WO2014181436A1 - Positive electrode active material for secondary batteries and secondary battery using same - Google Patents

Positive electrode active material for secondary batteries and secondary battery using same Download PDF

Info

Publication number
WO2014181436A1
WO2014181436A1 PCT/JP2013/063073 JP2013063073W WO2014181436A1 WO 2014181436 A1 WO2014181436 A1 WO 2014181436A1 JP 2013063073 W JP2013063073 W JP 2013063073W WO 2014181436 A1 WO2014181436 A1 WO 2014181436A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium
Prior art date
Application number
PCT/JP2013/063073
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 浅利
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/063073 priority Critical patent/WO2014181436A1/en
Publication of WO2014181436A1 publication Critical patent/WO2014181436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/42Pyrophosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery (rechargeable battery) such as a lithium ion battery and a secondary battery using the same.
  • a non-aqueous electrolyte secondary battery using an alkali metal such as lithium or sodium, an alkaline earth metal such as magnesium, or an alloy or compound thereof as a negative electrode active material is used to insert or intercalate negative electrode metal ions into the positive electrode active material.
  • the positive electrode active material and the negative electrode active material are referred to as a host, and the movable metal ion that is inserted or intercalated into the host is referred to as a guest.
  • a typical example of such a host / guest type non-aqueous electrolyte secondary battery is a lithium ion secondary battery.
  • Lithium ion secondary batteries have a higher energy density than conventional secondary batteries, and it is important to ensure the safety of the batteries.
  • the thermal stability of the positive electrode active material is one of the factors that determine the safety of lithium ion secondary batteries. When the temperature rises due to external factors such as heating, crushing, and short circuit and exceeds the thermal decomposition temperature of the positive electrode active material, heat generation or oxygen release occurs. The released oxygen may react with the combustible organic electrolyte or the negative electrode active material, and the safety of the battery may be impaired.
  • the problem of thermal stability is particularly noticeable in the charged state.
  • lithium ions are accumulated in the negative electrode active material, and the positive electrode active material is delithiated.
  • the delithiated positive electrode active material is in a chemically high energy state, and the thermal decomposition temperature is lower than in the lithiated state. For this reason, the positive electrode active material is likely to be deteriorated during high temperature storage and may be thermally decomposed as the temperature rises.
  • the structural instability increases in an overcharged state, so the thermal decomposition temperature decreases, Specifically, a thermal decomposition reaction occurs at a temperature of 200 ° C. or higher, and oxygen may be released due to a phase transition to a more stable structure by self-heating.
  • the spinel type metal oxide LiMn 2 O 4 manganese is eluted in the electrolyte during storage at high temperature, and the eluted manganese clogs the separator or forms a film on the negative electrode, resulting in battery resistance. May increase and the battery capacity may be reduced (see Patent Document 1).
  • a protection circuit In a lithium ion secondary battery using the positive electrode group as described above, it is necessary to prevent overcharge by a protection circuit in order to ensure reliability and safety. Such protection circuits and mechanical mechanisms occupy a considerable volume of current battery packs.
  • the olivine type compound LiFePO 4 is known to have high thermal stability.
  • the charge phase of LiFePO 4 , FePO 4 (Heterosite) is extremely stable with respect to heating, and even when heated to 620 ° C. or higher, it only undergoes a phase transition to the Quartz phase, which is more thermodynamically stable. Does not release.
  • the reason for exhibiting such high thermal stability is that the olivine type compound has a phosphate skeleton.
  • phosphorus (P) and oxygen (O) are connected by a strong covalent bond. That is, oxygen is fixed by phosphorus, oxygen release due to heat generation is difficult to occur, and heat stability is high.
  • a positive electrode active material containing a phosphoric acid type structure (P x O y ) is referred to as a polyanion positive electrode group.
  • polyanion positive electrode active materials olivic acid compound LiMPO 4 (for example, see Non-Patent Document 1), pyrophosphate compound Li 2 MP 2 O 7 (for example, see Patent Document 2 and Non-Patent Document 2) and the like have been proposed. ing.
  • the olivic acid compound LiMPO 4 is known as a part of a series of positive electrode active material groups represented by a polyanion (chemical formula (XO 4 ) y ⁇ ).
  • M Fe, Mn, Co, Ni or the like is used for the chemical composition formula LiMPO 4 .
  • olivine-type lithium-containing iron phosphate Li x FePO 4 , 0 ⁇ x ⁇ 1, hereinafter olivine Fe
  • the electric capacity when the pyrophosphate compound can use all the lithium ions for charging and discharging is called the theoretical electric capacity, which is 220 mAh / g.
  • the electrical capacity is summarized as follows.
  • the theoretical electric capacity of the olivine type positive electrode is 160 mAh / g, and the capacity can be used even in experiments.
  • the theoretical electric capacity of the pyrophosphate-type positive electrode is 220 mAh / g, but only 110 mAh / g, which is half of that, can be used in the experiment.
  • an electrochemical reaction for realizing a high capacity will be described with an olivine-type positive electrode active material LiFePO 4 as an example.
  • delithiation reaction is performed by applying a voltage to olivine-type LiFePO 4
  • FePO 4 is formed. Due to the electrical neutral principle, the system needs to maintain a state in which the sum of formal charges of all ionic species is zero through such a lithium elimination reaction.
  • the formal charge of each ion Lithium is ionized and the formal charge is a monovalent cation.
  • the phosphate group PO 4 is a trivalent anion. Therefore, Fe in LiFePO 4 is a divalent cation.
  • Fe in FePO 4 in a delithiated state is a trivalent cation.
  • the Fe ion is transitioned from a divalent cation to a trivalent cation by delithiation.
  • ions that change their valence in order to maintain the electrical neutral principle associated with lithium desorption are called redox centers and serve as a charge compensation mechanism in lithium batteries.
  • the present inventors have a problem, but as a positive electrode active material excellent in thermal stability, a polyanion positive electrode group containing a phosphoric acid type structure (P x O y ) is optimal.
  • a method for making M tetravalent in the pyrophosphate compound Li 2 MP 2 O 7 which is still expected to improve the discharge capacity, was studied.
  • Non-Patent Document 4 discloses a case where Fe is replaced with Mn. It is known that Mn is a multivalent ion. Specifically, the olivine-type positive electrode active material LiMnPO 4 is in a divalent cation state, the spinel structure Mn 3 O 4 is in a trivalent cation state, and the manganese dioxide MnO 2 is in a tetravalent state. It is in the state of cations. Therefore, Mn becomes a redox center in the elimination of lithium and is expected to be responsible for electrochemical reactions from divalent to tetravalent. However, in Non-Patent Document 4, as a result of experiments, Mn is not oxidized at all, and lithium is hardly desorbed. The reason why Mn does not work as a redox center is not known.
  • the transition metal element can change the valence from 2 to 4, the charge / discharge capacity can be increased.
  • a low-cost transition metal element can be used as the redox center, it can be a positive electrode material with high price competitiveness.
  • the pyrophosphate-type positive electrode active material can be charged and discharged using particles having a larger particle diameter (1 ⁇ m) than the olivine-type positive electrode material. That is, the micronization process can be omitted, and the restriction of the surface modification treatment is greatly relaxed, leading to a reduction in battery cost, ease of process management, and elimination of performance hindrance factors.
  • the conditions for the positive electrode active material that satisfies the requirements for safety and electric capacity are as follows: (1) Positive electrode active material having a pyrophosphoric acid type crystal structure with potentially large electric capacity (2) having a skeleton based on phosphoric acid with high thermal stability, and (3) being capable of detaching 1 mol or more of lithium.
  • Positive electrode active material having a pyrophosphoric acid type crystal structure with potentially large electric capacity (2) having a skeleton based on phosphoric acid with high thermal stability, and (3) being capable of detaching 1 mol or more of lithium.
  • pyrophosphate-type positive electrode active materials having these characteristics have not been realized yet.
  • the present invention has been proposed to improve the discharge capacity of a pyrophosphate-type positive electrode active material, and has an object of having a crystal structure having a pyroskeleton-type P 2 O 7 structure having a high thermal stability as a basic skeleton. It is another object of the present invention to provide a non-aqueous electrolyte positive electrode active material for a secondary battery with improved discharge capacity and a secondary battery using the same.
  • the chemical composition formula is Li 2-x M A0.5 M B0.5 P 2 O 7 , and M A and M B are each a transition metal element,
  • the combination is (V, Ti), (V, Mn), (V, Fe), (Ni, Mn), or (V, Cu), and
  • x is the main component of a compound in the range of 0 ⁇ x ⁇ 2. It is set as the positive electrode active material for secondary batteries characterized by these.
  • a secondary battery is characterized in that the positive electrode active material for a secondary battery is used in a positive electrode molded body.
  • the present invention it is possible to provide a positive electrode active material for a secondary battery that has high thermal stability and can improve the discharge capacity, and a secondary battery using the same.
  • the present inventor has repeatedly examined the lithium desorption structure and the valence change of the redox center associated with the charge / discharge reaction of the pyrophosphate-type positive electrode active material. It was found that 1 mol or more of lithium can be eliminated by constructing a compound with the use of. For example, to replace the combination of 0.5 mole of 0.5 mole and M B of 1 mole of two kinds of elements M A transition metal element M.
  • the present invention was born based on this new knowledge, has based on this new knowledge, has a highly safe pyrophosphate-type crystal structure, and a positive electrode for a lithium ion secondary battery having an electric capacity higher than 110 mAh / g. An active material can be provided. Details of the positive electrode active material design that leads to an improvement in charge / discharge capacity will be described below.
  • the crystal structure of the pyrophosphate-type positive electrode active material is shown in FIG.
  • the crystal structure consists of an alternating layered structure of lithium layers and transition metal layers along the bc plane.
  • the transition metal M has an MO x polyhedral structure with oxygen atoms coordinated around it.
  • the dotted polyhedron 6 in FIG. 1 has an MO x structure.
  • Reference numeral 1 denotes a Li1 site
  • reference numeral 2 denotes a Li2 site
  • reference numeral 3 denotes a Li3 site
  • reference numeral 4 denotes a Li4 site
  • reference numeral 5 denotes a phosphor polyhedron
  • reference numeral 7 denotes a unit cell.
  • MO 6 and MO 5 There are two types of MO x polyhedral structures, MO 6 and MO 5 .
  • the transition metal element M (21, 22) is located at the center of the polyhedron, and oxygen 23 is coordinated around it.
  • a metal site coordinated with six oxygens 23 is M1
  • a metal site coordinated with five oxygens is M2.
  • the hexacoordinate polyhedron M1O 6 and the pentacoordinate polyhedron M2O 5 form a cluster by covalently bonding edges.
  • Reference numeral 24 indicates a chemical bond between the transition metal and oxygen.
  • a phosphoric acid structure P 2 O 7 is arranged between polyhedral clusters in which MO 6 and MO 5 are bonded, and the clusters are joined to each other. For this reason, the transition metal layer can maintain a layered structure during charging and discharging.
  • Reference numeral 41 denotes a lone electron paired oxygen ion
  • reference numeral 42 denotes an oxygen ion
  • reference numeral 43 denotes a phosphoric acid polyhedron
  • reference numeral 44 denotes an iron oxide polyhedron (transition metal oxide polyhedron).
  • Lithium forms a two-dimensional network structure as shown in FIG. 3, and can be desorbed and inserted from the active material through this network during charging and discharging.
  • Reference numeral 31 denotes a Li3 site
  • reference numeral 32 denotes a Li4 site
  • reference numeral 33 denotes a unit cell.
  • transition metal oxides often have an MO 6 structure in which oxygen is six-coordinated.
  • the transition metal in a rock salt type oxide structure, the transition metal has an octahedral structure in which oxygen is coordinated to six.
  • the structure is similar to the six-coordinate structure in the pyrophosphate-type positive electrode active material, but the symmetry is lower in the pyrophosphate-type positive electrode active material, and the bond length between the transition metal and oxygen varies. Therefore, even if it has the same topology as the six-coordinate structure, the stability of the transition metal is considered to be different.
  • the transition metal oxide is pentacoordinated
  • the ⁇ -phase V 2 O 5 is known to have a 5-coordinated MO 5 structure. Therefore, the stable coordination number and the stable coordination state are generally not unique depending on the type of transition metal.
  • the pyrophosphate-type positive electrode active material Li 2 MP 2 O 7 since the same transition metal element M is assigned to the transition metal sites M1 and M2 having different coordination numbers, the two sites It is considered that the stability of M is different, and the ease of valence change is also different. That is, it is considered that there are combinations of transition metal sites and transition metal species that are difficult to change in valence due to differences in local structure.
  • the ionic radius of the transition metal element that becomes the oxidation-reduction center increases and decreases, so that the bond distance between the transition metal and oxygen ions increases and decreases, and the polyhedral structure changes.
  • the two types of polyhedrons MO 6 and MO 5 have edge covalent bonds, and the shape of the polyhedron is strongly bound to each other's geometric structure. In the case of having a polyhedral structure with such a strong constraint, it is considered that the structural change cannot sufficiently follow the valence change. That is, the present inventors considered that it is difficult for the MO x polyhedron to sufficiently relax the structure, and as a result, the valence cannot be changed with respect to lithium desorption.
  • the present inventors considered that there exist elements that are best suited to the respective coordination structures for the two types of transition metal sites, that is, M1 and M2, and that enable desired redox. Therefore, first, a crystal structure in which a transition metal element is applied to a transition metal site of (M1, M2) was searched by computer simulation. Specifically, six types of transition metals, Ti, V, Mn, Fe, Ni, and Cu, are considered and applied to the brute force (M1, M2) sites to improve the stability of the crystal structure with high accuracy. Theoretical prediction was made by using the one-principles density functional method.
  • the weight energy density is not disadvantageous when used as the positive electrode material of the lithium ion battery, so avoid heavy transition metal elements after Y, That is, among Sc to Zn, except for Sc that is not tetravalent, except for Cr that is expected to have a cost corresponding to environmental load, except for Co that is inferior in price competitiveness, and excluding Zn that is not expected to be redox with a stable element. is there.
  • the crystal structure of the chemical formula Li 2 M A0.5 M B0.5 P 2 O 7 prepared by applying the transition metal elements M A and M B to (M1 and M2), respectively, is theoretically predicted, and the result is obtained.
  • the crystal structure of a single type of transition metal element M A alone were prepared by applying the formula Li 2 M A P 2 O 7 with respect to (M1, M2) and theoretical predictions, the resulting total energy It is referred to as E a.
  • (M1, M2) with respect to only the crystal structure of Formula Li 2 M B P 2 O 7 created by applying the theory predicts single type of transition metal element M B, the resulting total energy Is EB .
  • the mixing energy defined in this way is obtained when Li 2 M A P 2 O 7 and Li 2 M B P 2 O 7 are separated and when Li 2 M A0.5 M B0.5 P 2 O 7 is present. It is a comparison of the energy when it exists. If E mix > 0, it indicates that it is more stable if it exists separately, and if E mix ⁇ 0, it indicates that it is more stable if it is mixed. .
  • (M1, M2) (Ti, Cu), (V, Ti), (V, Mn), (V, Fe), (Fe, Mn), (Ni, Mn), (Ni, Fe), ( It can be seen that a combination of (Cu, Ti) and (Cu, V) can be formed.
  • the present inventor investigated whether 1 mol or more of lithium can be extracted from the positive electrode material by a multi-electron reaction. Specifically, changes in the magnetic moment of transition metals were investigated using a high-accuracy first-principles density functional method. The reason why a multi-electron reaction is possible by this method is that the magnetic moment varies depending on the valence of the transition metal.
  • An oxidation reaction from Fe 2+ to Fe 3+ will be described as an example. Fe has 8 valence electrons, and its electron configuration is (4s) 2 (3d) 6 . When two electrons are desorbed from Fe to form a divalent cation, the electron configuration is (3d) 6 .
  • V the valence change of the transition metal element was examined with respect to the combination (V, Fe).
  • V the magnetic moment in the lithiated state Li 2 V 0.5 Fe 0.5 P 2 O 7 was examined.
  • V 3 ⁇ B
  • Fe was found to have become 4 ⁇ B. Since electron configuration of V is neutral state is (2s) 2 (3d) 3 , electron configuration by a divalent cation V 2+ (3d) 3, and the that the magnetic moment is 3.mu. B I understand. Therefore, in this state, V is a divalent cation. From the above discussion, it can be seen that Fe is a divalent cation like V.
  • V 0.5 Fe 0.5 P 2 O 7 in which all 2 mol of lithium was desorbed from this positive electrode material was prepared, and the magnetic moment was examined. Then V is 0 ⁇ B, Fe was found to have become 5 ⁇ B. V of 0Myu B has means that all of the valence are eliminated, a pentavalent cation V 5+. It can also be seen that Fe is a trivalent cation Fe 3+ from the magnetic moment.
  • the compound which is the positive electrode active material can be produced using a known general method, and various methods can be adopted as the method. Specifically, for example, in the case of Li 2 V 0.5 Fe 0.5 P 2 O 7 , iron oxide (Fe 2 O 3 ), a lithium phosphate compound, and vanadium oxide (V 2 O 5 ) are mixed, Synthesized by firing in an inert gas atmosphere such as argon.
  • the lithium phosphate compound is one selected from the group consisting of Li 3 PO 4 , Li 4 P 2 O 7 and LiPO 3 , for example.
  • the active material When producing a positive electrode for a non-aqueous electrolyte secondary battery using the positive electrode active material, the active material may be usually used in the form of powder, and the average particle size may be about 0.1 to 1 ⁇ m.
  • the average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus.
  • a binder binder
  • the usage-amount of a electrically conductive agent etc.
  • the above active material alone or a mixture with other conventionally known positive electrode active materials may be used.
  • a known positive electrode preparation method may be used except that the positive electrode active material is used.
  • a powder of the above active material may be added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene butadiene rubber, acrylonitrile butadiene rubber, fluoro rubber, polyvinyl acetate as necessary.
  • the obtained mixed powder may be pressure-formed on a support made of stainless steel or filled in a metal container.
  • the above mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran.
  • Etc. can also be produced by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel or copper.
  • the negative electrode is formed by applying a negative electrode mixture to a current collector made of copper or the like.
  • the negative electrode mixture includes an active material, a conductive material, a binder, and the like.
  • the active material of the negative electrode metallic lithium, a carbon material, a material capable of inserting lithium or forming a compound can be used, and a carbon material is particularly preferable.
  • the carbon material include graphites such as natural graphite and artificial graphite, and amorphous carbon such as coal-based coke, coal-based pitch carbide, petroleum-based coke, petroleum-based pitch carbide, and pitch-coke carbide.
  • these carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds.
  • Examples of the material capable of inserting lithium or forming a compound include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, and metal oxides containing tin, silicon, and the like. . Furthermore, the composite material of the above-mentioned metal, an alloy, a metal oxide, and the carbon material of a graphite type or an amorphous carbon is mentioned.
  • FIG. 5 is a longitudinal sectional view of a coin-type lithium secondary battery which is an example of a battery using the positive electrode active material.
  • a battery having a diameter of 6.8 mm and a thickness of 2.1 mm was produced.
  • a positive electrode can 51 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance.
  • the negative electrode can 52 also serves as a negative electrode terminal and is made of stainless steel made of the same material as the positive electrode can 51.
  • the gasket 53 insulates the positive electrode can 51 and the negative electrode can 52 and is made of polypropylene. Pitch is applied to the contact surface between the positive electrode can 51 and the gasket 53 and the contact surface between the negative electrode can 52 and the gasket 53.
  • a separator 55 made of a nonwoven fabric made of polypropylene is disposed between the positive electrode molded body (pellet) 54 and the negative electrode molded body (pellet) 56.
  • the electrolyte solution is infiltrated when the separator 55 is installed.
  • the shape of the secondary battery is not limited to the coin type, but may be a cylindrical shape obtained by winding an electrode, for example, an 18650 type. Alternatively, the electrodes may be stacked to form a square shape.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
  • the battery was manufactured and measured in a dry box under an argon atmosphere. The battery started from discharging for the first time, and then charged and discharged.
  • lithium carbonate Li 2 CO 3
  • ammonium dihydrogen phosphate NH 4 H 2 PO 4
  • iron oxide Fe 2 O 3 and vanadium oxide (V 2 O 5 )
  • a pyrophosphate positive electrode active material Li 2 V producing 0.5 Fe 0.5 P 2 O 7
  • citric acid In place of citric acid, other organic acids such as malic acid, tartaric acid, succinic acid and the like can be used.
  • the organic acid may be a mixture of a plurality of organic acids among citric acid, malic acid, tartaric acid, succinic acid, and the like.
  • the fired sample was pulverized for 1 hour using a meteor type ball mill (FRITSCH, Planetary micromill pulverisette 7). Thereafter, coarse particles of 50 ⁇ m or more are removed by sieving.
  • FRITSCH meteor type ball mill
  • the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity can be provided.
  • Li 3 PO 4 , copper oxide (CuO), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material.
  • Li: Cu: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer.
  • the powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Cu 0.5 P 2 O 7 .
  • V is trivalent in the lithiated state Li 2 V 0.5 Cu 0.5 P 2 O 7 . It was found to be a cation, and Cu was a monovalent cation. Further, in V 0.5 Cu 0.5 P 2 O 7 from which 2 mol of lithium has been eliminated from this crystal, V is a pentavalent cation, and Cu is a divalent cation. I understood. That is, it is expected that the capacity will be equivalent to 1.5 mol since charge compensation is possible up to 1.5 mol of electrons with 2 mol of lithium desorption.
  • the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity can be provided.
  • Li 3 PO 4 , titanium oxide (TiO 2 ), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material.
  • Li: Ti: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer.
  • the powder is dried and fired at 700 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Ti 0.5 P 2 O 7 .
  • a discharge capacity of 170 mAh / g can be confirmed.
  • the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity can be provided.
  • Li 3 PO 4 , manganese (III) (Mn 2 O 3 ), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material.
  • Li: Mn: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer.
  • the powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Mn 0.5 P 2 O 7 .
  • a discharge capacity of 130 mAh / g can be confirmed.
  • the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity can be provided.
  • Li 3 PO 4 , nickel oxide, and manganese (III) oxide (Mn 2 O 3 ) are used as raw materials for preparing the positive electrode active material.
  • Li: Ni: Mn: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer.
  • the powder is dried and fired at 700 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 Ni 0.5 Mn 0.5 P 2 O 7 .
  • a charge / discharge test is performed using this active material, a discharge capacity of 130 mAh / g can be confirmed.
  • the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity can be provided.

