode active material) powder were measured using the following measuring apparatus. Further, in the following examples and comparative examples, the obtained powders were measured, and the results are shown in Table 1.
-X-ray diffractometer: After measuring under the following measurement conditions using X'Pert PRO-MRD PW3040 / 60 manufactured by Panaritical, the c-axis and a-axis lattice constants were calculated.
(45 kV, 40 mA (Cu), angle: 5 to 110 °, scan speed: 0.104446 ° / S, Step size: 0.0083556 °)
-Particle size and particle size distribution: Measured with Microtrac MT-3000 (manufactured by Nikkiso Co., Ltd.). Regarding the particle size, the 50% average particle size (D50) was evaluated, and the variation in particle size was evaluated by the ratio of 90% particle size (D90) and 10% particle size (D10).
Specific surface area: A fully automatic surface area measuring device manufactured by Yuasa Ionics Co., Ltd. Multisorb 12 was used to measure the specific surface area by BET.

〔実施例2〕
2段階目の焼成温度を1100℃に変更する以外は、実施例1と同様な条件で操作を行い、負極活物質を得た。
[Example 2]
The negative electrode active material was obtained by operating under the same conditions as in Example 1 except that the second stage baking temperature was changed to 1100 ° C.

〔実施例3〕
1段階目の焼成温度を1200℃に変更し、1段階目の焼成後に粉砕を行わなかった以外は、実施例1と同様な条件で操作を行い、負極活物質を得た。
Example 3
The negative electrode active material was obtained by operating under the same conditions as in Example 1 except that the first stage baking temperature was changed to 1200 ° C. and no pulverization was performed after the first stage baking.

〔実施例4〕
1段階目の焼成温度を1000℃に変更した以外は、実施例3と同様な条件で操作を行い、負極活物質を得た。
Example 4
The negative electrode active material was obtained by operating under the same conditions as in Example 3 except that the first stage baking temperature was changed to 1000 ° C.

〔実施例5〕
1段階目の焼成温度を800℃に変更した以外は、実施例3と同様な条件で操作を行い、負極活物質を得た。
Example 5
The negative electrode active material was obtained by operating under the same conditions as in Example 3 except that the first stage baking temperature was changed to 800 ° C.

〔実施例17〕
1段階目の焼成温度を600℃に変更した以外は、実施例3と同様な条件で操作を行い、負極活物質を得た。
Example 17
The negative electrode active material was obtained by operating under the same conditions as in Example 3 except that the first stage baking temperature was changed to 600 ° C.

〔実施例6〕
1段階目の焼成温度を1000℃に変更した以外は、実施例3と同様な条件で操作を行い、負極活物質を得た。
Example 6
The negative electrode active material was obtained by operating under the same conditions as in Example 3 except that the first stage baking temperature was changed to 1000 ° C.

〔実施例18〕
焼成温度を1400℃に変更した以外は、実施例5と同様な条件で操作を行った。焼成後の匣鉢への生成物の付着が大きく、粉体として取り出すことができなかったため、粉体物性および電池性能の測定を行わなかった。なお、融着物を無理矢理取り出し、粉砕してX線回折装置で分析したところ、(目的とする物質である)Li−V−Ti複合酸化物の結晶構造を構成していなかった。
Example 18
The operation was performed under the same conditions as in Example 5 except that the firing temperature was changed to 1400 ° C. Since the product adhered to the mortar after firing was large and could not be taken out as a powder, the powder physical properties and battery performance were not measured. Note that the fused material was forcibly taken out, pulverized, and analyzed with an X-ray diffractometer. As a result, the crystal structure of the Li—V—Ti composite oxide (which was the target substance) was not constituted.

〔実施例7〕
焼成温度を1100℃に変更する以外は、実施例5と同様な条件で操作を行い、負極活物質を得た。
Example 7
Except changing the calcination temperature to 1100 degreeC, it operated on the conditions similar to Example 5, and obtained the negative electrode active material.