Abstract

For the purpose of providing a positive electrode active material for secondary batteries, which has a crystal structure that comprises a pyrophosphate-type P2O7 structure having high thermal stability as the basic skeleton, and which has improved discharge capacity, and a secondary battery which uses the positive electrode active material for secondary batteries, a positive electrode active material for secondary batteries of the present invention, which contains Li2-xMA0.5MB0.5P2O7 (wherein 0 ≤ x ≤ 2) as a main component, is configured so that MA and MB are transition metals, which are specifically (V and Ti), (V and Mn), (V and Fe), (Ni and Mn) or (V and Cu).

Description

二次電池用正極活物質およびそれを用いた二次電池Positive electrode active material for secondary battery and secondary battery using the same
 本発明は、リチウムイオン電池などの二次電池(再充電可能電池)用正極活物質およびそれを用いた二次電池に関する。 The present invention relates to a positive electrode active material for a secondary battery (rechargeable battery) such as a lithium ion battery and a secondary battery using the same.
 リチウム、ナトリウム等のアルカリ金属、マグネシウム等のアルカリ土類金属、あるいはこれらの合金、化合物などを負極活物質とする非水電解質二次電池は、負極金属イオンを正極活物質へインサーションもしくはインターカレーションする事により、その電気容量と充電可逆性を確保している。正極活物質および負極活物質をホストと呼び、ホストに対してインサーションまたはインターカレーションする可動金属イオンをゲストと呼ぶ。このようなホスト・ゲスト型の非水電解質二次電池の代表例がリチウムイオン二次電池である。 A non-aqueous electrolyte secondary battery using an alkali metal such as lithium or sodium, an alkaline earth metal such as magnesium, or an alloy or compound thereof as a negative electrode active material is used to insert or intercalate negative electrode metal ions into the positive electrode active material. To ensure the electric capacity and reversibility of charging. The positive electrode active material and the negative electrode active material are referred to as a host, and the movable metal ion that is inserted or intercalated into the host is referred to as a guest. A typical example of such a host / guest type non-aqueous electrolyte secondary battery is a lithium ion secondary battery.
 リチウムイオン二次電池は、従来型の二次電池に比べてエネルギ密度が高く、電池の安全性を確保する事が重要である。特に、正極活物質の熱安定性は、リチウムイオン二次電池における安全性を決定する要因のひとつである。加熱、圧壊、短絡などの外的要因により温度が上昇し、正極活物質の熱分解温度を超えると、発熱あるいは酸素放出が起きる。放出された酸素は、可燃性の有機電解質あるいは負極活物質と反応し、電池の安全性が損なわれる虞がある。 Lithium ion secondary batteries have a higher energy density than conventional secondary batteries, and it is important to ensure the safety of the batteries. In particular, the thermal stability of the positive electrode active material is one of the factors that determine the safety of lithium ion secondary batteries. When the temperature rises due to external factors such as heating, crushing, and short circuit and exceeds the thermal decomposition temperature of the positive electrode active material, heat generation or oxygen release occurs. The released oxygen may react with the combustible organic electrolyte or the negative electrode active material, and the safety of the battery may be impaired.
 熱安定性の問題は特に充電状態において顕著となる。充電状態では、リチウムイオンは負極活物質に蓄積されており、正極活物質は脱リチウム化されている。脱リチウム化された正極活物質は化学的にエネルギの高い状態であり、熱分解温度はリチウム化された状態より低い。このため、正極活物質は高温保存時に劣化しやすく、また温度上昇に伴って熱分解する可能性がある。 The problem of thermal stability is particularly noticeable in the charged state. In the charged state, lithium ions are accumulated in the negative electrode active material, and the positive electrode active material is delithiated. The delithiated positive electrode active material is in a chemically high energy state, and the thermal decomposition temperature is lower than in the lithiated state. For this reason, the positive electrode active material is likely to be deteriorated during high temperature storage and may be thermally decomposed as the temperature rises.
 金属酸化物型の正極活物質である層状岩塩型LiMO(ただしMは遷移金属)においては、例えばLiCoOにおいては過充電状態において構造の不安定性が増加するために熱分解温度が下降し、具体的には200℃以上の温度において熱分解反応が発生し、自己発熱する事でより安定な構造へ相転移する事により、酸素が放出される可能性がある。また、スピネル型金属酸化物LiMnにおいては、高温保存時にマンガンが電解液中に溶出し、溶出したマンガンがセパレータの目詰まりをおこしたり、負極上に被膜を形成したりして電池抵抗の上昇を招き、電池容量が減少する虞がある(特許文献1を参照)。以上のような正極群を用いたリチウムイオン二次電池では、信頼性および安全性の確保のため、保護回路によって過充電を防止する必要がある。このような保護回路および機械的諸機構は、現在の電池パックの相当体積を占めている。 In the layered rock salt type LiMO 2 (where M is a transition metal) which is a metal oxide type positive electrode active material, for example, in LiCoO 2 , the structural instability increases in an overcharged state, so the thermal decomposition temperature decreases, Specifically, a thermal decomposition reaction occurs at a temperature of 200 ° C. or higher, and oxygen may be released due to a phase transition to a more stable structure by self-heating. In the spinel type metal oxide LiMn 2 O 4 , manganese is eluted in the electrolyte during storage at high temperature, and the eluted manganese clogs the separator or forms a film on the negative electrode, resulting in battery resistance. May increase and the battery capacity may be reduced (see Patent Document 1). In a lithium ion secondary battery using the positive electrode group as described above, it is necessary to prevent overcharge by a protection circuit in order to ensure reliability and safety. Such protection circuits and mechanical mechanisms occupy a considerable volume of current battery packs.
 オリビン型化合物LiFePOは熱安定性が高い事が知られている。LiFePOの充電相であるFePO(Heterosite)は加熱に対して極めて安定であり、620℃以上に加熱しても、熱力学的により安定であるQuartz相に相転移するだけであり、酸素を放出しない。このように高い熱安定性を示す理由は、オリビン型化合物がリン酸骨格を有しているためである。リン酸型構造においてはリン(P)と酸素(O)が強固な共有結合で結ばれている。すなわち、酸素はリンによって固定化されており、発熱による酸素放出が起こりづらく、熱に対する安定性が高い。 The olivine type compound LiFePO 4 is known to have high thermal stability. The charge phase of LiFePO 4 , FePO 4 (Heterosite), is extremely stable with respect to heating, and even when heated to 620 ° C. or higher, it only undergoes a phase transition to the Quartz phase, which is more thermodynamically stable. Does not release. The reason for exhibiting such high thermal stability is that the olivine type compound has a phosphate skeleton. In the phosphoric acid type structure, phosphorus (P) and oxygen (O) are connected by a strong covalent bond. That is, oxygen is fixed by phosphorus, oxygen release due to heat generation is difficult to occur, and heat stability is high.
 従って、リンと酸素との共有結合は、正極活物質の熱安定性を確保するために有効である。リン酸型構造(P)を含有する正極活物質をポリアニオン正極群という。ポリアニオン正極活物質としては、オリビン酸化合物LiMPO(例えば、非特許文献1を参照)、ピロリン酸化合物LiMP(例えば、特許文献2および非特許文献2を参照)などが提案されている。 Therefore, the covalent bond between phosphorus and oxygen is effective for ensuring the thermal stability of the positive electrode active material. A positive electrode active material containing a phosphoric acid type structure (P x O y ) is referred to as a polyanion positive electrode group. As polyanion positive electrode active materials, olivic acid compound LiMPO 4 (for example, see Non-Patent Document 1), pyrophosphate compound Li 2 MP 2 O 7 (for example, see Patent Document 2 and Non-Patent Document 2) and the like have been proposed. ing.
 上記リン酸型正極活物質に関する詳細を以下に説明する。オリビン酸化合物LiMPOは、ポリアニオン(化学式(XOy-)で表される一連の正極活物質群の一部として知られる。オリビン酸化合物はX=P(リン)である。化学組成式LiMPOに対して、M=Fe、Mn、Co、Ni等が用いられる。中でもオリビン型含リチウムリン酸鉄(LiFePO、0≦x≦1、以下オリビンFe)は、化学組成式あたりリチウムが1原子を含んでおり理論電気容量は160mAh/gである。実験でもその理論電気容量のほぼ全てを利用することができる(非特許文献1を参照)。 The detail regarding the said phosphoric acid type positive electrode active material is demonstrated below. The olivic acid compound LiMPO 4 is known as a part of a series of positive electrode active material groups represented by a polyanion (chemical formula (XO 4 ) y− ). The olivic acid compound is X = P (phosphorus). M = Fe, Mn, Co, Ni or the like is used for the chemical composition formula LiMPO 4 . Among them, olivine-type lithium-containing iron phosphate (Li x FePO 4 , 0 ≦ x ≦ 1, hereinafter olivine Fe) contains one atom of lithium per chemical composition formula and has a theoretical electric capacity of 160 mAh / g. In experiments, almost all of the theoretical electric capacity can be used (see Non-Patent Document 1).
 ピロリン酸化合物LiMP(非特許文献2を参照)はMとしてFe、Mn、Co等を用いた正極活物質である。M=Mnで合成されたが、充放電はほとんどできないことが知られている(非特許文献3を参照)。初めての充放電は、M=Feで測定された(非特許文献2を参照)。M=FeはM=Mnよりも充放電特性が良く、電気容量の実験値は80~110mAh/gに達する(非特許文献2および4を参照)。しかしながら、この値は1電子反応に相当する容量であって、化学組成式LiMPにおけるリチウムイオン1つしか利用できていない事を意味する。ピロリン酸化合物が全てのリチウムイオンを充放電に利用できた場合の電気容量を理論電気容量と言い、それは220mAh/gである。 Pyrophosphate compound Li 2 MP 2 O 7 (see Non-Patent Document 2) is a positive electrode active material using Fe, Mn, Co or the like as M. Although synthesized with M = Mn, it is known that charging and discharging are almost impossible (see Non-Patent Document 3). The first charge / discharge was measured with M = Fe (see Non-Patent Document 2). M = Fe has better charge / discharge characteristics than M = Mn, and the experimental capacitance value reaches 80 to 110 mAh / g (see Non-Patent Documents 2 and 4). However, this value is a capacity corresponding to a one-electron reaction, meaning that only one lithium ion in the chemical composition formula Li 2 MP 2 O 7 can be used. The electric capacity when the pyrophosphate compound can use all the lithium ions for charging and discharging is called the theoretical electric capacity, which is 220 mAh / g.
 以上から、電気容量についてまとめると以下の通りである。オリビン型正極の理論電気容量は160mAh/gであって実験でもその容量を利用する事が可能である。一方、ピロリン酸型正極の理論電気容量は220mAh/gであるが、実験ではその半分の110mAh/gしか利用する事ができていない。電気容量が大きいほど、リチウムイオン電池の小型化・軽量化が可能になるため、もしピロリン酸型正極の容量を最大限に引き出す事ができれば、オリビン型正極を上回る正極活物質となり得る。 From the above, the electrical capacity is summarized as follows. The theoretical electric capacity of the olivine type positive electrode is 160 mAh / g, and the capacity can be used even in experiments. On the other hand, the theoretical electric capacity of the pyrophosphate-type positive electrode is 220 mAh / g, but only 110 mAh / g, which is half of that, can be used in the experiment. The larger the electric capacity, the smaller and lighter the lithium ion battery can be. Therefore, if the capacity of the pyrophosphate-type positive electrode can be maximized, the positive electrode active material can exceed the olivine-type positive electrode.
 まず、高容量を実現するための電気化学反応について、オリビン型正極活物質LiFePOを例にして説明する。オリビン型LiFePOに対して電圧を印加することにより、脱リチウム化反応させると、FePOが形成される。電気的中性原理により、このようなリチウムの脱離反応を通して、系は全イオン種の形式電荷の総和がゼロである状態を保持する必要がある。各イオンの形式電荷を考える。リチウムはイオン化しており形式電荷は1価の陽イオンである。リン酸基POは3価の陰イオンである。従ってLiFePOにおけるFeは2価の陽イオンである。一方、脱リチウム化された状態であるFePOにおけるFeは3価の陽イオンである。すなわち脱リチウム化によってFeイオンが2価の陽イオンから3価の陽イオンへ状態が遷移している事が分かる。このようにリチウム脱離に伴う電気的中性原理を保持するために価数を変えるイオンを酸化還元中心と言い、リチウム電池における電荷補償機構となっている。 First, an electrochemical reaction for realizing a high capacity will be described with an olivine-type positive electrode active material LiFePO 4 as an example. When delithiation reaction is performed by applying a voltage to olivine-type LiFePO 4 , FePO 4 is formed. Due to the electrical neutral principle, the system needs to maintain a state in which the sum of formal charges of all ionic species is zero through such a lithium elimination reaction. Consider the formal charge of each ion. Lithium is ionized and the formal charge is a monovalent cation. The phosphate group PO 4 is a trivalent anion. Therefore, Fe in LiFePO 4 is a divalent cation. On the other hand, Fe in FePO 4 in a delithiated state is a trivalent cation. In other words, it can be seen that the Fe ion is transitioned from a divalent cation to a trivalent cation by delithiation. In this way, ions that change their valence in order to maintain the electrical neutral principle associated with lithium desorption are called redox centers and serve as a charge compensation mechanism in lithium batteries.
 次に、ピロリン酸型正極活物質LiFePを脱リチウム化した場合に関する電気化学反応を説明する。本活物質においてリチウムはイオン化しており形式電荷1価の陽イオンとなっている。P基は4価の陰イオンである。従ってFeは2価の陽イオンであり、オリビン型正極活物質におけるFeと等しい形式価数を持つ。この状態から1モルのリチウムを脱離させると、化学式LiFePで表される状態となる。LiFePにおいてはリチウム脱離のためFeが3価の陽イオンとなっている。この電気化学反応はオリビン型正極活物質におけるFeの価数変化と同等であり、ピロリン酸型正極活物質が1電子反応をしている事を裏付ける。非特許文献2ではLiFePにおけるFeイオンのメスバウアスペクトルを解析する事により、Feが3価である事を実験的に観測している。 Next, an electrochemical reaction related to the case where the pyrophosphate-type positive electrode active material Li 2 FeP 2 O 7 is delithiated will be described. In this active material, lithium is ionized and becomes a cation having a formal charge. The P 2 O 7 group is a tetravalent anion. Therefore, Fe is a divalent cation and has the same formal valence as Fe in the olivine-type positive electrode active material. When 1 mol of lithium is desorbed from this state, a state represented by the chemical formula LiFeP 2 O 7 is obtained. In LiFeP 2 O 7 , Fe is a trivalent cation due to lithium elimination. This electrochemical reaction is equivalent to the change in the valence of Fe in the olivine-type positive electrode active material, and confirms that the pyrophosphate-type positive electrode active material has a one-electron reaction. In Non-Patent Document 2, it is experimentally observed that Fe is trivalent by analyzing the Mossbauer spectrum of Fe ions in LiFeP 2 O 7 .
 次に、もしもLiFePからリチウムをさらに1モル脱離させる事ができた場合の電気化学反応について説明する。このリチウム脱離により、正極活物質の化学式はFePとなる。P基は4価の陰イオンであるから、電気的中性原理により、この状態におけるFeの価数は4価の陽イオンである事が分かる。しかしながらFeは4価の陽イオンにはなりづらい事が知られている。Fe4+が出現する物質で現在知られているものは、生体酵素であるペルオキシダーゼ、水酸化酵素であるシトクロム、鉄オキソポルフィリン錯体、固体ではペロブスカイト型の金属酸化物(SrFeO、またはCaFeO)であり、極めて限定されている。このためFeにおける4価の状態は異常原子価と呼ばれており、簡単には出現しない。実際に、ピロリン酸型正極活物質からの1モル以上のリチウム脱離はこれまで確認されていない。 Next, an electrochemical reaction in the case where one more mole of lithium can be eliminated from LiFeP 2 O 7 will be described. By this lithium desorption, the chemical formula of the positive electrode active material becomes FeP 2 O 7 . Since the P 2 O 7 group is a tetravalent anion, it can be seen from the electrical neutral principle that the valence of Fe in this state is a tetravalent cation. However, it is known that Fe is difficult to be a tetravalent cation. Currently known substances in which Fe 4+ appears are peroxidase which is a biological enzyme, cytochrome which is a hydroxylase, iron oxoporphyrin complex, and perovskite type metal oxide (SrFeO 3 or CaFeO 3 ) in solid. Yes and very limited. For this reason, the tetravalent state in Fe is called an abnormal valence and does not appear easily. Actually, 1 mol or more of lithium desorption from the pyrophosphate-type positive electrode active material has not been confirmed so far.
特開2010-232001号公報JP 2010-23001 A 特表2006-523930号公報Special Table 2006-523930
 本発明者等は、上記状況を踏まえた上で、課題はあるものの熱安定性に優れた正極活物質としては、リン酸型構造(P)を含有するポリアニオン正極群が最適であると考え、特に未だ放電容量の改善が見込まれるピロリン酸化合物LiMPにおいてMを4価にする方法について検討した。 In light of the above situation, the present inventors have a problem, but as a positive electrode active material excellent in thermal stability, a polyanion positive electrode group containing a phosphoric acid type structure (P x O y ) is optimal. In particular, a method for making M tetravalent in the pyrophosphate compound Li 2 MP 2 O 7 , which is still expected to improve the discharge capacity, was studied.
 この問題に対して、Feを他の元素に置換することで2モルのリチウム脱離を試みることが考えられる。例えば、非特許文献4には、FeをMnに置き換えた事例が開示されている。Mnは多価をとるイオンであることが知られている。具体的には、オリビン型正極活物質LiMnPOにおいては2価の陽イオンの状態であり、スピネル構造Mnにおいては3価の陽イオンの状態であり、二酸化マンガンMnOにおいては4価の陽イオンの状態となっている。従ってMnはリチウム脱離において酸化還元中心となり、2価から4価までの電気化学反応を担うと期待される。しかしながら、非特許文献4においては実験の結果Mnは全く酸化されず、リチウムはほとんど脱離されない結果となっている。このようにMnが酸化還元中心として働かない理由は分かっていない。 In order to solve this problem, it is conceivable to attempt the elimination of 2 mol of lithium by substituting Fe with another element. For example, Non-Patent Document 4 discloses a case where Fe is replaced with Mn. It is known that Mn is a multivalent ion. Specifically, the olivine-type positive electrode active material LiMnPO 4 is in a divalent cation state, the spinel structure Mn 3 O 4 is in a trivalent cation state, and the manganese dioxide MnO 2 is in a tetravalent state. It is in the state of cations. Therefore, Mn becomes a redox center in the elimination of lithium and is expected to be responsible for electrochemical reactions from divalent to tetravalent. However, in Non-Patent Document 4, as a result of experiments, Mn is not oxidized at all, and lithium is hardly desorbed. The reason why Mn does not work as a redox center is not known.
 もし遷移金属元素が2価から4価までの価数変化をすることが可能であれば、充放電容量の大容量化が実現できると考えられる。その酸化還元中心として低価格な遷移金属元素を利用できれば、価格競争力が高い正極材料となりうる。ピロリン酸型正極活物質は、オリビン型正極材料に比べて大きい粒径(1μm)の粒子を用いて充放電が可能である。すなわち、微粒子化の加工プロセスを省略でき、表面修飾処理の制約が大幅に緩和され、電池のコスト低下、行程管理の容易化、性能障害要因の排除につながる。またオリビン正極活物質で必須であった黒鉛等の導電性材料による表面修飾処理が不要であるため、同様にコスト低下、行程容易化に加え、電極結着加工の容易性等の多くの利点がある。以上から、1モル以上のリチウムが脱離可能なピロリン酸型正極活物質を実用化することの意義は大きいと言える。 If the transition metal element can change the valence from 2 to 4, the charge / discharge capacity can be increased. If a low-cost transition metal element can be used as the redox center, it can be a positive electrode material with high price competitiveness. The pyrophosphate-type positive electrode active material can be charged and discharged using particles having a larger particle diameter (1 μm) than the olivine-type positive electrode material. That is, the micronization process can be omitted, and the restriction of the surface modification treatment is greatly relaxed, leading to a reduction in battery cost, ease of process management, and elimination of performance hindrance factors. In addition, since surface modification treatment with a conductive material such as graphite, which was essential for the olivine positive electrode active material, is unnecessary, there are many advantages such as cost reduction, ease of process, and ease of electrode binding. is there. From the above, it can be said that the significance of putting a pyrophosphate-type positive electrode active material capable of detaching 1 mol or more of lithium into practical use is great.
 本発明者等による以上の検討結果から、安全性および電気容量への要求を満足する正極活物質の条件としては、(1)潜在的に電気容量が大きいピロリン酸型結晶構造を持つ正極活物質であること、(2)熱安定性の高いリン酸に基づく骨格を持つこと、(3)1モル以上のリチウムが脱離可能であることである。しかしながら、これらの特徴を持つピロリン酸型正極活物質はまだ実現されていない。 From the above examination results by the present inventors, the conditions for the positive electrode active material that satisfies the requirements for safety and electric capacity are as follows: (1) Positive electrode active material having a pyrophosphoric acid type crystal structure with potentially large electric capacity (2) having a skeleton based on phosphoric acid with high thermal stability, and (3) being capable of detaching 1 mol or more of lithium. However, pyrophosphate-type positive electrode active materials having these characteristics have not been realized yet.
 本発明は、ピロリン酸型正極活物質における放電容量向上のために提案されたものであり、その目的は、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することにある。 The present invention has been proposed to improve the discharge capacity of a pyrophosphate-type positive electrode active material, and has an object of having a crystal structure having a pyroskeleton-type P 2 O 7 structure having a high thermal stability as a basic skeleton. It is another object of the present invention to provide a non-aqueous electrolyte positive electrode active material for a secondary battery with improved discharge capacity and a secondary battery using the same.
 上記目的を達成するための一実施形態として、化学組成式がLi2-xA0.5B0.5であって、MおよびMはそれぞれ遷移金属元素であり、その組合せが(V、Ti)、(V、Mn)、(V、Fe)、(Ni、Mn)、或いは(V、Cu)であり、xは0≦x≦2の範囲にある化合物を主成分とすることを特徴とする二次電池用正極活物質とする。 As an embodiment for achieving the above object, the chemical composition formula is Li 2-x M A0.5 M B0.5 P 2 O 7 , and M A and M B are each a transition metal element, The combination is (V, Ti), (V, Mn), (V, Fe), (Ni, Mn), or (V, Cu), and x is the main component of a compound in the range of 0 ≦ x ≦ 2. It is set as the positive electrode active material for secondary batteries characterized by these.
 また、上記二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池とする。 Also, a secondary battery is characterized in that the positive electrode active material for a secondary battery is used in a positive electrode molded body.
 本発明によれば、熱安定性が高く放電容量を向上可能な二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode active material for a secondary battery that has high thermal stability and can improve the discharge capacity, and a secondary battery using the same.
ピロリン酸型LiMP結晶構造を示す図である。It is a diagram showing a pyrophosphate type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造における遷移金属サイトとそれらに配位する酸素原子が作る幾何学構造を示す図である。It is a diagram illustrating a geometrical structure created by the transition metal site and coordinated oxygen atom thereof in pyrophosphate-type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造におけるC層リチウムイオン拡散ネットワークを示す図である。Is a diagram showing the C layer lithium ion diffusion network in pyrophosphate-type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造における孤立電子対付き酸素の存在を示した図である。It is a diagram showing the presence of a lone pair with oxygen in the pyrophosphate-type Li 2 MP 2 O 7 crystal structure. 実施の形態の例であるコイン型電池構造の断面図である。It is sectional drawing of the coin-type battery structure which is an example of embodiment. 第一原理計算により評価した混合型ピロリン酸型正極活物質の安定化エネルギの表である。It is a table | surface of the stabilization energy of the mixed type pyrophosphate type positive electrode active material evaluated by the first principle calculation. 遷移金属元素の価数変化を評価した結果を示す表である。It is a table | surface which shows the result of having evaluated the valence change of the transition metal element.