〔実施例8〕
混合する炭素材料の量を5.0wt%に変更する以外は、実施例7と同様な条件で操作を行い、負極活物質を得た。
Example 8
The negative electrode active material was obtained by operating under the same conditions as in Example 7 except that the amount of carbon material to be mixed was changed to 5.0 wt%.

〔実施例9〕
混合する炭素材料の量を0.8wt%に変更する以外は、実施例8と同様な条件で操作を行い、負極活物質を得た。
Example 9
The negative electrode active material was obtained by operating under the same conditions as in Example 8 except that the amount of carbon material to be mixed was changed to 0.8 wt%.

〔実施例10〕
メタバナジン酸アンモニウム(NHVO)〔STRATCOR社製〕、炭酸リチウム(Li2CO)〔FMC社製〕、酸化チタン(TiO)〔テイカ製〕、炭素材料としてアセチレンブラック〔電気化学工業社製〕をヘンシェルミキサーで混合し、混合粉末を調整した。混合時の金属化合物の混合モル比は、Li:V:Ti=1.1:0.87:0.03となるように調整し、添加する炭素材料の量は最終生成物の予想重量に対して2.0wt%とした。
Example 10
Ammonium metavanadate (NH 4 VO 3 ) (manufactured by STRATCOR), lithium carbonate (Li 2 CO 3 ) (manufactured by FMC), titanium oxide (TiO 2 ) (manufactured by Teika), acetylene black [Electrochemical Industry Co., Ltd.] Were mixed with a Henschel mixer to prepare a mixed powder. The mixing molar ratio of the metal compound at the time of mixing was adjusted to be Li: V: Ti = 1.1: 0.87: 0.03, and the amount of the carbon material to be added was based on the expected weight of the final product. 2.0 wt%.

この混合粉末を窒素雰囲気下、温度800℃、保持時間3時間の条件で焼成を行った(1段階目の焼成)。続いて、その焼成物を室温まで冷却し、自動乳鉢にて粉砕した後、窒素雰囲気下、温度1200℃、保持時間2時間の条件で焼成を行った(2段階目の焼成)。得られた焼成物を粉砕、分級することにより、負極活物質を得た。   The mixed powder was fired under a nitrogen atmosphere at a temperature of 800 ° C. and a holding time of 3 hours (first stage firing). Subsequently, the fired product was cooled to room temperature, pulverized in an automatic mortar, and then fired in a nitrogen atmosphere at a temperature of 1200 ° C. and a holding time of 2 hours (second stage firing). The obtained fired product was pulverized and classified to obtain a negative electrode active material.

〔実施例11〕
M金属源である酸化チタンから塩基性炭酸マグネシウムに変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 11
The negative electrode active material was obtained by changing from titanium oxide, which is an M metal source, to basic magnesium carbonate, and performing other operations under the same conditions as in Example 10.

〔実施例12〕
M金属源である酸化チタンから酸化アルミニウムに変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 12
The M metal source was changed from titanium oxide to aluminum oxide, and other operations were performed under the same conditions as in Example 10 to obtain a negative electrode active material.

〔実施例13〕
M金属源である酸化チタンから酸化モリブデンに変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 13
The titanium oxide as the M metal source was changed to molybdenum oxide, and other operations were performed under the same conditions as in Example 10 to obtain a negative electrode active material.

〔実施例14〕
M金属源である酸化チタンから酸化クロム変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 14
Chromium oxide was changed from titanium oxide as the M metal source, and the other operations were performed under the same conditions as in Example 10 to obtain a negative electrode active material.

〔実施例15〕
M金属源である酸化チタンから酸化ジルコニウムに変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 15
The titanium oxide as the M metal source was changed to zirconium oxide, and other operations were performed under the same conditions as in Example 10 to obtain a negative electrode active material.

〔実施例16〕
M金属源である酸化チタンから酸化タングステンに変更し、それ以外を実施例10と同様な条件で操作を行い、負極活物質を得た。
Example 16
The titanium oxide as the M metal source was changed to tungsten oxide, and other operations were performed under the same conditions as in Example 10 to obtain a negative electrode active material.