 本発明者は、上記の目的を達成するために、ピロリン酸型正極活物質の充放電反応に伴うリチウム脱離構造および酸化還元中心の価数変化について検討を重ねた結果、二種類の遷移金属を用いて化合物を構成することにより1モル以上のリチウム脱離が可能であることを見出した。例えば、遷移金属元素Mの1モルを二種類の元素Mの0.5モルおよびMの0.5モルとの組み合わせにより置換する。本発明はこの新らたな知見に基づいて生まれたものであり、高い安全性を持つピロリン酸型結晶構造を有し、かつ、電気容量が110mAh/gより高いリチウムイオン二次電池用の正極活物質を提供することができる。以下に充放電容量向上に至る正極活物質設計の詳細を説明する。 In order to achieve the above-mentioned object, the present inventor has repeatedly examined the lithium desorption structure and the valence change of the redox center associated with the charge / discharge reaction of the pyrophosphate-type positive electrode active material. It was found that 1 mol or more of lithium can be eliminated by constructing a compound with the use of. For example, to replace the combination of 0.5 mole of 0.5 mole and M B of 1 mole of two kinds of elements M A transition metal element M. The present invention was born based on this new knowledge, has a highly safe pyrophosphate-type crystal structure, and a positive electrode for a lithium ion secondary battery having an electric capacity higher than 110 mAh / g. An active material can be provided. Details of the positive electrode active material design that leads to an improvement in charge / discharge capacity will be described below.
 まずピロリン酸型正極活物質の結晶構造を図1に示す。結晶構造はbc面に沿ったリチウム層および遷移金属層の交互積層構造からなる。遷移金属Mは周囲に酸素原子が配位してMO多面体構造をとる。図1における点描された多面体6がMO構造である。符号1はLi1サイト、符号2はLi2サイト、符号3はLi3サイト、符号4はLi4サイト、符号5はリン酸多面体、符号7は単位胞を示す。MO多面体構造は、MOとMOの2種類が存在する。その詳しい構造を図2に示す。多面体の中心に遷移金属元素M(21、22)が位置しており、その周囲を酸素23が配位する。6つの酸素23が配位した金属サイトをM1とし、5つの酸素が配位した金属サイトをM2とする。6配位の多面体M1Oと5配位の多面体M2Oは、辺共有結合してクラスタを形成する。符号24は遷移金属と酸素の化学結合を示す。図4に示すように、MOとMOが結合した多面体クラスタの間にはリン酸構造Pが配置されており、クラスタ同士が接合されている。このため遷移金属層は充放電の際に層状構造を維持することができる。符号41は孤立電子対付酸素イオン、符号42は酸素イオン、符号43はリン酸多面体、符号44は酸化鉄多面体(遷移金属酸化物多面体)を示す。リチウムは図3に示すように2次元的ネットワーク構造を形成しており、充放電の際にこのネットワークを通じて活物質から脱離および挿入する事が可能である。符号31はLi3サイト、符号32はLi4サイト、符号33は単位胞を示す。 First, the crystal structure of the pyrophosphate-type positive electrode active material is shown in FIG. The crystal structure consists of an alternating layered structure of lithium layers and transition metal layers along the bc plane. The transition metal M has an MO x polyhedral structure with oxygen atoms coordinated around it. The dotted polyhedron 6 in FIG. 1 has an MO x structure. Reference numeral 1 denotes a Li1 site, reference numeral 2 denotes a Li2 site, reference numeral 3 denotes a Li3 site, reference numeral 4 denotes a Li4 site, reference numeral 5 denotes a phosphor polyhedron, and reference numeral 7 denotes a unit cell. There are two types of MO x polyhedral structures, MO 6 and MO 5 . The detailed structure is shown in FIG. The transition metal element M (21, 22) is located at the center of the polyhedron, and oxygen 23 is coordinated around it. A metal site coordinated with six oxygens 23 is M1, and a metal site coordinated with five oxygens is M2. The hexacoordinate polyhedron M1O 6 and the pentacoordinate polyhedron M2O 5 form a cluster by covalently bonding edges. Reference numeral 24 indicates a chemical bond between the transition metal and oxygen. As shown in FIG. 4, a phosphoric acid structure P 2 O 7 is arranged between polyhedral clusters in which MO 6 and MO 5 are bonded, and the clusters are joined to each other. For this reason, the transition metal layer can maintain a layered structure during charging and discharging. Reference numeral 41 denotes a lone electron paired oxygen ion, reference numeral 42 denotes an oxygen ion, reference numeral 43 denotes a phosphoric acid polyhedron, and reference numeral 44 denotes an iron oxide polyhedron (transition metal oxide polyhedron). Lithium forms a two-dimensional network structure as shown in FIG. 3, and can be desorbed and inserted from the active material through this network during charging and discharging. Reference numeral 31 denotes a Li3 site, reference numeral 32 denotes a Li4 site, and reference numeral 33 denotes a unit cell.
 次に、MO多面体構造について説明する。一般に遷移金属の酸化物では酸素が6配位したMO構造をとる場合が多い。例えば、岩塩型の酸化物構造では遷移金属は酸素が6配位した八面体構造をとる。その構造はピロリン酸型正極活物質における6配位構造と類似しているが、ピロリン酸型正極活物質ではより対称性が低く、遷移金属と酸素の結合長にばらつきがある。従って6配位構造として同じトポロジーを持っていても、遷移金属の安定性は異なると考えられる。MO多面体構造については、遷移金属の酸化物で5配位をとる場合は少ないが、α相Vにおいては5配位のMO構造をとることが知られている。よって遷移金属の種類によって安定な配位数・安定な配位状態は一般に一意ではない。ピロリン酸型正極活物質LiMPでは、異なる配位数を持つ遷移金属サイトM1およびM2に対して同一の遷移金属元素Mを割り当てることで結晶を構成しているため、ふたつのサイトにおけるMの安定性は異なり、価数変化のし易さも異なると考えられる。すなわち、局所構造の違いにより価数変化し難い遷移金属サイトと遷移金属種の組み合わせがあると考えられる。 Next, the MO x polyhedron structure will be described. In general, transition metal oxides often have an MO 6 structure in which oxygen is six-coordinated. For example, in a rock salt type oxide structure, the transition metal has an octahedral structure in which oxygen is coordinated to six. The structure is similar to the six-coordinate structure in the pyrophosphate-type positive electrode active material, but the symmetry is lower in the pyrophosphate-type positive electrode active material, and the bond length between the transition metal and oxygen varies. Therefore, even if it has the same topology as the six-coordinate structure, the stability of the transition metal is considered to be different. As for the MO 5 polyhedral structure, there are few cases where the transition metal oxide is pentacoordinated, but the α-phase V 2 O 5 is known to have a 5-coordinated MO 5 structure. Therefore, the stable coordination number and the stable coordination state are generally not unique depending on the type of transition metal. In the pyrophosphate-type positive electrode active material Li 2 MP 2 O 7 , since the same transition metal element M is assigned to the transition metal sites M1 and M2 having different coordination numbers, the two sites It is considered that the stability of M is different, and the ease of valence change is also different. That is, it is considered that there are combinations of transition metal sites and transition metal species that are difficult to change in valence due to differences in local structure.
 酸化還元中心の価数変化に伴い、酸化還元中心となる遷移金属元素のイオン半径が増減するため、それに伴い遷移金属と酸素イオンとの結合距離が増減し、多面体の構造が変化する。一方、二種類の多面体MOとMOは辺共有結合をしており、多面体の形状は互いの幾何学構造に強く束縛されている。このように束縛の強い多面体構造を持つ場合、価数変化に伴って構造変化が十分追随できないと考えられる。すなわち、本発明者等は、このように束縛が強い局所構造では、MO多面体が十分な構造緩和をすることが難しく、その結果、リチウム脱離に対して価数変化ができないと考えた。 As the valence of the oxidation-reduction center changes, the ionic radius of the transition metal element that becomes the oxidation-reduction center increases and decreases, so that the bond distance between the transition metal and oxygen ions increases and decreases, and the polyhedral structure changes. On the other hand, the two types of polyhedrons MO 6 and MO 5 have edge covalent bonds, and the shape of the polyhedron is strongly bound to each other's geometric structure. In the case of having a polyhedral structure with such a strong constraint, it is considered that the structural change cannot sufficiently follow the valence change. That is, the present inventors considered that it is difficult for the MO x polyhedron to sufficiently relax the structure, and as a result, the valence cannot be changed with respect to lithium desorption.
 そこで本発明者等は、2種類存在する遷移金属サイト、すなわちM1およびM2に対して、それぞれの配位構造と最も良く適合し、所望の酸化還元が可能となる元素が存在すると考えた。そこで、まず、(M1、M2)の遷移金属サイトに対して、遷移金属元素を適用した結晶構造を計算機シミュレーションにより探索した。具体的には、遷移金属としてTi、V、Mn、Fe、Ni、Cuの6種類を考え、それらを総当たりで(M1、M2)サイトに当てはめて、結晶構造の安定性を高精度な第一原理密度汎関数法を用いることにより理論予測した。遷移金属として以上の6種類を選んだ理由は、リチウムイオン電池の正極材料として用いる際に重量エネルギ密度で不利にならないために、Y以降の重い遷移金属元素を避け、第4周期の遷移金属、すなわちScからZnのうちで、4価にならないScを除き、環境負荷対応コストが予想されるCrを除き、価格競争力で劣るCoを除き、安定元素で酸化還元が見込めないZnを除いたためである。 Therefore, the present inventors considered that there exist elements that are best suited to the respective coordination structures for the two types of transition metal sites, that is, M1 and M2, and that enable desired redox. Therefore, first, a crystal structure in which a transition metal element is applied to a transition metal site of (M1, M2) was searched by computer simulation. Specifically, six types of transition metals, Ti, V, Mn, Fe, Ni, and Cu, are considered and applied to the brute force (M1, M2) sites to improve the stability of the crystal structure with high accuracy. Theoretical prediction was made by using the one-principles density functional method. The reason why the above six kinds of transition metals are selected is that the weight energy density is not disadvantageous when used as the positive electrode material of the lithium ion battery, so avoid heavy transition metal elements after Y, That is, among Sc to Zn, except for Sc that is not tetravalent, except for Cr that is expected to have a cost corresponding to environmental load, except for Co that is inferior in price competitiveness, and excluding Zn that is not expected to be redox with a stable element. is there.
 以上のように(M1、M2)にそれぞれ遷移金属元素M、Mを当てはめて作成した化学式LiA0.5B0.5の結晶構造を理論予測し、その結果得られた全エネルギをEABとする。また、(M1、M2)に対して単一種類の遷移金属元素Mのみを適用して作成した化学式Liの結晶構造を理論予測し、その結果得られた全エネルギをEとする。また、(M1、M2)に対して単一種類の遷移金属元素Mのみを適用して作成した化学式Liの結晶構造を理論予測し、その結果得られた全エネルギをEとする。LiA0.5B0.5の安定性を評価するため、混合エネルギをEmix=EAB-(E+E)/2と定義する。このように定義した混合エネルギは、LiとLiが分離して存在する場合と、LiA0.5B0.5が存在する場合のエネルギの比較であり、Emix>0であれば分離して存在したほうが安定であることを示し、またEmix<0であれば混合して存在したほうが安定である事を示す。 As described above, the crystal structure of the chemical formula Li 2 M A0.5 M B0.5 P 2 O 7 prepared by applying the transition metal elements M A and M B to (M1 and M2), respectively, is theoretically predicted, and the result is obtained. Let the total energy given be E AB . Further, the crystal structure of a single type of transition metal element M A alone were prepared by applying the formula Li 2 M A P 2 O 7 with respect to (M1, M2) and theoretical predictions, the resulting total energy It is referred to as E a. Further, (M1, M2) with respect to only the crystal structure of Formula Li 2 M B P 2 O 7 created by applying the theory predicts single type of transition metal element M B, the resulting total energy Is EB . In order to evaluate the stability of Li 2 M A0.5 M B0.5 P 2 O 7 , the mixing energy is defined as E mix = E AB − (E A + E B ) / 2. The mixing energy defined in this way is obtained when Li 2 M A P 2 O 7 and Li 2 M B P 2 O 7 are separated and when Li 2 M A0.5 M B0.5 P 2 O 7 is present. It is a comparison of the energy when it exists. If E mix > 0, it indicates that it is more stable if it exists separately, and if E mix <0, it indicates that it is more stable if it is mixed. .
 理論的に計算された混合エネルギEmixの結果を図6に示す。Emixの値が負である組み合わせ(M1、M2)は混合により安定化し、化合物を形成できることを示す。従って(M1、M2)=(Ti、Cu)、(V、Ti)、(V、Mn)、(V、Fe)、(Fe、Mn)、(Ni、Mn)、(Ni、Fe)、(Cu、Ti)、(Cu、V)の組み合わせが形成可能であることが分かる。 The result of the theoretically calculated mixing energy E mix is shown in FIG. The combination (M1, M2) in which the value of E mix is negative indicates that it can be stabilized by mixing to form a compound. Therefore, (M1, M2) = (Ti, Cu), (V, Ti), (V, Mn), (V, Fe), (Fe, Mn), (Ni, Mn), (Ni, Fe), ( It can be seen that a combination of (Cu, Ti) and (Cu, V) can be formed.