〔実施例20〕
2段階目の焼成温度を1300℃に変更した以外は、実施例3と同様な条件で操作を行い、負極活物質を得た
Example 20
The negative electrode active material was obtained by operating under the same conditions as in Example 3 except that the second stage baking temperature was changed to 1300 ° C.

〔実施例21〕
焼成温度を1000℃で焼成すること以外は、実施例19と同様な条件で操作を行い、負極活物質を得た。
Example 21
The negative electrode active material was obtained by operating under the same conditions as in Example 19 except that the firing temperature was 1000 ° C.

〔実施例22〕
焼成温度を1100℃で焼成すること以外は、実施例19と同様な条件で操作を行い、負極活物質を得た。
[Example 22]
The negative electrode active material was obtained by operating under the same conditions as in Example 19 except that the firing temperature was 1100 ° C.

〔実施例23〕
焼成温度を1300℃で焼成すること以外は、実施例19と同様な条件で操作を行い、負極活物質を得た。
Example 23
The negative electrode active material was obtained by operating under the same conditions as in Example 19 except that the firing temperature was 1300 ° C.

〔実施例24〕
焼成温度を900℃で焼成すること以外は、実施例19と同様な条件で操作を行い、負極活物質を得た。
Example 24
The negative electrode active material was obtained by operating under the same conditions as in Example 19 except that the firing temperature was 900 ° C.

〔比較例1〕
炭素化合物を全く加えることなく、実施例8と同様な条件で操作を行い、負極活物質を得た。
[Comparative Example 1]
An operation was performed under the same conditions as in Example 8 without adding any carbon compound to obtain a negative electrode active material.

〔実施例19〕
メタバナジン酸アンモニウム(NHVO)〔STRATCOR社製〕、炭酸リチウム(Li2CO)〔FMC社製〕、酸化チタン(TiO)〔テイカ製〕、炭素材料としてアセチレンブラック〔電気化学工業社製〕をヘンシェルミキサーで混合し、混合粉末を調整した。混合時の金属化合物の混合モル比は、Li:V:Ti=1.1:0.89:0.01となるように調整し、添加する炭素材料の量は最終生成物の予想重量に対して2.0wt%とした。
Example 19
Ammonium metavanadate (NH 4 VO 3 ) (manufactured by STRATCOR), lithium carbonate (Li 2 CO 3 ) (manufactured by FMC), titanium oxide (TiO 2 ) (manufactured by Teika), acetylene black [Electrochemical Industry Co., Ltd.] Were mixed with a Henschel mixer to prepare a mixed powder. The mixing molar ratio of the metal compound at the time of mixing is adjusted to be Li: V: Ti = 1.1: 0.89: 0.01, and the amount of the carbon material to be added is based on the expected weight of the final product. 2.0 wt%.

この混合粉末を窒素雰囲気下、温度1200℃、保持時間2時間の条件で焼成を行った。得られた焼成物を粉砕、分級することにより、負極活物質を得た。   The mixed powder was fired under a nitrogen atmosphere under conditions of a temperature of 1200 ° C. and a holding time of 2 hours. The obtained fired product was pulverized and classified to obtain a negative electrode active material.

負極活物質の電気化学的評価
実施例1の負極活物質80wt%、導電助剤としてカーボンブラック10wt%、バインダーとしてポリフッ化ビニリデン(PVDF)10wt%を、それぞれ当該比率となるように、N-メチルピロリドンに溶解してスラリーを調整した。このスラリーをCu箔に塗布し、乾燥させた。乾燥させたシートを打ち抜き機で打ち抜くことで、評価用電極を作製した。対極には、金属リチウムを用い、Li金属箔を打ち抜いたものを使用した。
Electrochemical Evaluation of Negative Electrode Active Material N-methyl is 80% by weight of the negative electrode active material of Example 1, 10% by weight of carbon black as a conductive additive, and 10% by weight of polyvinylidene fluoride (PVDF) as a binder. A slurry was prepared by dissolving in pyrrolidone. This slurry was applied to Cu foil and dried. An evaluation electrode was produced by punching the dried sheet with a punching machine. As the counter electrode, metallic lithium was used, and a Li metal foil punched out was used.