 次に本発明者は、多電子反応により1モル以上のリチウムを正極材料から引き抜くことができるかどうかを調べた。具体的には、高精度な第一原理密度汎関数法を用いて、遷移金属の磁気モーメント変化を調べた。この方法で多電子反応が可能かどうか分かる理由は、遷移金属の価数により磁気モーメントが異なるためである。Fe2+からFe3+への酸化反応を例として説明する。Feは価電子数が8でありその電子配置は(4s)(3d)である。Feから電子が2つ脱離して2価の陽イオンになると、その電子配置は(3d)となる。鉄が高スピン状態になっている場合、5つのd軌道のうち4つはスピンにより磁気モーメントが発生し、その結果4μの磁気モーメントが発生する。鉄が更に酸化されてFe3+になったとすると、電子配置は(3d)となるため、高スピン状態の場合5μの磁気モーメントが発生する。以上から、鉄の2価から3価への価数変化が発生する場合は、鉄の磁気モーメントが4μから5μへと変わることから、磁気モーメントを計測することにより鉄の価数変化が発生しているかどうかを判定する事が可能である。 Next, the present inventor investigated whether 1 mol or more of lithium can be extracted from the positive electrode material by a multi-electron reaction. Specifically, changes in the magnetic moment of transition metals were investigated using a high-accuracy first-principles density functional method. The reason why a multi-electron reaction is possible by this method is that the magnetic moment varies depending on the valence of the transition metal. An oxidation reaction from Fe 2+ to Fe 3+ will be described as an example. Fe has 8 valence electrons, and its electron configuration is (4s) 2 (3d) 6 . When two electrons are desorbed from Fe to form a divalent cation, the electron configuration is (3d) 6 . If the iron is in the high spin state, four of the five d orbitals magnetic moment generated by the spin magnetic moments of the resulting 4 [mu] B occurs. When iron is further oxidized to become Fe 3+, since electron configuration becomes (3d) 5, the magnetic moment of the case 5 [mu] B of high-spin state occurs. From the above, if the valence change from divalent iron to trivalent occurs, since the magnetic moment of the iron is changed to 5 [mu] B from 4 [mu] B, valence change of iron by measuring the magnetic moment It is possible to determine whether it has occurred.
 この方法を用いて、組み合わせ(V、Fe)に関して遷移金属元素の価数変化を調べた。まずリチウム化された状態Li0.5Fe0.5における磁気モーメントを調べた。するとVは3μ、Feは4μになっていることが分かった。中性状態であるVの電子配置は(2s)(3d)であるから、2価の陽イオンV2+となることで電子配置(3d)となり、磁気モーメントが3μになることが分かる。従ってこの状態ではVは2価の陽イオンになっている。またFeについても上の議論から、Vと同様に2価の陽イオンになっていることが分かる。次に、この正極材料から2モルのリチウムを全て脱離させた構造V0.5Fe0.5を作成し、その磁気モーメントを調べた。するとVは0μ、Feは5μになっていることが分かった。0μのVは全ての価電子が脱離していることを意味しており、5価の陽イオンV5+である。またFeは磁気モーメントから3価の陽イオンFe3+であることが分かる。 Using this method, the valence change of the transition metal element was examined with respect to the combination (V, Fe). First, the magnetic moment in the lithiated state Li 2 V 0.5 Fe 0.5 P 2 O 7 was examined. Then V is 3μ B, Fe was found to have become 4μ B. Since electron configuration of V is neutral state is (2s) 2 (3d) 3 , electron configuration by a divalent cation V 2+ (3d) 3, and the that the magnetic moment is 3.mu. B I understand. Therefore, in this state, V is a divalent cation. From the above discussion, it can be seen that Fe is a divalent cation like V. Next, a structure V 0.5 Fe 0.5 P 2 O 7 in which all 2 mol of lithium was desorbed from this positive electrode material was prepared, and the magnetic moment was examined. Then V is 0μ B, Fe was found to have become 5μ B. V of 0Myu B has means that all of the valence are eliminated, a pentavalent cation V 5+. It can also be seen that Fe is a trivalent cation Fe 3+ from the magnetic moment.
 上の価数変化についてまとめると、リチウムの2モル脱離に伴い、0.5モルのVが2価から5価へ価数変化し、また0.5モルのFeが2価から3価へ価数変化する。従ってVとFeが合計2モルの電子を放出しており、リチウム脱離に伴って正極活物質の電気的中性条件が保持されるように電荷が補償されている。このようにして、全てのリチウムを充放電に利用できる優れた正極活物質Li0.5Fe0.5を実現できる。 Summarizing the above valence change, 0.5 mol of V changes from divalent to pentavalent, and 0.5 mol of Fe changes from divalent to trivalent with 2 mol elimination of lithium. The valence changes. Therefore, V and Fe emit a total of 2 moles of electrons, and the charge is compensated so that the electrical neutral condition of the positive electrode active material is maintained as lithium is desorbed. In this way, an excellent positive electrode active material Li 2 V 0.5 Fe 0.5 P 2 O 7 that can utilize all lithium for charging and discharging can be realized.
 他の組み合わせに関しても同様に遷移金属元素の価数変化を計算した。その結果、(V、Ti)も同様に2モルのリチウム脱離が可能であることが分かった。(V、Mn)、(Ni、Mn)、(Cu、V)については1.5モルのリチウム脱離が可能であることが分かった。(Ti、Cu)および(Fe、Mn)、(Ni、Fe)については1.0モルのリチウムのみが脱離可能であり、LiFePの電気容量を超えることはない。以上から、遷移金属元素の価数変化が大きく、LiFePの電気容量を超えるものについては○で、そうでないものについては×として図7に示した。即ち、LiA0.5B0.5におけるMとMの組合せとしては、(V、Ti)、(V、Mn)、(V、Fe)、(Ni、Mn)、(Cu、V)が有望との見通しが得られた。 Similarly, the valence change of the transition metal element was calculated for other combinations. As a result, (V, Ti) was found to be capable of detaching 2 moles of lithium as well. Regarding (V, Mn), (Ni, Mn), and (Cu, V), it was found that 1.5 mol of lithium can be eliminated. For (Ti, Cu) and (Fe, Mn), (Ni, Fe), only 1.0 mol of lithium can be desorbed and does not exceed the electric capacity of Li 2 FeP 2 O 7 . From the above, the change in the valence of the transition metal element is large and the value exceeding the electric capacity of Li 2 FeP 2 O 7 is indicated by “◯”, and the other value is indicated by “X” in FIG. That is, the combination of M A and M B in Li 2 M A0.5 M B0.5 P 2 O 7, (V, Ti), (V, Mn), (V, Fe), (Ni, Mn) , (Cu, V) is expected to be promising.
 上記正極活物質である化合物は、公知の一般的方法を用いて製造することができ、その方法も、種々の方法が採用できる。具体的には、例えばLi0.5Fe0.5の場合は、酸化鉄(Fe)とリン酸リチウム化合物および酸化バナジウム(V)を混合し、アルゴンなどの不活性ガス雰囲気中で焼成して合成される。リン酸リチウム化合物としては、例えばLiPO、Li、LiPOからなる群より選択される一つである。 The compound which is the positive electrode active material can be produced using a known general method, and various methods can be adopted as the method. Specifically, for example, in the case of Li 2 V 0.5 Fe 0.5 P 2 O 7 , iron oxide (Fe 2 O 3 ), a lithium phosphate compound, and vanadium oxide (V 2 O 5 ) are mixed, Synthesized by firing in an inert gas atmosphere such as argon. The lithium phosphate compound is one selected from the group consisting of Li 3 PO 4 , Li 4 P 2 O 7 and LiPO 3 , for example.
 上記正極活物質を用いて非水電解質二次電池用正極を作製する場合、上記活物質は通常粉末状で用いればよく、その平均粒径は0.1~1μm程度とすればよい。平均粒径は、例えばレーザー回折式粒度分布測定装置で測定される値である。また、正極中における上記活物質の含有量は、用いる活物質の種類、結着材(バインダー)、導電剤の使用量等に応じて適宜設定すればよい。また、正極の作製においては、正極活物質として所定の正極特性が得られる限りは、上記活物質単独、又は他の従来から知られている正極活物質との混合物であってもよい。 When producing a positive electrode for a non-aqueous electrolyte secondary battery using the positive electrode active material, the active material may be usually used in the form of powder, and the average particle size may be about 0.1 to 1 μm. The average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus. Moreover, what is necessary is just to set suitably content of the said active material in a positive electrode according to the kind of active material to be used, a binder (binder), the usage-amount of a electrically conductive agent, etc. Further, in the production of the positive electrode, as long as a predetermined positive electrode characteristic is obtained as the positive electrode active material, the above active material alone or a mixture with other conventionally known positive electrode active materials may be used.
 上記正極活物質を用いての正極の作製に際しては、上記正極活物質を用いるほかは公知の正極の作製方法に従って行えばよい。例えば、上記活物質の粉末を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス、カーボンナノチューブ、カーボンナノホーン、グラフェンナノシート等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。あるいは、例えば、上記混合粉末を有機溶剤(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても上記電極を作製することができる。 When preparing the positive electrode using the positive electrode active material, a known positive electrode preparation method may be used except that the positive electrode active material is used. For example, a powder of the above active material may be added to a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene butadiene rubber, acrylonitrile butadiene rubber, fluoro rubber, polyvinyl acetate as necessary. , Polymethyl methacrylate, polyethylene, nitrocellulose, etc.), and if necessary, mixed with known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, carbon nanotube, carbon nanohorn, graphene nanosheet, etc.) After that, the obtained mixed powder may be pressure-formed on a support made of stainless steel or filled in a metal container. Alternatively, for example, the above mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. Etc.) can also be produced by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel or copper.
 負極は、銅等からなる集電体に負極合剤を塗布して形成される。負極合剤は、活物質、導電材、結着材などを有する。負極の活物質としては、金属リチウムや、炭素材料、リチウムを挿入もしくは化合物の形成が可能な材料を用いることができ、炭素材料が特に好適である。炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類及び石炭系コークス、石炭系ピッチの炭化物、石油系コークス、石油系ピッチの炭化物、ピッチコークスの炭化物などの非晶質炭素がある。好ましくは、これら上記の炭素材料に種々の表面処理を施したものを用いることが望ましい。これらの炭素材料は一種類で用いるだけでなく、二種類以上を組み合わせて用いることもできる。また、リチウムを挿入もしくは化合物の形成が可能な材料としては、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウム等の金属およびこれらの元素を含む合金、スズ、ケイ素等を含む金属酸化物が挙げられる。さらにまた、前述の金属や合金や金属酸化物と黒鉛系や非晶質炭素の炭素材料との複合材が挙げられる。 The negative electrode is formed by applying a negative electrode mixture to a current collector made of copper or the like. The negative electrode mixture includes an active material, a conductive material, a binder, and the like. As the active material of the negative electrode, metallic lithium, a carbon material, a material capable of inserting lithium or forming a compound can be used, and a carbon material is particularly preferable. Examples of the carbon material include graphites such as natural graphite and artificial graphite, and amorphous carbon such as coal-based coke, coal-based pitch carbide, petroleum-based coke, petroleum-based pitch carbide, and pitch-coke carbide. Preferably, these carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds. Examples of the material capable of inserting lithium or forming a compound include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, and metal oxides containing tin, silicon, and the like. . Furthermore, the composite material of the above-mentioned metal, an alloy, a metal oxide, and the carbon material of a graphite type or an amorphous carbon is mentioned.
 図5は、上記正極活物質を用いた電池の一例であるコイン型リチウム二次電池の縦断面図である。ここでは、直径6.8mm、厚さ2.1mmの寸法を有する電池を作製した。図5において、正極缶51は正極端子を兼ねており、耐食性の優れたステンレス鋼からなる。負極缶52は負極端子を兼ねており、正極缶51と同じ材質のステンレス鋼からなる。ガスケット53は正極缶51と負極缶52を絶縁しており、ポリプロピレン製である。正極缶51とガスケット53との接面および負極缶52とガスケット53との接面にはピッチが塗布されている。正極成形体(ペレット)54と負極成形体(ペレット)56との間には、ポリプロピレン製の不織布からなるセパレータ55が配されている。セパレータ55の設置の際に電解液を浸透させている。 FIG. 5 is a longitudinal sectional view of a coin-type lithium secondary battery which is an example of a battery using the positive electrode active material. Here, a battery having a diameter of 6.8 mm and a thickness of 2.1 mm was produced. In FIG. 5, a positive electrode can 51 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance. The negative electrode can 52 also serves as a negative electrode terminal and is made of stainless steel made of the same material as the positive electrode can 51. The gasket 53 insulates the positive electrode can 51 and the negative electrode can 52 and is made of polypropylene. Pitch is applied to the contact surface between the positive electrode can 51 and the gasket 53 and the contact surface between the negative electrode can 52 and the gasket 53. A separator 55 made of a nonwoven fabric made of polypropylene is disposed between the positive electrode molded body (pellet) 54 and the negative electrode molded body (pellet) 56. The electrolyte solution is infiltrated when the separator 55 is installed.
 二次電池の形状はコイン型に限らず、電極の捲回による円筒形、例えば18650型による実施でもよい。また電極を積層させ角形として実施してもよい。 The shape of the secondary battery is not limited to the coin type, but may be a cylindrical shape obtained by winding an electrode, for example, an 18650 type. Alternatively, the electrodes may be stacked to form a square shape.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。なお、実施例において電池の作製および測定は、アルゴン雰囲気下のドライボックス内で行った。電池は、一回目は放電から開始し、次いで充放電を行った。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, the battery was manufactured and measured in a dry box under an argon atmosphere. The battery started from discharging for the first time, and then charged and discharged.
 本実施例では、原料として炭酸リチウム(LiCO)、リン酸2水素アンモニウム(NHPO)、酸化鉄Fe、および酸化バナジウム(V)を2:2:1:1所定モル比で混合し、キレート化剤として、クエン酸を添加して混合する。その後、加熱・撹拌しながら水分を蒸発させる。水分蒸発後、残った物質を回収して先駆体とし、雰囲気炉(アルゴンガス気流)を用いてこの先駆体を800℃の焼成雰囲気で熱処理を4時間行い、ピロリン酸正極活物質(Li0.5Fe0.5)を作製する。 In this example, lithium carbonate (Li 2 CO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), iron oxide Fe 2 O 3 , and vanadium oxide (V 2 O 5 ) are used as raw materials in a ratio of 2: 2. 1: 1: Mix at a predetermined molar ratio, and add citric acid as a chelating agent and mix. Thereafter, the water is evaporated while heating and stirring. After evaporation of the water, the remaining material was recovered as a precursor, and this precursor was heat-treated in a firing atmosphere at 800 ° C. for 4 hours using an atmosphere furnace (argon gas stream) to obtain a pyrophosphate positive electrode active material (Li 2 V producing 0.5 Fe 0.5 P 2 O 7) .
 クエン酸の代わりに、他の有機酸、例えば、リンゴ酸、酒石酸、コハク酸等を用いることもできる。また、この有機酸は、クエン酸、リンゴ酸、酒石酸、コハク酸等のうち、複数種の有機酸を混合したものでもよい。 In place of citric acid, other organic acids such as malic acid, tartaric acid, succinic acid and the like can be used. The organic acid may be a mixture of a plurality of organic acids among citric acid, malic acid, tartaric acid, succinic acid, and the like.
 焼成後の試料を流星型ボールミル(FRITSCH製、Planetary micro mill pulverisette 7)を用いて1時間粉砕した。その後、ふるいにより50μm以上の粗粒を除去する。 The fired sample was pulverized for 1 hour using a meteor type ball mill (FRITSCH, Planetary micromill pulverisette 7). Thereafter, coarse particles of 50 μm or more are removed by sieving.
 自動X線回折装置(リガク社製:RINT-UltimaIII)を用い、いわゆる2θ/θ測定において、X線源:CuXα、出力40kV×40mAにてX線回折プロファイルを測定した。ピロリン酸型正極に特徴的な回折ピークが得られ、Li0.5Fe0.5が確認できる。 Using an automatic X-ray diffractometer (RINT-Ultima III, manufactured by Rigaku Corporation), in the so-called 2θ / θ measurement, an X-ray diffraction profile was measured with an X-ray source: CuXα and an output of 40 kV × 40 mA. A characteristic diffraction peak is obtained for the pyrophosphate-type positive electrode, and Li 2 V 0.5 Fe 0.5 P 2 O 7 can be confirmed.
 本正極活物質を用いカットオフ電位を4.8Vまた1.0Vとして充放電試験を実施すると、180mAh/gの放電容量が確認できる。この放電容量は、従来確認されていた放電容量110mAh/gより63%の容量増大に相当する。本正極活性物質を正極成形体に用いることにより、電気容量の大きな二次電池を作製することができる。 When a charge / discharge test is performed using this positive electrode active material with a cut-off potential of 4.8 V or 1.0 V, a discharge capacity of 180 mAh / g can be confirmed. This discharge capacity corresponds to a capacity increase of 63% from the conventionally confirmed discharge capacity of 110 mAh / g. By using this positive electrode active material for a positive electrode molded body, a secondary battery having a large electric capacity can be produced.
 なお、(Fe、Mn)や(Ni、Fe)の組合せでは、放電容量110mAh/gを超える性能を得ることはできなかった。 In addition, in the combination of (Fe, Mn) and (Ni, Fe), the performance exceeding the discharge capacity of 110 mAh / g could not be obtained.
 以上本実施例によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity, and A secondary battery using the same can be provided.
 本実施例では、正極活物質作成の原料としてLiPO、酸化銅(CuO)、酸化バナジウム(V)を使用する。原料比でLi:Cu:V:Pが4:1:1:4となるよう秤量し、粉砕機で湿式粉砕混合する。粉末を乾燥させ、アルゴン気流下650℃にて焼成する。得られた試料はLi0.5Cu0.5であることが確認できる。 In this example, Li 3 PO 4 , copper oxide (CuO), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material. Weigh so that Li: Cu: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer. The powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Cu 0.5 P 2 O 7 .
 高精度に物性予測が可能な第一原理密度汎関数法を用いて磁気モーメントを調べた結果、リチウム化された状態Li0.5Cu0.5ではVが3価の陽イオンであり、またCuは1価の陽イオンである事が分かった。また、この結晶から2モルのリチウムを脱離させたV0.5Cu0.5では、Vが5価の陽イオンであり、またCuは2価の陽イオンである事が分かった。すなわち2モルのリチウム脱離に伴い1.5モルの電子までは電荷補償が可能である事から、1.5モルに相当する大容量になると予測される。 As a result of examining the magnetic moment using the first-principles density functional method capable of predicting physical properties with high accuracy, V is trivalent in the lithiated state Li 2 V 0.5 Cu 0.5 P 2 O 7 . It was found to be a cation, and Cu was a monovalent cation. Further, in V 0.5 Cu 0.5 P 2 O 7 from which 2 mol of lithium has been eliminated from this crystal, V is a pentavalent cation, and Cu is a divalent cation. I understood. That is, it is expected that the capacity will be equivalent to 1.5 mol since charge compensation is possible up to 1.5 mol of electrons with 2 mol of lithium desorption.
 本正極活物質を用いカットオフ電位を4.7Vまた1.0Vとして充放電試験を実施すると、150mAh/gの放電容量が確認できる。この放電容量は、従来確認されていた放電容量110mAh/gより36%の容量増大に相当する。本正極活性物質を正極成形体に用いることにより、電気容量の大きな二次電池を作製することができる。 When a charge / discharge test is performed using this positive electrode active material with a cutoff potential of 4.7 V or 1.0 V, a discharge capacity of 150 mAh / g can be confirmed. This discharge capacity corresponds to a 36% increase in capacity from the conventionally confirmed discharge capacity of 110 mAh / g. By using this positive electrode active material for a positive electrode molded body, a secondary battery having a large electric capacity can be produced.
 以上本実施例によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity, and A secondary battery using the same can be provided.
 本実施例では、正極活物質作成の原料としてLiPO、酸化チタン(TiO)、酸化バナジウム(V)を使用する。原料比でLi:Ti:V:Pが4:1:1:4となるよう秤量し、粉砕機で湿式粉砕混合する。粉末を乾燥させ、アルゴン気流下700℃にて焼成する。得られた試料はLi0.5Ti0.5であることが確認できる。本活物質を用いて充放電試験を実施すると、170mAh/gの放電容量を確認できる。本正極活性物質を正極成形体に用いることにより、電気容量の大きな二次電池を作製することができる。 In this example, Li 3 PO 4 , titanium oxide (TiO 2 ), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material. Weigh so that Li: Ti: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer. The powder is dried and fired at 700 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Ti 0.5 P 2 O 7 . When a charge / discharge test is performed using this active material, a discharge capacity of 170 mAh / g can be confirmed. By using this positive electrode active material for a positive electrode molded body, a secondary battery having a large electric capacity can be produced.
 以上本実施例によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity, and A secondary battery using the same can be provided.
 本実施例では、正極活物質作成の原料としてLiPO、酸化マンガン(III)(Mn)、酸化バナジウム(V)を使用する。原料比でLi:Mn:V:Pが4:1:1:4となるよう秤量し、粉砕機で湿式粉砕混合する。粉末を乾燥させ、アルゴン気流下650℃にて焼成する。得られた試料はLi0.5Mn0.5であることが確認できる。本活物質を用いて充放電試験を実施すると、130mAh/gの放電容量を確認できる。本正極活性物質を正極成形体に用いることにより、電気容量の大きな二次電池を作製することができる。 In this example, Li 3 PO 4 , manganese (III) (Mn 2 O 3 ), and vanadium oxide (V 2 O 5 ) are used as raw materials for preparing the positive electrode active material. Weigh so that Li: Mn: V: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer. The powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 V 0.5 Mn 0.5 P 2 O 7 . When a charge / discharge test is performed using this active material, a discharge capacity of 130 mAh / g can be confirmed. By using this positive electrode active material for a positive electrode molded body, a secondary battery having a large electric capacity can be produced.
 以上本実施例によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity, and A secondary battery using the same can be provided.
 本実施例では、正極活物質作成の原料としてLiPO、酸化ニッケル、酸化マンガン(III)(Mn)を使用する。原料比でLi:Ni:Mn:Pが4:1:1:4となるよう秤量し、粉砕機で湿式粉砕混合する。粉末を乾燥させ、アルゴン気流下700℃にて焼成する。得られた試料はLiNi0.5Mn0.5であることが確認できる。本活物質を用いて充放電試験を実施すると、130mAh/gの放電容量を確認できる。本正極活性物質を正極成形体に用いることにより、電気容量の大きな二次電池を作製することができる。 In this example, Li 3 PO 4 , nickel oxide, and manganese (III) oxide (Mn 2 O 3 ) are used as raw materials for preparing the positive electrode active material. Weigh so that Li: Ni: Mn: P is 4: 1: 1: 4 in the raw material ratio, and wet pulverize and mix with a pulverizer. The powder is dried and fired at 700 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 Ni 0.5 Mn 0.5 P 2 O 7 . When a charge / discharge test is performed using this active material, a discharge capacity of 130 mAh / g can be confirmed. By using this positive electrode active material for a positive electrode molded body, a secondary battery having a large electric capacity can be produced.
 以上本実施例によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、放電容量を向上させた非水電解質の二次電池用正極活物質およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, the positive electrode active material for a secondary battery of a nonaqueous electrolyte having a crystal structure having a pyroskeleton-type P 2 O 7 structure with high thermal stability as a basic skeleton and improved discharge capacity, and A secondary battery using the same can be provided.
1:Li1サイト、
2:Li2サイト、
3:Li3サイト、
4:Li4サイト、
5:リン酸多面体、
6:酸化鉄多面体、
7:単位胞、
21:遷移金属1(M1)サイト、
22:遷移金属2(M2)サイト、
23:酸素サイト、
24:遷移金属と酸素の化学結合、
31:Li3サイト、
32:Li4サイト、
33:単位胞、
41:孤立電子対付酸素イオン、
42:酸素イオン、
43:リン酸多面体、
44:酸化鉄多面体、
51:正極缶、
52:負極缶、
53:ガスケット、
54:正極成形体、
55:セパレータ、
56:負極成形体。
1: Li1 site,
2: Li2 site,
3: Li3 site,
4: Li4 site,
5: phosphate polyhedron,
6: Iron oxide polyhedron,
7: Unit cell,
21: Transition metal 1 (M1) site,
22: Transition metal 2 (M2) site,
23: oxygen site,
24: chemical bond between transition metal and oxygen,
31: Li3 site,
32: Li4 site,
33: Unit cell,
41: oxygen ion with lone electron pair,
42: oxygen ions,
43: Phosphoric polyhedron,
44: Iron oxide polyhedron
51: Positive electrode can,
52: negative electrode can,
53: Gasket,
54: Positive electrode molded body,
55: separator,
56: Negative electrode molded body.