評価用電極と対極との間に、ポリプロピレン製セパレーターを挟んで電極を構成し、コイン型の電池容器に入れた。そして、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が、容量比でEC:DMC=3:7で混合されている混合溶媒中に、1.3MのLiPFを溶解させた電解液を注入した後、電池容器を封口することにより、実施例1の負極活物質評価用コイン型電池を製造した。 An electrode was formed by sandwiching a polypropylene separator between the evaluation electrode and the counter electrode, and placed in a coin-type battery container. Then, an electrolytic solution in which 1.3 M LiPF 6 was dissolved was injected into a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of EC: DMC = 3: 7. Then, the coin-type battery for negative electrode active material evaluation of Example 1 was manufactured by sealing a battery container.

実施例2〜17、19〜24及び比較例1で得た負極活物質に対しても上記と同様な操作を行って負極活物質評価用コイン型電池を製造した。   The negative electrode active material obtained in Examples 2 to 17, 19 to 24 and Comparative Example 1 was also subjected to the same operation as described above to produce a negative electrode active material evaluation coin-type battery.

各実施例、比較例の負極活物質を用いて構成した電池それぞれに対し、0.2Cの充電電流で充電終止電圧0Vになるまで定電流充電を行い、その後、3時間の定電圧充電を行うことにより、充電を行った。その後、電圧が2.0Vになるまでに0.2Cの放電電流で放電を行った。このときの各電池の放電容量、を、製造条件、粉体物性と共に表1に記載した。   For each of the batteries configured using the negative electrode active materials of the examples and comparative examples, constant current charging is performed at a charging current of 0.2 C until the end-of-charge voltage is 0 V, and then constant voltage charging is performed for 3 hours. The battery was charged. Thereafter, discharge was performed at a discharge current of 0.2 C until the voltage reached 2.0V. The discharge capacity of each battery at this time is shown in Table 1 together with the production conditions and powder physical properties.

Figure 2010108603
Figure 2010108603

本発明によれば、下記組成式(1)を有する化合物の製造工程において、炭素材料を添加し焼成することにより還元性を高めることが可能であり、その結果、安全な不活性雰囲気下で反応させることができるLi−V−M複合酸化物の負極活物質の製造方法を提供することが可能となる。
Li2+d ・・・ 組成式(1)
(但し、上記組成式(1)において、組成比を示すa,b,c の値は、それぞれ、1≦a≦2.5、0.5≦b≦1.5、0≦c≦0.5、0≦d≦0.5の範囲内で、Mは、Mg,Al、Cr、Mo、Ti、W、Zrからなる群より選択される少なくとも1つである。)
According to the present invention, in the production process of the compound having the following composition formula (1), it is possible to increase the reducibility by adding and baking a carbon material, and as a result, the reaction is performed in a safe inert atmosphere It is possible to provide a method for producing a negative electrode active material of a Li-VM composite oxide that can be produced.
Li a V b M c O 2 + d ··· composition formula (1)
(However, in the above composition formula (1), the values of a, b, c indicating the composition ratio are 1 ≦ a ≦ 2.5, 0.5 ≦ b ≦ 1.5, 0 ≦ c ≦ 0. Within the range of 5, 0 ≦ d ≦ 0.5, M is at least one selected from the group consisting of Mg, Al, Cr, Mo, Ti, W, and Zr.)

また、上記表1に示されるように、本発明の製造方法により作製された実施例1〜17、19〜24の負極活物質の性状は均質化されており、そしてこの負極活物質が適用されるリチウムイオン電池は極めて優れた電池特性(放電容量)示すことが理解される。   Further, as shown in Table 1 above, the properties of the negative electrode active materials of Examples 1 to 17 and 19 to 24 produced by the production method of the present invention are homogenized, and this negative electrode active material is applied. It is understood that the lithium ion battery exhibits extremely excellent battery characteristics (discharge capacity).

Claims (9)

下記組成式(1)を有する化合物の製造工程において、炭素材料を添加し焼成することを特徴とするリチウムイオン電池用負極活物質の製造方法。
Li2+d ・・・ 組成式(1)
(但し、上記組成式(1)において、組成比を示すa,b,c の値は、それぞれ、1≦a≦2.5、0.5≦b≦1.5、0≦c≦0.5、0≦d≦0.5の範囲内であり、Mは、Mg,Al、Cr、Mo、Ti、W、Zrからなる群より選択される少なくとも1つである。)
In the manufacturing process of the compound which has the following compositional formula (1), a carbon material is added and baked, The manufacturing method of the negative electrode active material for lithium ion batteries characterized by the above-mentioned.
Li a V b M c O 2 + d ··· composition formula (1)
(However, in the composition formula (1), the values of a, b, and c indicating the composition ratio are 1 ≦ a ≦ 2.5, 0.5 ≦ b ≦ 1.5, and 0 ≦ c ≦ 0. 5, 0 ≦ d ≦ 0.5, and M is at least one selected from the group consisting of Mg, Al, Cr, Mo, Ti, W, and Zr.)
添加する炭素材料の量は、組成式(1)の化合物に対し炭素として0.1〜5.0wt%である請求項1に記載のリチウムイオン電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a lithium ion battery according to claim 1, wherein the amount of the carbon material to be added is 0.1 to 5.0 wt% as carbon with respect to the compound of the composition formula (1). 焼成工程が1段階であり、その焼成温度が700〜1300℃であることを特徴とする請求項1記載のリチウムイオン電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a lithium ion battery according to claim 1, wherein the firing step is one stage, and the firing temperature is 700 to 1300 ° C. 焼成温度が、1000〜1300℃であることを特徴とする請求項3記載のリチウムイオン電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a lithium ion battery according to claim 3, wherein the firing temperature is 1000 to 1300 ° C. 焼成工程が2段階に分かれており、少なくともその1段階目の焼成温度が700〜1000℃であり、1段階目の焼成後に粉砕工程を有する請求項3に記載のリチウムイオン電池用負極活物質の製造方法。   4. The negative electrode active material for a lithium ion battery according to claim 3, wherein the firing step is divided into two stages, at least the first stage firing temperature is 700 to 1000 ° C., and the grinding process is performed after the first stage firing. 5. Production method. 2段階目の焼成温度が、1000〜1300℃である請求項5に記載のリチウムイオン電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a lithium ion battery according to claim 5, wherein the firing temperature in the second stage is 1000 to 1300 ° C. 得られる組成式(1)の化合物における粉体粒子径が、5〜50μmである請求項1に記載のリチウムイオン電池用負極活物質の製造方法。   2. The method for producing a negative electrode active material for a lithium ion battery according to claim 1, wherein the obtained compound of the composition formula (1) has a powder particle diameter of 5 to 50 μm. 組成式(1)の化合物を生成するためのバナジウム原料は、バナジウム金属、VO、V2、V2、V25、NHVOからなる群より選択される1種以上であることを特徴とする請求項1に記載のリチウムイオン電池用負極活物質の製造方法。 The vanadium raw material for producing the compound of the composition formula (1) is at least one selected from the group consisting of vanadium metal, VO, V 2 O 3 , V 2 O 4 , V 2 O 5 , and NH 4 VO 3. The manufacturing method of the negative electrode active material for lithium ion batteries of Claim 1 characterized by the above-mentioned. 組成式(1)の化合物を生成するためのリチウム原料は、LiO、LiCl、LiOH、LiCOからなる群より選択される1種以上であることを特徴とする請求項1に記載のリチウムイオン電池用負極活物質の製造方法。 The lithium raw material for producing the compound of the composition formula (1) is at least one selected from the group consisting of Li 2 O, LiCl, LiOH, and Li 2 CO 3. Manufacturing method of negative electrode active material for lithium ion battery.
JP2008276334A 2008-10-28 2008-10-28 Manufacturing method of anode active material for lithium-ion battery Pending JP2010108603A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008276334A JP2010108603A (en) 2008-10-28 2008-10-28 Manufacturing method of anode active material for lithium-ion battery
KR1020090100775A KR101201752B1 (en) 2008-10-28 2009-10-22 Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery including same
US12/606,926 US20100143800A1 (en) 2008-10-28 2009-10-27 Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276334A JP2010108603A (en) 2008-10-28 2008-10-28 Manufacturing method of anode active material for lithium-ion battery

Publications (1)

Publication Number Publication Date
JP2010108603A true JP2010108603A (en) 2010-05-13

Family

ID=42274284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276334A Pending JP2010108603A (en) 2008-10-28 2008-10-28 Manufacturing method of anode active material for lithium-ion battery

Country Status (2)

Country Link
JP (1) JP2010108603A (en)
KR (1) KR101201752B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030988A (en) * 2010-07-28 2012-02-16 Tayca Corp Method for producing iron-containing lithium titanate
KR101236436B1 (en) 2010-09-30 2013-02-21 주식회사 모간 High power anode material for lithium secondary battery and preparation method thereof
JP2013541142A (en) * 2010-09-09 2013-11-07 エスケー イノベーション カンパニー リミテッド Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317416B1 (en) 2015-04-20 2021-10-25 충남대학교산학협력단 A Negative Electrode Active Material With A High Energy Density And A Lithium Ion Secondary Battery Having The Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644972A (en) * 1992-07-23 1994-02-18 Fuji Photo Film Co Ltd Lithium secondary battery
JP2002216753A (en) * 2001-01-15 2002-08-02 Sumitomo Metal Ind Ltd Lithium secondary battery, negative electrode material for the same and manufacturing method of the same
JP2003017057A (en) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium-vanadium compound oxide for negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2009146613A (en) * 2007-12-11 2009-07-02 Samsung Sdi Co Ltd Manufacturing method of negative electrode material for nonaqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644972A (en) * 1992-07-23 1994-02-18 Fuji Photo Film Co Ltd Lithium secondary battery
JP2002216753A (en) * 2001-01-15 2002-08-02 Sumitomo Metal Ind Ltd Lithium secondary battery, negative electrode material for the same and manufacturing method of the same
JP2003017057A (en) * 2001-07-02 2003-01-17 Toyota Central Res & Dev Lab Inc Lithium-vanadium compound oxide for negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
JP2005072008A (en) * 2003-08-21 2005-03-17 Samsung Sdi Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2009146613A (en) * 2007-12-11 2009-07-02 Samsung Sdi Co Ltd Manufacturing method of negative electrode material for nonaqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030988A (en) * 2010-07-28 2012-02-16 Tayca Corp Method for producing iron-containing lithium titanate
JP2013541142A (en) * 2010-09-09 2013-11-07 エスケー イノベーション カンパニー リミテッド Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101236436B1 (en) 2010-09-30 2013-02-21 주식회사 모간 High power anode material for lithium secondary battery and preparation method thereof

Also Published As

Publication number Publication date
KR101201752B1 (en) 2012-11-15
KR20100047134A (en) 2010-05-07

Similar Documents

Publication Publication Date Title
WO2018043669A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP5614513B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5708277B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP6578635B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP6578634B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JPWO2018123951A1 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2016204239A (en) Aluminum coated nickel cobalt composite hydroxide particle and manufacturing method therefor, cathode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor and non-aqueous electrolyte secondary battery
JP2015201432A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2013229339A (en) Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material
WO2015076323A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JPWO2019163846A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPWO2019163845A1 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPWO2019087503A1 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and positive electrode active material for non-aqueous electrolyte secondary battery
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2010108603A (en) Manufacturing method of anode active material for lithium-ion battery
US8962187B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP5148781B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP7310117B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6357978B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7031150B2 (en) A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130813

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106