Claims (13)

  1.  化学組成式がLi2-xA0.5B0.5であって、MおよびMはそれぞれ遷移金属元素であり、その組合せが(V、Ti)、(V、Mn)、(V、Fe)、(Ni、Mn)、或いは(V、Cu)であり、xは0≦x≦2の範囲にある化合物を主成分とすることを特徴とする二次電池用正極活物質。 The chemical composition formula is Li 2-x M A0.5 M B0.5 P 2 O 7 , where M A and M B are transition metal elements, and the combinations thereof are (V, Ti), (V, Mn ), (V, Fe), (Ni, Mn), or (V, Cu), and x is a positive electrode for a secondary battery comprising a compound in the range of 0 ≦ x ≦ 2 as a main component Active material.
  2.  前記MおよびMの組合せが、(V、Fe)であることを特徴とする請求項1に記載の二次電池用正極活物質。 The positive electrode active material for a secondary battery according to claim 1, wherein the combination of M A and M B is (V, Fe).
  3.  前記MおよびMの組合せが、(V、Cu)であることを特徴とする請求項1に記載の二次電池用正極活物質。 Wherein M combinations of A and M B are positive electrode active material for a secondary battery according to claim 1, characterized in that the (V, Cu).
  4.  前記MおよびMの組合せが、(V、Ti)であることを特徴とする請求項1に記載の二次電池用正極活物質。 Wherein M combinations of A and M B are positive electrode active material for a secondary battery according to claim 1, characterized in that the (V, Ti).
  5.  前記MおよびMの組合せが、(V、Mn)であることを特徴とする請求項1に記載の二次電池用正極活物質。 Wherein M combinations of A and M B are positive electrode active material for a secondary battery according to claim 1, characterized in that the (V, Mn).
  6.  前記MおよびMの組合せが、(Ni、Mn)であることを特徴とする請求項1に記載の二次電池用正極活物質。 Wherein M combinations of A and M B are, (Ni, Mn) positive electrode active material for a secondary battery according to claim 1, characterized in that a.
  7.  請求項1に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 1 is used in a positive electrode molded body.
  8.  請求項2に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 2 is used in a positive electrode molded body.
  9.  請求項3に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 3 is used for a positive electrode molded body.
  10.  請求項4に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 4 is used for a positive electrode molded body.
  11.  請求項5に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 5 is used in a positive electrode molded body.
  12.  請求項6に記載の二次電池用正極活物質が正極成形体に用いられていることを特徴とする二次電池。 A secondary battery, wherein the positive electrode active material for a secondary battery according to claim 6 is used in a positive electrode molded body.
  13.  正極形成体と、負極形成体と、前記正極形成体と前記負極形成体との間に配置されたセパレータと、前記正極形成体に接続された正極と、前記負極形成体に接続された負極とを有する非水電解質の二次電池において、
      前記正極形成体は、化学組成式がLi2-xA0.5B0.5であり、MおよびMはそれぞれ遷移金属元素であり、その組合せが(V、Ti)、(V、Mn)、(V、Fe)、(Ni、Mn)、或いは(V、Cu)であり、xは0≦x≦2の範囲にある化合物を主成分とすることを特徴とする二次電池。
    A positive electrode forming body, a negative electrode forming body, a separator disposed between the positive electrode forming body and the negative electrode forming body, a positive electrode connected to the positive electrode forming body, and a negative electrode connected to the negative electrode forming body. In a non-aqueous electrolyte secondary battery having
    The positive electrode forming body has a chemical composition formula of Li 2-x M A0.5 M B0.5 P 2 O 7 , M A and M B are transition metal elements, and the combination thereof is (V, Ti) , (V, Mn), (V, Fe), (Ni, Mn), or (V, Cu), wherein x is a main component of a compound in the range of 0 ≦ x ≦ 2. Secondary battery.
PCT/JP2013/063073 2013-05-09 2013-05-09 Positive electrode active material for secondary batteries and secondary battery using same WO2014181436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063073 WO2014181436A1 (en) 2013-05-09 2013-05-09 Positive electrode active material for secondary batteries and secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063073 WO2014181436A1 (en) 2013-05-09 2013-05-09 Positive electrode active material for secondary batteries and secondary battery using same

Publications (1)

Publication Number Publication Date
WO2014181436A1 true WO2014181436A1 (en) 2014-11-13

Family

ID=51866938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063073 WO2014181436A1 (en) 2013-05-09 2013-05-09 Positive electrode active material for secondary batteries and secondary battery using same

Country Status (1)

Country Link
WO (1) WO2014181436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073367A (en) * 2015-10-09 2017-04-13 富士通株式会社 Positive electrode material for secondary battery, method of manufacturing the same, and lithium ion secondary battery
WO2019159262A1 (en) * 2018-02-14 2019-08-22 富士通株式会社 Positive electrode material and manufacturing method therefor, battery using positive electrode material and manufacturing method therefor, and electronic equipment using battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523930A (en) * 2003-04-08 2006-10-19 ヴァレンス テクノロジー インコーポレーテッド Electroactive material based on oligophosphate and method for producing the same
WO2011068255A1 (en) * 2009-12-04 2011-06-09 国立大学法人 東京大学 Pyrophosphate compound and method for producing same
WO2012164751A1 (en) * 2011-06-03 2012-12-06 株式会社日立製作所 Positive electrode material for secondary cell and secondary cell using same
WO2013035572A1 (en) * 2011-09-05 2013-03-14 国立大学法人 東京大学 Method for producing lithium- or sodium-containing oxoate compound
WO2013035222A1 (en) * 2011-09-09 2013-03-14 株式会社日立製作所 Secondary battery positive electrode material and secondary battery using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523930A (en) * 2003-04-08 2006-10-19 ヴァレンス テクノロジー インコーポレーテッド Electroactive material based on oligophosphate and method for producing the same
WO2011068255A1 (en) * 2009-12-04 2011-06-09 国立大学法人 東京大学 Pyrophosphate compound and method for producing same
WO2012164751A1 (en) * 2011-06-03 2012-12-06 株式会社日立製作所 Positive electrode material for secondary cell and secondary cell using same
WO2013035572A1 (en) * 2011-09-05 2013-03-14 国立大学法人 東京大学 Method for producing lithium- or sodium-containing oxoate compound
WO2013035222A1 (en) * 2011-09-09 2013-03-14 株式会社日立製作所 Secondary battery positive electrode material and secondary battery using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073367A (en) * 2015-10-09 2017-04-13 富士通株式会社 Positive electrode material for secondary battery, method of manufacturing the same, and lithium ion secondary battery
WO2019159262A1 (en) * 2018-02-14 2019-08-22 富士通株式会社 Positive electrode material and manufacturing method therefor, battery using positive electrode material and manufacturing method therefor, and electronic equipment using battery
JPWO2019159262A1 (en) * 2018-02-14 2021-03-04 富士通株式会社 A positive electrode material and a method for manufacturing the same, a battery using the positive electrode material and a method for manufacturing the same, and an electronic device using the battery.

Similar Documents

Publication Publication Date Title
Zhang et al. Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures
JP5830540B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US11894550B2 (en) VOPO4 cathode for sodium ion batteries
JP5681796B2 (en) Positive electrode material for secondary battery and secondary battery using the same
US10026520B2 (en) Positive electrode active material for secondary battery
US10205168B2 (en) Sodium transition metal silicates
Huang et al. Transition-metal-doped M-Li8ZrO6 (M= Mn, Fe, Co, Ni, Cu, Ce) as high-specific-capacity Li-ion battery cathode materials: Synthesis, electrochemistry, and quantum mechanical characterization
Yao et al. Characterisation of olivine-type LiMnxFe1− xPO4 cathode materials
Yi et al. Electrochemical performance of LiMnPO 4 by Fe and Zn co-doping for lithium-ion batteries
KR101352793B1 (en) Cathode Material for Secondary Battery and Manufacturing Method of the Same
WO2012133730A1 (en) Active material, method for manufacturing active material, electrode, and lithium-ion rechargeable battery
JP2020167151A (en) Sulfide solid electrolyte, sulfide solid electrolyte precursor, all-solid-state battery and method for producing sulfide solid electrolyte
Xue et al. Double donors tuning conductivity of LiVPO4F for advanced lithium-ion batteries
JP2007048612A (en) Active material for lithium cell
Gond et al. Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (0≤ x≤ 1) pyrophosphate cathodes for sodium-ion batteries
CA2635245A1 (en) Electrochemical composition and associated technology
Harbaoui et al. Effect of divalent transition metal ions on physical, morphological, electrical and electrochemical properties of alluaudite phases Na2M2+ 2Fe3+ (PO4) 3 (M= Mn, Co and Ni): Cathode materials for sodium-ions batteries
KR101345625B1 (en) ANODE ACTIVE MATERIALS USING SiO2 AND MINERALS CONTAINING SiO2 FOR LITHIUM SECONDARY BATTERIES AND PREPARATION METHOD OF THE SAME
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
JP5544981B2 (en) Method for producing electrode active material
WO2014181436A1 (en) Positive electrode active material for secondary batteries and secondary battery using same
Chandra et al. Enhanced stability and high-yield LiFePO4/C derived from low-cost iron precursors for high-energy Li-ion batteries
KR101948549B1 (en) Cathode Active Material for Secondary Battery
Sada et al. Potassium intercalation into sodium metal oxide and polyanionic hosts: few case studies
WO2019159262A1 (en) Positive electrode material and manufacturing method therefor, battery using positive electrode material and manufacturing method therefor, and electronic equipment using battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP