WO2019078307A1 - Composite electrode and all solid lithium battery - Google Patents

Composite electrode and all solid lithium battery Download PDF

Info

Publication number
WO2019078307A1
WO2019078307A1 PCT/JP2018/038876 JP2018038876W WO2019078307A1 WO 2019078307 A1 WO2019078307 A1 WO 2019078307A1 JP 2018038876 W JP2018038876 W JP 2018038876W WO 2019078307 A1 WO2019078307 A1 WO 2019078307A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solid electrolyte
layer
active material
electrode
Prior art date
Application number
PCT/JP2018/038876
Other languages
French (fr)
Japanese (ja)
Inventor
努 西▲崎▼
田村 哲也
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2019078307A1 publication Critical patent/WO2019078307A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a composite electrode containing an electrode active material and a solid electrolyte, which is used for an all solid lithium battery.
  • Secondary batteries are used in portable devices such as mobile phones and notebook computers, transport machines for automobiles and aircraft, and power storage devices for power leveling, and the energy density is required to be improved in any application. There is. At present, the practical secondary battery with the highest energy density is a lithium ion battery, and studies are underway to try to further increase the energy density while maintaining safety. As part of that research, research is being conducted on an all-solid-state battery (a battery using a solid electrolyte instead of an electrolytic solution), which is an improvement technology of a lithium ion battery.
  • the all-solid battery is packaged separately by repeatedly laminating the negative electrode layer, the separator layer (lithium ion conductive layer), the positive electrode layer, and the electron conductive layer, since the negative electrode, the electrolyte and the positive electrode constituting the battery are all solid. Since it is possible to manufacture a battery having a series structure even if it is not used, it is considered to be suitable for automobiles and power storage. Furthermore, by increasing the proportion of the oxide among the negative electrode active material, the solid electrolyte, and the positive electrode active material, the all solid battery can be expected to have an effect on safety and high temperature durability in addition to energy density improvement.
  • Patent Document 1 In an electrode of a lithium ion battery using an electrolytic solution that has been put into practical use, the electrolytic solution that has penetrated into the gap between the positive electrode and the negative electrode functions as a lithium ion conduction path.
  • Patent Document 1 in order to form a lithium ion conduction path to an electrode active material in an electrode layer using a solid electrolyte, a sintered body obtained by combining an electrode active material and an oxide-based solid electrolyte is used as an electrode. Is being considered.
  • Patent Documents 2 and 3 In order to form a lithium ion conduction path to an electrode active material, it has been studied to use a composite in which the electrode active material and a solid electrolyte are mixed as an electrode.
  • Patent Document 4 discloses an electrode laminate in which one or more solid electrolyte layers and one or more active material layers are alternately stacked in order to secure lithium ion conductivity and obtain high capacity density.
  • Patent Document 5 discloses a manufacturing method for obtaining an active material molded body and a solid electrolyte layer by firing a first film and a second film obtained using an inkjet in order to efficiently manufacture an electrode complex. ing.
  • Patent Documents 1 to 3 when the solid electrolyte is randomly distributed in the electrode, there is a solid electrolyte which does not contact the other solid electrolyte and does not contribute to the formation of the lithium ion conduction path. There is a problem that the percentage of the electrode active material still present in the electrode but not contributing to charge and discharge is not small because the solid electrolyte is locally distributed and the lithium ion conduction path does not reach the surface of the electrode. There was a point.
  • Patent Document 4 since sintering is not performed in the manufacturing process and there is a limit to increasing the density of the active material layer and reducing the width, an electrode that is present in the electrode but does not contribute to charge and discharge There is a problem that the proportion of active material is not small. Also in Patent Document 5, since the first film is formed by discharging the first liquid material containing the formation material of the active material by the ink jet, and the width of the first film can not be thinner than the size of the droplets of the ink jet. There has been a problem that the width of the molded article becomes large, and the proportion of the electrode active material which is present in the electrode but does not contribute to charge and discharge is not small.
  • the present invention has been made to solve the problems of the prior art, and by reducing the solid electrolyte not contributing to the formation of the lithium ion conduction path, many electrode activities included in the electrode are realized.
  • An object of the present invention is to provide an electrode having a capacity closer to the theoretical capacity than in the past by contributing a substance to charge and discharge.
  • the inventors of the present invention can provide a lithium ion conduction path in a range in which lithium ions can permeate from the electrode active material, if the lithium ion conduction path is regularly provided in the electrode. It has been found that more electrode active materials in the electrode can contribute to charge and discharge, and the present invention has been completed.
  • the present invention is a composite electrode which is a sintered body containing an electrode active material and a solid electrolyte, and the composite electrode is a sheet-like electrode active material containing an oxide-based electrode active material.
  • Layer and sheet-like solid electrolyte layer containing an oxide-based solid electrolyte are alternately arranged, and the width of the electrode active material layer is 10 nm or more and 20 ⁇ m or less, and the width of the solid electrolyte layer is Provided is a composite electrode having a thickness of 10 nm or more and 20 ⁇ m or less, wherein the solid electrolyte layer penetrates the composite electrode.
  • a method of manufacturing the composite electrode is a method of obtaining a laminate in which a layer containing an electrode active material or a precursor thereof and a layer containing a solid electrolyte or a precursor thereof are alternately laminated. Also provided is a method for producing a composite electrode, comprising the steps of: sintering the laminate; and obtaining a laminated sintered body in which an electrode active material layer and a solid electrolyte layer are alternately laminated.
  • Electrode active materials contained in the electrode are contributed to charge and discharge, and a capacity closer to the theoretical capacity than in the past is realized.
  • An electrode can be provided.
  • FIG. 1 is a schematic view of a composite electrode 10 of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the composite electrode 21 of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the all-solid-state lithium ion battery using the composite electrode 10 of this invention.
  • (A), (b) The schematic diagram of the manufacture process of the composite electrode 10 of this invention.
  • FIG. 1 is a schematic view of a lithium ion battery 101 of the present invention.
  • (A)-(d) is a schematic view of the manufacturing process of the lithium ion battery 101 of the present invention.
  • FIG. 6 is a diagram showing a production flow of LTO calcined particles in Example 1;
  • FIG. 6 is a diagram showing a production flow of LLTO pre-sintered body particles of Example 1.
  • FIG. 6 is a diagram showing a production flow from temporary firing body particles to an arrayed sintered body of Example 1. The figure which shows the powder XRD result which grind
  • the composite electrode 10 of the present invention is a composite electrode which is a sintered body containing an electrode active material and a solid electrolyte, and in the composite electrode 10, as shown in the figure, It is characterized by having a solid electrolyte layer 13 penetrating in the thickness direction of the composite electrode.
  • the composite electrode 10 has a flat plate shape, and the sheet-like electrode active material layer 11 parallel to the thickness direction 15 of the composite electrode and the sheet parallel to the thickness direction 15 of the composite electrode It is preferable that the solid electrolyte layers 13 in the shape of a circle are alternately arranged. In addition, as shown in FIG. 1, it is preferable that the solid electrolyte layer 13 penetrate the composite electrode 10 in the thickness direction of the composite electrode 10. When solid electrolyte 13 penetrates composite electrode 10, solid electrolyte layer 13 can be disposed near electrode active material layer 11, and the lithium ion conduction path can be spread over the entire composite electrode 10. .
  • the lithium ion conduction path can be made to reach the surface of the composite electrode 10, and the lithium ion can be easily from the separator layer 35 described later to the solid electrolyte layer 13. Can be moved.
  • both ends of the alternate arrangement of the electrode active material layer 11 and the solid electrolyte layer 13 are the electrode active material layer 11 in FIG. 1, the end is not limited to the electrode active material layer 11, and the solid electrolyte layer 13 is It may be an end. The same applies to the other composite electrodes in the present embodiment.
  • the thickness C of the composite electrode 10 is preferably 10 ⁇ m or more and 3 mm or less, more preferably 15 ⁇ m or more and 1 mm or less, and particularly preferably 20 ⁇ m or more and 500 ⁇ m or less. However, the thickness C may be 100 ⁇ m or more.
  • the depth Y of the composite electrode 10 depends on the desired device size and battery capacity, and can be determined appropriately.
  • the composite electrode is preferably compact.
  • the degree of compactness can be quantified by the porosity.
  • the method of using a density is mentioned.
  • Porosity (%) 100-(actual density / theoretical density) x 100
  • the theoretical density can be referred to a database or calculated from the composition and crystal structure.
  • the porosity is preferably 40% or less, more preferably 30% or less, and particularly preferably 25% or less.
  • the porosity is exemplified by the porosity calculated by the above equation based on the actual density measured by the Archimedes method, that is, the porosity calculated by the Archimedes method.
  • Both the capacity density and the power density of the composite electrode are preferably large.
  • the capacity density can be increased by increasing the proportion of the active material.
  • the power density can be increased by increasing the conductivity of electrons and lithium ions.
  • the power density can be increased by increasing the proportion of the solid electrolyte and the conductive additive in the composite electrode.
  • coexistence of capacity density and power density can be realized by arranging the electrode active material layer and the solid electrolyte layer efficiently.
  • the capacity density is the power capacity per weight or volume of the battery
  • the power density is the maximum amount of power that can be taken out per weight or volume of the battery.
  • the initial charge capacity and / or the initial discharge capacity of the composite electrode 10 is preferably 10 mAh / g or more, more preferably 30 mAh / g or more, and particularly preferably 50 mAh / g or more.
  • the initial charge capacity and the initial discharge capacity of the composite electrode 10 were obtained by laminating the positive electrode, the separator layer, and the negative electrode in this order using the composite electrode 10 as a positive electrode, a dry polymer electrolyte or the like as a separator layer, and metallic lithium as a negative electrode. It can be evaluated by performing a charge and discharge test at a temperature of 60 ° C. and a rate of 0.002 mA / cm 2 using an all solid type cell.
  • the above capacity means the capacity per unit mass of the composite electrode obtained by dividing the capacity of the all solid cell by the mass of the composite electrode.
  • the width B of the electrode active material layer 11 shown in FIG. 1 is preferably 10 nm or more and 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 6 ⁇ m or less . If the width B of the electrode active material layer 11 is too small, the amount of the electrode active material contained in the composite electrode 10 may be small. When the width B of the electrode active material layer 11 is too large, there is a possibility that lithium ions are less likely to conduct to the electrode active material at the center of the electrode active material layer 11. In particular, by setting the width B of the electrode active material layer to 10 ⁇ m or less, more electrode active materials in the electrode can contribute to charge and discharge.
  • the width A of the solid electrolyte layer 13 is preferably 10 nm or more and 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the width A of the solid electrolyte layer 13 is too small, the cross-sectional area of the layer is reduced, the crystallinity of the particles constituting the layer is reduced, or the interface between the solid electrolyte layer 13 and the electrode active material layer 11 is It becomes difficult to ensure sufficient lithium ion conductivity due to resistance increase and the like.
  • the width A of the solid electrolyte layer 13 is too large, the proportion of the electrode active material contained in the composite electrode 10 decreases, and the capacity density of the composite electrode 10 decreases.
  • the electrode active material layer 11 and the solid electrolyte layer 13 do not necessarily have to be flat layers, and may be curved. In addition, there may be partial defects, and adjacent electrode active material layers 11 or adjacent solid electrolyte layers 13 may be in contact with each other.
  • the electrode active material layer 11 and the solid electrolyte layer 13 are preferably parallel to the thickness direction 15 of the composite electrode, but may be inclined up to about 45 degrees.
  • the aspect ratio (C / B or C / A) obtained by dividing the thickness C of the composite electrode 10 by the width A of the solid electrolyte layer 13 or the width B of the electrode active material layer 11 is preferably 10 or more. It is more preferably 50 or more, and particularly preferably 100 or more.
  • the volume of the solid electrolyte layer 13 is reduced by decreasing the width A of the solid electrolyte layer 13 (as C / A increases). The volume can be increased to increase the capacity density of the composite electrode 10.
  • the width B of the electrode active material layer 11 is reduced (as C / B increases), the electrode active material layer 11 is thinner, so lithium ions can be conducted to the central portion of the electrode active material layer 11 .
  • the width X of the composite electrode 10 determined by the widths of the electrode active material layer 11 and the solid electrolyte layer 13 and the number of layers to be laminated, the desired device size, battery capacity and It can be determined appropriately in consideration of mechanical strength and the like.
  • the volume ratio of the electrode active material to the solid electrolyte contained in the composite electrode 10 is preferably 5: 5 or more and 9.5: 0.5 or less. A larger amount of the electrode active material is preferable because the capacity of the composite electrode 10 is increased.
  • the electrode active material layer 11 is a layer containing an electrode active material.
  • the electrode active material include oxide-based electrode active materials, carbon materials, and other materials.
  • oxide-based electrode active material a spinel type or ramsdellite type lithium titanate (a part of elements constituting lithium titanate may be replaced with another element, even if another element is doped
  • Other elements include Mg, Cr, Zn, Co, Fe, Ni, Mn, Al, Zr, Nb, Sn, Mo, and W.
  • LiMg 1/2 Ti 3/2 Examples include O 4 , LiCo 1/2 Ti 3/2 O 4 , LiZn 1/2 Ti 3/2 O 4 , LiCrTiO 4 , LiFeTiO 4, etc.
  • transition metal oxides eg, titanium oxide, niobium oxide, oxide
  • spinel lithium manganate spinel lithium manganate nickel ( LiMn 1.5 Ni 0.5 O 4 )
  • artificial graphite natural graphite, graphitizable carbon, non-graphitizable carbon (hard carbon) having a spacing of (002) plane of 0.37 nm or more, and a spacing of (002) plane of 0. 0. Graphite etc. of 34 nm or less are mentioned.
  • Other materials include elemental silicon, silicon compounds, elemental sulfur, metal sulfides (eg, Li 2 S, SnS, NiS, etc.), metal phosphides (eg, Ni 5 P 4 , NiP 2 etc.), Li 3 PS 4 can be mentioned.
  • the electrode active material layer 11 may contain a sintering aid, a conductive aid, and the like.
  • the sintering aid includes borate, silicate and phosphate, and mixtures thereof.
  • metals such as gold, silver, copper and nickel, conductive oxides such as tin oxide, zinc oxide, titanium oxide and indium tin oxide, materials such as carbon, particles, fibers and rods , Tubes, etc. can be used.
  • Examples of carbon-based conductive assistants include carbon fibers, carbon black, carbon nanotubes, carbon nanofibers, graphene, graphite and the like.
  • the solid electrolyte layer 13 is a layer containing a solid electrolyte.
  • the solid electrolyte include oxide-based solid electrolytes, sulfide-based solid electrolytes, and polymer-based solid electrolytes.
  • perovskite-type oxides containing lithium garnet-type oxides containing lithium, lithium phosphate (Li 3 PO 4 ), lithium niobate (LiNbO 3 ), and LAGP with NASICON structure (Li 1 + x Al) x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1), LATP with NASICON structure (Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1)), LZP structure with NASICON structure (Li 1 + 4x Zr 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 0.4, part of LZP metal elements may be replaced by another metal element, even if other metal elements are doped As another metal element, Na, Sr, Ca, Mg, La, Y, Sc, Ce, In, Al, Ge, Ti, V, etc. may be mentioned.
  • the lithium-containing perovskite oxide is an oxide represented by ABO 3 having a perovskite crystal structure, and at least one A site is selected from the group consisting of La, Sr, Ba, Na, Ca and Nd. It is preferable that the element contains a species element and Li, and the B site contains at least one element selected from the group consisting of Ti, Ta, Cr, Fe, Co, Ga and Nb.
  • Other elements include Na, K, Rb, Ag, Tl, Mg, Sr, Ca, Ba, Nb, Ta, Ru, Cr, Mn, Fe, Co, Al, Ga, Si, Ge, Zr, hf, Pr, Nd, Sm, Gd, Dy, Y, Eu, Tb and the like, specifically, La (2/3) -x Sr x Li x TiO 3, Li x La 2/3 Ti 1- x Al x O 3 and the like.
  • garnet-type oxides include Li 7 La 3 Zr 2 O 12 , Li 5 La 3 Nb 2 O 12 , Li 5 La 3 Ta 2 O 12 , and Li 6 La 2 BaTa 2 O 12 .
  • glass-based sulfides for example, Li 2 S-P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 -LiI, etc.
  • algirodite-type sulfides for example, Li 7 PS
  • Li 6 PS 5 Cl Li 6 PS 5 Br
  • Li 6 PS 5 I etc.
  • thiolysicon based sulfides eg, Li 4-x Ge 1-x P x S 4 (0 ⁇ x ⁇ 1 etc)
  • Li 7 P 3 S 11 Li 10 GeP 2 S 12 (LGPS), Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 (LiSiPSCl), Li 9.6 P 3 S 12 And Li-Sn-Si-P-S (LSSPS) system.
  • the dry polymer electrolyte layer etc. which contain lithium salt in polymers, such as a polyethylene oxide, are mentioned
  • the solid electrolyte layer 13 may contain a sintering aid, a conductive aid, and the like.
  • the sintering aid may, for example, be a borate, a silicate, a phosphate, a mixture thereof or the like, or a material used for the electrode active material layer.
  • metals such as gold, silver, copper and nickel, conductive oxides such as tin oxide, zinc oxide, titanium oxide and indium tin oxide, materials such as carbon, particles, fibers and rods , Tubes, etc. can be used.
  • Examples of carbon-based conductive assistants include carbon fibers, carbon black, carbon nanotubes, carbon nanofibers, graphene, graphite and the like.
  • the volume of the solid electrolyte contained in the solid electrolyte layer is preferably 40% or more of the volume of the solid electrolyte layer, more preferably 50% or more, and it may be a dense body of 100% solid electrolyte. The higher the volume of the solid electrolyte contained in the solid electrolyte layer, the easier it is to form the lithium ion conduction path in the thickness direction of the composite electrode.
  • a pattern may be formed in which the solid electrolyte layer is divided into a portion mainly composed of the solid electrolyte and a portion mainly composed of the electrode active material.
  • the portion 57 mainly composed of an island-like solid electrolyte that forms a sea-island structure when viewed from above is mainly composed of a sea-like electrode active material in the thickness direction.
  • the portion 57 mainly composed of a strip-like solid electrolyte and the strip-like electrode active material are mainly composed.
  • a laminated sintered body 61 is prepared as shown in FIG. 6 (b), and these laminated sintered bodies 61 are cut.
  • the portion 57 mainly composed of the strip-like solid electrolyte penetrates the electrode active material layer 11 and the electrode active material portion 55 in the thickness direction. It can be arranged.
  • the materials of the electrode active material and the solid electrolyte are not particularly limited, but from the viewpoints of safety and heat resistance, it is preferable to contain an oxide, and in the case of mainly oxide, the electrode active material
  • the weight fraction of the oxide in the layer 11 or the solid electrolyte layer 13 is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the composite electrode obtained by sintering is a dense sintered body, the volume percentage occupied by the oxide in the composite electrode is preferably 30% or more, and is 50% or more. Is more preferable, and 70% or more is particularly preferable.
  • a composite is formed by sintering, it is preferable that both the electrode active material layer 11 and the solid electrolyte layer 13 contain an oxide.
  • a composite electrode 21 having a metal layer 23 as shown in FIG. 2 may be used as the composite electrode of the present invention.
  • the position of the metal layer 23 is not particularly limited, but as in the solid electrolyte layer 13-electrode active material layer 25-metal layer 23-electrode active material layer 25-solid electrolyte layer 13, the metal layer 23 is a solid electrolyte layer 13. Parallel to the center of the electrode active material layer 25.
  • the electron conductivity in the composite electrode 21 can be enhanced by the metal layer 23, and in particular, parallel to the solid electrolyte layer 13, it is easy to move electrons between the electrode active material layer 25 and the current collector layer. can do.
  • the width D of the metal layer 23 is preferably 1 nm or more and 10 ⁇ m or less, and as the material thereof, gold, silver, copper, nickel, aluminum, niobium, an alloy of two or more of these, and the like can be mentioned. Alternatively, two or more metals may be used to form the metal layer. Since the metal layer 23 can not conduct lithium ions, when the metal layer 23 is sandwiched between two electrode active material layers 25 as shown in FIG. 2, the width E of the electrode active material layer 25 does not have the metal layer 23. It is preferable that the width is half the width B of the electrode active material layer 11.
  • Lithium-ion battery In the lithium ion battery of the present invention, a negative electrode layer for absorbing and desorbing lithium ions, a separator layer for conducting lithium ions, and a positive electrode layer for absorbing and desorbing lithium ions are laminated in this order as a negative electrode layer or a positive electrode layer. It is characterized by using the composite electrode of the present invention.
  • FIG. 3 is a view showing the lithium ion battery 31 of the present invention, in which the composite electrode 10, the separator layer 35 and the counter electrode layer 33 are laminated in order. Furthermore, normally, metal electrodes (not shown) are provided on the composite electrode layer 10 and the counter electrode layer 33.
  • the positive electrode and the negative electrode change depending on the voltage of the electrode active material contained in each of the composite electrode 10 and the counter electrode layer 33, and when the composite electrode 10 is a positive electrode, the counter electrode layer 33 becomes a negative electrode, and the composite electrode 10 is a negative electrode.
  • the counter electrode layer 33 is a positive electrode.
  • the composite electrode when the composite electrode includes spinel type or ramsdellite type lithium titanate as an electrode active material, lithium titanate is often used as a negative electrode active material of a lithium ion secondary battery, but metal lithium When a material having a charge / discharge potential relatively lower than that of lithium titanate, such as lithium alloy, is used for the counter electrode (negative electrode), it can be used as a positive electrode active material.
  • the composite electrode of the present invention can be used as an electrode of a primary battery by using metal lithium or a lithium alloy as a counter electrode.
  • a lithium ion battery includes both a primary battery and a secondary battery, and in addition to a battery using metal lithium or a lithium alloy as an electrode, electricity in which lithium ions move between a positive electrode and a negative electrode Includes the entire chemical device.
  • the separator layer 35 is a layer that easily conducts lithium ions and hardly conducts electrons.
  • the lithium ion battery 31 may be an electrolyte battery, and the separator layer 35 may be a film impregnated with the electrolyte.
  • a film for a separator non-woven fabric or porous sheet made of polyolefin such as polypropylene and polyethylene, cellulose, paper, glass fiber and the like is used. It is preferable that these films be micro-porous so that the electrolyte can penetrate and the ions can easily permeate.
  • the negative electrode layer, the positive electrode layer, and the separator film may be disposed in the electrolytic solution and may be disposed in a coin-type, cylindrical-type, square-type metal can, or a laminate exterior body. It may be sealed.
  • the lithium ion battery 31 may be an all solid battery, and the separator layer 35 may be a solid electrolyte layer.
  • a solid electrolyte contained in a solid electrolyte layer a sulfide type solid electrolyte and an oxide type solid electrolyte can be used.
  • glass-based sulfides for example, Li 2 S-P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 -LiI, etc.
  • algirodite-type sulfides for example, Li 7 PS
  • Li 6 PS 5 Cl for example, Li 6 PS 5 Br
  • Li 6 PS 5 I etc.
  • thiolysicon based sulfides eg, Li 4-x Ge 1-x P x S 4 (0 ⁇ x ⁇ 1 etc)
  • Li 7 P 3 S 11 Li 10 GeP 2 S 12 (LGPS), Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 (LiSiPSCl), Li 9.6 P 3 S 12 And Li-Sn-Si-P-S (LSSPS), etc.
  • a perovskite-type lithium lanthanum niobate Li x La (1-x) / 3 NbO 3
  • a current collector layer may be provided on the surfaces of the composite electrode 10 and the counter electrode layer 33.
  • the current collector layer is provided to exchange electricity with the outside during charge and discharge in the all solid battery, and an electron conductive material, usually an electron conductive substance such as metal or carbon material itself, or an electron conductive substance. Are dispersed in a matrix of oxide or the like.
  • an electron conductive material usually an electron conductive substance such as metal or carbon material itself, or an electron conductive substance.
  • a metal constituting the current collector layer at least one metal selected from the group consisting of nickel, copper, silver, gold and the like can be used.
  • the current collector layer can be obtained by applying a metal paste and baking it in an atmosphere containing a reducing gas containing hydrogen and the like. In the present invention, if materials are appropriately selected, it is also possible to obtain an all-solid battery by collectively sintering all of the current collector layer, the composite electrode, the separator layer, and the counter electrode layer.
  • a layer containing the electrode active material or its precursor hereinafter referred to as an electrode active material layer green sheet
  • a layer containing a solid electrolyte or its precursor hereinafter referred to as a solid electrolyte layer green sheet
  • a green sheet laminate also referred to as a precursor of a composite electrode because it becomes a composite electrode by sintering
  • the laminate is sintered to obtain a laminated sintered body 41.
  • the laminated sintered body 41 is cut out in a plane perpendicular to the plane direction of each layer, and the electrode active material layer 11 and the solid electrolyte layer 13 are alternately arranged in a flat plate. An arrayed sintered body is obtained.
  • the arrayed sintered body can be used as the composite electrode 10.
  • the sintering step may be performed after the cutting step by replacing the sintering step and the cutting step. That is, a green sheet laminate is cut out in a plane perpendicular to the plane direction of each layer, and an electrode active material layer green sheet and a solid electrolyte layer green sheet are alternately arranged to obtain an array on a flat plate, and the array is fired A flat plate-like arrayed sintered body may be obtained by bonding.
  • the laminated sintered body 41 can also be used as a composite electrode without cutting, and can be used, for example, as the negative electrode band 103 or the positive electrode band 107 of the lithium ion battery 101 described later.
  • the precursor of an electrode active material or a solid electrolyte is a material which becomes an electrode active material or a solid electrolyte by heating, such as baking and sintering.
  • the precursor of lithium titanate may be a compound containing lithium and titanium, or may be a mixture of a lithium source and a titanium source.
  • a lithium source a halide, carbonate, hydroxide or the like of lithium can be used, and as a titanium source, an oxide, halide, carbonate, hydroxide or the like of titanium can be used.
  • a precursor of lithium titanate can be obtained by solvothermal treatment of a mixture containing a lithium source, a titanium source and a solvent.
  • the lithium lithium titanate precursor may be a compound containing lithium, titanium and lanthanum, or a mixture of a lithium source, a titanium source and a lanthanum source, It is also good.
  • a lithium source a halide, carbonate, hydroxide or the like of lithium can be used, and as a titanium source, an oxide, halide, carbonate, hydroxide or the like of titanium can be used.
  • a lanthanum source chlorides, oxychlorides, hydroxides, oxides, and nitrates of lanthanum can be used.
  • a precursor of lithium lanthanum titanate can be obtained by solvothermal treatment of a mixture containing a lithium source, a titanium source, a lanthanum source and a solvent.
  • a paste containing an electrode active material or a precursor thereof and a paste containing a solid electrolyte or a precursor thereof are prepared.
  • the paste may contain an organic binder such as acrylic resin, PVA (polyvinyl alcohol), PVB (polyvinyl butyral) and the like.
  • the organic binder maintains the shape of the green sheet, is thermally decomposed by heating, and is removed from the sintered body.
  • the specific surface area of the electrode active material or its precursor calculated by BET method using nitrogen adsorption is preferably 0.5 m 2 / g or more, more preferably 1.2 m 2 / g, and 13 m 2 It is more preferable if it is / g or more.
  • the specific surface area of the solid electrolyte or the precursor thereof is preferably 0.5 m 2 / g or more, more preferably 3 m 2 / g, and further preferably 15 m 2 / g or more. Since the specific surface area tends to increase as the primary particle size decreases, the uniformity of the application process and the sintering process can be obtained by using an electrode active material having a large specific surface area or a precursor thereof, or a solid electrolyte or a precursor thereof. The sinterability can be enhanced, the width of the electrode active material layer or the solid electrolyte layer in the laminated sintered body can be reduced, and the porosity can be reduced.
  • a paste containing an electrode active material or a precursor thereof is applied onto a substrate and dried to form an electrode active material green sheet, and a solid electrolyte or a precursor thereof is contained.
  • a paste containing an electrode active material or a precursor thereof is applied and dried on a substrate to form an electrode active material green sheet, and a paste containing a solid electrolyte or a precursor thereof is further applied and dried thereon.
  • a method in which a solid electrolyte green sheet is formed, the base material is peeled off, and then the binder is removed by heating to form a laminate.
  • the laminate of the electrode active material green sheet and the solid electrolyte green sheet is sintered to obtain a laminated sintered body in which the electrode active material layer and the solid electrolyte layer are laminated.
  • the temperature is preferably 200 ° C. or more and 1300 ° C. or less, preferably 300 ° C. or more and 1250 ° C. or less, more preferably 400 ° C. or more and 1200 ° C. or less, and 500 ° C. or more and 1150 ° C. It is further preferable that the temperature is not higher than ° C. In order to prevent the side reaction of the electrode active material, heating at 1300 ° C. or less is more preferable, and heating at 500 ° C. or more is preferable in order to obtain a dense sintered body.
  • any of an air atmosphere, an inert atmosphere such as nitrogen, a highly oxidizing atmosphere such as oxygen, and a reducing atmosphere such as hydrogen can be used.
  • the environment may be a reduced pressure environment or a pressurized environment, for example, an environment in the range of 0.1 Pa to 1 MPa in absolute pressure, preferably 1 Pa to 500 kPa.
  • the temperature holding time can be appropriately changed according to the temperature etc., but considering production efficiency etc, it is preferably 48 hours or less, more preferably 24 hours or less.
  • the temperature holding time may be a short time of 1 hour or less, and further, the holding time may be 0 minutes and heating may be stopped immediately after reaching the target temperature.
  • the cooling method is also not particularly limited, but may be natural cooling (cooling in a furnace) or may be cooled more rapidly than natural cooling, and a step of holding a predetermined temperature for a predetermined time during cooling You may provide.
  • lithium lanthanum titanate when contained as the solid electrolyte, lithium lanthanum titanate crystal-grows at 700 ° C. or higher, and therefore the resistance of the solid electrolyte layer can be reduced by setting the sintering temperature to 800 ° C. or higher.
  • spinel type lithium titanate can be obtained from the precursor of lithium titanate by setting sintering temperature to 400 degreeC or more and 1000 degrees C or less. Furthermore, by setting the sintering temperature to more than 1000 ° C., ramsdellite lithium titanate can be obtained from a precursor of lithium titanate.
  • sintering in the first stage is more than 1000 ° C., preferably 1100 ° C. or more and 1500 ° C. or less, more preferably 1150 ° C. or more and 1300 ° C.
  • the spinel type lithium titanate can be obtained from the precursor of lithium titanate by carrying out the second stage sintering at 400 ° C. or more and 1000 ° C. or less, and the second stage of sintering is performed from the precursor of lithium lanthanum titanate, Perovskite-type lithium lanthanum titanate can be obtained.
  • lithium lanthanum titanate can be a compact sintered body and the lithium ion conductivity can be enhanced by the step of heating at temperatures exceeding 1000 ° C.
  • lithium titanate is of the ramsdellite type, and by subsequent sintering at 1000 ° C. or less, spinel type lithium titanate more suitable as an electrode active material can be obtained.
  • the ramsdellite lithium titanate contained in the sintered body is maintained for 2 hours or more in a temperature range of 400 ° C. to 1000 ° C., preferably in a temperature range of 500 ° C. to 950 ° C.
  • a phase change to spinel-type lithium titanate can be made by staying for 4 hours or more, more preferably for 8 hours or more in a temperature range of 600 ° C. to 900 ° C. By staying in a temperature range of 600 ° C. to 900 ° C. for 10 hours or more, preferably 15 hours or more, substantially single phase spinel lithium titanate can be obtained.
  • the second-stage sintering may be performed during cooling, or may be heated to 400 ° C. or lower after returning to normal temperature to perform the second-stage sintering.
  • the time of staying in the temperature range of 400 ° C. or more and 1000 ° C. or less during cooling or heating after the first stage sintering can also be included in the staying time in the second stage sintering.
  • lithium titanate and lithium lanthanum titanate are generated from the precursor of lithium titanate and the precursor of lithium lanthanum titanate by heating. Heating causes a change in the crystalline phase from the precursor and / or an improvement in crystallinity. The change in crystal phase and / or the improvement in crystallinity can be confirmed by powder X-ray diffraction. The change in crystal phase is reflected in the change in diffraction pattern, and the improvement in crystallinity is reflected in the X-ray diffraction pattern as the decrease in width of diffraction line.
  • Li 0.94 Ti 2 O 4 [ICDD No. 01-088-0609], lithium titanate having a perovskite crystal structure Lanthanum, for example, Li 3x La 2 / 3-x TiO 3 (0 ⁇ x ⁇ 1/6) [ICDD Nos. 01-074-4217, 00-046-0467, 01-087-0935, 00-046-0466, etc.] Generates.
  • a plane perpendicular to the plane direction of each layer means a plane perpendicular to the plane direction of each layer and an angle within ⁇ 45 degrees.
  • the cutting method is not particularly limited, laser processing, electron beam processing, plasma processing, ultrasonic processing, gas cutting, diamond grinding, etc. can be used as a method capable of cutting a hard sintered body into a thin plate shape.
  • the metal layer 23 In order to obtain the composite electrode 21 having the metal layer 23, the metal layer 23 needs to be laminated in the laminate.
  • the metal layer 23 can be formed by coating / screen-printing a paste in which metal fine particles are dispersed, preparing a green sheet from the paste, and depositing metal under vacuum.
  • a lithium lanthanum titanate precursor used when forming a solid electrolyte layer green sheet be obtained by solvothermal treatment of a mixture containing a Ti element source, a La element source, a Li element source, and a solvent.
  • Aqueous solution preparation process In the aqueous solution preparation step, an aqueous solution containing La cation and Ti cation is prepared.
  • the La cation include La 3+
  • examples of the Ti cation include Ti 4+ .
  • Each of the La cation and the Ti cation may form a complex using water, ammonia, an oxide ion, a hydroxide ion, a counter anion described later, or the like as a ligand.
  • As a counter anion of La cation and Ti cation in addition to oxide ion and hydroxide ion, for example, chlorine-containing anion such as chloride ion, nitrate anion and the like can be mentioned.
  • the above counter anions may be used alone or in combination of two or more.
  • the aqueous solution is prepared, for example, by dissolving a lanthanum compound that generates La cation by dissolution and a titanium compound that generates Ti cation by dissolution in water or an acidic aqueous solution.
  • these lanthanum compounds and titanium compounds for example, chlorides, oxychlorides, hydroxides, oxides, nitrates and the like can be mentioned, and chlorides or oxychlorides are preferred because they are easy to obtain and inexpensive. Is preferred.
  • nitrate is preferable from the viewpoint of easy dissolution. It does not specifically limit as a form of said lanthanum compound and a titanium compound, For example, liquids, such as solid, such as a powder, aqueous solution, etc. are mentioned.
  • Each of the above-mentioned lanthanum compound and titanium compound may be used alone or in combination of two or more.
  • the aqueous solution prepared in the aqueous solution preparation step preferably has a pH of less than 7, ie, acidic.
  • La cation exhibits high aqueous solution in the strongly acidic to weakly acidic region, but Ti cation exhibits high water solubility only in the strongly acidic region. Therefore, from the viewpoint of stability, the aqueous solution prepared in the aqueous solution preparation step is preferably strongly acidic (for example, pH 3 or less).
  • Simultaneous precipitation process In the coprecipitation process step, precipitation comprising an oxide and / or hydroxide of lanthanum and an oxide and / or hydroxide of titanium by mixing the aqueous solution obtained in the aqueous solution preparation step with a basic aqueous solution.
  • the method for mixing the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution is not particularly limited, and examples thereof include a method in which the aqueous solution obtained in the aqueous solution preparation step is dropped or sprayed onto the basic aqueous solution.
  • the pH of the basic aqueous solution is preferably 8 or more from the viewpoint of the precipitation rate.
  • the basic aqueous solution is not particularly limited, and examples thereof include aqueous ammonia and an aqueous lithium hydroxide solution. Ammonia water is preferred in terms of availability and low cost. Further, from the viewpoint of preventing contamination to the solid electrolyte, an aqueous lithium hydroxide solution in which the alkali cation is a lithium ion, that is, a cation constituting the solid electrolyte is preferable.
  • the molar equivalent of the base of the basic aqueous solution used in the simultaneous precipitation process step is the molar equivalent of the counter anion of the La cation and Ti cation in the aqueous solution obtained in the aqueous solution preparation process (excluding oxide ion and hydroxide ion) More is preferable, and a large excess (for example, about twice or more) is more preferable.
  • the molar equivalent of the base of the basic aqueous solution is larger than the molar equivalent of the above counter anion, the basicity of the mixed solution can be sufficiently maintained even after the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution are mixed.
  • the precipitate obtained in the coprecipitation process step is separated and washed as appropriate.
  • the separation method is not particularly limited, and examples thereof include centrifugation, decantation, and filtration.
  • the solvent used for washing is not particularly limited, and water is preferably exemplified from the viewpoint of easy availability and low cost.
  • the precipitate obtained in the simultaneous precipitation treatment step can prevent a large mass loss caused by the detachment of the organic ligand at the time of sintering, which is generated by the sol-gel method.
  • the pressure is higher than atmospheric pressure by mixing a solid or solution containing La cation and Ti cation such as precipitates obtained in the simultaneous precipitation treatment step, a compound of lithium element source, and a solvent Heat under to obtain a precursor.
  • the compound of the lithium element source is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates of these. These lithium compounds may be used alone or in combination of two or more. Further, the form of the lithium compound may be, for example, a solid such as a powder or an aqueous solution, and is not particularly limited.
  • the content ratio of La element to Ti element in the mixture before the solvothermal treatment process be La / Ti ⁇ 0.66.
  • La (OH) 3 other than LTO or LLTO is difficult to be retained by firing because more La than the electrode complex containing the lithium lanthanum titanate having the target composition requires is difficult to remain after firing. It is difficult to form an impurity phase such as La 2 O 3 or La 2 Ti 2 O 7 .
  • hydrothermal treatment using water as a solvent is mainly performed.
  • the hydrothermal treatment refers to a compound synthesis method or a crystal growth method performed in the presence of high temperature and high pressure hot water, and a chemical reaction which does not occur in an aqueous solution at normal temperature and pressure may progress.
  • an aqueous solution containing a lithium element is added to a solid or solution containing a La cation and a Ti cation, and a high temperature and high pressure treatment is performed to obtain a lithium element which is water soluble at normal temperature and pressure.
  • Complex chloride can be incorporated into the complex salt, and the complex salt is separated from the solvent to obtain a precursor.
  • water is used as a solvent in the hydrothermal treatment, the same effect can be expected also by a method (solvothermal method) using a solvent other than water (for example, an organic solvent etc.).
  • the absolute pressure is higher than atmospheric pressure and lower than 8.7 MPa, and the temperature is 60 ° C. or more and 300 ° C. or less, more preferably, the absolute pressure is 0.15 MPa or more. It is preferable to heat at about 0 MPa or less and at a temperature of 60 ° C. to 250 ° C. for about 1 hour to 100 hours. If the pressure and temperature are in the above ranges, the reaction is likely to proceed, impurities are less likely to be generated, and a high-pressure pressure container is not required, which is less likely to cause an increase in manufacturing cost. Moreover, productivity is hard to fall that reaction time is in the said range.
  • An acid may be further added to the hydrothermally treated body obtained in the solvothermal treatment step to carry out the second solvothermal treatment step.
  • the solvothermal treatment step is a first solvothermal treatment step.
  • the acid both inorganic acids and organic acids can be used, and hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid and the like can be used.
  • the addition amount of the acid the difference from the molar ratio (Li / Ti) of lithium to titanium in the molar ratio of acid to titanium (acid / Ti) is 0.1 ⁇ [(Li / Ti)-(acid / Ti) It is preferable to satisfy
  • pH of the solution after addition of an acid is 8 or more and 14 or less.
  • the La element source may be added together with the acid when performing the second solvothermal treatment without adding it in the first aqueous solution preparation step.
  • the solvothermal treatment is performed on the precipitate obtained by the simultaneous precipitation method, but the single salt of Ti element and the single element of La element obtained by other than the simultaneous precipitation method.
  • the solvothermal treatment may be performed on a mixture containing a salt, a simple salt of Li element and a solvent.
  • the oxide and / or hydroxide of lanthanum are mentioned. It does not specifically limit as a monosalt of Ti element, The oxide and / or hydroxide of titanium are mentioned.
  • the monosalt of Li element is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates of these.
  • the average particle diameter of the Ti single salt is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. If the particles of the Ti single salt are in the above range, complex chloride of Li and Ti is likely to progress during the solvothermal treatment.
  • the precursor of lithium titanate used when forming the electrode active material layer green sheet can be obtained by not using the La element source in the process of manufacturing the above-mentioned lithium lanthanum titanate precursor.
  • the precursor obtained in the solvothermal treatment step may be dried.
  • conditions of a drying process 60 degreeC or more and 250 degrees C or less, 1 hour or more and 10 hours or less are mentioned, for example.
  • the precursor obtained in the solvothermal treatment step may be used as it is as a green sheet, it is possible to use as a green sheet temporary calcinated particles obtained by temporarily calcining a lithium titanate precursor and a lithium lanthanum titanate precursor. preferable.
  • the lithium titanate or the lithium titanate precursor is preferably heated at 250 ° C. or more and 1500 ° C. or less, more preferably 400 ° C. or more and 1300 ° C. or less, to form lithium titanate or lithium titanate or The precursor or lithium lanthanum titanate or a precursor thereof is produced.
  • Pre-baking may be performed at a lower temperature to produce only lithium titanate, and lithium lanthanum titanate may not be produced, or pre-baking may be performed at a higher temperature to produce both lithium titanate and lithium lanthanum titanate. You may
  • the laminate of the electrode active material layer and the solid electrolyte layer before or after sintering is cut to obtain the composite electrode 10, and then the separator layer 35 and the counter electrode layer 33 are obtained.
  • the lithium ion battery can also be obtained by forming the composite electrode, the separator, and the counter electrode adjacent to each other without performing the cutting step.
  • the lithium ion battery 101 of the present invention will be described.
  • the current collector 109, the negative electrode band 103, the separator band 105, the positive electrode band 107, and the current collector 111 are adjacent in this order.
  • the negative electrode band 103 is composed of negative electrode active material sheets 113a to 113d and solid electrolyte sheets 123a to 123c stacked alternately. All these layers (all seven layers depicted in FIG. 7) constitute a composite electrode and act as one negative electrode.
  • the positive electrode band 107 is composed of positive electrode active material sheets 117a to 117d and solid electrolyte sheets 127a to 127c alternately stacked, and all of these layers constitute a composite electrode and function as one positive electrode.
  • the negative electrode band 103 and the positive electrode band 107 correspond to the composite electrode 10 of the present invention.
  • the current collectors 109a to 109g and the current collectors 111a to 111g are stacked, respectively, to form current collectors 109 and 111.
  • the separator sheets 115a to 115g are stacked to form one separator band 105.
  • the solid electrolyte sheets 123a to 123c By sandwiching the solid electrolyte sheets 123a to 123c between the negative electrode active material sheets 113a to 113d, a lithium ion conduction path to the negative electrode active material of the negative electrode active material sheet can be provided.
  • the positive electrode active material sheets 117a to 117d lithium ion conductive paths to the positive electrode active material in the positive electrode active material sheet can be provided by the solid electrolyte sheets 127a to 127c.
  • the outermost layer of the negative electrode band 103 is the negative electrode active material sheet 113a and the negative electrode active material sheet 113d in FIG. 7, the outermost layer is not limited to the negative electrode active material sheet, and the solid electrolyte sheet is the outermost surface. It may be a layer of Similarly for the positive electrode zone 107, the solid electrolyte sheet may be the outermost layer.
  • the same material as the above-described electrode active material layer 11 can be used for the negative electrode active material sheets 113a to 113d or the positive electrode active material sheets 117a to 117d.
  • the negative electrode active material and the positive electrode active material may use the same material, they are generally different materials.
  • a known oxide-based positive electrode active material such as lithium transition metal oxide is used as the positive electrode active material of the positive electrode zone 107. It can be used.
  • both negative electrode band 103 and positive electrode band 107 have solid electrolyte sheets 123a-c or 127a-c, but they necessarily have solid electrolyte sheets in both negative electrode band and positive electrode band. It may not be necessary, and only the negative electrode band or the positive electrode band may have the solid electrolyte sheet.
  • the solid electrolyte sheet is provided only in the negative electrode zone and not in the positive electrode zone, the negative electrode zone corresponds to the electrode complex of the present invention, and the positive electrode zone does not correspond to the electrode composite of the present invention.
  • solid electrolyte layer 13 The same material as the solid electrolyte layer 13 described above can be used for the solid electrolyte sheets 123a to 123c.
  • the solid electrolyte sheets 123a to 123c and 127a to 127c may be the same material or different materials.
  • the separator sheets 115a to 115g can use the same material as the separator layer 35 described above, but are preferably formed of a sulfide-based or oxide-based solid electrolyte.
  • the separator sheets 115a to 115g may be the same material as or different from the solid electrolyte sheets 123a to 123c.
  • the same materials as the above-described current collector layers can be used.
  • the thickness D of the negative electrode active material sheets 113 a to 113 d and the thickness D of the positive electrode active material sheets 117 a to 117 d are in the same numerical range as the width B of the electrode active material layer 11.
  • the thickness E of the solid electrolyte sheets 123 a-c and 127 a-c is in the same numerical range as the width A of the solid electrolyte layer 13.
  • the width F of the negative electrode band 103 and the width H of the positive electrode band 107 are in the same numerical range as the thickness C of the composite electrode 10.
  • the width F and the width H may or may not be the same value.
  • the negative electrode band 103 it is preferable to combine 100 or more layers of the negative electrode active material sheet 113 and the solid electrolyte sheet 123, preferably 500 or more layers, and more preferably 1000 or more layers. Is particularly preferred. The same applies to the positive electrode band 107.
  • the width G of the separator band 105 is preferably 1 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • the width G is preferably as small as possible as long as short circuit or dielectric breakdown does not occur, but there is a problem of dimensional accuracy in printing process, lamination process and sintering process at the time of production. difficult.
  • the width I of the current collector 109 and the width J of the current collector 111 be as small as possible so long as electrons can be smoothly exchanged with the negative electrode band or the positive electrode band.
  • the width I and the width J may be the same or different.
  • the current collector is required to be a material which is located between the external terminal and the negative electrode zone or the positive electrode zone to facilitate the movement of electrons and which does not cause lithium ion exchange between the negative electrode zone or the positive electrode zone. If the conditions are satisfied, the current collector may be omitted and the negative electrode band or the positive electrode band may be brought into direct contact with the external terminal, or may be substituted by a coating of an electron conductive material prepared by vapor deposition or coating after sintering. It is good.
  • FIGS. 8 (a) to 8 (d) The method of producing the lithium ion battery 101 of the present invention will be described with reference to FIGS. 8 (a) to 8 (d).
  • the current collector 109a, the negative electrode active material green sheet 133a, the separator green sheet 135a, the positive electrode active material green sheet 137a, and the current collector 111a are formed to be adjacent in this order. .
  • the negative electrode active material green sheet 133a is obtained by forming a paste containing the negative electrode active material or a precursor thereof into a predetermined shape and drying it.
  • the separator green sheet 135a is obtained using a paste containing a solid electrolyte or a precursor thereof
  • the positive electrode active material green sheet 137a is obtained using a paste containing a positive electrode active material or a precursor thereof.
  • the specific surface area of the negative electrode active material or the precursor thereof or the positive electrode active material or the precursor thereof calculated by BET method using nitrogen adsorption is preferably 0.5 m 2 / g or more, and 1.2 m 2 / g Is more preferably 13 m 2 / g or more.
  • the specific surface area of the solid electrolyte or the precursor thereof is preferably 0.5 m 2 / g or more, more preferably 3 m 2 / g, and still more preferably 15 m 2 / g or more. Since the specific surface area tends to increase as the primary particle size decreases, the uniformity of the application process and the sintering process can be obtained by using an electrode active material having a large specific surface area or a precursor thereof, or a solid electrolyte or a precursor thereof. The sinterability can be enhanced, the width of the electrode active material layer or the solid electrolyte layer in the laminated sintered body can be reduced, and the porosity can be reduced.
  • the method of forming the paste of each material by printing is mentioned.
  • a printing method an inkjet method of discharging the paste to a predetermined position, an intaglio printing method of transferring the paste into the concave portion of the plate and transferring, a relief printing method of adhering the paste onto the convex portion of the plate and transferring, A lithographic printing method in which a portion with different affinity to the paste is made and the paste is attached to the affinity portion for transfer, a large open portion of fine holes is made in the plate, and the paste passed through the holes under pressure is transferred And the like.
  • the current collector 109b is on the current collector 109a
  • the solid electrolyte green sheet 143a is on the negative electrode active material green sheet 133a
  • the separator green is on the separator green sheet 135a.
  • the sheet 135b is formed on the positive electrode active material green sheet 137a
  • the solid electrolyte green sheet 147a is formed
  • the current collector 111b is formed on the current collector 111a.
  • the current collector 109b is on the current collector 109b
  • the negative electrode active material green sheet 133b is on the solid electrolyte green sheet 143a
  • the separator green is on the separator green sheet 135b.
  • the positive electrode active material green sheet 137b is formed on the solid electrolyte green sheet 147a
  • the current collector 111c is formed on the current collector 111b.
  • the current collector 109c is on the current collector 109c
  • the solid electrolyte sheet 143b is on the negative electrode active material green sheet 133b
  • the separator green sheet is on the separator green sheet 135c.
  • the sheet 135d is formed on the positive electrode active material green sheet 137b
  • the solid electrolyte green sheet 147b is formed
  • the current collector 111d is formed on the current collector 111c.
  • a method of printing in multilayers may be used, or a method may be used in which a green sheet formed on a release film is peeled off, aligned and placed, and pressure-bonded.
  • the process shown in FIG. 8A is omitted, and in FIG. 8B, the current collector 109a, the negative electrode active material green sheet 133a, and the separator green sheet 135a formed in the process shown in FIG. 8A.
  • the current collector 109b, the solid electrolyte green sheet 143a, the separator green sheet 135b, the solid electrolyte green sheet 147a, and the current collector 111b are formed to be adjacent to each other in this order without the positive electrode active material green sheet 137a and the current collector 111a. May be In addition, the formation of the laminate, which is performed by repeating the above steps a predetermined number of times, may be completed by any of the step shown in FIG. 8C and the step shown in FIG.
  • the laminate of the green sheets is sintered to make the negative electrode active material green sheet the negative electrode active material sheet, the positive electrode active material green sheet the positive electrode active material sheet, the separator green sheet the separator sheet, and the solid electrolyte green sheet
  • the lithium ion battery 101 can be obtained as a solid electrolyte sheet.
  • the lithium ion battery 101 can also be obtained without performing a sintering process. That is, a negative electrode active material sheet 113a containing a negative electrode active material, a separator sheet 115a containing a solid electrolyte, and a positive electrode active material sheet 117a containing a positive electrode active material are formed adjacent to each other, and a solid electrolyte sheet 123a containing a solid electrolyte is formed thereon. Forming the separator sheet 115b and the solid electrolyte sheet 127a containing the solid electrolyte is a process repeated.
  • the step of repeating may be solid, instead of starting from forming the negative electrode active material sheet 113a containing a negative electrode active material, the separator sheet 115a containing a solid electrolyte, and the positive electrode active material sheet 117a containing a positive electrode active material. It may start from adjacently forming a solid electrolyte sheet 123a containing an electrolyte, a separator sheet 115b, and a solid electrolyte sheet 127a containing a solid electrolyte.
  • the process to repeat may be completed by forming the negative electrode active material sheet, the separator sheet, and the positive electrode active material sheet adjacent to each other, or forming the solid electrolyte sheet, the separator sheet, and the solid electrolyte sheet adjacent to each other. You may end with
  • a battery assembly in series connection can be obtained.
  • a current collector 109, a negative electrode band 103a, a separator band 105a, a positive electrode band 107a, an electrode band 153, a negative electrode band 103b, a separator band 105b, and a positive electrode band 107b A battery assembly 151 in series connection in which the current collectors 111 are adjacent in this order is obtained.
  • the battery pack 151 connects two lithium ion batteries 101 in series, more lithium ion batteries 101 can be connected in series.
  • the battery assembly 151 is also formed by laminating the respective layers as shown in FIGS. 8 (a) to 8 (d). You can get it.
  • the width of the electrode band 153 is preferably as small as possible so long as electrons are sufficiently conducted and short-circuiting or dielectric breakdown of lithium ions does not occur.
  • the dimensional accuracy of the printing process, the lamination process, and the sintering process at the time of manufacturing And it is difficult to make it less than 10 ⁇ m.
  • the thickness is preferably 10 ⁇ m to 300 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • a battery assembly in parallel connection can be obtained.
  • the current collector 163, the negative electrode band 103a, the separator band 105a, the positive electrode band 107a, the current collector 165, the positive electrode band 107b, the separator band 105b, and the negative electrode band 103b The current collector 167 is adjacent in this order, and a battery assembly 161 in parallel connection in which the current collector 165 and the current collector 167 are connected by the connection portion 169 is obtained.
  • the insulator 171 is preferably filled between the connection portion 169 and the negative electrode band 103 a and the like so as not to cause a short circuit without the current collector 163 and the like.
  • the insulator 171 is drawn transparent.
  • a known insulating material can be used as the insulator 171
  • a metal oxide-based insulating material such as alumina, silica, or titania is used in order to obtain a sintered body together with the lithium ion battery 101. It is preferable to do.
  • FIG. 10 shows a structure in which the positive electrode band 107a and the positive electrode band 107b are inside, the positions of the positive electrode band and the negative electrode band may be interchanged and the negative electrode bands 103a and 103b may be inside.
  • the assembled battery 161 is also as shown in FIGS. 8 (a) to 8 (d). Can be obtained by a method of laminating each layer.
  • FIG. 11 shows a battery assembly 181 in which three lithium ion batteries 101 are connected in parallel.
  • the positive electrode bands 107 a and 107 b are electrically connected to the positive electrode band 107 c through the current collector 165, the connection portion 185, and the current collector 183.
  • the negative electrode band 103a is electrically connected to the negative electrode bands 103b and 103c through the current collector 163, the connection portion 169, and the current collector 167.
  • the insulators 171, 173, 175, and 177 are drawn transparent.
  • the widths of the current collectors 165 and the current collectors 167 can be determined in consideration of the dimensional accuracy problems of the printing process, the lamination process, and the sintering process at the time of manufacturing as in the case of the electrode band 153. Unlike in the case of the band 153, there is no need to consider the problem of lithium ion short circuiting or dielectric breakdown, and if the positive or negative band has sufficient electron conductivity, the portion in the positive or negative band is You may omit it.
  • FIG. 12 shows a flow of preparation of lithium titanate (LTO) calcined particles.
  • An aqueous solution of titanium tetrachloride aqueous solution, Ti concentration 3.45 mmol / g, and Cl concentration 13.79 mmol / g was prepared. The aqueous solution was clear and did not form a precipitate upon standing at room temperature. When 1203 g of this aqueous solution was sprayed into 2000 g of 28 mass% ammonia water, a precipitate was formed. The precipitate is separated off, washed with water, dried at 200 ° C. and mechanically disintegrated.
  • Pre-baking treatment process The hydrothermally treated body obtained in the above step was placed in a firing boat made of alumina, and fired in air at 500 ° C. for 10 hours to obtain lithium titanate (LTO) calcined particles.
  • LTO lithium titanate
  • the specific surface area of the calcined body calculated by the BET method using nitrogen adsorption was 14.8 m 2 / g.
  • FIG. 13 shows a flow of preparation of lithium lanthanum titanate (LLTO) calcined particles.
  • LLTO lithium lanthanum titanate
  • Pre-baking treatment process The hydrothermally treated body obtained in the above step was placed in a firing boat made of alumina, and fired in air at 700 ° C. for 10 hours to obtain lithium lanthanum titanate (LLTO) calcined particles.
  • the specific surface area of the calcined body calculated by the BET method using nitrogen adsorption was 19.3 m 2 / g.
  • FIG. 14 shows a flow from pre-sintered sintered body particles to preparation of arrayed sintered bodies.
  • Paste preparation process Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. Each paste was prepared by adding the above-mentioned lithium titanate (LTO) calcined particles or lithium lanthanum titanate (LLTO) calcined particles to the binder solution and kneading.
  • LTO lithium titanate
  • LLTO lithium lanthanum titanate
  • the obtained layer paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a layer green sheet.
  • PET polyethylene terephthalate
  • the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were cut into a disk shape having a diameter of 12 mm.
  • Each layer green sheet obtained by cutting and peeling the PET film was alternately stacked, and both ends were made to be a lithium titanate layer green sheet.
  • the lithium titanate layer green sheets at both ends are held between peeled PET films, and after thermocompression bonding with a thermocompression bonding device at 80 ° C. for 30 minutes, the PET films of the uppermost layer and the lowermost layer are peeled off to obtain lithium titanate-titanate
  • a lithium lanthanum laminate was prepared. 51 sheets of lithium titanate layer green sheets and 50 sheets of lithium lanthanum titanate layer green sheets were used.
  • the average value of the width of each layer was 5.3 ⁇ m for lithium titanate and 3.7 ⁇ m for lithium lanthanum titanate (FIG. 16).
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged.
  • the thickness of the sintered body (that is, the thickness C of the composite electrode) was measured with a caliper and found to be 400 ⁇ m.
  • the actual density of the arrayed sintered body calculated by the dimension method is 2.53 g / cm 3 , the relative density is 61%, the porosity is 39%, and the arrayed sintered body calculated by the Archimedes method
  • the actual density was 3.05 g / cm 3 , the relative density was 73%, and the porosity was 27%.
  • the width X of the cut out array sintered body was 400 ⁇ m, and the depth Y was 4 mm.
  • the thickness C / width B was about 75, and the thickness C / width A was about 108.
  • Example 2 A laminated sintered body was produced in the same manner as in Example 1 except that the main sintering for producing the laminated sintered body in Example 1 was changed to 1150 ° C. for 5 hours and then to 850 ° C. for 12 hours.
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged.
  • the actual density of the arrayed sintered body calculated by the dimension method is 2.97 g / cm 3 , the relative density is 72%, the porosity is 28%, and the arrayed sintered body calculated by the Archimedes method
  • the actual density was 3.38 g / cm 3 , the relative density was 81%, and the porosity was 19%.
  • Example 3 A laminated sintered body was produced in the same manner as in Example 1 except that the main sintering for producing the sintered body in Example 1 was changed to 1150 ° C. for 5 hours.
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.94 g / cm 3 , the relative density is 74%, the porosity is 24%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.15 g / cm 3 , the relative density was 79%, and the porosity was 21%.
  • Example 4 [Production of green sheet laminate]
  • the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced in Example 1 were cut into a disk shape having a diameter of 12 mm.
  • Each layer green sheet obtained by cutting and peeling the PET film was alternately stacked, and both ends were made to be a lithium titanate layer green sheet.
  • the lithium titanate layer green sheets at both ends were sandwiched by the peeled PET film, and thermocompression bonding was performed at 80 ° C. for 10 minutes using a thermocompression bonding apparatus.
  • As a thermocompression-bonded body 11 sheets of lithium titanate layer green sheets and 10 sheets of lithium lanthanum titanate layer green sheets were used.
  • thermocompression-bonded body Gold is vapor-deposited on one side of the obtained thermocompression-bonded body, five gold-deposited thermocompression-bonded bodies are stacked, a lithium titanate green sheet at both ends is sandwiched with a PET film, and thermocompression-bonded at 80 ° C. for 30 minutes with a thermocompression bonding device did.
  • a lithium titanate-lithium lanthanum titanate-gold laminate was produced by peeling the PET film of the top layer and the bottom layer.
  • the green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours
  • the laminated sintered body was produced by carrying out the main firing in this way.
  • a sintered body (400 ⁇ m thick) in which a lithium titanate layer, a lithium lanthanum titanate layer and a gold layer are arranged is produced by cutting out and processing the laminated sintered body produced by the above method using a grinder. did. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.92 g / cm 3 , the relative density is 60%, the porosity is 40%, and the arrayed sintered body calculated by the Archimedes method The actual density was 4.04 g / cm 3 , the relative density was 83%, and the porosity was 17%.
  • Example 5 [Preparation of lithium titanate layer and lithium lanthanum titanate layer green sheet] Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. The lithium titanate (LTO) calcined particles produced in Example 1 or lithium lanthanum titanate (LLTO) calcined particles and acetylene black (AB) were mixed at a weight ratio of 95: 5 to prepare a mixed powder. Each paste was prepared by adding the mixed powder to the binder solution and kneading. Acetylene black is a type of carbon black.
  • LTO lithium titanate
  • LLTO lithium lanthanum titanate
  • AB acetylene black
  • the obtained layer paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a layer green sheet.
  • PET polyethylene terephthalate
  • a lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 1 except that the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were used.
  • Li 4 Ti 5 O 12 which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207]
  • Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 Diffraction lines identified in [] were detected (FIG. 24).
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged.
  • the actual density of the arrayed sintered body calculated by the dimension method is 3.19 g / cm 3 , the relative density is 77%, the porosity is 23%, and the arrayed sintered body calculated by the Archimedes method
  • the actual density was 3.74 g / cm 3 , the relative density was 90%, and the porosity was 10%.
  • Example 6 Preparation of lithium lanthanum titanate green sheet
  • Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution.
  • the lithium lanthanum titanate (LLTO) calcined particles prepared in Example 1 and vapor grown carbon fiber (VGCF) were mixed at a weight ratio of 95: 5 to prepare a mixed powder.
  • the paste was prepared by adding the mixed powder to the binder solution and kneading.
  • the obtained paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to produce a green sheet.
  • PET polyethylene terephthalate
  • a lithium titanate-lithium lanthanum titanate laminate is prepared in the same manner as in Example 1 except that the lithium titanate layer green sheet produced in Example 1 and the lithium lanthanum titanate layer green sheet produced by the above method are used. Made.
  • a laminated sintered body was produced in the same manner as in Example 5 except that the green sheet laminate produced by the above method was used.
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.01 g / cm 3 , the relative density is 73%, the porosity is 27%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.48 g / cm 3 , the relative density was 84%, and the porosity was 16%.
  • Example 7 (Coating process) The mixed powder paste of LTO and AB prepared in Example 5 and the mixed powder paste of LLTO and VGCF prepared in Example 6 are coated on a polyethylene terephthalate (PET) film by a doctor blade method, 120 ° C. The resultant was dried for 10 minutes to prepare a green sheet.
  • PET polyethylene terephthalate
  • a lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 1 except that the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were used. 61 sheets of lithium titanate layer green sheets and 60 sheets of lithium lanthanum titanate layer green sheets were used.
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.03 g / cm 3 , the relative density is 76%, the porosity is 24%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.80 g / cm 3 , the relative density was 95%, and the porosity was 5%.
  • Example 8 [Production of green sheet laminate] Example except using the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 and laminating so that the width after sintering is 10 ⁇ m or less in LTO and 5 ⁇ m or less in LLTO A lithium titanate-lithium lanthanum titanate laminate was prepared in the same manner as in (7).
  • a laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
  • Li 4 Ti 5 O 12 which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207]
  • Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 A diffraction line identified in [] was detected (FIG.
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.77 g / cm 3 , the relative density is 70%, the porosity is 30%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.78 g / cm 3 , the relative density was 95%, and the porosity was 5%.
  • Example 9 [Production of green sheet laminate]
  • the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 were laminated so that the width after sintering was 15 ⁇ m or less in LTO and 7.5 ⁇ m or less in LLTO
  • a lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 7.
  • a laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
  • Li 4 Ti 5 O 12 which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207]
  • Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935
  • LLTO lithium titanate lanthanum having a perovskite crystal structure
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.06 g / cm 3 , the relative density is 77%, the porosity is 23%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.65 g / cm 3 , the relative density was 92%, and the porosity was 8%.
  • Example 10 [Production of green sheet laminate] Example except using the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 and laminating so that the width after sintering is 15 ⁇ m or more in LTO and 10 ⁇ m or less in LLTO A lithium titanate-lithium lanthanum titanate laminate was prepared in the same manner as in (7).
  • a laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
  • Li 4 Ti 5 O 12 which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207]
  • Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935
  • LLTO lithium titanate lanthanum having a perovskite crystal structure
  • the laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 ⁇ m in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged.
  • the actual density of the arrayed sintered body calculated by the dimension method is 3.00 g / cm 3 , the relative density is 75%, the porosity is 25%, and the arrayed sintered body calculated by the Archimedes method
  • the actual density was 3.63 g / cm 3 , the relative density was 91%, and the porosity was 9%.
  • Comparative Example 1 The lithium titanate layer green sheet produced in Example 1 was cut into a disc having a diameter of 12 mm. The green sheet from which the PET film was peeled off was overlapped, and the lithium titanate layer green sheet was sandwiched between the peeled PET film and thermocompression bonded by a thermocompression bonding apparatus at 80 ° C. for 30 minutes, then the PET film of the uppermost layer and the lowermost layer By peeling off, a laminate of lithium titanate layer green sheets was produced.
  • the green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours
  • the sintered body was produced by performing main firing in this way.
  • Comparative Example 2 A sintered body was produced in the same manner as in Comparative Example 1 except that the main sintering for producing the sintered body was changed to 1150 ° C. for 5 hours.
  • Comparative Example 3 [Preparation of calcined particles of lithium titanate (LTO) -lithium lanthanum titanate (LLTO) composite] (Coprecipitation process) A solution obtained by dissolving lanthanum chloride heptahydrate in water is mixed with an aqueous solution of titanium tetrachloride, and an aqueous solution containing 0.20 mmol / g of La, 3.10 mmol / g of Ti, and 8.67 mmol / g of Cl is prepared. Prepared. The aqueous solution was clear and did not form a precipitate upon standing at room temperature.
  • the obtained paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a composite green sheet.
  • PET polyethylene terephthalate
  • the composite green sheet produced above was cut into a disk shape having a diameter of 12 mm.
  • the composite green sheet obtained by cutting and peeling the PET film is overlapped, sandwiched by the peeled PET film, and thermocompression bonded by a thermocompression bonding device at 80 ° C. for 30 minutes, and then peeling the PET film of the uppermost layer and the lowermost layer A laminate of composite green sheets was produced.
  • the green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours
  • the sintered body was produced by performing main firing in this way.
  • Comparative Example 4 A sintered body was produced in the same manner as in Comparative Example 3, except that the main sintering for producing the sintered body was changed to 1150 ° C. for 5 hours.
  • the charge and discharge starts from the discharge, and performs a first discharge with a cut-off potential of 2.5 to 1.25 V at a constant current of 0.002 mA / cm 2 , and a discharge termination voltage of 1.25 V, and then a charge termination voltage of 1.
  • the initial discharge capacity and the initial charge capacity were converted to values per mass of the sintered body.
  • 36 and 37 show initial charge-discharge curves of Examples 1 to 4 at 90 ° C. and Comparative Examples 1 to 4
  • FIG. 38 shows initial charge-discharge curves of Examples 2 and 4 to 60 ° C.
  • FIG. The initial charge-discharge curves of Examples 7 to 10 at 60 ° C. are shown.
  • the coulombic efficiency was determined by dividing the initial charge capacity by the initial discharge capacity.
  • the sample in which LTO having a spinel structure was detected was an S-based sample
  • the sample in which Li 2 Ti 3 O 7 having a ramsdellite structure was detected was an R-based sample.
  • the width of each layer of the composite electrode of each example and the thickness of the electrode are shown in Table 1, and the charge / discharge test results (90 ° C.) of Examples 1, 2 and 4 of the S-based sample and the comparative example are shown in Table 2.
  • Table 3 shows the charge / discharge test results of Example 3 of the R-based sample and the comparative example
  • Table 4 shows the charge / discharge test results (60 ° C.) of Examples 2 and 4 to 10 of the S-based sample.
  • Example 1 and Comparative Example 1 are compared, the initial charge capacity and the Coulomb efficiency increased by using the arrayed sintered body as the positive electrode. This is considered to be because the lithium ion conduction path is in the positive electrode in Example 1 having a solid electrolyte layer, as compared with Comparative Example 1 in which the entire positive electrode is composed of lithium titanate.
  • Comparative Example 3 in which the whole of the positive electrode is composed of the LTO-LLTO complex is considered to be due to the formation of a lithium ion conduction path by LLTO in the positive electrode.
  • Comparative Example 3 is more excellent in initial discharge capacity and initial charge capacity. This is considered to be due to the fact that LLTO becomes a dense sintered body and lithium ion conductivity becomes high because Comparative Example 3 passes a high temperature of 1150 ° C. in the firing step.
  • Example 1 and Example 2 are compared.
  • a dense laminated sintered body can be obtained, and both the initial discharge capacity and the initial charge capacity are excellent.
  • LLTO forms a dense fixed electrolyte layer and a lithium ion conduction path with low resistance is formed, so that the result of the charge and discharge test is good. It is thought that it became.
  • Example 2 and Comparative Example 3 When Example 2 and Comparative Example 3 are compared, although the volume ratio of the solid electrolyte is lower in Example 2, the initial discharge capacity, the initial charge capacity, and the coulombic efficiency are excellent.
  • Example 2 and Comparative Example 3 have the same thermal history in the firing step, but the positive electrode of Example 2 is an array sintered body, and a plurality of solid electrolyte layers penetrating the positive electrode in parallel to the thickness direction of the positive electrode are ordered. In the positive electrode LTO-LLTO complex of Comparative Example 3 and the distribution of LLTO in the positive electrode is random, the lithium ion conductive path of Example 2 is higher Is considered to be formed more.
  • Example 2 and Example 4 When Example 2 and Example 4 are compared, the direction of Example 4 is excellent in first time discharge capacity, first time charge capacity, and coulombic efficiency.
  • Example 2 and Example 4 have the same heat history in the firing step, but in Example 4, a metal layer parallel to the thickness direction of the positive electrode is intentionally provided, and electron conduction is caused to LTO and LLTO. This is considered to be due to the fact that the electron conductivity of the positive electrode is higher than that of Example 2 which relies on it.
  • Example 3 and Comparative Example 2 are compared, the initial discharge capacity and the initial charge capacity were increased by using the array sintered body as the positive electrode. This is considered to be because the lithium ion conduction path is in the positive electrode in Example 3 having a solid electrolyte layer, as compared to Comparative Example 2 in which the entire positive electrode is composed of lithium titanate.
  • Comparative Example 4 in which the whole of the positive electrode is composed of the LTO-LLTO complex is considered to be because the lithium ion conduction path by LLTO is formed in the positive electrode.
  • Example 3 and Comparative Example 4 are compared, although the volume ratio of the solid electrolyte is lower in Example 3, the initial discharge capacity and the initial charge capacity are excellent.
  • Example 3 and Comparative Example 4 have the same thermal history in the firing step, but Example 3 is an arrayed sintered body, since a solid electrolyte layer parallel to the thickness direction of the positive electrode is intentionally provided. It is considered that this is because more lithium ion conduction paths are formed as compared with Comparative Example 4 in which the LLTO distribution is random.
  • Example 2 When Example 2 is compared with Examples 5 to 10, Examples 5 and 6 are more excellent in the initial discharge capacity, the initial charge capacity, and the coulombic efficiency.
  • Example 2 and Example 5 to 10 have the same heat history in the firing step, but in Example 5 to 10, acetylene black and vapor grown carbon fiber as a conductive additive are added, and LTO and LLTO are added. It is considered that the electron conductivity of the positive electrode is higher than that of Example 2 which relies on the electron conductivity.
  • Examples 7 and 8 are compared with Examples 9 and 10, Examples 7 and 8 are superior in initial discharge capacity and initial charge capacity. Further, from the charging curve, it can be understood that the overvoltage is lower in Examples 7 and 8.
  • Examples 7 to 10 have the same heat history in the firing step and the same additives (acetylene black and vapor grown carbon fiber), but Examples 7 and 8 have an LTO layer thickness of 10 ⁇ m or less, so It is considered that this is because the distance in which the lithium ions move in the LTO layer is shorter than in Examples 9 and 10, and the resistance is smaller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Provided is an electrode that contributes to charging and discharging of a large amount of an electrode active material contained in the electrode, and has a capacity closer to the theoretical capacity than in the past, by reducing a solid electrolyte that does not contribute to the formation of a lithium ion conduction path. Provided is a composite electrode, the composite electrode being a sintered compact that contains an electrode active material and a solid electrolyte, wherein the composite electrode is characterized by being an alternating array in which sheet-form electrode active material layers containing an oxide-type electrode active material and sheet-form solid electrolyte layers containing an oxide-type solid electrolyte are alternatingly aligned, the width of the electrode active material layers being 10 nm to 20 µm, the width of the solid electrolyte layers being 10 nm to 20 µm, and the solid electrolyte layers passing through the composite electrode.

Description

複合体電極及び全固体リチウム電池Composite electrode and all solid lithium battery
 本発明は、全固体リチウム電池に用いられる、電極活物質と固体電解質を含む複合体電極に関する。 The present invention relates to a composite electrode containing an electrode active material and a solid electrolyte, which is used for an all solid lithium battery.
 二次電池は携帯電話やノートパソコン等の携帯機器、自動車や航空機等の輸送用機械、電力平準化用等の電力貯蔵装置に利用されており、いずれの用途でもエネルギー密度の向上が求められている。現在最もエネルギー密度の高い実用二次電池はリチウムイオン電池であり、安全性を保ちながら更なる高エネルギー密度化を試みる研究が進められている。その一環として、リチウムイオン電池の改良技術である全固体電池(電解液の代わりに固体電解質を用いる電池)の研究が行われている。 Secondary batteries are used in portable devices such as mobile phones and notebook computers, transport machines for automobiles and aircraft, and power storage devices for power leveling, and the energy density is required to be improved in any application. There is. At present, the practical secondary battery with the highest energy density is a lithium ion battery, and studies are underway to try to further increase the energy density while maintaining safety. As part of that research, research is being conducted on an all-solid-state battery (a battery using a solid electrolyte instead of an electrolytic solution), which is an improvement technology of a lithium ion battery.
 全固体電池は、電池を構成する負極と電解質と正極がすべて固体であるため、負極層とセパレータ層(リチウムイオン伝導層)と正極層と電子伝導層を繰り返し積層することで、個別にパッケージ化しなくても直列構造を持つ電池を製造できるため、自動車用や電力貯蔵用に適していると考えられている。さらに、負極活物質と固体電解質と正極活物質の中で酸化物の占める割合を高めることで、全固体電池は、エネルギー密度向上に加えて、安全性と高温耐久性にも効果が期待できる。 The all-solid battery is packaged separately by repeatedly laminating the negative electrode layer, the separator layer (lithium ion conductive layer), the positive electrode layer, and the electron conductive layer, since the negative electrode, the electrolyte and the positive electrode constituting the battery are all solid. Since it is possible to manufacture a battery having a series structure even if it is not used, it is considered to be suitable for automobiles and power storage. Furthermore, by increasing the proportion of the oxide among the negative electrode active material, the solid electrolyte, and the positive electrode active material, the all solid battery can be expected to have an effect on safety and high temperature durability in addition to energy density improvement.
 実用化されている電解液を用いるリチウムイオン電池の電極は、正極と負極との空隙に浸透している電解液がリチウムイオンの伝導経路として機能している。特許文献1では、固体電解質を用いて、電極層中に電極活物質へのリチウムイオン伝導パスを形成するため、電極活物質と酸化物系固体電解質を複合化した焼結体を電極とすることが検討されている。他に、電極活物質へのリチウムイオン伝導パスを形成するため、電極活物質と固体電解質を混合させた複合体を電極とすることが検討されている(特許文献2、3)。 In an electrode of a lithium ion battery using an electrolytic solution that has been put into practical use, the electrolytic solution that has penetrated into the gap between the positive electrode and the negative electrode functions as a lithium ion conduction path. In Patent Document 1, in order to form a lithium ion conduction path to an electrode active material in an electrode layer using a solid electrolyte, a sintered body obtained by combining an electrode active material and an oxide-based solid electrolyte is used as an electrode. Is being considered. In addition, in order to form a lithium ion conduction path to an electrode active material, it has been studied to use a composite in which the electrode active material and a solid electrolyte are mixed as an electrode (Patent Documents 2 and 3).
 また、特許文献4では、リチウムイオン伝導度を確保し、高い容量密度を得るために、1以上の固体電解質層及び1以上の活物質層が交互に積層された電極積層体が開示されている。さらに、特許文献5では、電極複合体を効率よく製造するために、インクジェットを用いて得た第1被膜及び第2被膜の焼成により活物質成形体と固体電解質層とを得る製造方法が開示されている。 Further, Patent Document 4 discloses an electrode laminate in which one or more solid electrolyte layers and one or more active material layers are alternately stacked in order to secure lithium ion conductivity and obtain high capacity density. . Furthermore, Patent Document 5 discloses a manufacturing method for obtaining an active material molded body and a solid electrolyte layer by firing a first film and a second film obtained using an inkjet in order to efficiently manufacture an electrode complex. ing.
国際公開2017/018488号International Publication 2017/018488 特開2010-033877号公報JP, 2010-033877, A 特開2013-080637号公報(特許第5864993号公報)JP, 2013-080637, A (patent No. 5864993) 特開2012-248468号公報(特許第5494572号公報)JP, 2012-248468, A (patent No. 5494572) 特開2017-004674号公報JP, 2017-004674, A
 しかしながら、特許文献1~3のように、固体電解質が電極中にランダムに分布する場合、他の固体電解質に接触せずにリチウムイオン伝導パスの形成に寄与していない固体電解質が存在したり、固体電解質が局所的に分布して電極の表面にまでリチウムイオン伝導パスが届かなかったりするなどの理由から、依然として電極中に存在するが充放電に寄与しない電極活物質の割合が少なくないという問題点があった。 However, as described in Patent Documents 1 to 3, when the solid electrolyte is randomly distributed in the electrode, there is a solid electrolyte which does not contact the other solid electrolyte and does not contribute to the formation of the lithium ion conduction path. There is a problem that the percentage of the electrode active material still present in the electrode but not contributing to charge and discharge is not small because the solid electrolyte is locally distributed and the lithium ion conduction path does not reach the surface of the electrode. There was a point.
 また、特許文献4では、製造過程で焼結を行っておらず、活物質層の密度を高めることと幅を小さくすることに限界があるため、電極中に存在するが充放電に寄与しない電極活物質の割合が少なくないという問題点があった。特許文献5でも、活物質の形成材料を含む第1液状材料をインクジェットにより吐出して第1被膜を形成しており、第1被膜の幅をインクジェットの液滴のサイズより薄くできないことから、活物質成形体の幅が厚くなり、電極中に存在するが充放電に寄与しない電極活物質の割合が少なくないという問題点があった。 Further, in Patent Document 4, since sintering is not performed in the manufacturing process and there is a limit to increasing the density of the active material layer and reducing the width, an electrode that is present in the electrode but does not contribute to charge and discharge There is a problem that the proportion of active material is not small. Also in Patent Document 5, since the first film is formed by discharging the first liquid material containing the formation material of the active material by the ink jet, and the width of the first film can not be thinner than the size of the droplets of the ink jet. There has been a problem that the width of the molded article becomes large, and the proportion of the electrode active material which is present in the electrode but does not contribute to charge and discharge is not small.
 本発明は、このような従来技術の問題点を解決するためになされたものであり、リチウムイオン伝導パスの形成に寄与していない固体電解質を削減することで、電極に含まれる多くの電極活物質を充放電に寄与させ、従来に比べてより理論容量に近い容量を持つ電極を提供することを目的とする。 The present invention has been made to solve the problems of the prior art, and by reducing the solid electrolyte not contributing to the formation of the lithium ion conduction path, many electrode activities included in the electrode are realized. An object of the present invention is to provide an electrode having a capacity closer to the theoretical capacity than in the past by contributing a substance to charge and discharge.
 本発明者らは、鋭意検討の結果、電極中にリチウムイオン伝導パスを規則的に設けるようにすれば、電極活物質からリチウムイオンが浸透可能な範囲にリチウムイオン伝導パスを設けることができ、電極中のより多くの電極活物質が充放電に寄与できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention can provide a lithium ion conduction path in a range in which lithium ions can permeate from the electrode active material, if the lithium ion conduction path is regularly provided in the electrode. It has been found that more electrode active materials in the electrode can contribute to charge and discharge, and the present invention has been completed.
 具体的には、本発明では、電極活物質と固体電解質を含む、焼結体である複合体電極であって、前記複合体電極が、酸化物系電極活物質を含むシート状の電極活物質層と、酸化物系固体電解質を含むシート状の固体電解質層が交互に並ぶ交互配列体であり、前記電極活物質層の幅が、10nm以上20μm以下であり、前記固体電解質層の幅が、10nm以上20μm以下であり、前記固体電解質層が前記複合体電極を貫通することを特徴とする複合体電極を提供する。 Specifically, in the present invention, it is a composite electrode which is a sintered body containing an electrode active material and a solid electrolyte, and the composite electrode is a sheet-like electrode active material containing an oxide-based electrode active material. Layer and sheet-like solid electrolyte layer containing an oxide-based solid electrolyte are alternately arranged, and the width of the electrode active material layer is 10 nm or more and 20 μm or less, and the width of the solid electrolyte layer is Provided is a composite electrode having a thickness of 10 nm or more and 20 μm or less, wherein the solid electrolyte layer penetrates the composite electrode.
 また、本発明では、上記複合体電極を製造する方法であって、電極活物質又はその前駆体を含む層と、固体電解質又はその前駆体を含む層とが交互に積層した積層体を得る積層工程と、前記積層体を焼結し、電極活物質層と固体電解質層が交互に積層した積層焼結体を得る焼結工程と、を有することを特徴とする複合体電極の製造方法も提供する。 Further, in the present invention, a method of manufacturing the composite electrode is a method of obtaining a laminate in which a layer containing an electrode active material or a precursor thereof and a layer containing a solid electrolyte or a precursor thereof are alternately laminated. Also provided is a method for producing a composite electrode, comprising the steps of: sintering the laminate; and obtaining a laminated sintered body in which an electrode active material layer and a solid electrolyte layer are alternately laminated. Do.
 本発明により、リチウムイオン伝導パスの形成に寄与していない固体電解質を削減することで、電極に含まれる多くの電極活物質を充放電に寄与させ、従来に比べてより理論容量に近い容量を持つ電極を提供することができる。 According to the present invention, by reducing the solid electrolyte not contributing to the formation of the lithium ion conduction path, many electrode active materials contained in the electrode are contributed to charge and discharge, and a capacity closer to the theoretical capacity than in the past is realized. An electrode can be provided.
本発明の複合体電極10の模式図。FIG. 1 is a schematic view of a composite electrode 10 of the present invention. 本発明の複合体電極21の模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the composite electrode 21 of this invention. 本発明の複合体電極10を用いた全固体リチウムイオン電池の模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram of the all-solid-state lithium ion battery using the composite electrode 10 of this invention. (a)、(b)本発明の複合体電極10の製造過程の模式図。(A), (b) The schematic diagram of the manufacture process of the composite electrode 10 of this invention. 本発明の複合体電極51の模式図。The schematic diagram of the composite electrode 51 of this invention. (a)、(b)本発明の複合体電極51の製造過程の模式図。(A), (b) The schematic diagram of the manufacture process of the composite electrode 51 of this invention. 本発明のリチウムイオン電池101の模式図。FIG. 1 is a schematic view of a lithium ion battery 101 of the present invention. (a)~(d)本発明のリチウムイオン電池101の製造過程の模式図。(A)-(d) is a schematic view of the manufacturing process of the lithium ion battery 101 of the present invention. 本発明の組電池151の模式図。The schematic diagram of the assembled battery 151 of this invention. 本発明の組電池161の模式図。The schematic diagram of the assembled battery 161 of this invention. 本発明の組電池181の模式図。The schematic diagram of the assembled battery 181 of this invention. 実施例1のLTO仮焼成体粒子の製造フローを示す図。FIG. 6 is a diagram showing a production flow of LTO calcined particles in Example 1; 実施例1のLLTO仮焼成体粒子の製造フローを示す図。FIG. 6 is a diagram showing a production flow of LLTO pre-sintered body particles of Example 1. 実施例1の仮焼成体粒子から配列焼結体までの製造フローを示す図。FIG. 6 is a diagram showing a production flow from temporary firing body particles to an arrayed sintered body of Example 1. 実施例1の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 1. FIG. (a)、(b)実施例1の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 1. 実施例2の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 2. FIG. (a)、(b)実施例2の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 2. 実施例3の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 3. FIG. (a)、(b)実施例3の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 3. 実施例4の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 4. FIG. (a)、(b)実施例4の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 4. 実施例4の積層焼結体の(a)断面電子顕微鏡写真と(b)~(d)EDXマッピング。(A) Cross-sectional electron micrograph of the laminated sintered body of Example 4 and (b) to (d) EDX mapping. 実施例5の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 5. FIG. (a)、(b)実施例5の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 5. 実施例6の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 6. FIG. (a)、(b)実施例6の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 6. 実施例7の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 7. FIG. (a)、(b)実施例7の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 7. 実施例8の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 8. FIG. (a)、(b)実施例8の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 8. 実施例9の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 9. FIG. (a)、(b)実施例9の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 9. 実施例10の積層焼結体を粉砕した粉末XRD結果を示す図。The figure which shows the powder XRD result which grind | pulverized the laminated sintered compact of Example 10. FIG. (a)、(b)実施例10の積層焼結体の断面電子顕微鏡写真。(A), (b) Cross-sectional electron micrograph of laminated sintered body of Example 10. 90℃での実施例1、2、4、比較例1、3の初回充放電曲線。Initial charge and discharge curves of Examples 1, 2 and 4 and Comparative Examples 1 and 3 at 90 ° C. 90℃での実施例3、比較例2、4の初回充放電曲線。Initial charge and discharge curves of Example 3 and Comparative Examples 2 and 4 at 90 ° C. 60℃での実施例2、4~6の初回充放電曲線Initial charge and discharge curves of Examples 2 and 4 to 6 at 60 ° C. 60℃での実施例7~10の初回充放電曲線Initial charge and discharge curves of Examples 7 to 10 at 60 ° C.
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail. However, the description of the constituent requirements described below is an example of the embodiment of the present invention, and the present invention is not limited to these specific contents. Various modifications may be made within the scope of the present invention.
<複合体電極>
 図1に示すように、本発明の複合体電極10は、電極活物質と固体電解質を含む、焼結体である複合体電極であって、複合体電極10中に、図に示すように、複合体電極の厚み方向に貫通する固体電解質層13を有することを特徴とする。
<Composite electrode>
As shown in FIG. 1, the composite electrode 10 of the present invention is a composite electrode which is a sintered body containing an electrode active material and a solid electrolyte, and in the composite electrode 10, as shown in the figure, It is characterized by having a solid electrolyte layer 13 penetrating in the thickness direction of the composite electrode.
 特に、図1に示すように、複合体電極10が平板状であり、複合体電極の厚み方向15に平行なシート状の電極活物質層11と、複合体電極の厚み方向15に平行なシート状の固体電解質層13が交互に並ぶ交互配列体であることが好ましい。また、図1に示すように、固体電解質層13が、複合体電極10を、複合体電極10の厚み方向に貫通していることが好ましい。固体電解質13が複合体電極10を貫通することで、電極活物質層11の近くに固体電解質層13を配置することができ、リチウムイオン伝導パスを複合体電極10の全体に行き渡らせる事ができる。また、固体電解質13が複合体電極10を貫通することで、複合体電極10の表面にまでリチウムイオン伝導パスを届かせることができ、後述するセパレータ層35から固体電解質層13に容易にリチウムイオンを移動させることができる。なお、図1では電極活物質層11と固体電解質層13の交互配列体の両端が電極活物質層11となっているが、端部は電極活物質層11に限られず、固体電解質層13が端部となってもよい。本実施形態における他の複合体電極についても同様である。 In particular, as shown in FIG. 1, the composite electrode 10 has a flat plate shape, and the sheet-like electrode active material layer 11 parallel to the thickness direction 15 of the composite electrode and the sheet parallel to the thickness direction 15 of the composite electrode It is preferable that the solid electrolyte layers 13 in the shape of a circle are alternately arranged. In addition, as shown in FIG. 1, it is preferable that the solid electrolyte layer 13 penetrate the composite electrode 10 in the thickness direction of the composite electrode 10. When solid electrolyte 13 penetrates composite electrode 10, solid electrolyte layer 13 can be disposed near electrode active material layer 11, and the lithium ion conduction path can be spread over the entire composite electrode 10. . In addition, since the solid electrolyte 13 penetrates the composite electrode 10, the lithium ion conduction path can be made to reach the surface of the composite electrode 10, and the lithium ion can be easily from the separator layer 35 described later to the solid electrolyte layer 13. Can be moved. Although both ends of the alternate arrangement of the electrode active material layer 11 and the solid electrolyte layer 13 are the electrode active material layer 11 in FIG. 1, the end is not limited to the electrode active material layer 11, and the solid electrolyte layer 13 is It may be an end. The same applies to the other composite electrodes in the present embodiment.
 複合体電極10の厚さCが、10μm以上3mm以下であることが好ましく、15μm以上1mm以下であることがより好ましく、20μm以上500μm以下であることが特に好ましい。但し、厚さCが100μm以上であってもよい。なお、複合体電極10の奥行Yについては、所望とするデバイスの大きさ、電池容量に依存し、適宜決定できる。 The thickness C of the composite electrode 10 is preferably 10 μm or more and 3 mm or less, more preferably 15 μm or more and 1 mm or less, and particularly preferably 20 μm or more and 500 μm or less. However, the thickness C may be 100 μm or more. The depth Y of the composite electrode 10 depends on the desired device size and battery capacity, and can be determined appropriately.
 複合体電極は緻密であることが好ましい。緻密さの度合いは空隙率で数値化できる。空隙率の測定法の一例として、密度を利用する方法が挙げられる。
 空隙率(%)=100-(実密度/理論密度)×100
 実密度の測定法としては、重量と外形寸法から算出する寸法法や、アルキメデス法などを用いることができる。理論密度はデータベースを参照したり、組成と結晶構造から算出したりすることができる。
 空隙率は40%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることが特に好ましい。空隙率としては、アルキメデス法で測定した実密度に基づいて上記式により算出した空隙率、即ち、アルキメデス法で算出する空隙率が例示される。
The composite electrode is preferably compact. The degree of compactness can be quantified by the porosity. As an example of the measuring method of the porosity, the method of using a density is mentioned.
Porosity (%) = 100-(actual density / theoretical density) x 100
As a method of measuring the actual density, a dimension method calculated from weight and outer dimensions, Archimedes method, etc. can be used. The theoretical density can be referred to a database or calculated from the composition and crystal structure.
The porosity is preferably 40% or less, more preferably 30% or less, and particularly preferably 25% or less. The porosity is exemplified by the porosity calculated by the above equation based on the actual density measured by the Archimedes method, that is, the porosity calculated by the Archimedes method.
 複合体電極の容量密度とパワー密度は共に大きい方が好ましい。容量密度は活物質の占める割合を高くすることで大きくすることができる。パワー密度は電子とリチウムイオンの伝導性を高くすることで大きくすることができる。パワー密度は複合体電極中の固体電解質や導電助剤の割合を高くすることで大きくすることができる。本発明では電極活物質層と固体電解質層とを効率よく配置することで容量密度とパワー密度の両立を実現できるが、なお容量密度とパワー密度にはトレードオフの関係があるため、電池の用途に応じて割合を決めることができる。なお、容量密度とは、電池の重量または容積あたりの電力容量で、パワー密度とは、電池の重量または容積あたりに取り出すことのできる最大の電力量である。 Both the capacity density and the power density of the composite electrode are preferably large. The capacity density can be increased by increasing the proportion of the active material. The power density can be increased by increasing the conductivity of electrons and lithium ions. The power density can be increased by increasing the proportion of the solid electrolyte and the conductive additive in the composite electrode. In the present invention, coexistence of capacity density and power density can be realized by arranging the electrode active material layer and the solid electrolyte layer efficiently. However, since there is a trade-off between capacity density and power density, the use of the battery You can decide the proportion according to. The capacity density is the power capacity per weight or volume of the battery, and the power density is the maximum amount of power that can be taken out per weight or volume of the battery.
 複合体電極10の初期充電容量及び/又は初期放電容量が10mAh/g以上であることが好ましく、30mAh/g以上であることがより好ましく、50mAh/g以上であることが特に好ましい。上記の複合体電極10の初期充電容量及び初期放電容量は、複合体電極10を正極とし、ドライポリマー電解質などをセパレータ層とし、金属リチウムを負極として、正極、セパレータ層、負極をこの順に積層した全固体型セルを用い、温度60℃、0.002mA/cmのレートで充放電試験をすることで評価することができる。上記の容量は、全固体型のセルの容量を複合体電極の質量で除して得られる、複合体電極の単位質量当たりの容量を意味する。 The initial charge capacity and / or the initial discharge capacity of the composite electrode 10 is preferably 10 mAh / g or more, more preferably 30 mAh / g or more, and particularly preferably 50 mAh / g or more. The initial charge capacity and the initial discharge capacity of the composite electrode 10 were obtained by laminating the positive electrode, the separator layer, and the negative electrode in this order using the composite electrode 10 as a positive electrode, a dry polymer electrolyte or the like as a separator layer, and metallic lithium as a negative electrode. It can be evaluated by performing a charge and discharge test at a temperature of 60 ° C. and a rate of 0.002 mA / cm 2 using an all solid type cell. The above capacity means the capacity per unit mass of the composite electrode obtained by dividing the capacity of the all solid cell by the mass of the composite electrode.
 図1に示す電極活物質層11の幅Bが、10nm以上20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましく、6μm以下であることが特に好ましい。電極活物質層11の幅Bが小さすぎる場合は、複合体電極10に含まれる電極活物質の量が少なくなる可能性がある。また、電極活物質層11の幅Bが大きすぎる場合は、電極活物質層11の中心部の電極活物質にリチウムイオンが伝導しにくくなる可能性がある。特に、電極活物質層の幅Bを10μm以下とすることで、電極中のより多くの電極活物質が充放電に寄与できる。 The width B of the electrode active material layer 11 shown in FIG. 1 is preferably 10 nm or more and 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, and particularly preferably 6 μm or less . If the width B of the electrode active material layer 11 is too small, the amount of the electrode active material contained in the composite electrode 10 may be small. When the width B of the electrode active material layer 11 is too large, there is a possibility that lithium ions are less likely to conduct to the electrode active material at the center of the electrode active material layer 11. In particular, by setting the width B of the electrode active material layer to 10 μm or less, more electrode active materials in the electrode can contribute to charge and discharge.
 また、固体電解質層13の幅Aが、10nm以上20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが特に好ましい。固体電解質層13の幅Aが小さすぎる場合は、層の断面積の減少や、層を構成する粒子の結晶性の低下や、固体電解質層13と電極活物質層11との界面接合部での抵抗増加などのためにリチウムイオンの伝導性を十分に確保しにくくなる。また、固体電解質層13の幅Aが大きすぎると、複合体電極10に含まれる電極活物質の割合が少なくなり、複合体電極10の容量密度が低下する。 The width A of the solid electrolyte layer 13 is preferably 10 nm or more and 20 μm or less, more preferably 10 μm or less, and particularly preferably 5 μm or less. When the width A of the solid electrolyte layer 13 is too small, the cross-sectional area of the layer is reduced, the crystallinity of the particles constituting the layer is reduced, or the interface between the solid electrolyte layer 13 and the electrode active material layer 11 is It becomes difficult to ensure sufficient lithium ion conductivity due to resistance increase and the like. When the width A of the solid electrolyte layer 13 is too large, the proportion of the electrode active material contained in the composite electrode 10 decreases, and the capacity density of the composite electrode 10 decreases.
 また、電極活物質層11と固体電解質層13は、必ずしも平坦な層である必要は無く、湾曲していてもよい。また、部分的な欠陥があって、隣接する電極活物質層11同士や隣接する固体電解質層13同士が接触していても良い。 The electrode active material layer 11 and the solid electrolyte layer 13 do not necessarily have to be flat layers, and may be curved. In addition, there may be partial defects, and adjacent electrode active material layers 11 or adjacent solid electrolyte layers 13 may be in contact with each other.
 電極活物質層11と固体電解質層13は、複合体電極の厚み方向15に平行であることが好ましいが、最大で45度程度まで傾いていてもよい。 The electrode active material layer 11 and the solid electrolyte layer 13 are preferably parallel to the thickness direction 15 of the composite electrode, but may be inclined up to about 45 degrees.
 複合体電極10の厚さCを、固体電解質層13の幅A又は電極活物質層11の幅Bで除したアスペクト比(C/B又はC/A)が、10以上であることが好ましく、50以上であることがより好ましく、100以上であることが特に好ましい。複合体電極10の厚さCを一定とした場合、固体電解質層13の幅Aを薄くする程(C/Aが大きくなる程)、固体電解質層13の体積を減らして電極活物質層11の体積を増やすことができて複合体電極10の容量密度を高めることができる。また、電極活物質層11の幅Bを薄くする程(C/Bが大きくなる程)、電極活物質層11が薄いため、電極活物質層11の中心部までリチウムイオンを伝導することができる。 The aspect ratio (C / B or C / A) obtained by dividing the thickness C of the composite electrode 10 by the width A of the solid electrolyte layer 13 or the width B of the electrode active material layer 11 is preferably 10 or more. It is more preferably 50 or more, and particularly preferably 100 or more. When the thickness C of the composite electrode 10 is constant, the volume of the solid electrolyte layer 13 is reduced by decreasing the width A of the solid electrolyte layer 13 (as C / A increases). The volume can be increased to increase the capacity density of the composite electrode 10. In addition, as the width B of the electrode active material layer 11 is reduced (as C / B increases), the electrode active material layer 11 is thinner, so lithium ions can be conducted to the central portion of the electrode active material layer 11 .
 また、積層する層の数、および電極活物質層11と固体電解質層13の幅と積層する層の数で決まる複合体電極10の幅Xについては、所望とするデバイスの大きさ、電池容量および機械的強度などを勘案して、適宜決定できる。 Further, with regard to the number of layers to be laminated, and the width X of the composite electrode 10 determined by the widths of the electrode active material layer 11 and the solid electrolyte layer 13 and the number of layers to be laminated, the desired device size, battery capacity and It can be determined appropriately in consideration of mechanical strength and the like.
 複合体電極10中に含まれる電極活物質と固体電解質の体積比は5:5以上9.5:0.5以下であることが好ましい。電極活物質の量が多い方が、複合体電極10の容量が増えるため好ましい。 The volume ratio of the electrode active material to the solid electrolyte contained in the composite electrode 10 is preferably 5: 5 or more and 9.5: 0.5 or less. A larger amount of the electrode active material is preferable because the capacity of the composite electrode 10 is increased.
 電極活物質層11は、電極活物質を含む層である。電極活物質としては、酸化物系電極活物質、炭素材料、その他の材料が挙げられる。酸化物系電極活物質としては、スピネル型又はラムズデライト型のチタン酸リチウム(チタン酸リチウムを構成する元素の一部が別の元素に置き換わっていてもよく、別の元素をドーピングしていてもよい。別の元素としては、Mg、Cr、Zn、Co、Fe、Ni、Mn、Al、Zr、Nb、Sn、Mo、Wが挙げられ、具体的には、LiMg1/2Ti3/2、LiCo1/2Ti3/2、LiZn1/2Ti3/2、LiCrTiO、LiFeTiOなどが挙げられる。構成する元素の一部を別の元素に置換する場合や、別の元素をドープする場合は、製造時にその別の元素を添加することが考えられる。他の材料についても同様である。)、遷移金属酸化物(例えば、酸化チタン、酸化ニオブ、酸化タングステン、酸化モリブデン等)、リチウム遷移金属酸化物(例えば、層状岩塩型のコバルト酸リチウム、層状岩塩型のニッケル酸リチウム、NCMと呼ばれる層状岩塩型の三元系Li(NiCoMn)O(x+y+z=1)、NCAと呼ばれる層状岩塩型の三元系Li(NiCoAl)O(x+y+z=1)、スピネル型のマンガン酸リチウム、スピネル型のマンガン酸リチウムニッケル(LiMn1.5Ni0.5)、オリビン型のリン酸鉄リチウムやリン酸マンガンリチウム等のLiMPO(M=Fe、Mn、Co、Ni)等)、NASICON構造のLi(POが挙げられる。また、炭素材料としては、人造黒鉛、天然黒鉛、易黒鉛化炭素、(002)面の面間隔が0.37nm以上の難黒鉛化炭素(ハードカーボン)、(002)面の面間隔が0.34nm以下の黒鉛等が挙げられる。その他の材料としては、単体のケイ素、ケイ素化合物、単体の硫黄、金属硫化物(例えば、LiS、SnS、NiS等)、金属リン化物(例えば、Ni、NiP等)、LiPS、が挙げられる。 The electrode active material layer 11 is a layer containing an electrode active material. Examples of the electrode active material include oxide-based electrode active materials, carbon materials, and other materials. As the oxide-based electrode active material, a spinel type or ramsdellite type lithium titanate (a part of elements constituting lithium titanate may be replaced with another element, even if another element is doped Other elements include Mg, Cr, Zn, Co, Fe, Ni, Mn, Al, Zr, Nb, Sn, Mo, and W. Specifically, LiMg 1/2 Ti 3/2 Examples include O 4 , LiCo 1/2 Ti 3/2 O 4 , LiZn 1/2 Ti 3/2 O 4 , LiCrTiO 4 , LiFeTiO 4, etc. When one of the constituent elements is replaced with another element, When doping with another element, it is conceivable to add the other element at the time of production. The same applies to other materials), transition metal oxides (eg, titanium oxide, niobium oxide, oxide) Tungsten, molybdenum oxide, etc.), lithium transition metal oxides (e.g., lithium cobalt oxide of a layered rock-salt, lithium nickelate of layered rock-salt, the layered rock salt type called NCM ternary Li (Ni x Co y Mn z ) O 2 (x + y + z = 1), ternary layered rock-salt type called NCA Li (Ni x Co y Al z) O 2 (x + y + z = 1), spinel lithium manganate, spinel lithium manganate nickel ( LiMn 1.5 Ni 0.5 O 4 ), LiMPO 4 (M = Fe, Mn, Co, Ni) such as lithium olivine type lithium phosphate or lithium manganese phosphate, etc., Li 3 V 2 with NASICON structure PO 4 ) 3 is mentioned. Moreover, as a carbon material, artificial graphite, natural graphite, graphitizable carbon, non-graphitizable carbon (hard carbon) having a spacing of (002) plane of 0.37 nm or more, and a spacing of (002) plane of 0. 0. Graphite etc. of 34 nm or less are mentioned. Other materials include elemental silicon, silicon compounds, elemental sulfur, metal sulfides (eg, Li 2 S, SnS, NiS, etc.), metal phosphides (eg, Ni 5 P 4 , NiP 2 etc.), Li 3 PS 4 can be mentioned.
 また、電極活物質層11は、電極活物質以外に、焼結助剤や導電助剤などが含まれていてもよい。焼結助剤としてはホウ酸塩やケイ酸塩およびリン酸塩、これらの混合物等が挙げられる。また、導電助剤としては金、銀、銅、ニッケル等の金属や、酸化スズ、酸化亜鉛、酸化チタン、酸化インジウムスズ等の導電性酸化物や、炭素等の材料を、粒子や繊維、ロッド、チューブ等の形態で用いることができる。炭素系の導電助剤としては、炭素繊維、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン、グラファイト等が挙げられる。 In addition to the electrode active material, the electrode active material layer 11 may contain a sintering aid, a conductive aid, and the like. The sintering aid includes borate, silicate and phosphate, and mixtures thereof. Moreover, as a conductive support agent, metals such as gold, silver, copper and nickel, conductive oxides such as tin oxide, zinc oxide, titanium oxide and indium tin oxide, materials such as carbon, particles, fibers and rods , Tubes, etc. can be used. Examples of carbon-based conductive assistants include carbon fibers, carbon black, carbon nanotubes, carbon nanofibers, graphene, graphite and the like.
 固体電解質層13は、固体電解質を含む層である。固体電解質としては、酸化物系固体電解質、硫化物系固体電解質、ポリマー系固体電解質が挙げられる。 The solid electrolyte layer 13 is a layer containing a solid electrolyte. Examples of the solid electrolyte include oxide-based solid electrolytes, sulfide-based solid electrolytes, and polymer-based solid electrolytes.
 酸化物系固体電解質としては、リチウムを含むペロブスカイト型酸化物、リチウムを含むガーネット型酸化物、リン酸リチウム(LiPO)、ニオブ酸リチウム(LiNbO)、NASICON構造のLAGP(Li1+xAlGe2-x(PO(0≦x≦1))、NASICON構造のLATP(Li1+xAlTi2-x(PO(0≦x≦1))、NASICON構造のLZP(Li1+4xZr2―x(PO(0≦x≦0.4、LZPの一部の金属元素が別の金属元素で置き換わっていてもよく、別の金属元素をドーピングしていてもよい。別の金属元素としては、Na、Sr、Ca、Mg、La、Y、Sc、Ce、In、Al、Ge、Ti、Vなどが挙げられる。))等が挙げられる。 As oxide-based solid electrolytes, perovskite-type oxides containing lithium, garnet-type oxides containing lithium, lithium phosphate (Li 3 PO 4 ), lithium niobate (LiNbO 3 ), and LAGP with NASICON structure (Li 1 + x Al) x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 1), LATP with NASICON structure (Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≦ x ≦ 1)), LZP structure with NASICON structure (Li 1 + 4x Zr 2-x (PO 4 ) 3 (0 ≦ x ≦ 0.4, part of LZP metal elements may be replaced by another metal element, even if other metal elements are doped As another metal element, Na, Sr, Ca, Mg, La, Y, Sc, Ce, In, Al, Ge, Ti, V, etc. may be mentioned. Be
 リチウムを含むペロブスカイト型酸化物は、ペロブスカイト型結晶構造を持つABOで表される酸化物であり、Aサイトが、La、Sr、Ba、Na、Ca及びNdよりなる群から選択される少なくとも1種の元素と、Liを含み、Bサイトが、Ti、Ta、Cr、Fe、Co、Ga及びNbよりなる群から選択される少なくとも1種の元素を含むことが好ましい。具体的には、ペロブスカイト型酸化物として、チタン酸リチウムランタンLi3xLa2/3-xTiO(0≦x≦1/6、LLTOとも呼ばれる)、ニオブ酸リチウムランタン(LiLa(1-x)/3NbO)(0≦x≦1)、などが挙げられる。なお、チタン酸リチウムランタンを構成する元素の一部が別の元素に置き換わっていてもよく、別の元素をドーピングしていてもよい。別の元素としては、Na、K、Rb、Ag、Tl、Mg、Sr、Ca、Ba、Nb、Ta、W、Ru、Cr、Mn、Fe、Co、Al、Ga、Si、Ge、Zr、Hf、Pr、Nd、Sm、Gd、Dy、Y、Eu、Tbが挙げられ、具体的には、La(2/3)-xSrLiTiO、LiLa2/3Ti1-xAlなどが挙げられる。
 ガーネット型酸化物としては、LiLaZr12、LiLaNb12、LiLaTa12、LiLaBaTa12などが挙げられる。
The lithium-containing perovskite oxide is an oxide represented by ABO 3 having a perovskite crystal structure, and at least one A site is selected from the group consisting of La, Sr, Ba, Na, Ca and Nd. It is preferable that the element contains a species element and Li, and the B site contains at least one element selected from the group consisting of Ti, Ta, Cr, Fe, Co, Ga and Nb. Specifically, as perovskite type oxides, lithium lanthanum titanate Li 3x La 2/3 -x TiO 3 (0 ≦ x ≦ 1/6, also called LLTO), lithium lanthanum niobate (Li x La (1- x) / 3 NbO 3 ) (0 ≦ x ≦ 1), and the like. Note that part of the elements constituting lithium lanthanum titanate may be replaced with another element, or another element may be doped. Other elements include Na, K, Rb, Ag, Tl, Mg, Sr, Ca, Ba, Nb, Ta, Ru, Cr, Mn, Fe, Co, Al, Ga, Si, Ge, Zr, hf, Pr, Nd, Sm, Gd, Dy, Y, Eu, Tb and the like, specifically, La (2/3) -x Sr x Li x TiO 3, Li x La 2/3 Ti 1- x Al x O 3 and the like.
Examples of garnet-type oxides include Li 7 La 3 Zr 2 O 12 , Li 5 La 3 Nb 2 O 12 , Li 5 La 3 Ta 2 O 12 , and Li 6 La 2 BaTa 2 O 12 .
 硫化物系固体電解質としては、ガラス系硫化物(例えば、LiS-P、LiS-SiS-P-LiI等)、アルジロダイト型硫化物(例えば、LiPS、LiPSCl、LiPSBr、LiPSI等)、チオリシコン系硫化物(例えば、Li4-xGe1-x(0≦x≦1)等)、Li11、Li10GeP12(LGPS)、Li9.54Si1.741.4411.7Cl0.3(LiSiPSCl)、Li9.612、Li-Sn-Si-P-S(LSSPS)系等が挙げられる。ポリマー系固体電解質としては、ポリエチレンオキシド等のポリマー中にリチウム塩を含有するドライポリマー電解質層等が挙げられる。 As the sulfide-based solid electrolyte, glass-based sulfides (for example, Li 2 S-P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 -LiI, etc.), algirodite-type sulfides (for example, Li 7 PS) 6 , Li 6 PS 5 Cl, Li 6 PS 5 Br, Li 6 PS 5 I, etc., thiolysicon based sulfides (eg, Li 4-x Ge 1-x P x S 4 (0 ≦ x ≦ 1 etc)) , Li 7 P 3 S 11 , Li 10 GeP 2 S 12 (LGPS), Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 (LiSiPSCl), Li 9.6 P 3 S 12 And Li-Sn-Si-P-S (LSSPS) system. As a polymer type solid electrolyte, the dry polymer electrolyte layer etc. which contain lithium salt in polymers, such as a polyethylene oxide, are mentioned.
 また、固体電解質層13は、固体電解質以外に、焼結助剤や導電助剤などが含まれていてもよい。焼結助剤としてはホウ酸塩やケイ酸塩およびリン酸塩、これらの混合物等、また電極活物質層に用いる材料が挙げられる。また、導電助剤としては金、銀、銅、ニッケル等の金属や、酸化スズ、酸化亜鉛、酸化チタン、酸化インジウムスズ等の導電性酸化物や、炭素等の材料を、粒子や繊維、ロッド、チューブ等の形態で用いることができる。炭素系の導電助剤としては、炭素繊維、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、グラフェン、グラファイト等が挙げられる。 In addition to the solid electrolyte, the solid electrolyte layer 13 may contain a sintering aid, a conductive aid, and the like. The sintering aid may, for example, be a borate, a silicate, a phosphate, a mixture thereof or the like, or a material used for the electrode active material layer. Moreover, as a conductive support agent, metals such as gold, silver, copper and nickel, conductive oxides such as tin oxide, zinc oxide, titanium oxide and indium tin oxide, materials such as carbon, particles, fibers and rods , Tubes, etc. can be used. Examples of carbon-based conductive assistants include carbon fibers, carbon black, carbon nanotubes, carbon nanofibers, graphene, graphite and the like.
 固体電解質層に含まれる固体電解質の体積は、固体電解質層の体積の40%以上であることが好ましく、50%以上であることが更に好ましく、固体電解質100%の緻密体であっても良い。固体電解質層に含まれる固体電解質の体積が高い方が、複合体電極の厚み方向のリチウムイオンの伝導経路が形成されやすい。 The volume of the solid electrolyte contained in the solid electrolyte layer is preferably 40% or more of the volume of the solid electrolyte layer, more preferably 50% or more, and it may be a dense body of 100% solid electrolyte. The higher the volume of the solid electrolyte contained in the solid electrolyte layer, the easier it is to form the lithium ion conduction path in the thickness direction of the composite electrode.
 また、固体電解質層を、固体電解質を主体とする部分と電極活物質を主体とする部分に分割するようなパターンを形成しても良い。このとき、図5の電極複合体51のように、上面から見ると海島構造となるような、島状の固体電解質を主体とする部分57が、厚み方向に、海状の電極活物質を主体とする部分55を貫通するようにパターンを形成することで、リチウムイオンの伝導経路を確保しつつ電極複合体の容量を高めることができる。このようなパターンの具体的な製造例としては、図6(a)のように、固体電解質層53を積層する際に、帯状の固体電解質を主体とする部分57と帯状の電極活物質を主体とする部分55とを交互に配置した縞模様状の構造をつくるようにして、図6(b)のような積層焼結体61を作成し、積層焼結体61を裁断した結果、これらの帯状の部分の長辺方向を電極複合体51の厚み方向とすることによって、帯状の固体電解質を主体とする部分57が厚み方向に電極活物質層11及び電極活物質部分55を貫通するように配置できる。 Alternatively, a pattern may be formed in which the solid electrolyte layer is divided into a portion mainly composed of the solid electrolyte and a portion mainly composed of the electrode active material. At this time, as in the electrode complex 51 of FIG. 5, the portion 57 mainly composed of an island-like solid electrolyte that forms a sea-island structure when viewed from above is mainly composed of a sea-like electrode active material in the thickness direction. By forming a pattern so as to penetrate the portion 55, it is possible to increase the capacity of the electrode complex while securing the lithium ion conduction path. As a specific production example of such a pattern, as shown in FIG. 6A, when laminating the solid electrolyte layer 53, the portion 57 mainly composed of a strip-like solid electrolyte and the strip-like electrode active material are mainly composed. As shown in FIG. 6 (b), a laminated sintered body 61 is prepared as shown in FIG. 6 (b), and these laminated sintered bodies 61 are cut. By setting the long side direction of the strip-like portion as the thickness direction of the electrode complex 51, the portion 57 mainly composed of the strip-like solid electrolyte penetrates the electrode active material layer 11 and the electrode active material portion 55 in the thickness direction. It can be arranged.
 本発明に於いては電極活物質と固体電解質の材料は特に限定されないが、安全性、耐熱性の観点からは酸化物を含んでいることが好ましく、酸化物を主体とする場合、電極活物質層11又は固体電解質層13における酸化物の重量分率が60%以上であることが好ましく、70%以上であることが更に好ましく、80%以上であることが特に好ましい。また、焼結により得られた複合体電極は、緻密な焼結体であるため、複合体電極中に酸化物が占める体積分率は30%以上であることが好ましく、50%以上であることが更に好ましく、70%以上であることが特に好ましい。また、焼結によって複合体を形成することを想定すると、電極活物質層11と固体電解質層13が共に酸化物を含んでいることが望ましい。 In the present invention, the materials of the electrode active material and the solid electrolyte are not particularly limited, but from the viewpoints of safety and heat resistance, it is preferable to contain an oxide, and in the case of mainly oxide, the electrode active material The weight fraction of the oxide in the layer 11 or the solid electrolyte layer 13 is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more. Further, since the composite electrode obtained by sintering is a dense sintered body, the volume percentage occupied by the oxide in the composite electrode is preferably 30% or more, and is 50% or more. Is more preferable, and 70% or more is particularly preferable. Further, assuming that a composite is formed by sintering, it is preferable that both the electrode active material layer 11 and the solid electrolyte layer 13 contain an oxide.
 さらに、本発明の複合体電極として、図2に示すような金属層23を有する複合体電極21であってもよい。金属層23の位置は、特に限定されないが、固体電解質層13-電極活物質層25-金属層23-電極活物質層25-固体電解質層13のように、金属層23は、固体電解質層13と平行で、電極活物質層25の中心にあることが好ましい。金属層23により、複合体電極21内の電子伝導性を高めることができ、特に固体電解質層13と平行であるため、電極活物質層25と集電体層の間の電子の移動を容易にすることができる。金属層23の幅Dは、好ましくは1nm以上10μm以下であり、その材質としては、金、銀、銅、ニッケル、アルミニウム、ニオブ、これらの2種以上の合金などが挙げられる。また2つ以上の金属を用い金属層を形成してもよい。金属層23は、リチウムイオンを伝導できないため、図2のように金属層23を二つの電極活物質層25で挟む場合、電極活物質層25の幅Eは、金属層23を有しない場合の電極活物質層11の幅Bの半分であることが好ましい。 Furthermore, a composite electrode 21 having a metal layer 23 as shown in FIG. 2 may be used as the composite electrode of the present invention. The position of the metal layer 23 is not particularly limited, but as in the solid electrolyte layer 13-electrode active material layer 25-metal layer 23-electrode active material layer 25-solid electrolyte layer 13, the metal layer 23 is a solid electrolyte layer 13. Parallel to the center of the electrode active material layer 25. The electron conductivity in the composite electrode 21 can be enhanced by the metal layer 23, and in particular, parallel to the solid electrolyte layer 13, it is easy to move electrons between the electrode active material layer 25 and the current collector layer. can do. The width D of the metal layer 23 is preferably 1 nm or more and 10 μm or less, and as the material thereof, gold, silver, copper, nickel, aluminum, niobium, an alloy of two or more of these, and the like can be mentioned. Alternatively, two or more metals may be used to form the metal layer. Since the metal layer 23 can not conduct lithium ions, when the metal layer 23 is sandwiched between two electrode active material layers 25 as shown in FIG. 2, the width E of the electrode active material layer 25 does not have the metal layer 23. It is preferable that the width is half the width B of the electrode active material layer 11.
<リチウムイオン電池>
 本発明のリチウムイオン電池は、リチウムイオンを吸蔵放出する負極層と、リチウムイオンを伝導するセパレータ層と、リチウムイオンを吸蔵放出する正極層とをこの順に積層しており、負極層又は正極層として本発明の複合体電極を使用することを特徴とする。
Lithium-ion battery
In the lithium ion battery of the present invention, a negative electrode layer for absorbing and desorbing lithium ions, a separator layer for conducting lithium ions, and a positive electrode layer for absorbing and desorbing lithium ions are laminated in this order as a negative electrode layer or a positive electrode layer. It is characterized by using the composite electrode of the present invention.
 図3は、本発明のリチウムイオン電池31を示す図であり、複合体電極10とセパレータ層35と、対極層33が順に積層している。さらに、通常は、図示しない金属電極が複合電極層10及び対極層33に設けられる。複合体電極10と対極層33は、それぞれに含まれる電極活物質の電圧によって、正極と負極が変化し、複合体電極10が正極の場合は対極層33が負極となり、複合体電極10が負極の場合は対極層33が正極となる。 FIG. 3 is a view showing the lithium ion battery 31 of the present invention, in which the composite electrode 10, the separator layer 35 and the counter electrode layer 33 are laminated in order. Furthermore, normally, metal electrodes (not shown) are provided on the composite electrode layer 10 and the counter electrode layer 33. The positive electrode and the negative electrode change depending on the voltage of the electrode active material contained in each of the composite electrode 10 and the counter electrode layer 33, and when the composite electrode 10 is a positive electrode, the counter electrode layer 33 becomes a negative electrode, and the composite electrode 10 is a negative electrode. In the case of the above, the counter electrode layer 33 is a positive electrode.
 例えば、複合体電極に、電極活物質として、スピネル型又はラムズデライト型のチタン酸リチウムを含む場合、チタン酸リチウムは、リチウムイオン二次電池の負極活物質として用いられる場合が多いが、金属リチウムやリチウム合金等、充放電電位がチタン酸リチウムに対して相対的に卑な材料を対極(負極)に用いれば、正極活物質として用いることができる。また、本発明の複合体電極を、金属リチウムやリチウム合金等を対極として、一次電池の電極として用いることもできる。なお、本発明で、リチウムイオン電池とは、一次電池と二次電池の両方を含み、更に、金属リチウムやリチウム合金を電極として用いる電池だけでなく、正極及び負極間でリチウムイオンが移動する電気化学デバイス全体を含む。 For example, when the composite electrode includes spinel type or ramsdellite type lithium titanate as an electrode active material, lithium titanate is often used as a negative electrode active material of a lithium ion secondary battery, but metal lithium When a material having a charge / discharge potential relatively lower than that of lithium titanate, such as lithium alloy, is used for the counter electrode (negative electrode), it can be used as a positive electrode active material. In addition, the composite electrode of the present invention can be used as an electrode of a primary battery by using metal lithium or a lithium alloy as a counter electrode. In the present invention, a lithium ion battery includes both a primary battery and a secondary battery, and in addition to a battery using metal lithium or a lithium alloy as an electrode, electricity in which lithium ions move between a positive electrode and a negative electrode Includes the entire chemical device.
 セパレータ層35はリチウムイオンを伝導しやすく電子を伝導しにくい層である。リチウムイオン電池31が電解液電池で、セパレータ層35が電解液を含浸したフィルムであってもよい。セパレータ用のフィルムとしては、ポリプロピレン、ポリエチレンなどのポリオレフィンや、セルロース、紙、又はガラス繊維等で作られた不織布や多孔質シートが使用される。これらのフィルムは、電解液がしみ込んでイオンが透過し易いように、微多孔化されているものが好ましい。さらに、負極層、正極層、セパレータフィルムが、電解液中に配置され、コイン型、円筒型、角型等の金属缶や、ラミネート外装体中に配置されてもよく、樹脂等の外装材で封止されていてもよい。 The separator layer 35 is a layer that easily conducts lithium ions and hardly conducts electrons. The lithium ion battery 31 may be an electrolyte battery, and the separator layer 35 may be a film impregnated with the electrolyte. As a film for a separator, non-woven fabric or porous sheet made of polyolefin such as polypropylene and polyethylene, cellulose, paper, glass fiber and the like is used. It is preferable that these films be micro-porous so that the electrolyte can penetrate and the ions can easily permeate. Furthermore, the negative electrode layer, the positive electrode layer, and the separator film may be disposed in the electrolytic solution and may be disposed in a coin-type, cylindrical-type, square-type metal can, or a laminate exterior body. It may be sealed.
 また、リチウムイオン電池31が全固体電池で、セパレータ層35が固体電解質層であってもよい。固体電解質層に含まれる固体電解質としては、硫化物系固体電解質、酸化物系固体電解質を使用することができる。硫化物系固体電解質としては、ガラス系硫化物(例えば、LiS-P、LiS-SiS-P-LiI等)、アルジロダイト型硫化物(例えば、LiPS、LiPSCl、LiPSBr、LiPSI等)、チオリシコン系硫化物(例えば、Li4-xGe1-x(0≦x≦1)等)、Li11、Li10GeP12(LGPS)、Li9.54Si1.741.4411.7Cl0.3(LiSiPSCl)、Li9.612、Li-Sn-Si-P-S(LSSPS)系等を使用することができ、酸化物系固体電解質としてはペロブスカイト型のニオブ酸リチウムランタン(LiLa(1-x)/3NbO)(0≦x≦1)、ガーネット型酸化物のLiLaZr12、ガーネット型酸化物のLiLaNb12、ガーネット型酸化物のLiLaTa12、ガーネット型酸化物のLiLaBaTa12、リン酸リチウム(LiPO)、ニオブ酸リチウム(LiNbO)、NASICON構造のLAGP(Li1+xAlGe2-x(PO(0≦x≦1))、NASICON構造のLATP(Li1+xAlTi2-x(PO(0≦x≦1))等を使用することができる。
 なお、固体電解質層として、ポリマー中にリチウム塩を含有するドライポリマー電解質層を用いてもよい。
The lithium ion battery 31 may be an all solid battery, and the separator layer 35 may be a solid electrolyte layer. As a solid electrolyte contained in a solid electrolyte layer, a sulfide type solid electrolyte and an oxide type solid electrolyte can be used. As the sulfide-based solid electrolyte, glass-based sulfides (for example, Li 2 S-P 2 S 5 , Li 2 S-SiS 2 -P 2 S 5 -LiI, etc.), algirodite-type sulfides (for example, Li 7 PS) 6 , Li 6 PS 5 Cl, Li 6 PS 5 Br, Li 6 PS 5 I, etc., thiolysicon based sulfides (eg, Li 4-x Ge 1-x P x S 4 (0 ≦ x ≦ 1 etc)) , Li 7 P 3 S 11 , Li 10 GeP 2 S 12 (LGPS), Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 (LiSiPSCl), Li 9.6 P 3 S 12 And Li-Sn-Si-P-S (LSSPS), etc., and a perovskite-type lithium lanthanum niobate (Li x La (1-x) / 3 NbO 3 ) can be used as the oxide-based solid electrolyte. (0 x ≦ 1), Li 7 La 3 Zr 2 O 12 garnet-type oxide, Li 5 La 3 Nb 2 O 12 garnet-type oxide, Li 5 La 3 Ta 2 O 12 garnet-type oxide, garnet-type oxide Li 6 La 2 BaTa 2 O 12 of the object, lithium phosphate (Li 3 PO 4), lithium niobate (LiNbO 3), LAGP of NASICON structure (Li 1 + x Al x Ge 2-x (PO 4) 3 (0 ≦ It is possible to use x ≦ 1)), LATP with a NASICON structure (Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≦ x ≦ 1)), and the like.
In addition, you may use the dry polymer electrolyte layer which contains a lithium salt in a polymer as a solid electrolyte layer.
 また、本発明のリチウムイオン電池31は、複合体電極10と対極層33の表面に、集電体層を設けてもよい。集電体層は、全固体電池に充放電時に外部と電気をやり取りするために設けられ、電子伝導性のある材料、通常は金属、炭素材料などの電子伝導性物質そのものや、電子伝導性物質を酸化物などからなるマトリックス中に分散させた材料で構成される。集電体層を構成する金属としては、ニッケル、銅、銀、金などからなる群から選ばれる少なくとも一種の金属を用いることができる。集電体層は、金属ペーストを塗布し、水素などを含む還元ガスを含む雰囲気で焼成することで得ることができる。本発明においては、材料を適切に選べば、集電体層、複合体電極、セパレータ層、対極層の全てを積層した状態で一括焼結して、全固体電池を得ることも可能である。 In addition, in the lithium ion battery 31 of the present invention, a current collector layer may be provided on the surfaces of the composite electrode 10 and the counter electrode layer 33. The current collector layer is provided to exchange electricity with the outside during charge and discharge in the all solid battery, and an electron conductive material, usually an electron conductive substance such as metal or carbon material itself, or an electron conductive substance. Are dispersed in a matrix of oxide or the like. As a metal constituting the current collector layer, at least one metal selected from the group consisting of nickel, copper, silver, gold and the like can be used. The current collector layer can be obtained by applying a metal paste and baking it in an atmosphere containing a reducing gas containing hydrogen and the like. In the present invention, if materials are appropriately selected, it is also possible to obtain an all-solid battery by collectively sintering all of the current collector layer, the composite electrode, the separator layer, and the counter electrode layer.
 <複合体電極の製造方法>
 本発明の複合体電極の製造方法を、図4を用いて説明する。まず、積層工程において、電極活物質又はその前駆体を含む層(以下、電極活物質層グリーンシートと表記する)と、固体電解質又はその前駆体を含む層(以下、固体電解質層グリーンシートと表記する)とが交互に積層したグリーンシート積層体(焼結により複合体電極となるため、複合体電極の前駆体とも呼ぶ)を得る。その後、図4(a)に示すように、焼結工程において、積層体を焼結し、積層焼結体41を得る。さらに、図4(b)に示すように、裁断工程において、積層焼結体41を、各層の平面方向と垂直な面で切り出し、電極活物質層11と固体電解質層13が交互に並ぶ、平板状の配列焼結体を得る。配列焼結体は、複合体電極10として使用することができる。
<Method of manufacturing composite electrode>
The method for producing a composite electrode of the present invention will be described with reference to FIG. First, in the laminating step, a layer containing the electrode active material or its precursor (hereinafter referred to as an electrode active material layer green sheet) and a layer containing a solid electrolyte or its precursor (hereinafter referred to as a solid electrolyte layer green sheet) And a green sheet laminate (also referred to as a precursor of a composite electrode because it becomes a composite electrode by sintering) is obtained. Thereafter, as shown in FIG. 4A, in the sintering step, the laminate is sintered to obtain a laminated sintered body 41. Furthermore, as shown in FIG. 4B, in the cutting step, the laminated sintered body 41 is cut out in a plane perpendicular to the plane direction of each layer, and the electrode active material layer 11 and the solid electrolyte layer 13 are alternately arranged in a flat plate. An arrayed sintered body is obtained. The arrayed sintered body can be used as the composite electrode 10.
 なお、焼結工程と裁断工程を入れ替えて、裁断工程の後に焼結工程を行ってもよい。すなわち、グリーンシート積層体を、各層の平面方向と垂直な面で切り出し、電極活物質層グリーンシートと固体電解質層グリーンシートが交互に並ぶ、平板上の配列体を得て、その配列体を焼結することで、平板状の配列焼結体を得てもよい。 The sintering step may be performed after the cutting step by replacing the sintering step and the cutting step. That is, a green sheet laminate is cut out in a plane perpendicular to the plane direction of each layer, and an electrode active material layer green sheet and a solid electrolyte layer green sheet are alternately arranged to obtain an array on a flat plate, and the array is fired A flat plate-like arrayed sintered body may be obtained by bonding.
 なお、積層焼結体41を、裁断せずに複合体電極として使用することもでき、例えば、後述のリチウムイオン電池101の負極帯103又は正極帯107として使用することができる。 The laminated sintered body 41 can also be used as a composite electrode without cutting, and can be used, for example, as the negative electrode band 103 or the positive electrode band 107 of the lithium ion battery 101 described later.
(電極活物質と固体電解質の前駆体について)
 なお、電極活物質や固体電解質の前駆体とは、焼成、焼結などの加熱により電極活物質や固体電解質になる材料のことである。
(On the precursor of the electrode active material and the solid electrolyte)
In addition, the precursor of an electrode active material or a solid electrolyte is a material which becomes an electrode active material or a solid electrolyte by heating, such as baking and sintering.
 電極活物質としてチタン酸リチウムを使用する場合、チタン酸リチウムの前駆体は、リチウムとチタンを含む化合物であってもよいし、リチウム源とチタン源との混合物であってもよい。リチウム源としては、リチウムのハロゲン化物、炭酸塩、水酸化物などを用いることができ、チタン源としては、チタンの酸化物、ハロゲン化物、炭酸塩、水酸化物などを用いることができる。後述の通り、チタン酸リチウムの前駆体を、リチウム源とチタン源と溶媒とを含む混合物をソルボサーマル処理して得ることができる。 When lithium titanate is used as the electrode active material, the precursor of lithium titanate may be a compound containing lithium and titanium, or may be a mixture of a lithium source and a titanium source. As a lithium source, a halide, carbonate, hydroxide or the like of lithium can be used, and as a titanium source, an oxide, halide, carbonate, hydroxide or the like of titanium can be used. As described later, a precursor of lithium titanate can be obtained by solvothermal treatment of a mixture containing a lithium source, a titanium source and a solvent.
 固体電解質としてチタン酸リチウムランタンを使用する場合、チタン酸リチウムランタンの前駆体は、リチウムとチタンとランタンを含む化合物であってもよいし、リチウム源とチタン源とランタン源との混合物であってもよい。リチウム源としては、リチウムのハロゲン化物、炭酸塩、水酸化物などを用いることができ、チタン源としては、チタンの酸化物、ハロゲン化物、炭酸塩、水酸化物などを用いることができる。ランタン源としては、ランタンの塩化物、オキシ塩化物、水酸化物、酸化物、硝酸塩などを用いることができる。後述の通り、チタン酸リチウムランタンの前駆体を、リチウム源とチタン源とランタン源と溶媒とを含む混合物をソルボサーマル処理して得ることができる。 When using lithium lanthanum titanate as the solid electrolyte, the lithium lithium titanate precursor may be a compound containing lithium, titanium and lanthanum, or a mixture of a lithium source, a titanium source and a lanthanum source, It is also good. As a lithium source, a halide, carbonate, hydroxide or the like of lithium can be used, and as a titanium source, an oxide, halide, carbonate, hydroxide or the like of titanium can be used. As a lanthanum source, chlorides, oxychlorides, hydroxides, oxides, and nitrates of lanthanum can be used. As described later, a precursor of lithium lanthanum titanate can be obtained by solvothermal treatment of a mixture containing a lithium source, a titanium source, a lanthanum source and a solvent.
(積層工程)
 まず、電極活物質又はその前駆体を含むペーストと、固体電解質又はその前駆体を含むペーストを作製する。ペーストには、アクリル樹脂、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)等の有機系バインダーを含むことができる。有機系バインダーは、グリーンシートの形状を維持し、加熱により熱分解して焼結体からは除去される。電極活物質又はその前駆体は、窒素吸着を用いてBET法で算出した比表面積が0.5m/g以上であることが好ましく、1.2m/gであることがより好ましく、13m/g以上であればさらに好ましい。固体電解質又はその前駆体は、比表面積が0.5m/g以上であることが好ましく、3m/gであることがより好ましく、15m/g以上であればさらに好ましい。一次粒子の大きさが小さいほど比表面積が大きくなる傾向にあるため、比表面積が大きい電極活物質又はその前駆体、あるいは固体電解質又はその前駆体を用いると、塗布工程の均一性と焼結工程の焼結性を高め、積層焼結体における電極活物質層あるいは固体電解質層の幅を小さくすることや空隙率を低減することができる。
(Lamination process)
First, a paste containing an electrode active material or a precursor thereof and a paste containing a solid electrolyte or a precursor thereof are prepared. The paste may contain an organic binder such as acrylic resin, PVA (polyvinyl alcohol), PVB (polyvinyl butyral) and the like. The organic binder maintains the shape of the green sheet, is thermally decomposed by heating, and is removed from the sintered body. The specific surface area of the electrode active material or its precursor calculated by BET method using nitrogen adsorption is preferably 0.5 m 2 / g or more, more preferably 1.2 m 2 / g, and 13 m 2 It is more preferable if it is / g or more. The specific surface area of the solid electrolyte or the precursor thereof is preferably 0.5 m 2 / g or more, more preferably 3 m 2 / g, and further preferably 15 m 2 / g or more. Since the specific surface area tends to increase as the primary particle size decreases, the uniformity of the application process and the sintering process can be obtained by using an electrode active material having a large specific surface area or a precursor thereof, or a solid electrolyte or a precursor thereof. The sinterability can be enhanced, the width of the electrode active material layer or the solid electrolyte layer in the laminated sintered body can be reduced, and the porosity can be reduced.
 グリーンシート積層体を形成するには、電極活物質又はその前駆体を含むペーストを、基材上に塗布・乾燥して電極活物質グリーンシートを形成し、また、固体電解質又はその前駆体を含むペーストを塗布・乾燥して固体電解質グリーンシートを形成し、一方又は両方を剥離してもう一方と貼り合せ、圧力及び/又は熱を加えて両者を密着させてグリーンシート積層体を得る方法(圧着法)がある。 In order to form a green sheet laminate, a paste containing an electrode active material or a precursor thereof is applied onto a substrate and dried to form an electrode active material green sheet, and a solid electrolyte or a precursor thereof is contained. A method of applying and drying the paste to form a solid electrolyte green sheet, peeling one or both of them and bonding them to the other, applying pressure and / or heat to bring them in close contact to obtain a green sheet laminate (crimping) There is a law).
 また、電極活物質又はその前駆体を含むペーストを、基材上に塗布・乾燥して電極活物質グリーンシートを形成し、さらにその上に、固体電解質又はその前駆体を含むペーストを塗布・乾燥して固体電解質グリーンシートを形成し、基材を剥離した後に、加熱によりバインダーを除去して、積層体を成型する方法(逐次塗工法)もある。 Also, a paste containing an electrode active material or a precursor thereof is applied and dried on a substrate to form an electrode active material green sheet, and a paste containing a solid electrolyte or a precursor thereof is further applied and dried thereon. There is also a method (sequential coating method) in which a solid electrolyte green sheet is formed, the base material is peeled off, and then the binder is removed by heating to form a laminate.
(焼結工程)
 その後、電極活物質グリーンシートと固体電解質グリーンシートの積層体を焼結し、電極活物質層と固体電解質層が積層した積層焼結体を得る。
(Sintering process)
Thereafter, the laminate of the electrode active material green sheet and the solid electrolyte green sheet is sintered to obtain a laminated sintered body in which the electrode active material layer and the solid electrolyte layer are laminated.
 焼結工程においては、温度が、200℃以上1300℃以下であることが好ましく、300℃以上1250℃以下であることが好ましく、400℃以上1200℃以下であることがより好ましく、500℃以上1150℃以下であることがさらに好ましい。電極活物質が副反応してしまうことを防ぐために、1300℃以下で加熱することがより好ましく、緻密な焼結体を得るためには、500℃以上で加熱することが好ましい。 In the sintering step, the temperature is preferably 200 ° C. or more and 1300 ° C. or less, preferably 300 ° C. or more and 1250 ° C. or less, more preferably 400 ° C. or more and 1200 ° C. or less, and 500 ° C. or more and 1150 ° C. It is further preferable that the temperature is not higher than ° C. In order to prevent the side reaction of the electrode active material, heating at 1300 ° C. or less is more preferable, and heating at 500 ° C. or more is preferable in order to obtain a dense sintered body.
 また、焼結中の雰囲気は、空気雰囲気、窒素などの不活性雰囲気、酸素などの高酸化性雰囲気、水素などの還元性雰囲気のいずれも使用することができる。また、減圧環境でも加圧環境でもよく、例えば、絶対圧で0.1Pa~1MPa、好ましくは1Pa~500kPaの範囲の環境を使用可能である。また、温度の保持時間は、温度などに応じて適宜変更することができるが、生産効率等を考えると48時間以下が好ましく、24時間以下がより好ましい。なお、温度の保持時間は、1時間以下の短時間であってもよく、さらには保持時間を0分とし、目的温度到達後すぐに加熱を停止してもよい。冷却方法も特に限定されないが、自然放冷(炉内放冷)してもよいし、自然放冷よりも急速に冷却してもよく、冷却中に所定の温度を所定の時間保持するステップを設けてもよい。 Further, as the atmosphere during sintering, any of an air atmosphere, an inert atmosphere such as nitrogen, a highly oxidizing atmosphere such as oxygen, and a reducing atmosphere such as hydrogen can be used. The environment may be a reduced pressure environment or a pressurized environment, for example, an environment in the range of 0.1 Pa to 1 MPa in absolute pressure, preferably 1 Pa to 500 kPa. The temperature holding time can be appropriately changed according to the temperature etc., but considering production efficiency etc, it is preferably 48 hours or less, more preferably 24 hours or less. The temperature holding time may be a short time of 1 hour or less, and further, the holding time may be 0 minutes and heating may be stopped immediately after reaching the target temperature. The cooling method is also not particularly limited, but may be natural cooling (cooling in a furnace) or may be cooled more rapidly than natural cooling, and a step of holding a predetermined temperature for a predetermined time during cooling You may provide.
 特に固体電解質としてチタン酸リチウムランタンを含む場合、チタン酸リチウムランタンが700℃以上で結晶成長するため、焼結温度を800℃以上にすることで固体電解質層の抵抗を低減することができる。 In particular, when lithium lanthanum titanate is contained as the solid electrolyte, lithium lanthanum titanate crystal-grows at 700 ° C. or higher, and therefore the resistance of the solid electrolyte layer can be reduced by setting the sintering temperature to 800 ° C. or higher.
 また、電極活物質としてチタン酸リチウムを用いる場合、焼結温度を400℃以上1000℃以下とすることで、チタン酸リチウムの前駆体からスピネル型チタン酸リチウムを得ることができる。さらに、焼結温度を1000℃超とすることで、チタン酸リチウムの前駆体からラムズデライト型チタン酸リチウムを得ることができる。 Moreover, when using lithium titanate as an electrode active material, spinel type lithium titanate can be obtained from the precursor of lithium titanate by setting sintering temperature to 400 degreeC or more and 1000 degrees C or less. Furthermore, by setting the sintering temperature to more than 1000 ° C., ramsdellite lithium titanate can be obtained from a precursor of lithium titanate.
 また、電極活物質としてチタン酸リチウムを用い、固体電解質としてチタン酸リチウムランタンを用いる場合、一段階目の焼結を1000℃超、好ましくは1100℃以上1500℃以下、より好ましくは1150℃以上1300℃以下で行い、二段階目の焼結を400℃以上1000℃以下で行うことで、チタン酸リチウムの前駆体からスピネル型チタン酸リチウムを得ることができ、チタン酸リチウムランタンの前駆体から、ペロブスカイト型チタン酸リチウムランタンを得ることができる。このような二段階の焼結方法を採用すれば、1000℃超で加熱する工程により、チタン酸リチウムランタンが緻密な焼結体となりリチウムイオン伝導性を高めることができる。その際、チタン酸リチウムはラムズデライト型となるが、その後の1000℃以下での焼結により、より電極活物質として適したスピネル型チタン酸リチウムを得ることができる。二段階目の焼結において、焼結体に含まれるラムズデライト型チタン酸リチウムを、400℃以上1000℃以下の温度域で2時間以上の滞在、好ましくは500℃以上950℃以下の温度域で4時間以上の滞在、より好ましくは600℃以上900℃以下の温度域で8時間以上の滞在を行うことで、スピネル型チタン酸リチウムに相変化させることができる。600℃以上900℃以下の温度域で10時間以上、好ましくは15時間以上滞在させることにより、ほぼ単相のスピネル型チタン酸リチウムが得られる。一段階目の焼結の後、冷却中に二段階目の焼結を行ってもよく、400℃以下や常温に戻してから加熱して二段階目の焼結を行ってもよい。一段階目の焼結の後、冷却中や加熱中に400℃以上1000℃以下の温度域に滞在する時間も、二段階目の焼結での滞在時間に含めることができる。 When lithium titanate is used as the electrode active material and lithium lanthanum titanate is used as the solid electrolyte, sintering in the first stage is more than 1000 ° C., preferably 1100 ° C. or more and 1500 ° C. or less, more preferably 1150 ° C. or more and 1300 ° C. The spinel type lithium titanate can be obtained from the precursor of lithium titanate by carrying out the second stage sintering at 400 ° C. or more and 1000 ° C. or less, and the second stage of sintering is performed from the precursor of lithium lanthanum titanate, Perovskite-type lithium lanthanum titanate can be obtained. By adopting such a two-step sintering method, lithium lanthanum titanate can be a compact sintered body and the lithium ion conductivity can be enhanced by the step of heating at temperatures exceeding 1000 ° C. At that time, lithium titanate is of the ramsdellite type, and by subsequent sintering at 1000 ° C. or less, spinel type lithium titanate more suitable as an electrode active material can be obtained. In the second stage of sintering, the ramsdellite lithium titanate contained in the sintered body is maintained for 2 hours or more in a temperature range of 400 ° C. to 1000 ° C., preferably in a temperature range of 500 ° C. to 950 ° C. A phase change to spinel-type lithium titanate can be made by staying for 4 hours or more, more preferably for 8 hours or more in a temperature range of 600 ° C. to 900 ° C. By staying in a temperature range of 600 ° C. to 900 ° C. for 10 hours or more, preferably 15 hours or more, substantially single phase spinel lithium titanate can be obtained. After the first-stage sintering, the second-stage sintering may be performed during cooling, or may be heated to 400 ° C. or lower after returning to normal temperature to perform the second-stage sintering. The time of staying in the temperature range of 400 ° C. or more and 1000 ° C. or less during cooling or heating after the first stage sintering can also be included in the staying time in the second stage sintering.
 グリーンシート積層体を焼結して積層焼結体を得る工程では、加熱によりチタン酸リチウムの前駆体やチタン酸リチウムランタンの前駆体から、チタン酸リチウムやチタン酸リチウムランタンが生成する。加熱により前駆体からの結晶相の変化及び/又は結晶性の向上が起こる。結晶相の変化及び/又は結晶性の向上は粉末X線回折法によって確認できる。結晶相の変化は回折パターンの変化として、結晶性の向上は回折線の幅の減少としてX線回折図形に反映される。例えば、前駆体中に存在する(Li1.81,H0.19)Ti・2HO[ICDD番号00-047-0123]、Li0.771.23(Ti)・2HO[ICDD番号00-040-0304]、(LiTiO1.333[ICDD番号01-075-0614]に比定できる回折パターンは焼結によって消失し、スピネル型結晶構造を持つチタン酸リチウム、例えばLiTi12[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウム、例えば、LiTi[ICDD番号00-034-0393]、Li0.94Ti[ICDD番号01-088-0609]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン、例えばLi3xLa2/3-xTiO(0<x≦1/6)[ICDD番号01-074-4217、00-046-0467、01-087-0935、00-046-0466等]が生成する。 In the step of sintering the green sheet laminate to obtain a laminated sintered body, lithium titanate and lithium lanthanum titanate are generated from the precursor of lithium titanate and the precursor of lithium lanthanum titanate by heating. Heating causes a change in the crystalline phase from the precursor and / or an improvement in crystallinity. The change in crystal phase and / or the improvement in crystallinity can be confirmed by powder X-ray diffraction. The change in crystal phase is reflected in the change in diffraction pattern, and the improvement in crystallinity is reflected in the X-ray diffraction pattern as the decrease in width of diffraction line. For example, (Li 1.81 , H 0.19 ) Ti 2 O 5 .2H 2 O [ICDD No. 00-047-0123], Li 0.77 H 1.23 (Ti 3 O 7 ) present in the precursor ) The diffraction pattern which can be determined in 2H 2 O [ICDD No. 00-040-0304], (Li 2 TiO 3 ) 1.333 [ICDD No. 01-075-0614] disappears by sintering, and the spinel type crystal structure Lithium titanate having a crystal such as Li 4 Ti 5 O 12 (ICDD No. 00-049-0207), lithium titanate having a ramsdellite crystal structure such as Li 2 Ti 3 O 7 (ICDD No. 00-034-0393) ], Li 0.94 Ti 2 O 4 [ICDD No. 01-088-0609], lithium titanate having a perovskite crystal structure Lanthanum, for example, Li 3x La 2 / 3-x TiO 3 (0 <x ≦ 1/6) [ICDD Nos. 01-074-4217, 00-046-0467, 01-087-0935, 00-046-0466, etc.] Generates.
(裁断工程)
 積層焼結体41を、各層の平面方向と垂直な面で切断し、平板状の複合体電極10を得る。ここで、各層の平面方向と垂直な面とは、各層の平面方向と垂直な方向と±45度以内の角度となる面を指す。
(Cutting process)
The laminated sintered body 41 is cut along a plane perpendicular to the plane direction of each layer to obtain a flat composite electrode 10. Here, a plane perpendicular to the plane direction of each layer means a plane perpendicular to the plane direction of each layer and an angle within ± 45 degrees.
 切断方法は特に限定されないが、硬い焼結体を薄片状に切断できる方法として、レーザー加工、電子ビーム加工、プラズマ加工、超音波加工、ガス切断、ダイヤモンド砥石切断などを使用することができる。 Although the cutting method is not particularly limited, laser processing, electron beam processing, plasma processing, ultrasonic processing, gas cutting, diamond grinding, etc. can be used as a method capable of cutting a hard sintered body into a thin plate shape.
(金属層23の形成方法)
 なお、金属層23を有する複合体電極21を得るためには、金属層23を、積層体の中に積層しておく必要がある。金属層23は、金属微粒子が分散したペーストを塗布・スクリーン印刷すること、ペーストからグリーンシートを作製すること、金属を真空下にて蒸着させることで形成することができる。
(Method of forming the metal layer 23)
In order to obtain the composite electrode 21 having the metal layer 23, the metal layer 23 needs to be laminated in the laminate. The metal layer 23 can be formed by coating / screen-printing a paste in which metal fine particles are dispersed, preparing a green sheet from the paste, and depositing metal under vacuum.
<チタン酸リチウムランタンの前駆体の製造方法>
 固体電解質層グリーンシートを形成する際に使用するチタン酸リチウムランタンの前駆体は、Ti元素源とLa元素源とLi元素源と溶媒とを含む混合物をソルボサーマル処理して得ることが好ましい。
<Method of Producing Lithium Lanthanum Titanate Precursor>
It is preferable that a lithium lanthanum titanate precursor used when forming a solid electrolyte layer green sheet be obtained by solvothermal treatment of a mixture containing a Ti element source, a La element source, a Li element source, and a solvent.
 本発明に係るチタン酸リチウムランタンの前駆体の製造方法として、Laカチオン及びTiカチオンを含む水溶液を調製する水溶液調製工程と、前記水溶液調製工程で得た水溶液と塩基性水溶液とを混合することにより、La元素の酸化物及び/又は水酸化物と、Ti元素の酸化物及び/又は水酸化物とを含む沈殿物を得る同時沈殿処理工程と、前記同時沈殿処理工程で得られた沈殿物、Li元素源の化合物、及び溶媒を含む混合物をソルボサーマル処理法により固体状物質を形成する工程と、を含むことを特徴とする前駆体の製造方法が挙げられる。 As a method for producing a lithium lanthanum titanate precursor according to the present invention, an aqueous solution preparation step of preparing an aqueous solution containing La cation and Ti cation, and mixing the aqueous solution obtained in the aqueous solution preparation step with a basic aqueous solution A coprecipitation step of obtaining a precipitate containing an oxide and / or hydroxide of La element and an oxide and / or hydroxide of Ti element, and the precipitate obtained in the coprecipitation step. Forming a solid substance by a solvothermal treatment method of a mixture containing a compound of Li element source and a solvent, and a method of producing a precursor.
[水溶液調製工程]
 水溶液調製工程では、Laカチオン及びTiカチオンを含む水溶液を調製する。Laカチオンとしては、La3+が挙げられ、TiカチオンとしてはTi4+が挙げられる。Laカチオン及びTiカチオンのそれぞれは、水、アンモニア、酸化物イオン、水酸化物イオンや後述の対アニオン等を配位子として、錯体を形成していてもよい。Laカチオン及びTiカチオンの対アニオンとしては、酸化物イオン及び水酸化物イオン以外に、例えば、塩化物イオン等の塩素含有アニオンや、硝酸アニオン等が挙げられる。上記の対アニオンは、単独で用いても2種以上を併用してもよい。
Aqueous solution preparation process
In the aqueous solution preparation step, an aqueous solution containing La cation and Ti cation is prepared. Examples of the La cation include La 3+ , and examples of the Ti cation include Ti 4+ . Each of the La cation and the Ti cation may form a complex using water, ammonia, an oxide ion, a hydroxide ion, a counter anion described later, or the like as a ligand. As a counter anion of La cation and Ti cation, in addition to oxide ion and hydroxide ion, for example, chlorine-containing anion such as chloride ion, nitrate anion and the like can be mentioned. The above counter anions may be used alone or in combination of two or more.
 上記水溶液は、例えば、溶解によりLaカチオンを生成するランタン化合物と、溶解によりTiカチオンを生成するチタン化合物とを、水や酸性の水溶液に溶解させることにより調製される。これらのランタン化合物及びチタン化合物としては、例えば塩化物、オキシ塩化物、水酸化物、酸化物、硝酸塩等が挙げられ、入手が容易である点や安価である点から、塩化物又はオキシ塩化物が好ましい。また、溶解が容易である点からは硝酸塩が好ましい。上記のランタン化合物及びチタン化合物の形態としては特に限定されず、例えば、粉末等の固体、水溶液等の液体等が挙げられる。上記のランタン化合物及びチタン化合物の各々は、単独で用いても2種以上を併用してもよい。 The aqueous solution is prepared, for example, by dissolving a lanthanum compound that generates La cation by dissolution and a titanium compound that generates Ti cation by dissolution in water or an acidic aqueous solution. As these lanthanum compounds and titanium compounds, for example, chlorides, oxychlorides, hydroxides, oxides, nitrates and the like can be mentioned, and chlorides or oxychlorides are preferred because they are easy to obtain and inexpensive. Is preferred. In addition, nitrate is preferable from the viewpoint of easy dissolution. It does not specifically limit as a form of said lanthanum compound and a titanium compound, For example, liquids, such as solid, such as a powder, aqueous solution, etc. are mentioned. Each of the above-mentioned lanthanum compound and titanium compound may be used alone or in combination of two or more.
 水溶液調製工程で調製した水溶液は、pHが7未満、即ち、酸性であることが好ましい。Laカチオンは強酸性から弱酸性までの領域で高い水溶液を示すが、Tiカチオンは強酸性領域のみで高い水溶性を示す。よって、水溶液調製工程で調製される水溶液は、安定性の観点から、強酸性(例えば、pH3以下)であることが好ましい。 The aqueous solution prepared in the aqueous solution preparation step preferably has a pH of less than 7, ie, acidic. La cation exhibits high aqueous solution in the strongly acidic to weakly acidic region, but Ti cation exhibits high water solubility only in the strongly acidic region. Therefore, from the viewpoint of stability, the aqueous solution prepared in the aqueous solution preparation step is preferably strongly acidic (for example, pH 3 or less).
[同時沈殿処理工程]
 同時沈殿処理工程では、水溶液調製工程で得た水溶液と塩基性水溶液とを混合することにより、ランタンの酸化物及び/又は水酸化物と、チタンの酸化物及び/又は水酸化物とを含む沈殿物を得る。水溶液調製工程で得た水溶液と塩基性水溶液とを混合する方法としては、特に限定されず、例えば、水溶液調製工程で得た水溶液を塩基性水溶液に滴下又は噴霧する方法が挙げられる。
Simultaneous precipitation process
In the coprecipitation process step, precipitation comprising an oxide and / or hydroxide of lanthanum and an oxide and / or hydroxide of titanium by mixing the aqueous solution obtained in the aqueous solution preparation step with a basic aqueous solution. Get things. The method for mixing the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution is not particularly limited, and examples thereof include a method in which the aqueous solution obtained in the aqueous solution preparation step is dropped or sprayed onto the basic aqueous solution.
 塩基性水溶液のpHは、沈殿速度の観点から、8以上であることが好ましい。塩基性水溶液としては、特に限定されず、例えば、アンモニア水、水酸化リチウム水溶液が挙げられる。入手が容易である点や安価である点からは、アンモニア水が好ましい。また、固体電解質へのコンタミネーションを防ぐ観点からは、アルカリカチオンがリチウムイオン、即ち、固体電解質を構成するカチオンである水酸化リチウム水溶液が好ましい。 The pH of the basic aqueous solution is preferably 8 or more from the viewpoint of the precipitation rate. The basic aqueous solution is not particularly limited, and examples thereof include aqueous ammonia and an aqueous lithium hydroxide solution. Ammonia water is preferred in terms of availability and low cost. Further, from the viewpoint of preventing contamination to the solid electrolyte, an aqueous lithium hydroxide solution in which the alkali cation is a lithium ion, that is, a cation constituting the solid electrolyte is preferable.
 同時沈殿処理工程で用いる塩基性水溶液の塩基のモル当量は、水溶液調製工程で得た水溶液中のLaカチオン及びTiカチオンの対アニオン(但し、酸化物イオン及び水酸化物イオンを除く)のモル当量より多いことが好ましく、大過剰(例えば、2倍程度以上)であることがより好ましい。塩基性水溶液の塩基のモル当量が上記対アニオンのモル当量より多いと、水溶液調製工程で得た水溶液と塩基性水溶液とを混合した後でも、混合溶液の塩基性を十分に維持しやすい。 The molar equivalent of the base of the basic aqueous solution used in the simultaneous precipitation process step is the molar equivalent of the counter anion of the La cation and Ti cation in the aqueous solution obtained in the aqueous solution preparation process (excluding oxide ion and hydroxide ion) More is preferable, and a large excess (for example, about twice or more) is more preferable. When the molar equivalent of the base of the basic aqueous solution is larger than the molar equivalent of the above counter anion, the basicity of the mixed solution can be sufficiently maintained even after the aqueous solution obtained in the aqueous solution preparation step and the basic aqueous solution are mixed.
 同時沈殿処理工程で得た沈殿物は、適宜、分離及び洗浄される。分離方法としては、特に限定されず、例えば、遠心分離、デカンテーション、ろ過が挙げられる。また、洗浄に用いられる溶媒としては、特に限定されず、入手が容易である点や安価である点から、水が好ましく例示できる。 The precipitate obtained in the coprecipitation process step is separated and washed as appropriate. The separation method is not particularly limited, and examples thereof include centrifugation, decantation, and filtration. The solvent used for washing is not particularly limited, and water is preferably exemplified from the viewpoint of easy availability and low cost.
 本発明に係る水溶液調製工程では、ゾルゲル法で使用する高価なアルコキシドではなく、塩化物等の安価な原料を使用できる。また、同時沈殿処理工程で得た沈殿物は、ゾルゲル法で発生する、焼結時の有機配位子の脱離等に伴う大きな質量減少を防ぐことができる。 In the aqueous solution preparation process according to the present invention, inexpensive raw materials such as chlorides can be used instead of expensive alkoxides used in the sol-gel method. In addition, the precipitate obtained in the simultaneous precipitation treatment step can prevent a large mass loss caused by the detachment of the organic ligand at the time of sintering, which is generated by the sol-gel method.
[ソルボサーマル処理工程]
 ソルボサーマル処理工程では、同時沈殿処理工程で得た沈殿物等のLaカチオン及びTiカチオンを含む固形物又は溶液と、リチウム元素源の化合物と、溶媒とを混合して、大気圧よりも高い圧力の下で加熱し、前駆体を得る。
[Solvo-thermal processing process]
In the solvothermal treatment step, the pressure is higher than atmospheric pressure by mixing a solid or solution containing La cation and Ti cation such as precipitates obtained in the simultaneous precipitation treatment step, a compound of lithium element source, and a solvent Heat under to obtain a precursor.
 リチウム元素源の化合物としては、特に限定されず、例えば、炭酸リチウム、塩化リチウム、フッ化リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、これらの水和物が挙げられる。これらのリチウム化合物を単独で用いても2種以上を併用してもよい。また、リチウム化合物の形態は、例えば、粉末等の固体であっても、水溶液であってもよく、特に限定されない。 The compound of the lithium element source is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates of these. These lithium compounds may be used alone or in combination of two or more. Further, the form of the lithium compound may be, for example, a solid such as a powder or an aqueous solution, and is not particularly limited.
 ソルボサーマル処理工程を行う前の混合物中のTi元素に対するLa元素の含有比率が、La/Ti≦0.66であることが好ましい。La/Ti≦0.66の場合は、目標組成のチタン酸リチウムランタンを含む電極複合体が必要とする以上のLaが焼成後に残留しにくいため、焼成によってLTO又はLLTO以外のLa(OH)やLaやLaTi等の不純物相が生成しにくい。 It is preferable that the content ratio of La element to Ti element in the mixture before the solvothermal treatment process be La / Ti ≦ 0.66. In the case of La / Ti ≦ 0.66, La (OH) 3 other than LTO or LLTO is difficult to be retained by firing because more La than the electrode complex containing the lithium lanthanum titanate having the target composition requires is difficult to remain after firing. It is difficult to form an impurity phase such as La 2 O 3 or La 2 Ti 2 O 7 .
 本発明では、ソルボサーマル処理として、溶媒として水を使用する水熱処理を主に行う。水熱処理とは、高温高圧の熱水の存在下で行われる化合物合成法又は結晶成長法をいい、常温常圧の水溶液中では起こらない化学反応が進行する場合がある。本発明では、Laカチオン及びTiカチオンを含む固形物又は溶液に対して、リチウム元素を含有する水溶液を加え、高温高圧処理を行うことで、常温常圧では水溶性であるリチウム元素をチタン元素と複合塩化して複合塩中に取り込ませることができ、この複合塩を溶媒から分離することで前駆体が得られる。なお、水熱処理では溶媒として水を用いるが、水以外の溶媒(例えば、有機溶媒等)を用いる方法(ソルボサーマル法)でも同様の効果が期待できる。 In the present invention, as solvothermal treatment, hydrothermal treatment using water as a solvent is mainly performed. The hydrothermal treatment refers to a compound synthesis method or a crystal growth method performed in the presence of high temperature and high pressure hot water, and a chemical reaction which does not occur in an aqueous solution at normal temperature and pressure may progress. In the present invention, an aqueous solution containing a lithium element is added to a solid or solution containing a La cation and a Ti cation, and a high temperature and high pressure treatment is performed to obtain a lithium element which is water soluble at normal temperature and pressure. Complex chloride can be incorporated into the complex salt, and the complex salt is separated from the solvent to obtain a precursor. In addition, although water is used as a solvent in the hydrothermal treatment, the same effect can be expected also by a method (solvothermal method) using a solvent other than water (for example, an organic solvent etc.).
 本発明の水熱処理においては、好ましくは大気圧よりも高く8.7MPaよりも低い絶対圧、温度は60℃以上300℃以下の環境下で、より好ましくは、絶対圧は0.15MPa以上4.0MPa以下、温度は60℃以上250℃以下の環境下で、1時間以上100時間以下程度加熱することが好ましい。圧力と温度が上記範囲内であると、反応が進行しやすく、不純物が生じにくくなる上に、高度な耐圧容器が不要となり、製造コストの上昇を招きにくい。また、反応時間が上記範囲内であると、生産性が低下しにくい。 In the hydrothermal treatment of the present invention, preferably, the absolute pressure is higher than atmospheric pressure and lower than 8.7 MPa, and the temperature is 60 ° C. or more and 300 ° C. or less, more preferably, the absolute pressure is 0.15 MPa or more. It is preferable to heat at about 0 MPa or less and at a temperature of 60 ° C. to 250 ° C. for about 1 hour to 100 hours. If the pressure and temperature are in the above ranges, the reaction is likely to proceed, impurities are less likely to be generated, and a high-pressure pressure container is not required, which is less likely to cause an increase in manufacturing cost. Moreover, productivity is hard to fall that reaction time is in the said range.
 なお、前記ソルボサーマル処理工程で得られた水熱処理体に対して、さらに、酸も添加して、第2ソルボサーマル処理工程を行っても良い。その場合、前記ソルボサーマル処理工程は、第1ソルボサーマル処理工程となる。酸としては、無機酸も有機酸も使用することができ、塩酸、硝酸、硫酸、ギ酸、酢酸等を用いることができる。 An acid may be further added to the hydrothermally treated body obtained in the solvothermal treatment step to carry out the second solvothermal treatment step. In that case, the solvothermal treatment step is a first solvothermal treatment step. As the acid, both inorganic acids and organic acids can be used, and hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid and the like can be used.
 酸の添加量としては、酸のチタンに対するモル比(酸/Ti)のリチウムのチタンに対するモル比(Li/Ti)からの差が、0.1<[(Li/Ti)―(酸/Ti)]<1.5を満たすことが好ましく、0.3<[(Li/Ti)―(酸/Ti)]<1.1を満たすことが更に好ましい。また、酸の添加後の溶液のpHは8以上14以下であることが好ましい。酸の添加量を調整することで、第2ソルボサーマル処理後の固形物に含まれるリチウムの量を好ましい範囲に調整することができる。 As the addition amount of the acid, the difference from the molar ratio (Li / Ti) of lithium to titanium in the molar ratio of acid to titanium (acid / Ti) is 0.1 <[(Li / Ti)-(acid / Ti) It is preferable to satisfy | fill <1.5, It is still more preferable to satisfy | fill 0.3 <[(Li / Ti)-(acid / Ti)] <1.1. Moreover, it is preferable that pH of the solution after addition of an acid is 8 or more and 14 or less. By adjusting the addition amount of the acid, the amount of lithium contained in the solid after the second solvothermal treatment can be adjusted to a preferable range.
 また、La元素源を、最初の水溶液調製工程で加えずに、第2ソルボサーマル処理を行う際に、酸と一緒に添加してもよい。 Alternatively, the La element source may be added together with the acid when performing the second solvothermal treatment without adding it in the first aqueous solution preparation step.
 なお、上述の前駆体の製造方法では、同時沈殿法で得られた沈殿物に対してソルボサーマル処理を行っているが、同時沈殿法以外で得られたTi元素の単塩、La元素の単塩、Li元素の単塩と溶媒とを含む混合物にソルボサーマル処理を行っても良い。 In the precursor production method described above, the solvothermal treatment is performed on the precipitate obtained by the simultaneous precipitation method, but the single salt of Ti element and the single element of La element obtained by other than the simultaneous precipitation method. The solvothermal treatment may be performed on a mixture containing a salt, a simple salt of Li element and a solvent.
 La元素の単塩としては、特に限定されず、ランタンの酸化物及び/又は水酸化物が挙げられる。Ti元素の単塩としては、特に限定されず、チタンの酸化物及び/又は水酸化物が挙げられる。Li元素の単塩としては、特に限定されず、例えば、炭酸リチウム、塩化リチウム、フッ化リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、これらの水和物が挙げられる。 It does not specifically limit as a simple salt of La element, The oxide and / or hydroxide of lanthanum are mentioned. It does not specifically limit as a monosalt of Ti element, The oxide and / or hydroxide of titanium are mentioned. The monosalt of Li element is not particularly limited, and examples thereof include lithium carbonate, lithium chloride, lithium fluoride, lithium hydroxide, lithium nitrate, lithium acetate, and hydrates of these.
 また、Ti元素の単塩の平均粒径は、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが特に好ましい。Ti元素の単塩の粒子が上記範囲内であると、ソルボサーマル処理時にLiとTiとの複合塩化が進行しやすいためである。 The average particle diameter of the Ti single salt is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. If the particles of the Ti single salt are in the above range, complex chloride of Li and Ti is likely to progress during the solvothermal treatment.
<チタン酸リチウムの前駆体の製造方法>
 電極活物質層グリーンシートを形成する際に使用するチタン酸リチウムの前駆体は、前述のチタン酸リチウムランタンの前駆体の製造過程において、La元素源を使用しないことで得ることができる。
<Method of Producing Lithium Titanate Precursor>
The precursor of lithium titanate used when forming the electrode active material layer green sheet can be obtained by not using the La element source in the process of manufacturing the above-mentioned lithium lanthanum titanate precursor.
[乾燥工程]
 その後、ソルボサーマル処理工程で得られた前駆体を乾燥しても良い。乾燥工程の条件としては、例えば60℃以上250℃以下、1時間以上10時間以下が挙げられる。
[Drying process]
Thereafter, the precursor obtained in the solvothermal treatment step may be dried. As conditions of a drying process, 60 degreeC or more and 250 degrees C or less, 1 hour or more and 10 hours or less are mentioned, for example.
[仮焼成工程]
 また、ソルボサーマル処理工程で得られた前駆体をそのままグリーンシートとしてもよいが、チタン酸リチウムの前駆体とチタン酸リチウムランタンの前駆体を仮焼成した仮焼成体粒子をグリーンシートにすることが好ましい。焼結工程の前に仮焼成工程を行うことで、焼結工程における成形体のガス発生や重量減少を緩和することができる。
[Temporary firing process]
In addition, although the precursor obtained in the solvothermal treatment step may be used as it is as a green sheet, it is possible to use as a green sheet temporary calcinated particles obtained by temporarily calcining a lithium titanate precursor and a lithium lanthanum titanate precursor. preferable. By performing the pre-firing step before the sintering step, it is possible to alleviate the gas generation and the weight reduction of the compact in the sintering step.
 仮焼成工程では、チタン酸リチウムの前駆体や、チタン酸リチウムランタンの前駆体を、好ましくは250℃以上1500℃以下、より好ましくは400℃以上1300℃以下で加熱することで、チタン酸リチウム又はその前駆体や、チタン酸リチウムランタン又はその前駆体を生成する。より低い温度で仮焼成を行いチタン酸リチウムのみを生成させ、チタン酸リチウムランタンを生成させなくてもよいし、より高い温度で仮焼成を行い、チタン酸リチウムとチタン酸リチウムランタンの両方を生成させてもよい。 In the pre-baking step, the lithium titanate or the lithium titanate precursor is preferably heated at 250 ° C. or more and 1500 ° C. or less, more preferably 400 ° C. or more and 1300 ° C. or less, to form lithium titanate or lithium titanate or The precursor or lithium lanthanum titanate or a precursor thereof is produced. Pre-baking may be performed at a lower temperature to produce only lithium titanate, and lithium lanthanum titanate may not be produced, or pre-baking may be performed at a higher temperature to produce both lithium titanate and lithium lanthanum titanate. You may
 (リチウムイオン電池の別の形態)
 上記のリチウムイオン電池31の製造方法では、焼結前又は焼結後の電極活物質層と固体電解質層の積層体を裁断して複合体電極10を得た後、セパレータ層35と対極層33を積層しているが、裁断工程を行わずに、複合体電極とセパレータと対極とが隣接するように形成することで、リチウムイオン電池を得ることもできる。
(Another form of lithium ion battery)
In the method of manufacturing the lithium ion battery 31 described above, the laminate of the electrode active material layer and the solid electrolyte layer before or after sintering is cut to obtain the composite electrode 10, and then the separator layer 35 and the counter electrode layer 33 are obtained. The lithium ion battery can also be obtained by forming the composite electrode, the separator, and the counter electrode adjacent to each other without performing the cutting step.
 本発明のリチウムイオン電池101について説明する。図7に示すように、集電体109、負極帯103、セパレータ帯105、正極帯107、集電体111がこの順に隣接している。負極帯103は、交互に積層した負極活物質シート113a~dと固体電解質シート123a~cからなる。これらの全ての層(図7では描かれている7層分全て)が複合体電極を構成し、一つの負極として作用する。同様に、正極帯107は、交互に積層した正極活物質シート117a~dと固体電解質シート127a~cからなり、これらの全ての層が複合体電極を構成し、一つの正極として作用する。負極帯103及び正極帯107は、本発明の複合体電極10に対応する。集電体109a~gと集電体111a~gが、それぞれ積層し、集電体109、111を形成する。セパレータシート115a~gが積層し、一つのセパレータ帯105を形成する。 The lithium ion battery 101 of the present invention will be described. As shown in FIG. 7, the current collector 109, the negative electrode band 103, the separator band 105, the positive electrode band 107, and the current collector 111 are adjacent in this order. The negative electrode band 103 is composed of negative electrode active material sheets 113a to 113d and solid electrolyte sheets 123a to 123c stacked alternately. All these layers (all seven layers depicted in FIG. 7) constitute a composite electrode and act as one negative electrode. Similarly, the positive electrode band 107 is composed of positive electrode active material sheets 117a to 117d and solid electrolyte sheets 127a to 127c alternately stacked, and all of these layers constitute a composite electrode and function as one positive electrode. The negative electrode band 103 and the positive electrode band 107 correspond to the composite electrode 10 of the present invention. The current collectors 109a to 109g and the current collectors 111a to 111g are stacked, respectively, to form current collectors 109 and 111. The separator sheets 115a to 115g are stacked to form one separator band 105.
 負極活物質シート113a~dの間に固体電解質シート123a~cを挟むことで、負極活物質シートの負極活物質へのリチウムイオン伝導パスを設けることができる。同様に、正極活物質シート117a~dについても、固体電解質シート127a~cにより、正極活物質シート中の正極活物質へのリチウムイオン伝導パスを設けることができる。なお、図7では負極帯103の最表面の層が負極活物質シート113aと負極活物質シート113dとなっているが、最表面の層が負極活物質シートに限られず、固体電解質シートが最表面の層となってもよい。正極帯107についても同様に、固体電解質シートが最表面の層となってもよい。 By sandwiching the solid electrolyte sheets 123a to 123c between the negative electrode active material sheets 113a to 113d, a lithium ion conduction path to the negative electrode active material of the negative electrode active material sheet can be provided. Similarly, for the positive electrode active material sheets 117a to 117d, lithium ion conductive paths to the positive electrode active material in the positive electrode active material sheet can be provided by the solid electrolyte sheets 127a to 127c. Although the outermost layer of the negative electrode band 103 is the negative electrode active material sheet 113a and the negative electrode active material sheet 113d in FIG. 7, the outermost layer is not limited to the negative electrode active material sheet, and the solid electrolyte sheet is the outermost surface. It may be a layer of Similarly for the positive electrode zone 107, the solid electrolyte sheet may be the outermost layer.
 負極活物質シート113a~d又は正極活物質シート117a~dは、前述の電極活物質層11と同じ材料を使用することができる。なお、負極活物質と正極活物質は同一の材料を用いても良いが、一般的には異なる材料である。例えば、負極帯103の負極活物質としてスピネル型又はラムズデライト型のチタン酸リチウムを用いる場合、正極帯107の正極活物質として、リチウム遷移金属酸化物などの公知の酸化物系の正極活物質を用いることができる。 The same material as the above-described electrode active material layer 11 can be used for the negative electrode active material sheets 113a to 113d or the positive electrode active material sheets 117a to 117d. Note that although the negative electrode active material and the positive electrode active material may use the same material, they are generally different materials. For example, when using spinel type or ramsdellite type lithium titanate as the negative electrode active material of the negative electrode zone 103, a known oxide-based positive electrode active material such as lithium transition metal oxide is used as the positive electrode active material of the positive electrode zone 107. It can be used.
 なお、リチウムイオン電池101では、負極帯103と正極帯107の両方とも固体電解質シート123a~c又は127a~cを有しているが、必ずしも負極帯と正極帯の両方に固体電解質シートを有しなくてもよく、負極帯又は正極帯のいずれかのみに固体電解質シートを有してもよい。例えば、負極帯のみに固体電解質シートを有し、正極帯に有しない場合、負極帯が本発明の電極複合体に対応し、正極帯は本発明の電極複合体に対応しない。この反対に、正極帯のみに固体電解質シートを有し、負極帯に固体電解質シートを有しなくてもよい。 In lithium ion battery 101, both negative electrode band 103 and positive electrode band 107 have solid electrolyte sheets 123a-c or 127a-c, but they necessarily have solid electrolyte sheets in both negative electrode band and positive electrode band. It may not be necessary, and only the negative electrode band or the positive electrode band may have the solid electrolyte sheet. For example, when the solid electrolyte sheet is provided only in the negative electrode zone and not in the positive electrode zone, the negative electrode zone corresponds to the electrode complex of the present invention, and the positive electrode zone does not correspond to the electrode composite of the present invention. On the contrary, it is not necessary to have a solid electrolyte sheet only in the positive electrode zone, and not to have a solid electrolyte sheet in the negative electrode zone.
 固体電解質シート123a~c、127a~cは、前述の固体電解質層13と同じ材料を使用することができる。また、固体電解質シート123a~cと127a~cは、同じ材料であっても良いし、異なる材料であってもよい。 The same material as the solid electrolyte layer 13 described above can be used for the solid electrolyte sheets 123a to 123c. In addition, the solid electrolyte sheets 123a to 123c and 127a to 127c may be the same material or different materials.
 セパレータシート115a~gは、前述のセパレータ層35と同じ材料を使用することができるが、硫化物系又は酸化物系の固体電解質により形成されることが好ましい。セパレータシート115a~gは、固体電解質シート123a~c、127a~cと、同じ材料であってもよいし、異なる材料であってもよい。 The separator sheets 115a to 115g can use the same material as the separator layer 35 described above, but are preferably formed of a sulfide-based or oxide-based solid electrolyte. The separator sheets 115a to 115g may be the same material as or different from the solid electrolyte sheets 123a to 123c.
 集電体109a~g、集電体111a~gは、前述の集電体層と同じ材料を使用することができる。 For the current collectors 109a to 109g and the current collectors 111a to 111g, the same materials as the above-described current collector layers can be used.
 負極活物質シート113a~dの厚さDと、正極活物質シート117a~dの厚さDは、電極活物質層11の幅Bと同様の数値範囲である。 The thickness D of the negative electrode active material sheets 113 a to 113 d and the thickness D of the positive electrode active material sheets 117 a to 117 d are in the same numerical range as the width B of the electrode active material layer 11.
 固体電解質シート123a~cと127a~cの厚さEは、固体電解質層13の幅Aと同様の数値範囲である。 The thickness E of the solid electrolyte sheets 123 a-c and 127 a-c is in the same numerical range as the width A of the solid electrolyte layer 13.
 負極帯103の幅Fと正極帯107の幅Hは、複合体電極10の厚さCと同様の数値範囲である。幅Fと幅Hは同じ値であってもよいが異なっていても良い。 The width F of the negative electrode band 103 and the width H of the positive electrode band 107 are in the same numerical range as the thickness C of the composite electrode 10. The width F and the width H may or may not be the same value.
 負極帯103には、負極活物質シート113と固体電解質シート123を合わせて100層以上積層していることが好ましく、500層以上積層していることがより好ましく、1000層以上積層していることが特に好ましい。正極帯107も同様である。 In the negative electrode band 103, it is preferable to combine 100 or more layers of the negative electrode active material sheet 113 and the solid electrolyte sheet 123, preferably 500 or more layers, and more preferably 1000 or more layers. Is particularly preferred. The same applies to the positive electrode band 107.
 セパレータ帯105の幅Gは、1μm以上300μm以下であることが好ましく、5μm以上100μm以下であることがより好ましく、10μm以上30μm以下であることが特に好ましい。幅Gは、短絡や絶縁破壊が起きない範囲であれば小さいほど好ましいが、製造時の印刷工程、積層工程、焼結工程における寸法精度の問題があり、現実的には10μm未満にすることは難しい。 The width G of the separator band 105 is preferably 1 μm to 300 μm, more preferably 5 μm to 100 μm, and particularly preferably 10 μm to 30 μm. The width G is preferably as small as possible as long as short circuit or dielectric breakdown does not occur, but there is a problem of dimensional accuracy in printing process, lamination process and sintering process at the time of production. difficult.
 集電体109の幅I、集電体111の幅Jは、負極帯あるいは正極帯との電子の授受が円滑に行える範囲であれば小さいほど好ましい。幅Iと幅Jは同じであってもよいが異なっていても良い。集電体には外部端子と負極帯あるいは正極帯との間にあって電子の移動を容易にし、かつ負極帯あるいは正極帯との間でリチウムイオンの授受が起こらない材料であることが求められるため、その条件が満たされていれば、集電体を省略して負極帯あるいは正極帯を外部端子と直接接触させたり、焼結後に蒸着や塗布で作製する電子伝導性材料の被覆で代用したりしても良い。 It is preferable that the width I of the current collector 109 and the width J of the current collector 111 be as small as possible so long as electrons can be smoothly exchanged with the negative electrode band or the positive electrode band. The width I and the width J may be the same or different. The current collector is required to be a material which is located between the external terminal and the negative electrode zone or the positive electrode zone to facilitate the movement of electrons and which does not cause lithium ion exchange between the negative electrode zone or the positive electrode zone. If the conditions are satisfied, the current collector may be omitted and the negative electrode band or the positive electrode band may be brought into direct contact with the external terminal, or may be substituted by a coating of an electron conductive material prepared by vapor deposition or coating after sintering. It is good.
 この形態を用いれば、製造時の印刷工程、積層工程、焼結工程の寸法精度の制約を受けるセパレータ帯105の幅Gよりも、固体電解質シート123、127の厚さEを小さくすることが可能になる。 If this embodiment is used, it is possible to make the thickness E of the solid electrolyte sheets 123 and 127 smaller than the width G of the separator band 105 which is restricted by the dimensional accuracy of the printing process, the laminating process and the sintering process in manufacturing. become.
 (電池の作成方法)
 本発明のリチウムイオン電池101の作成方法を、図8(a)~(d)を用いて説明する。まず、図8(a)に示すように、集電体109a、負極活物質グリーンシート133a、セパレータグリーンシート135a、正極活物質グリーンシート137a、集電体111aが、この順に隣接するように形成する。
(How to make a battery)
The method of producing the lithium ion battery 101 of the present invention will be described with reference to FIGS. 8 (a) to 8 (d). First, as shown in FIG. 8A, the current collector 109a, the negative electrode active material green sheet 133a, the separator green sheet 135a, the positive electrode active material green sheet 137a, and the current collector 111a are formed to be adjacent in this order. .
 負極活物質グリーンシート133aは、負極活物質又はその前駆体を含むペーストを所定の形に成形し、乾燥することで得られる。セパレータグリーンシート135aは、固体電解質又はその前駆体を含むペーストを用いて、正極活物質グリーンシート137aは、正極活物質又はその前駆体を含むペーストを用いて得られる。負極活物質又はその前駆体、あるいは正極活物質又はその前駆体は、窒素吸着を用いてBET法で算出した比表面積が0.5m/g以上であることが好ましく、1.2m/gであることがより好ましく、13m/g以上であればさらに好ましい。また、固体電解質又はその前駆体は、比表面積が0.5m/g以上であることが好ましく、3m/gであることがより好ましく、15m/g以上であればさらに好ましい。一次粒子の大きさが小さいほど比表面積が大きくなる傾向にあるため、比表面積が大きい電極活物質又はその前駆体、あるいは固体電解質又はその前駆体を用いると、塗布工程の均一性と焼結工程の焼結性を高め、積層焼結体における電極活物質層あるいは固体電解質層の幅を小さくすることや空隙率を低減することができる。 The negative electrode active material green sheet 133a is obtained by forming a paste containing the negative electrode active material or a precursor thereof into a predetermined shape and drying it. The separator green sheet 135a is obtained using a paste containing a solid electrolyte or a precursor thereof, and the positive electrode active material green sheet 137a is obtained using a paste containing a positive electrode active material or a precursor thereof. The specific surface area of the negative electrode active material or the precursor thereof or the positive electrode active material or the precursor thereof calculated by BET method using nitrogen adsorption is preferably 0.5 m 2 / g or more, and 1.2 m 2 / g Is more preferably 13 m 2 / g or more. The specific surface area of the solid electrolyte or the precursor thereof is preferably 0.5 m 2 / g or more, more preferably 3 m 2 / g, and still more preferably 15 m 2 / g or more. Since the specific surface area tends to increase as the primary particle size decreases, the uniformity of the application process and the sintering process can be obtained by using an electrode active material having a large specific surface area or a precursor thereof, or a solid electrolyte or a precursor thereof. The sinterability can be enhanced, the width of the electrode active material layer or the solid electrolyte layer in the laminated sintered body can be reduced, and the porosity can be reduced.
 このような構造の形成方法の一例として、それぞれの材料のペーストを、印刷により形成する方法が挙げられる。印刷する方法としては、所定の位置にペーストを吐出するインクジェット法や、版の凹部にペーストを入れて転写する凹版印刷法、版の凸部にペーストを付着させて転写する凸版印刷法、版にペーストとの親和性の異なる部分をつくり、親和部にペーストを付着させて転写する平版印刷法、版に微細な孔の多数開いた部分をつくり、圧力をかけて穴を通過させたペーストを転写する孔版印刷法などを挙げられる。 As an example of the formation method of such a structure, the method of forming the paste of each material by printing is mentioned. As a printing method, an inkjet method of discharging the paste to a predetermined position, an intaglio printing method of transferring the paste into the concave portion of the plate and transferring, a relief printing method of adhering the paste onto the convex portion of the plate and transferring, A lithographic printing method in which a portion with different affinity to the paste is made and the paste is attached to the affinity portion for transfer, a large open portion of fine holes is made in the plate, and the paste passed through the holes under pressure is transferred And the like.
 その後、図8(b)に示すように、集電体109aの上に集電体109bを、負極活物質グリーンシート133aの上に固体電解質グリーンシート143aを、セパレータグリーンシート135aの上にセパレータグリーンシート135bを、正極活物質グリーンシート137aの上に固体電解質グリーンシート147aを、集電体111aの上に集電体111bを形成する。 Thereafter, as shown in FIG. 8B, the current collector 109b is on the current collector 109a, the solid electrolyte green sheet 143a is on the negative electrode active material green sheet 133a, and the separator green is on the separator green sheet 135a. The sheet 135b is formed on the positive electrode active material green sheet 137a, the solid electrolyte green sheet 147a is formed, and the current collector 111b is formed on the current collector 111a.
 その後、図8(c)に示すように、集電体109bの上に集電体109cを、固体電解質グリーンシート143aの上に負極活物質グリーンシート133bを、セパレータグリーンシート135bの上にセパレータグリーンシート135cを、固体電解質グリーンシート147aの上に正極活物質グリーンシート137bを、集電体111bの上に集電体111cを形成する。 Thereafter, as shown in FIG. 8C, the current collector 109b is on the current collector 109b, the negative electrode active material green sheet 133b is on the solid electrolyte green sheet 143a, and the separator green is on the separator green sheet 135b. The positive electrode active material green sheet 137b is formed on the solid electrolyte green sheet 147a, and the current collector 111c is formed on the current collector 111b.
 更にその後、図8(d)に示すように、集電体109cの上に集電体109dを、負極活物質グリーンシート133bの上に固体電解質シート143bを、セパレータグリーンシート135cの上にセパレータグリーンシート135dを、正極活物質グリーンシート137bの上に固体電解質グリーンシート147bを、集電体111cの上に集電体111dを形成する。これらの工程を所定の回数繰り返して、グリーンシートの積層体を形成する。なお、これらの工程を繰り返す方法としては、重層的に印刷する方法でも良いし、離型フィルム上に形成したグリーンシートを剥離して位置を合わせて置き、圧着する方法でも良い。なお、図8(a)に示す工程を省略し、図8(b)において、図8(a)に示す工程で形成される集電体109a、負極活物質グリーンシート133a、セパレータグリーンシート135a、正極活物質グリーンシート137a、及び集電体111aなしに、集電体109b、固体電解質グリーンシート143a、セパレータグリーンシート135b、固体電解質グリーンシート147a、集電体111bをこの順に隣接するように形成してもよい。また、上記工程を所定の回数繰り返して行う上記積層体の形成は、図8(c)に示す工程及び図8(d)に示す工程のいずれで終えてもよい。 Thereafter, as shown in FIG. 8D, the current collector 109c is on the current collector 109c, the solid electrolyte sheet 143b is on the negative electrode active material green sheet 133b, and the separator green sheet is on the separator green sheet 135c. The sheet 135d is formed on the positive electrode active material green sheet 137b, and the solid electrolyte green sheet 147b is formed, and the current collector 111d is formed on the current collector 111c. These steps are repeated a predetermined number of times to form a green sheet laminate. In addition, as a method of repeating these processes, a method of printing in multilayers may be used, or a method may be used in which a green sheet formed on a release film is peeled off, aligned and placed, and pressure-bonded. The process shown in FIG. 8A is omitted, and in FIG. 8B, the current collector 109a, the negative electrode active material green sheet 133a, and the separator green sheet 135a formed in the process shown in FIG. 8A. The current collector 109b, the solid electrolyte green sheet 143a, the separator green sheet 135b, the solid electrolyte green sheet 147a, and the current collector 111b are formed to be adjacent to each other in this order without the positive electrode active material green sheet 137a and the current collector 111a. May be In addition, the formation of the laminate, which is performed by repeating the above steps a predetermined number of times, may be completed by any of the step shown in FIG. 8C and the step shown in FIG.
 その後、グリーンシートの積層体を焼結することで、負極活物質グリーンシートは負極活物質シートに、正極活物質グリーンシートは正極活物質シートに、セパレータグリーンシートはセパレータシートに、固体電解質グリーンシートは固体電解質シートになり、リチウムイオン電池101を得ることができる。 Thereafter, the laminate of the green sheets is sintered to make the negative electrode active material green sheet the negative electrode active material sheet, the positive electrode active material green sheet the positive electrode active material sheet, the separator green sheet the separator sheet, and the solid electrolyte green sheet Thus, the lithium ion battery 101 can be obtained as a solid electrolyte sheet.
 なお、前駆体を用いない場合は、焼結工程を行わずにリチウムイオン電池101を得ることもできる。即ち、負極活物質を含む負極活物質シート113a、固体電解質を含むセパレータシート115a、正極活物質を含む正極活物質シート117aを隣接して構成し、その上に、固体電解質を含む固体電解質シート123a、セパレータシート115b、固体電解質を含む固体電解質シート127aを形成することを、繰り返す工程である。あるいは、当該繰り返す工程は、負極活物質を含む負極活物質シート113a、固体電解質を含むセパレータシート115a、正極活物質を含む正極活物質シート117aを隣接して構成することから開始する代わりに、固体電解質を含む固体電解質シート123a、セパレータシート115b、固体電解質を含む固体電解質シート127aを隣接して形成することから開始してもよい。また、当該繰り返す工程は、負極活物質シート、セパレータシート、正極活物質シートを隣接して形成することで終えてもよいし、固体電解質シート、セパレータシート、固体電解質シートを隣接して形成することで終えてもよい。 In addition, when a precursor is not used, the lithium ion battery 101 can also be obtained without performing a sintering process. That is, a negative electrode active material sheet 113a containing a negative electrode active material, a separator sheet 115a containing a solid electrolyte, and a positive electrode active material sheet 117a containing a positive electrode active material are formed adjacent to each other, and a solid electrolyte sheet 123a containing a solid electrolyte is formed thereon. Forming the separator sheet 115b and the solid electrolyte sheet 127a containing the solid electrolyte is a process repeated. Alternatively, the step of repeating may be solid, instead of starting from forming the negative electrode active material sheet 113a containing a negative electrode active material, the separator sheet 115a containing a solid electrolyte, and the positive electrode active material sheet 117a containing a positive electrode active material. It may start from adjacently forming a solid electrolyte sheet 123a containing an electrolyte, a separator sheet 115b, and a solid electrolyte sheet 127a containing a solid electrolyte. Moreover, the process to repeat may be completed by forming the negative electrode active material sheet, the separator sheet, and the positive electrode active material sheet adjacent to each other, or forming the solid electrolyte sheet, the separator sheet, and the solid electrolyte sheet adjacent to each other. You may end with
 (直列接続の組電池)
 リチウムイオン電池101を複数用い、ある電池の正極帯を、別の電池の負極帯に電気的につなげるようにすれば、直列接続の組電池を得ることができる。例えば、図9に示すように、集電体109と、負極帯103aと、セパレータ帯105aと、正極帯107aと、電極帯153と、負極帯103bと、セパレータ帯105bと、正極帯107bと、集電体111とがこの順で隣接した直列接続の組電池151が得られる。なお、組電池151は、二つのリチウムイオン電池101を直列に接続しているが、もっと多数のリチウムイオン電池101を直列に接続することもできる。
(Series connected batteries)
If a plurality of lithium ion batteries 101 are used and the positive electrode band of one battery is electrically connected to the negative electrode band of another battery, a battery assembly in series connection can be obtained. For example, as shown in FIG. 9, a current collector 109, a negative electrode band 103a, a separator band 105a, a positive electrode band 107a, an electrode band 153, a negative electrode band 103b, a separator band 105b, and a positive electrode band 107b. A battery assembly 151 in series connection in which the current collectors 111 are adjacent in this order is obtained. Although the battery pack 151 connects two lithium ion batteries 101 in series, more lithium ion batteries 101 can be connected in series.
 電極帯153は、集電体109、111と同様の材料により同様に作成することができるため、組電池151も、図8(a)~(d)に示すような、各層を積層する方法により得ることができる。 Since the electrode band 153 can be similarly made of the same material as the current collectors 109 and 111, the battery assembly 151 is also formed by laminating the respective layers as shown in FIGS. 8 (a) to 8 (d). You can get it.
 電極帯153の幅は、電子が十分に導通し、リチウムイオンの短絡や絶縁破壊が起きない範囲であれば小さいほど好ましいが、製造時の印刷工程、積層工程、焼結工程の寸法精度の問題があり、10μm未満にすることは難しい。現実的には10μm以上300μm以下であることが好ましく、10μm以上100μm以下であることがより好ましく、10μm以上30μm以下であることが特に好ましい。 The width of the electrode band 153 is preferably as small as possible so long as electrons are sufficiently conducted and short-circuiting or dielectric breakdown of lithium ions does not occur. However, the dimensional accuracy of the printing process, the lamination process, and the sintering process at the time of manufacturing And it is difficult to make it less than 10 μm. Practically, the thickness is preferably 10 μm to 300 μm, more preferably 10 μm to 100 μm, and particularly preferably 10 μm to 30 μm.
 (並列接続の組電池)
 リチウムイオン電池101を複数用い、複数の電池の正極帯同士又は負極帯同士を電気的につなげるようにすれば、並列接続の組電池を得ることができる。例えば、図10に示すように、集電体163と、負極帯103aと、セパレータ帯105aと、正極帯107aと、集電体165と、正極帯107bと、セパレータ帯105bと、負極帯103bと、集電体167とがこの順で隣接し、集電体165と集電体167の間を接続部169で接続した並列接続の組電池161が得られる。
(Parallel connected battery pack)
If a plurality of lithium ion batteries 101 are used to electrically connect the positive electrode bands or the negative electrode bands of the plurality of batteries, a battery assembly in parallel connection can be obtained. For example, as shown in FIG. 10, the current collector 163, the negative electrode band 103a, the separator band 105a, the positive electrode band 107a, the current collector 165, the positive electrode band 107b, the separator band 105b, and the negative electrode band 103b The current collector 167 is adjacent in this order, and a battery assembly 161 in parallel connection in which the current collector 165 and the current collector 167 are connected by the connection portion 169 is obtained.
 なお、接続部169と、負極帯103aなどとの間には、集電体163などを介さない短絡が起きないように、絶縁体171を充填することが好ましい。なお、図10では、絶縁体171を透明にして描いている。絶縁体171としては、公知の絶縁材料を使用することができるが、リチウムイオン電池101と一括して焼結して得るために、アルミナ、シリカ、チタニアなどの金属酸化物系の絶縁材料を使用することが好ましい。 Note that the insulator 171 is preferably filled between the connection portion 169 and the negative electrode band 103 a and the like so as not to cause a short circuit without the current collector 163 and the like. In FIG. 10, the insulator 171 is drawn transparent. Although a known insulating material can be used as the insulator 171, a metal oxide-based insulating material such as alumina, silica, or titania is used in order to obtain a sintered body together with the lithium ion battery 101. It is preferable to do.
 なお、図10では、正極帯107aと正極帯107bを内側にした構造を図示したが、正極帯と負極帯の位置を入れ替え、負極帯103aと103bを内側にした構造としてもよい。 Although FIG. 10 shows a structure in which the positive electrode band 107a and the positive electrode band 107b are inside, the positions of the positive electrode band and the negative electrode band may be interchanged and the negative electrode bands 103a and 103b may be inside.
 集電体163、165、167、接続部169は、集電体109と同様の材料により同様に作成することができるため、組電池161も、図8(a)~(d)に示すような、各層を積層する方法により得ることができる。 Since the current collectors 163, 165, 167, and the connection portion 169 can be similarly made of the same material as the current collector 109, the assembled battery 161 is also as shown in FIGS. 8 (a) to 8 (d). Can be obtained by a method of laminating each layer.
 また、組電池161は、二つのリチウムイオン電池101を並列に接続しているが、もっと多数のリチウムイオン電池101を並列に接続することもできる。図11には、三つのリチウムイオン電池101を並列に接続した組電池181が示されている。正極帯107a、107bは、集電体165、接続部185、集電体183を介して正極帯107cと電気的に接続されている。また、負極帯103aは、集電体163、接続部169、集電体167を介して、負極帯103b、103cと電気的に接続されている。なお、図11では、絶縁体171、173、175、177を透明にして描いている。 Moreover, although the assembled battery 161 connects two lithium ion batteries 101 in parallel, more lithium ion batteries 101 can be connected in parallel. FIG. 11 shows a battery assembly 181 in which three lithium ion batteries 101 are connected in parallel. The positive electrode bands 107 a and 107 b are electrically connected to the positive electrode band 107 c through the current collector 165, the connection portion 185, and the current collector 183. The negative electrode band 103a is electrically connected to the negative electrode bands 103b and 103c through the current collector 163, the connection portion 169, and the current collector 167. In FIG. 11, the insulators 171, 173, 175, and 177 are drawn transparent.
 集電体165、集電体167の幅は、電極帯153の場合と同様に、製造時の印刷工程、積層工程、焼結工程の寸法精度の問題を考慮して決めることができるが、電極帯153の場合と異なり、リチウムイオンの短絡や絶縁破壊の問題を考慮する必要はなく、正極帯あるいは負極帯に十分な電子伝導性があれば、正極帯あるいは負極帯の中にある部分については省略しても良い。 The widths of the current collectors 165 and the current collectors 167 can be determined in consideration of the dimensional accuracy problems of the printing process, the lamination process, and the sintering process at the time of manufacturing as in the case of the electrode band 153. Unlike in the case of the band 153, there is no need to consider the problem of lithium ion short circuiting or dielectric breakdown, and if the positive or negative band has sufficient electron conductivity, the portion in the positive or negative band is You may omit it.
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by the examples.
[実施例1]
[チタン酸リチウム(LTO)仮焼成体粒子の調製]
 図12に、チタン酸リチウム(LTO)仮焼成体粒子の調製の流れを示す。
(同時沈殿処理工程)
 四塩化チタン水溶液、Ti濃度3.45mmol/g、Cl濃度13.79mmol/gの水溶液を調製した。この水溶液は透明であり、室温で放置しても沈殿を生成しなかった。この水溶液1203gを28質量%アンモニア水2000g中に噴霧すると沈殿が生成した。沈殿を分離し、水で洗浄し、200℃で乾燥し、機械的に解砕した。
Example 1
[Preparation of lithium titanate (LTO) calcined particles]
FIG. 12 shows a flow of preparation of lithium titanate (LTO) calcined particles.
(Coprecipitation process)
An aqueous solution of titanium tetrachloride aqueous solution, Ti concentration 3.45 mmol / g, and Cl concentration 13.79 mmol / g was prepared. The aqueous solution was clear and did not form a precipitate upon standing at room temperature. When 1203 g of this aqueous solution was sprayed into 2000 g of 28 mass% ammonia water, a precipitate was formed. The precipitate is separated off, washed with water, dried at 200 ° C. and mechanically disintegrated.
(第1ソルボサーマル処理工程)
 上記沈殿38.9gを耐圧容器に入れ、4N水酸化リチウム水溶液219.32mL(水酸化リチウム0.88mol相当)を加えた。上記耐圧容器を密封し、120℃に設定した恒温槽で12時間加熱して水熱処理を行い、放冷した。
(First solvothermal treatment process)
38.9 g of the above precipitate was placed in a pressure resistant vessel, and 219.32 mL of a 4 N aqueous solution of lithium hydroxide (equivalent to 0.88 mol of lithium hydroxide) was added. The above-mentioned pressure-resistant container was sealed, heated in a constant temperature bath set at 120 ° C. for 12 hours, subjected to hydrothermal treatment, and allowed to cool.
(第2ソルボサーマル処理工程)
 上記第1ソルボサーマル処理を行った耐圧容器の内容物を攪拌し、0.526molの酢酸を添加した。その後、耐圧容器を密封し、180℃に設定した恒温槽で12時間加熱して水熱処理を行った。自然放冷後、沈殿を分離し、水を用いて洗浄し、200℃で乾燥させることで固体状の水熱処理体(LTO前駆体)を得た。
(2nd solvothermal treatment process)
The contents of the pressure resistant vessel subjected to the first solvothermal treatment were stirred, and 0.526 mol of acetic acid was added. Thereafter, the pressure-resistant container was sealed, and was heated in a constant temperature bath set at 180 ° C. for 12 hours to conduct hydrothermal treatment. After natural cooling, the precipitate was separated, washed with water, and dried at 200 ° C. to obtain a solid hydrothermally treated body (LTO precursor).
(仮焼成処理工程)
 上記工程で得られた水熱処理体をアルミナ製の焼成ボートにいれ、500℃、10時間、大気雰囲気で焼成しチタン酸リチウム(LTO)仮焼成体粒子を得た。窒素吸着を用いてBET法で算出した仮焼成体の比表面積は14.8m/gであった。
(Pre-baking treatment process)
The hydrothermally treated body obtained in the above step was placed in a firing boat made of alumina, and fired in air at 500 ° C. for 10 hours to obtain lithium titanate (LTO) calcined particles. The specific surface area of the calcined body calculated by the BET method using nitrogen adsorption was 14.8 m 2 / g.
[チタン酸リチウムランタン(LLTO)仮焼成体粒子の調製]
 図13に、チタン酸リチウムランタン(LLTO)仮焼成体粒子の調製の流れを示す。
(同時沈殿処理工程)
 塩化ランタン7水和物を水に溶解させて得た溶液を四塩化チタン水溶液と混合し、La濃度0.96mmol/g、Ti濃度1.71mmol/g、Cl濃度6.84mmol/gの水溶液を調製した。この水溶液は透明であり、室温で放置しても沈殿を生成しなかった。この水溶液412gを28質量%アンモニア水500g中に噴霧すると沈殿が生成した。沈殿を分離し、水で洗浄し、200℃で乾燥し、機械的に解砕した。
[Preparation of lithium lanthanum titanate (LLTO) calcined particles]
FIG. 13 shows a flow of preparation of lithium lanthanum titanate (LLTO) calcined particles.
(Coprecipitation process)
A solution obtained by dissolving lanthanum chloride heptahydrate in water is mixed with an aqueous solution of titanium tetrachloride, and an aqueous solution containing 0.96 mmol / g of La, 1.71 mmol / g of Ti, and 6.84 mmol / g of Cl is prepared. Prepared. The aqueous solution was clear and did not form a precipitate upon standing at room temperature. When 412 g of this aqueous solution was sprayed into 500 g of 28% by mass ammonia water, a precipitate was formed. The precipitate is separated off, washed with water, dried at 200 ° C. and mechanically disintegrated.
(第1ソルボサーマル処理工程)
 上記沈殿38.4gを耐圧容器に入れ、4N水酸化リチウム水溶液104.31mL(水酸化リチウム0.41mol相当)を加えた。上記耐圧容器を密封し、120℃に設定した恒温槽で12時間加熱して水熱処理を行い、放冷した。
(First solvothermal treatment process)
38.4 g of the above precipitate was placed in a pressure resistant vessel, and 104.31 mL of a 4 N lithium hydroxide aqueous solution (equivalent to 0.41 mol of lithium hydroxide) was added. The above-mentioned pressure-resistant container was sealed, heated in a constant temperature bath set at 120 ° C. for 12 hours, subjected to hydrothermal treatment, and allowed to cool.
(第2ソルボサーマル処理工程)
 上記第1ソルボサーマル処理を行った耐圧容器の内容物を攪拌し、0.350molの酢酸を添加した。その後、耐圧容器を密封し、180℃に設定した恒温槽で12時間加熱して水熱処理を行った。自然放冷後、沈殿を分離し、水を用いて洗浄し、200℃で乾燥させることで固体状の水熱処理体(LLTO前駆体)を得た。
(2nd solvothermal treatment process)
The contents of the pressure resistant container subjected to the first solvothermal treatment were stirred, and 0.350 mol of acetic acid was added. Thereafter, the pressure-resistant container was sealed, and was heated in a constant temperature bath set at 180 ° C. for 12 hours to conduct hydrothermal treatment. After natural cooling, the precipitate was separated, washed with water, and dried at 200 ° C. to obtain a solid hydrothermally treated body (LLTO precursor).
(仮焼成処理工程)
 上記工程で得られた水熱処理体をアルミナ製の焼成ボートにいれ、700℃、10時間、大気雰囲気で焼成しチタン酸リチウムランタン(LLTO)仮焼成体粒子を得た。窒素吸着を用いてBET法で算出した仮焼成体の比表面積は19.3m/gであった。
(Pre-baking treatment process)
The hydrothermally treated body obtained in the above step was placed in a firing boat made of alumina, and fired in air at 700 ° C. for 10 hours to obtain lithium lanthanum titanate (LLTO) calcined particles. The specific surface area of the calcined body calculated by the BET method using nitrogen adsorption was 19.3 m 2 / g.
[チタン酸リチウム層およびチタン酸リチウムランタン層グリーンシートの作製]
 図14に、仮焼成体粒子から配列焼結体作成までの流れを示す。
(ペースト調製工程)
 ポリビニルブチラールをトルエンと2-プロパノールの混合溶媒に溶解させてバインダー溶液を調製した。このバインダー溶液に上記のチタン酸リチウム(LTO)仮焼成体粒子またはチタン酸リチウムランタン(LLTO)仮焼成体粒子を添加して混練することにより、各ペーストを調製した。
[Preparation of lithium titanate layer and lithium lanthanum titanate layer green sheet]
FIG. 14 shows a flow from pre-sintered sintered body particles to preparation of arrayed sintered bodies.
(Paste preparation process)
Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. Each paste was prepared by adding the above-mentioned lithium titanate (LTO) calcined particles or lithium lanthanum titanate (LLTO) calcined particles to the binder solution and kneading.
(塗工工程)
 得られた各層ペーストをドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムの上に塗工し、120℃で10分間乾燥させて各層グリーンシートを作製した。
(Coating process)
The obtained layer paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a layer green sheet.
[グリーンシート積層体の作製]
 上記の方法で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを直径12mmの円盤状に裁断した。裁断してPETフィルムを剥離した各層グリーンシートを交互に重ね、両端をチタン酸リチウム層グリーンシートとなるようにした。剥離したPETフィルムで両端のチタン酸リチウム層グリーンシートを挟み、熱圧着装置で80℃、30分間熱圧着した後、最上層と最下層のPETフィルムを剥離することにより、チタン酸リチウム―チタン酸リチウムランタン積層体を作製した。チタン酸リチウム層グリーンシートを51枚、チタン酸リチウムランタン層グリーンシートを50枚使用した。
[Production of green sheet laminate]
The lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were cut into a disk shape having a diameter of 12 mm. Each layer green sheet obtained by cutting and peeling the PET film was alternately stacked, and both ends were made to be a lithium titanate layer green sheet. The lithium titanate layer green sheets at both ends are held between peeled PET films, and after thermocompression bonding with a thermocompression bonding device at 80 ° C. for 30 minutes, the PET films of the uppermost layer and the lowermost layer are peeled off to obtain lithium titanate-titanate A lithium lanthanum laminate was prepared. 51 sheets of lithium titanate layer green sheets and 50 sheets of lithium lanthanum titanate layer green sheets were used.
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、500℃、10時間、大気下での予備焼成でポリビニルブチラールを除去した後、950℃で12時間、大気雰囲気で本焼成することで積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
By sandwiching the green sheet laminate prepared by the above method with an alumina plate and removing polyvinyl butyral by prebaking in the atmosphere at 500 ° C. for 10 hours, the main firing is carried out in the air atmosphere at 950 ° C. for 12 hours. A laminated sintered body was produced.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図15)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでいた。チタン酸リチウム層とチタン酸リチウムランタン層を1組としたとき、これらの層に垂直な直線に沿って5組以上の層の合計の幅を測定して組数で割った1組の平均の幅は9.0μmであった。また断面写真から面積比を求めると、LTO :LLTO=1.45:1であった。したがって、各層の幅の平均値はチタン酸リチウムが5.3μm、チタン酸リチウムランタンが3.7μmであった(図16)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=65:35であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] Diffraction lines were detected which were determined relative to lithium lanthanum titanate (LLTO) having a perovskite crystal structure [ICDD No. 01-087-0935] (FIG. 15). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly. When a lithium titanate layer and a lithium lanthanum titanate layer form one set, the average width of a total of 5 or more sets of layers is measured along a straight line perpendicular to these layers and divided by the number of sets. The width was 9.0 μm. Further, when the area ratio was determined from the cross-sectional photograph, LTO: LLTO was 1.45: 1. Therefore, the average value of the width of each layer was 5.3 μm for lithium titanate and 3.7 μm for lithium lanthanum titanate (FIG. 16).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 65: 35.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体を作製した。焼結体の厚さ(すなわち、複合体電極の厚さC)を、ノギスで測定したところ、400μmであった。また、寸法法で算出した配列焼結体の実密度は2.53g/cmであり、相対密度は61%であり、空隙率は39%であり、アルキメデス法で算出した配列焼結体の実密度は3.05g/cmであり、相対密度は73%であり、空隙率は27%であった。なお、切り出した配列焼結体の幅Xは400μmであり、奥行Yは、4mmであった。また、厚さC/幅Bは約75であり、厚さC/幅Aは約108であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. The thickness of the sintered body (that is, the thickness C of the composite electrode) was measured with a caliper and found to be 400 μm. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.53 g / cm 3 , the relative density is 61%, the porosity is 39%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.05 g / cm 3 , the relative density was 73%, and the porosity was 27%. The width X of the cut out array sintered body was 400 μm, and the depth Y was 4 mm. The thickness C / width B was about 75, and the thickness C / width A was about 108.
[実施例2]
 実施例1の積層焼結体作製の本焼成を、1150℃で5時間その後850℃で12時間に変更した以外は同様にして、積層焼結体を作製した。
Example 2
A laminated sintered body was produced in the same manner as in Example 1 except that the main sintering for producing the laminated sintered body in Example 1 was changed to 1150 ° C. for 5 hours and then to 850 ° C. for 12 hours.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図17)。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層の幅の平均値はチタン酸リチウムが6.4μm、チタン酸リチウムランタンが3.2μmであった(図18)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=67:33であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] Diffraction lines were detected which were determined relative to lithium lanthanum titanate (LLTO) having a perovskite crystal structure [ICDD No. 01-087-0935] (FIG. 17).
In addition, as a result of observing a cross section with an electron microscope, two layers are arranged regularly, and as a result of evaluating by the same method as Example 1, the average value of the width of each layer is 6.4 μm for lithium titanate, titanium The lithium acid lithium was 3.2 μm (FIG. 18).
Moreover, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 67: 33.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は2.97g/cmであり、相対密度は72%であり、空隙率は28%であり、アルキメデス法で算出した配列焼結体の実密度は3.38g/cmであり、相対密度は81%であり、空隙率は19%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. The actual density of the arrayed sintered body calculated by the dimension method is 2.97 g / cm 3 , the relative density is 72%, the porosity is 28%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.38 g / cm 3 , the relative density was 81%, and the porosity was 19%.
[実施例3]
 実施例1の焼結体作製の本焼成を、1150℃で5時間に変更した以外は同様にして、積層焼結体を作製した。
[Example 3]
A laminated sintered body was produced in the same manner as in Example 1 except that the main sintering for producing the sintered body in Example 1 was changed to 1150 ° C. for 5 hours.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図19)。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが4.3μm、チタン酸リチウムランタンが2.1μmであった(図20)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、チタン酸リチウム:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 2 Ti 3 O 7 [ICDD No. 00-034-0393], a lithium titanate having a ramsdellite crystal structure, perovskite A diffraction line specific to lithium lanthanum titanate (LLTO) [ICDD No. 01-087-0935] having a crystal structure of the crystal structure was detected (FIG. 19).
In addition, as a result of observing a cross section with an electron microscope, two layers are arranged regularly, As a result of evaluating by the same method as Example 1, the width of an average of each layer is 4.3 micrometers of lithium titanate, lithium titanate The lantern was 2.1 μm (FIG. 20).
Further, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the feed ratio was lithium titanate: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は2.94g/cmであり、相対密度は74%であり、空隙率は24%であり、アルキメデス法で算出した配列焼結体の実密度は3.15g/cmであり、相対密度は79%であり、空隙率は21%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.94 g / cm 3 , the relative density is 74%, the porosity is 24%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.15 g / cm 3 , the relative density was 79%, and the porosity was 21%.
[実施例4]
[グリーンシート積層体の作製]
 実施例1で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを直径12mmの円盤状に裁断した。裁断してPETフィルムを剥離した各層グリーンシートを交互に重ね、両端をチタン酸リチウム層グリーンシートとなるようにした。剥離したPETフィルムで両端のチタン酸リチウム層グリーンシートを挟み、熱圧着装置で80℃、10分間熱圧着した。熱圧着体にはチタン酸リチウム層グリーンシートを11枚、チタン酸リチウムランタン層グリーンシートを10枚使用した。
Example 4
[Production of green sheet laminate]
The lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced in Example 1 were cut into a disk shape having a diameter of 12 mm. Each layer green sheet obtained by cutting and peeling the PET film was alternately stacked, and both ends were made to be a lithium titanate layer green sheet. The lithium titanate layer green sheets at both ends were sandwiched by the peeled PET film, and thermocompression bonding was performed at 80 ° C. for 10 minutes using a thermocompression bonding apparatus. As a thermocompression-bonded body, 11 sheets of lithium titanate layer green sheets and 10 sheets of lithium lanthanum titanate layer green sheets were used.
 得られた熱圧着体の片面に金を蒸着し、金蒸着した熱圧着体を5つ重ね、PETフィルムで両端のチタン酸リチウム層グリーンシートを挟み、熱圧着装置で80℃、30分間熱圧着した。最上層と最下層のPETフィルムを剥離することにより、チタン酸リチウム―チタン酸リチウムランタン―金積層体を作製した。 Gold is vapor-deposited on one side of the obtained thermocompression-bonded body, five gold-deposited thermocompression-bonded bodies are stacked, a lithium titanate green sheet at both ends is sandwiched with a PET film, and thermocompression-bonded at 80 ° C. for 30 minutes with a thermocompression bonding device did. A lithium titanate-lithium lanthanum titanate-gold laminate was produced by peeling the PET film of the top layer and the bottom layer.
[積層焼結体の作製]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、500℃、10時間、大気下での予備焼成でポリビニルブチラールを除去した後、1150℃で5時間その後850℃で12時間、大気雰囲気で本焼成することで積層焼結体を作製した。
[Production of laminated sintered body]
The green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours The laminated sintered body was produced by carrying out the main firing in this way.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]、Au[ICDD番号00-004-0784]に比定される回折線が検出された(図21)。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが4.9μm、チタン酸リチウムランタンが2.5μmであった(図22)。また、EDXマッピングから、平均の幅が3μmの金層が形成していること確認した(図23)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. The laminated sintered body was pulverized and powder X-ray diffraction measurement was conducted to find that Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207], perovskite type Diffraction lines were detected which were determined relative to lithium lanthanum titanate (LLTO) having a crystal structure [ICDD No. 01-087-0935] and Au [ICDD No. 00-004-0784] (FIG. 21).
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of an average of each layer is 4.9 micrometers of lithium titanate, lithium titanate The lantern was 2.5 μm (FIG. 22). In addition, it was confirmed from EDX mapping that a gold layer having an average width of 3 μm was formed (FIG. 23).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層、チタン酸リチウムランタン層と金層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は2.92g/cmであり、相対密度は60%であり、空隙率は40%であり、アルキメデス法で算出した配列焼結体の実密度は4.04g/cmであり、相対密度は83%であり、空隙率は17%であった。
[Preparation of arrayed sintered body]
A sintered body (400 μm thick) in which a lithium titanate layer, a lithium lanthanum titanate layer and a gold layer are arranged is produced by cutting out and processing the laminated sintered body produced by the above method using a grinder. did. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.92 g / cm 3 , the relative density is 60%, the porosity is 40%, and the arrayed sintered body calculated by the Archimedes method The actual density was 4.04 g / cm 3 , the relative density was 83%, and the porosity was 17%.
[実施例5]
[チタン酸リチウム層およびチタン酸リチウムランタン層グリーンシートの作製]
 ポリビニルブチラールをトルエンと2-プロパノールの混合溶媒に溶解させてバインダー溶液を調製した。実施例1で作製したチタン酸リチウム(LTO)仮焼成体粒子またはチタン酸リチウムランタン(LLTO)仮焼成体粒子とアセチレンブラック(AB)を重量比95:5で混ぜ、混合粉体を調整した。バインダー溶液に混合粉体を添加して混練することにより、各ペーストを調製した。アセチレンブラックはカーボンブラックの一種である。
[Example 5]
[Preparation of lithium titanate layer and lithium lanthanum titanate layer green sheet]
Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. The lithium titanate (LTO) calcined particles produced in Example 1 or lithium lanthanum titanate (LLTO) calcined particles and acetylene black (AB) were mixed at a weight ratio of 95: 5 to prepare a mixed powder. Each paste was prepared by adding the mixed powder to the binder solution and kneading. Acetylene black is a type of carbon black.
(塗工工程)
 得られた各層ペーストをドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムの上に塗工し、120℃で10分間乾燥させて各層グリーンシートを作製した。
(Coating process)
The obtained layer paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a layer green sheet.
[グリーンシート積層体の作製]
 上記の方法で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを用いること以外は実施例1と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。
[Production of green sheet laminate]
A lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 1 except that the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were used.
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、450℃、10時間、大気下での予備焼成でポリビニルブチラールを除去した後、1150℃で5時間その後850℃で12時間、0.5体積%の水素を含むN雰囲気下で本焼成することで積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
The green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by pre-baking in the atmosphere at 450 ° C. for 10 hours, at 0 ° C. for 5 hours, then at 850 ° C. for 12 hours. The laminated sintered body was produced by performing main firing in an N 2 atmosphere containing 5 volume% of hydrogen.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図24)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが5.5μm、チタン酸リチウムランタンが3.1μmであった(図25)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=69:31であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] , Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 Diffraction lines identified in [] were detected (FIG. 24). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of each layer average is 5.5 micrometers of lithium titanate, lithium titanate The lantern was 3.1 μm (FIG. 25).
Further, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the feed ratio was LTO: LLTO = 69: 31.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は3.19g/cmであり、相対密度は77%であり、空隙率は23%であり、アルキメデス法で算出した配列焼結体の実密度は3.74g/cmであり、相対密度は90%であり、空隙率は10%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. The actual density of the arrayed sintered body calculated by the dimension method is 3.19 g / cm 3 , the relative density is 77%, the porosity is 23%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.74 g / cm 3 , the relative density was 90%, and the porosity was 10%.
[実施例6]
[チタン酸リチウムランタン層グリーンシートの作製]
 ポリビニルブチラールをトルエンと2-プロパノールの混合溶媒に溶解させてバインダー溶液を調製した。実施例1で作製したチタン酸リチウムランタン(LLTO)仮焼成体粒子と気相成長炭素繊維(VGCF)を重量比95:5で混ぜ、混合粉体を調整した。バインダー溶液に混合粉体を添加して混練することにより、ペーストを調製した。
[Example 6]
[Preparation of lithium lanthanum titanate green sheet]
Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. The lithium lanthanum titanate (LLTO) calcined particles prepared in Example 1 and vapor grown carbon fiber (VGCF) were mixed at a weight ratio of 95: 5 to prepare a mixed powder. The paste was prepared by adding the mixed powder to the binder solution and kneading.
(塗工工程)
 得られたペーストをドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムの上に塗工し、120℃で10分間乾燥させてグリーンシートを作製した。
(Coating process)
The obtained paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to produce a green sheet.
[グリーンシート積層体の作製]
 実施例1で作製したチタン酸リチウム層グリーンシートおよび上記の方法で作製したチタン酸リチウムランタン層グリーンシートを用いること以外は実施例1と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。
[Production of green sheet laminate]
A lithium titanate-lithium lanthanum titanate laminate is prepared in the same manner as in Example 1 except that the lithium titanate layer green sheet produced in Example 1 and the lithium lanthanum titanate layer green sheet produced by the above method are used. Made.
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体を用いること以外は実施例5と同一の方法で積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
A laminated sintered body was produced in the same manner as in Example 5 except that the green sheet laminate produced by the above method was used.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図26)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが4.9μm、チタン酸リチウムランタンが3.5μmであった(図27)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=69:31であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] Diffraction lines were detected which were determined relative to lithium lanthanum titanate (LLTO) having a perovskite crystal structure [ICDD No. 01-087-0935] (FIG. 26). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of an average of each layer is 4.9 micrometers of lithium titanate, lithium titanate The lantern was 3.5 μm (FIG. 27).
Further, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the feed ratio was LTO: LLTO = 69: 31.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は3.01g/cmであり、相対密度は73%であり、空隙率は27%であり、アルキメデス法で算出した配列焼結体の実密度は3.48g/cmであり、相対密度は84%であり、空隙率は16%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.01 g / cm 3 , the relative density is 73%, the porosity is 27%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.48 g / cm 3 , the relative density was 84%, and the porosity was 16%.
[実施例7]
(塗工工程)
 実施例5で作製したLTOとABの混合粉体ペーストおよび実施例6で作製したLLTOとVGCFの混合粉体ペーストをドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムの上に塗工し、120℃で10分間乾燥させてグリーンシートを作製した。
[Example 7]
(Coating process)
The mixed powder paste of LTO and AB prepared in Example 5 and the mixed powder paste of LLTO and VGCF prepared in Example 6 are coated on a polyethylene terephthalate (PET) film by a doctor blade method, 120 ° C. The resultant was dried for 10 minutes to prepare a green sheet.
[グリーンシート積層体の作製]
 上記の方法で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを用いた以外は実施例1と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。チタン酸リチウム層グリーンシートを61枚、チタン酸リチウムランタン層グリーンシートを60枚使用した。
[Production of green sheet laminate]
A lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 1 except that the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet produced by the above method were used. 61 sheets of lithium titanate layer green sheets and 60 sheets of lithium lanthanum titanate layer green sheets were used.
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、500℃、10時間、1体積%の酸素を含むN雰囲気下での予備焼成でポリビニルブチラールを除去した後、1150℃で5時間その後850℃で12時間、0.5体積%の水素を含むN雰囲気下で本焼成することで積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
After the green sheet laminate prepared by the above method is sandwiched between alumina plates and the polyvinyl butyral is removed by pre-baking under N 2 atmosphere containing 1 vol% oxygen at 500 ° C. for 10 hours, then 1 hour at 1150 ° C. Then, a laminated sintered body was produced by performing main firing in an N 2 atmosphere containing 0.5 volume% of hydrogen at 850 ° C. for 12 hours.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図28)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが2.9μm、チタン酸リチウムランタンが1.8μmであった(図29)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] Diffraction lines were detected which were determined relative to lithium lanthanum titanate (LLTO) having a perovskite crystal structure [ICDD No. 01-087-0935] (FIG. 28). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers are arranged regularly, As a result of evaluating by the same method as Example 1, the width of an average of each layer is 2.9 micrometers of lithium titanate, lithium titanate The lantern was 1.8 μm (FIG. 29).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は3.03g/cmであり、相対密度は76%であり、空隙率は24%であり、アルキメデス法で算出した配列焼結体の実密度は3.80g/cmであり、相対密度は95%であり、空隙率は5%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.03 g / cm 3 , the relative density is 76%, the porosity is 24%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.80 g / cm 3 , the relative density was 95%, and the porosity was 5%.
[実施例8]
[グリーンシート積層体の作製]
 実施例7で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを用い、焼結後の幅がLTOは10μm厚以下、LLTOは5μm厚以下になるように積層した以外は実施例7と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。
[Example 8]
[Production of green sheet laminate]
Example except using the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 and laminating so that the width after sintering is 10 μm or less in LTO and 5 μm or less in LLTO A lithium titanate-lithium lanthanum titanate laminate was prepared in the same manner as in (7).
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体を用いること以外は実施例7と同一の方法で積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
A laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図30)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが9μm、チタン酸リチウムランタンが5μmであった(図31)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] , Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 A diffraction line identified in [] was detected (FIG. 30). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of an average of each layer is 9 micrometers of lithium titanate, lithium lanthanum titanate It was 5 μm (FIG. 31).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は2.77g/cmであり、相対密度は70%であり、空隙率は30%であり、アルキメデス法で算出した配列焼結体の実密度は3.78g/cmであり、相対密度は95%であり、空隙率は5%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 2.77 g / cm 3 , the relative density is 70%, the porosity is 30%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.78 g / cm 3 , the relative density was 95%, and the porosity was 5%.
[実施例9]
[グリーンシート積層体の作製]
 実施例7で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを用い、焼結後の幅がLTOは15μm厚以下、LLTOは7.5μm厚以下になるように積層した以外は実施例7と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。
[Example 9]
[Production of green sheet laminate]
The lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 were laminated so that the width after sintering was 15 μm or less in LTO and 7.5 μm or less in LLTO A lithium titanate-lithium lanthanum titanate laminate was produced in the same manner as in Example 7.
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体を用いること以外は実施例7と同一の方法で積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
A laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図32)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが13μm、チタン酸リチウムランタンが5.8μmであった(図33)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] , Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 The diffraction line identified in [] was detected (Figure 32). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of the average of each layer is 13 μm of lithium titanate and lithium lanthanum titanate. It was 5.8 micrometers (FIG. 33).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は3.06g/cmであり、相対密度は77%であり、空隙率は23%であり、アルキメデス法で算出した配列焼結体の実密度は3.65g/cmであり、相対密度は92%であり、空隙率は8%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. Further, the actual density of the arrayed sintered body calculated by the dimension method is 3.06 g / cm 3 , the relative density is 77%, the porosity is 23%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.65 g / cm 3 , the relative density was 92%, and the porosity was 8%.
[実施例10]
[グリーンシート積層体の作製]
 実施例7で作製したチタン酸リチウム層グリーンシートおよびチタン酸リチウムランタン層グリーンシートを用い、焼結後の幅がLTOは15μm厚以上、LLTOは10μm厚以下になるように積層した以外は実施例7と同一の方法でチタン酸リチウム―チタン酸リチウムランタン積層体を作製した。
[Example 10]
[Production of green sheet laminate]
Example except using the lithium titanate layer green sheet and the lithium lanthanum titanate layer green sheet prepared in Example 7 and laminating so that the width after sintering is 15 μm or more in LTO and 10 μm or less in LLTO A lithium titanate-lithium lanthanum titanate laminate was prepared in the same manner as in (7).
[積層焼結体の作製(焼結工程)]
 上記の方法で作製したグリーンシート積層体を用いること以外は実施例7と同一の方法で積層焼結体を作製した。
[Fabrication of laminated sintered body (sintering process)]
A laminated sintered body was produced in the same manner as in Example 7 except that the green sheet laminate produced by the above method was used.
[積層焼結体の評価]
 上記の方法で作製した積層焼結体の各層は密着しており、一体化した積層体が得られたことを確認した。積層焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12(LTO)[ICDD番号00-049-0207]、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン(LLTO)[ICDD番号01-087-0935]に比定される回折線が検出された(図34)。粉末X線回折にて副反応生成物が確認されなかったため、チタン酸リチウム層とチタン酸リチウムランタン層の界面に副反応生成物が含まれないことが分かる。
 なお、断面を電子顕微鏡で観察した結果、2つの層が規則的に並んでおり、実施例1と同様の方法で評価した結果、各層平均の幅はチタン酸リチウムが20μm、チタン酸リチウムランタンが9μmであった(図35)。
 また、仕込み比から算出される積層焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=68:32であった。
[Evaluation of laminated sintered body]
It was confirmed that the layers of the laminated sintered body produced by the above method were in close contact, and an integrated laminate was obtained. When a part of the laminated sintered body was crushed and powder X-ray diffraction measurement was performed, Li 4 Ti 5 O 12 (LTO), which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049-0207] , Rams Delight type Li 2 Ti 3 O 7 is a lithium titanate having a crystal structure [ICDD No. 00-034-0393, lithium titanate lanthanum having a perovskite crystal structure (LLTO) [ICDD No. 01-087-0935 The diffraction line identified in [] was detected (FIG. 34). Since no side reaction product was confirmed by powder X-ray diffraction, it can be seen that no side reaction product is contained at the interface between the lithium titanate layer and the lithium lanthanum titanate layer.
In addition, as a result of observing a cross section with an electron microscope, two layers were arranged regularly, and as a result of evaluating by the same method as Example 1, the width of an average of each layer is 20 micrometers of lithium titanate, lithium lanthanum titanate It was 9 μm (FIG. 35).
In addition, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the laminated sintered body calculated from the preparation ratio was LTO: LLTO = 68: 32.
[配列焼結体の作製]
 上記の方法で作製した積層焼結体を、グラインダーを用い、切りだし・加工することで、チタン酸リチウム層とチタン酸リチウムランタン層が配列した焼結体(厚さ400μm)を作製した。また、寸法法で算出した配列焼結体の実密度は3.00g/cmであり、相対密度は75%であり、空隙率は25%であり、アルキメデス法で算出した配列焼結体の実密度は3.63g/cmであり、相対密度は91%であり、空隙率は9%であった。
[Preparation of arrayed sintered body]
The laminated sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body (400 μm in thickness) in which a lithium titanate layer and a lithium lanthanum titanate layer were arranged. The actual density of the arrayed sintered body calculated by the dimension method is 3.00 g / cm 3 , the relative density is 75%, the porosity is 25%, and the arrayed sintered body calculated by the Archimedes method The actual density was 3.63 g / cm 3 , the relative density was 91%, and the porosity was 9%.
[比較例1]
 実施例1で作製したチタン酸リチウム層グリーンシートを直径12mmの円盤状に裁断した。裁断してPETフィルムを剥離したグリーンシートを重ね、剥離したPETフィルムでチタン酸リチウム層グリーンシートを挟み、熱圧着装置で80℃、30分間熱圧着した後、最上層と最下層のPETフィルムを剥離することにより、チタン酸リチウム層グリーンシートの積層体を作製した。
Comparative Example 1
The lithium titanate layer green sheet produced in Example 1 was cut into a disc having a diameter of 12 mm. The green sheet from which the PET film was peeled off was overlapped, and the lithium titanate layer green sheet was sandwiched between the peeled PET film and thermocompression bonded by a thermocompression bonding apparatus at 80 ° C. for 30 minutes, then the PET film of the uppermost layer and the lowermost layer By peeling off, a laminate of lithium titanate layer green sheets was produced.
[焼結体の作製]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、500℃、10時間、大気下での予備焼成でポリビニルブチラールを除去した後、1150℃で5時間その後850℃で12時間、大気雰囲気で本焼成することで焼結体を作製した。
[Production of sintered body]
The green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours The sintered body was produced by performing main firing in this way.
[焼結体の評価]
 上記の方法で作製した焼結体の一部を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12[ICDD番号00-049-0207]に比定される回折線が検出された。なお、断面を電子顕微鏡で観察した結果、LTOの層が密着して一体化しており、焼結体の全体がLTOで構成されていた。
[Evaluation of sintered body]
When a part of the sintered body produced by the above method was pulverized and powder X-ray diffraction measurement was conducted, Li 4 Ti 5 O 12 which is a lithium titanate having a spinel type crystal structure [ICDD No. 00-049- [0207] A diffraction line identified was detected. In addition, as a result of observing a cross section with an electron microscope, the layer of LTO was closely_contact | adhered and integrated, and the whole sintered compact was comprised by LTO.
[評価用焼結体の作製]
 上記の方法で作製した焼結体を、グラインダーを用い、切りだし・加工することで、評価用焼結体(厚さ400μm)を作製した。
[Preparation of sintered body for evaluation]
The sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body for evaluation (thickness: 400 μm).
[比較例2]
 比較例1の焼結体作製の本焼成を、1150℃で5時間に変更した以外は同様にして、焼結体を作製した。
Comparative Example 2
A sintered body was produced in the same manner as in Comparative Example 1 except that the main sintering for producing the sintered body was changed to 1150 ° C. for 5 hours.
[焼結体の評価]
 上記の方法で作製した焼結体を粉砕して粉末X線回折測定を行ったところ、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]に比定される回折線が検出された。なお、断面を電子顕微鏡で観察した結果、LTOの層が密着して一体化しており、焼結体の全体がLTOで構成されていた。
[Evaluation of sintered body]
When the sintered compact produced by said method was grind | pulverized and powder X-ray-diffraction measurement was performed, it is Li 2 Ti 3 O 7 which is a lithium titanate which has a ramsdellite type crystal structure [ICDD number 00-034-0393] Diffraction lines were detected that were identified. In addition, as a result of observing a cross section with an electron microscope, the layer of LTO was closely_contact | adhered and integrated, and the whole sintered compact was comprised by LTO.
[評価用焼結体の作製]
 上記の方法で作製した焼結体を、グラインダーを用い、切りだし・加工することで、評価用焼結体(厚さ400μm)を作製した。
[Preparation of sintered body for evaluation]
The sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body for evaluation (thickness: 400 μm).
[比較例3]
[チタン酸リチウム(LTO)-チタン酸リチウムランタン(LLTO)複合体の仮焼成体粒子の調製]
(同時沈殿処理工程)
 塩化ランタン7水和物を水に溶解させて得た溶液を四塩化チタン水溶液と混合し、La濃度0.20mmol/g、Ti濃度3.10mmol/g、Cl濃度8.67mmol/gの水溶液を調製した。この水溶液は透明であり、室温で放置しても沈殿を生成しなかった。この水溶液250gを28質量%アンモニア水550g中に噴霧すると沈殿が生成した。沈殿を分離し、水で洗浄し、200℃で乾燥し、機械的に解砕した。
Comparative Example 3
[Preparation of calcined particles of lithium titanate (LTO) -lithium lanthanum titanate (LLTO) composite]
(Coprecipitation process)
A solution obtained by dissolving lanthanum chloride heptahydrate in water is mixed with an aqueous solution of titanium tetrachloride, and an aqueous solution containing 0.20 mmol / g of La, 3.10 mmol / g of Ti, and 8.67 mmol / g of Cl is prepared. Prepared. The aqueous solution was clear and did not form a precipitate upon standing at room temperature. When 250 g of this aqueous solution was sprayed into 550 g of 28% by mass ammonia water, a precipitate was formed. The precipitate is separated off, washed with water, dried at 200 ° C. and mechanically disintegrated.
(第1ソルボサーマル処理工程)
 上記の同時沈殿処理工程で生成した沈殿9.28gを耐圧容器に入れ、4N水酸化リチウム水溶液43.59mL(水酸化リチウム0.17mol相当)を加えた。上記耐圧容器を密封し、120℃に設定した恒温槽で12時間加熱して水熱処理を行い、放冷した。
(First solvothermal treatment process)
9.28 g of the precipitate generated in the above-mentioned simultaneous precipitation treatment step was placed in a pressure resistant vessel, and 43.59 mL of a 4 N aqueous solution of lithium hydroxide (equivalent to 0.17 mol of lithium hydroxide) was added. The above-mentioned pressure-resistant container was sealed, heated in a constant temperature bath set at 120 ° C. for 12 hours, subjected to hydrothermal treatment, and allowed to cool.
(第2ソルボサーマル処理工程)
 上記第1ソルボサーマル処理を行った耐圧容器の内容物を攪拌し、0.103molの酢酸を添加した。耐圧容器を密封し、180℃に設定した恒温槽で12時間加熱して水熱処理を行った。自然放冷後、沈殿を分離し、水を用いて洗浄し、200℃で乾燥させることで固体状の水熱処理体(LTO-LLTO複合体の前駆体)を得た。
(2nd solvothermal treatment process)
The contents of the pressure resistant vessel subjected to the first solvothermal treatment were stirred, and 0.103 mol of acetic acid was added. The pressure resistant container was sealed, and heated in a constant temperature bath set at 180 ° C. for 12 hours to conduct hydrothermal treatment. After natural cooling, the precipitate was separated, washed with water, and dried at 200 ° C. to obtain a solid hydrothermally treated product (precursor of LTO-LLTO complex).
(仮焼成処理工程)
 上記工程で得られた水熱処理体をアルミナ製の焼成ボートにいれ、700℃、10時間、大気雰囲気で焼成しチタン酸リチウム(LTO)-チタン酸リチウムランタン(LLTO)複合体の仮焼成体粒子を得た。
(Pre-baking treatment process)
The hydrothermally treated body obtained in the above step is placed in a firing boat made of alumina, fired in air at 700 ° C. for 10 hours, and calcined particles of lithium titanate (LTO) -lithium lanthanum titanate (LLTO) composite I got
[チタン酸リチウム-チタン酸リチウムランタン複合体グリーンシートの作製]
(ペースト調製工程)
 ポリビニルブチラールをトルエンと2-プロパノールの混合溶媒に溶解させてバインダー溶液を調製した。このバインダー溶液に上記のチタン酸リチウム(LTO)-チタン酸リチウムランタン(LLTO)複合体の仮焼成体粒子を添加して混練することにより、ペーストを調製した。
[Preparation of lithium titanate-lithium lanthanum titanate composite green sheet]
(Paste preparation process)
Polyvinyl butyral was dissolved in a mixed solvent of toluene and 2-propanol to prepare a binder solution. A paste was prepared by adding the above-mentioned calcined particles of lithium titanate (LTO) -lithium lanthanum titanate (LLTO) composite to the binder solution and kneading.
(塗工工程)
 得られたペーストをドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムの上に塗工し、120℃で10分間乾燥させて複合体グリーンシートを作製した。
(Coating process)
The obtained paste was applied onto a polyethylene terephthalate (PET) film by a doctor blade method, and dried at 120 ° C. for 10 minutes to prepare a composite green sheet.
 上記で作製した複合体グリーンシートを直径12mmの円盤状に裁断した。裁断してPETフィルムを剥離した複合体グリーンシートを重ね、剥離したPETフィルムで挟み、熱圧着装置で80℃、30分間熱圧着した後、最上層と最下層のPETフィルムを剥離することにより、複合体グリーンシートの積層体を作製した。 The composite green sheet produced above was cut into a disk shape having a diameter of 12 mm. The composite green sheet obtained by cutting and peeling the PET film is overlapped, sandwiched by the peeled PET film, and thermocompression bonded by a thermocompression bonding device at 80 ° C. for 30 minutes, and then peeling the PET film of the uppermost layer and the lowermost layer A laminate of composite green sheets was produced.
[焼結体の作製]
 上記の方法で作製したグリーンシート積層体をアルミナ板で挟み、500℃、10時間、大気下での予備焼成でポリビニルブチラールを除去した後、1150℃で5時間その後850℃で12時間、大気雰囲気で本焼成することで焼結体を作製した。
[Production of sintered body]
The green sheet laminate prepared by the above method is sandwiched between alumina plates, and after removing polyvinyl butyral by preliminary baking in the atmosphere at 500 ° C. for 10 hours, air atmosphere atmosphere at 1150 ° C. for 5 hours and 850 ° C. for 12 hours The sintered body was produced by performing main firing in this way.
[焼結体の評価]
 上記の方法で作製した焼結体を粉砕して粉末X線回折測定を行ったところ、スピネル型結晶構造を持つチタン酸リチウムであるLiTi12[ICDD番号00-049-0207]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン[ICDD番号01-087-0935]に比定される回折線が検出された。なお、断面を電子顕微鏡で観察した結果、LTOの粒子とLLTOの粒子が密に接合して一体化した複合体が生成しており、焼結体の全体がLTOとLLTOの複合体で構成されていた。
 以上の結果を踏まえて仕込み比から算出される、焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、LTO:LLTO=59:41であった。
[Evaluation of sintered body]
When the sintered body produced by the above method was pulverized and powder X-ray diffraction measurement was conducted, Li 4 Ti 5 O 12 [ICDD No. 00-049-0207] which is a lithium titanate having a spinel type crystal structure, A diffraction line specific to lithium lanthanum titanate [ICDD number 01-087-0935] having a perovskite crystal structure was detected. As a result of observing the cross section with an electron microscope, it is possible to form a complex in which LTO particles and LLTO particles are closely joined and integrated, and the entire sintered body is composed of a complex of LTO and LLTO. It was
Based on the above results, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the sintered body, calculated from the feed ratio, was LTO: LLTO = 59: 41.
[評価用焼結体の作製]
 上記の方法で作製した焼結体を、グラインダーを用い、切りだし・加工することで、評価用焼結体(厚さ400μm)を作製した。
[Preparation of sintered body for evaluation]
The sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body for evaluation (thickness: 400 μm).
[比較例4]
 比較例3の焼結体作製の本焼成を、1150℃で5時間に変更した以外は同様にして、焼結体を作製した。
Comparative Example 4
A sintered body was produced in the same manner as in Comparative Example 3, except that the main sintering for producing the sintered body was changed to 1150 ° C. for 5 hours.
[焼結体の評価]
 上記の方法で作製した焼結体を粉砕して粉末X線回折測定を行ったところ、ラムズデライト型結晶構造を持つチタン酸リチウムであるLiTi[ICDD番号00-034-0393]、ペロブスカイト型結晶構造を持つチタン酸リチウムランタン[ICDD番号01-087-0935]に比定される回折線が検出された。
 なお、断面を電子顕微鏡で観察した結果、チタン酸リチウムの粒子とLLTOの粒子が密に接合して一体化した複合体が生成しており、焼結体の全体がチタン酸リチウムとLLTOの複合体で構成されていた。
 以上の結果を踏まえて仕込み比から算出される、焼結体に含まれるチタン酸リチウムとチタン酸リチウムランタンの体積比は、チタン酸リチウム:LLTO=61:39であった。
[Evaluation of sintered body]
When the sintered compact produced by said method was grind | pulverized and powder X-ray-diffraction measurement was performed, it is Li 2 Ti 3 O 7 which is a lithium titanate which has a ramsdellite type crystal structure [ICDD number 00-034-0393] Diffraction lines were detected that were determined relative to lithium lanthanum titanate [ICDD number 01-087-0935] having a perovskite crystal structure.
As a result of observing the cross section with an electron microscope, it is possible to form a complex in which particles of lithium titanate and particles of LLTO are closely joined and integrated, and the whole sintered body is a composite of lithium titanate and LLTO. It was composed of the body.
Based on the above results, the volume ratio of lithium titanate and lithium lanthanum titanate contained in the sintered body calculated from the feed ratio was lithium titanate: LLTO = 61: 39.
[評価用焼結体の作製]
 上記の方法で作製した焼結体を、グラインダーを用い、切りだし・加工することで、評価用焼結体(厚さ400μm)を作製した。
[Preparation of sintered body for evaluation]
The sintered body produced by the above method was cut out and processed using a grinder to produce a sintered body for evaluation (thickness: 400 μm).
[試験用全固体セルを用いた充放電試験]
 実施例1~10で得られた配列焼結体と、比較例1~4で得られた評価用焼結体の充放電試験を行った。試験用全固体セルはグローブボックス内で作成した。重量平均分子量60万のポリエチレンオキシドと、ポリエチレンオキシドに対する重量比が35%のリチウムビス(トリフルオロメタンスルホニル)イミドを、アセトニトリル中で混合し、下面および側面に金を蒸着した焼結体(配列焼結体又は評価用焼結体)の上面に塗布した。その後、130℃12時間減圧乾燥を行い、アセトニトリルを完全に除去することで、ドライポリマー電解質と焼結体の積層体を得た。この積層体のドライポリマー電解質側に金属リチウムを密着させ、コイン型容器に密封することで、焼結体を正極、ドライポリマー電解質を固体電解質、金属リチウムを負極とする試験用コイン型全固体セルを作製し、60℃及び90℃で充放電試験を行った。充放電は放電から開始し、0.002mA/cmの定電流で、カットオフ電位2.5~1.25Vで、放電終端電圧1.25Vで初回放電を行い、その後の充電終端電圧2.5Vで初回充電を行った。初回放電容量と初回充電容量は、焼結体の質量あたりの値に換算した。図36、図37に90℃での実施例1~4、比較例1~4の初回充放電曲線、図38に60℃での実施例2、4~6の初回充放電曲線、図39に60℃での実施例7~10の初回充放電曲線を示す。また、初回充電容量を初回放電容量で除してクーロン効率を求めた。
[Charge / discharge test using all solid cells for test]
Charge / discharge tests were conducted on the arrayed sintered bodies obtained in Examples 1 to 10 and the sintered bodies for evaluation obtained in Comparative Examples 1 to 4. All solid cells for testing were made in a glove box. A sintered body in which polyethylene oxide with a weight average molecular weight of 600,000 and lithium bis (trifluoromethanesulfonyl) imide having a weight ratio of 35% to polyethylene oxide are mixed in acetonitrile and gold is deposited on the lower and side surfaces (sequence sintering It apply | coated on the upper surface of the body or the sintered compact for evaluation. Thereafter, drying under reduced pressure was performed at 130 ° C. for 12 hours, and acetonitrile was completely removed to obtain a laminate of a dry polymer electrolyte and a sintered body. Metal lithium is adhered to the dry polymer electrolyte side of this laminate and sealed in a coin-shaped container, thereby making the sintered body a positive electrode, the dry polymer electrolyte a solid electrolyte, and a coin lithium all solid cell for test using metallic lithium as a negative electrode. C. and charge / discharge tests at 60.degree. C. and 90.degree. The charge and discharge starts from the discharge, and performs a first discharge with a cut-off potential of 2.5 to 1.25 V at a constant current of 0.002 mA / cm 2 , and a discharge termination voltage of 1.25 V, and then a charge termination voltage of 1. We performed initial charge at 5V. The initial discharge capacity and the initial charge capacity were converted to values per mass of the sintered body. 36 and 37 show initial charge-discharge curves of Examples 1 to 4 at 90 ° C. and Comparative Examples 1 to 4, FIG. 38 shows initial charge-discharge curves of Examples 2 and 4 to 60 ° C., and FIG. The initial charge-discharge curves of Examples 7 to 10 at 60 ° C. are shown. In addition, the coulombic efficiency was determined by dividing the initial charge capacity by the initial discharge capacity.
 焼結体のX線回折測定より、スピネル構造を有するLTOが検出されたサンプルはS系サンプルとし、ラムズデライト構造を有するLiTiが検出されたサンプルをR系サンプルとした。以下、表1に各実施例の複合体電極の各層の幅及び電極の厚さを、表2にS系サンプルの実施例1、2、4及び比較例の充放電試験結果(90℃)を、表3にR系サンプルの実施例3及び比較例の充放電試験結果を、表4にS系サンプルの実施例2、4~10の充放電試験結果(60℃)を示す。 From the X-ray diffraction measurement of the sintered body, the sample in which LTO having a spinel structure was detected was an S-based sample, and the sample in which Li 2 Ti 3 O 7 having a ramsdellite structure was detected was an R-based sample. The width of each layer of the composite electrode of each example and the thickness of the electrode are shown in Table 1, and the charge / discharge test results (90 ° C.) of Examples 1, 2 and 4 of the S-based sample and the comparative example are shown in Table 2. Table 3 shows the charge / discharge test results of Example 3 of the R-based sample and the comparative example, and Table 4 shows the charge / discharge test results (60 ° C.) of Examples 2 and 4 to 10 of the S-based sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1と比較例1を比較すると、配列焼結体を正極に用いることで、初回充電容量とクーロン効率が上昇した。これは、正極全体がチタン酸リチウムで構成された比較例1に対して、固体電解質層を有する実施例1では、リチウムイオン伝導パスが正極内にあるためであると考えられる。 When Example 1 and Comparative Example 1 are compared, the initial charge capacity and the Coulomb efficiency increased by using the arrayed sintered body as the positive electrode. This is considered to be because the lithium ion conduction path is in the positive electrode in Example 1 having a solid electrolyte layer, as compared with Comparative Example 1 in which the entire positive electrode is composed of lithium titanate.
 また、比較例1と比較例3を比較すると、比較例3のほうが、初回放電容量と初回充電容量に優れる。正極全体がLTO-LLTO複合体で構成された比較例3は、LLTOによるリチウムイオン伝導パスが正極内に形成されたためであると考えられる。 Moreover, when comparative example 1 and comparative example 3 are compared, the direction of comparative example 3 is excellent in the first discharge capacity and the first charge capacity. Comparative Example 3 in which the whole of the positive electrode is composed of the LTO-LLTO complex is considered to be due to the formation of a lithium ion conduction path by LLTO in the positive electrode.
 一方、実施例1と比較例3を比較すると、比較例3のほうが、初回放電容量と初回充電容量に優れる。これは、比較例3では焼成工程において1150℃という高温を経ているため、LLTOが密な焼結体となってリチウムイオン伝導性が高くなったためと考えられる。 On the other hand, when Example 1 and Comparative Example 3 are compared, Comparative Example 3 is more excellent in initial discharge capacity and initial charge capacity. This is considered to be due to the fact that LLTO becomes a dense sintered body and lithium ion conductivity becomes high because Comparative Example 3 passes a high temperature of 1150 ° C. in the firing step.
 実施例1と実施例2を比較すると、1150℃に加熱してから、850℃の加熱によりLTOを得た実施例2のほうが、950℃での焼結工程にてLTOを得た実施例1に比べて、緻密な積層焼結体を得ることができ、初回放電容量、初回充電容量のいずれも優れていた。LTOの電極活物質層が緻密になったことに加えて、LLTOが緻密な固定電解質層を形成して、抵抗の低いリチウムイオン伝導パスが形成されたことにより、充放電試験の結果が良好になったと考えられる。 Example 1 and Example 2 are compared. Example 1 in which LTO is obtained by heating to 1150 ° C. and then heating is performed at 850 ° C. Example 1 in which LTO is obtained in the sintering step at 950 ° C. As compared with the above, a dense laminated sintered body can be obtained, and both the initial discharge capacity and the initial charge capacity are excellent. In addition to the fact that the electrode active material layer of LTO has become dense, LLTO forms a dense fixed electrolyte layer and a lithium ion conduction path with low resistance is formed, so that the result of the charge and discharge test is good. It is thought that it became.
 実施例2と比較例3を比較すると、実施例2の方が固体電解質の体積割合が低いにもかかわらず、初回放電容量と初回充電容量とクーロン効率に優れる。実施例2と比較例3は焼成工程における熱履歴は同じであるが、実施例2の正極は配列焼結体であり、正極の厚み方向に平行で正極を貫通する複数の固体電解質層が規則的に設けられているのに対して、比較例3の正極LTO-LLTO複合体であり、正極内のLLTOの分布がランダムであるため、実施例2は比較例3に比べてリチウムイオン伝導パスがより多く形成されたと考えられる。 When Example 2 and Comparative Example 3 are compared, although the volume ratio of the solid electrolyte is lower in Example 2, the initial discharge capacity, the initial charge capacity, and the coulombic efficiency are excellent. Example 2 and Comparative Example 3 have the same thermal history in the firing step, but the positive electrode of Example 2 is an array sintered body, and a plurality of solid electrolyte layers penetrating the positive electrode in parallel to the thickness direction of the positive electrode are ordered. In the positive electrode LTO-LLTO complex of Comparative Example 3 and the distribution of LLTO in the positive electrode is random, the lithium ion conductive path of Example 2 is higher Is considered to be formed more.
 実施例2と実施例4を比較すると、実施例4の方が、初回放電容量と初回充電容量とクーロン効率に優れる。実施例2と実施例4は焼成工程における熱履歴は同じであるが、実施例4には、正極の厚み方向に平行な金属層が意図的に設けられており、LTOとLLTOに電子伝導を頼る実施例2に比べて、正極の電子伝導性が高くなったためであると考えられる。 When Example 2 and Example 4 are compared, the direction of Example 4 is excellent in first time discharge capacity, first time charge capacity, and coulombic efficiency. Example 2 and Example 4 have the same heat history in the firing step, but in Example 4, a metal layer parallel to the thickness direction of the positive electrode is intentionally provided, and electron conduction is caused to LTO and LLTO. This is considered to be due to the fact that the electron conductivity of the positive electrode is higher than that of Example 2 which relies on it.
 実施例3と比較例2を比較すると、配列焼結体を正極に用いることで、初回放電容量と初回充電容量が上昇した。これは、正極全体がチタン酸リチウムで構成された比較例2に対して、固体電解質層を有する実施例3では、リチウムイオン伝導パスが正極内にあるためであると考えられる。 When Example 3 and Comparative Example 2 are compared, the initial discharge capacity and the initial charge capacity were increased by using the array sintered body as the positive electrode. This is considered to be because the lithium ion conduction path is in the positive electrode in Example 3 having a solid electrolyte layer, as compared to Comparative Example 2 in which the entire positive electrode is composed of lithium titanate.
 また、比較例2と比較例4を比較すると、比較例4のほうが、初回放電容量と初回充電容量に優れる。正極全体がLTO-LLTO複合体で構成された比較例4は、LLTOによるリチウムイオン伝導パスが正極内に形成されたためであると考えられる。 Moreover, when comparative example 2 and comparative example 4 are compared, the direction of comparative example 4 is excellent in the first discharge capacity and the first charge capacity. Comparative Example 4 in which the whole of the positive electrode is composed of the LTO-LLTO complex is considered to be because the lithium ion conduction path by LLTO is formed in the positive electrode.
 実施例3と比較例4を比較すると、実施例3の方が固体電解質の体積割合が低いにもかかわらず、初回放電容量と初回充電容量に優れる。実施例3と比較例4は焼成工程における熱履歴は同じであるが、実施例3は配列焼結体であり、正極の厚み方向に平行な固体電解質層が意図的に設けられているため、LLTOの分布がランダムである比較例4に比べてリチウムイオン伝導パスがより多く形成されたためであると考えられる。 When Example 3 and Comparative Example 4 are compared, although the volume ratio of the solid electrolyte is lower in Example 3, the initial discharge capacity and the initial charge capacity are excellent. Example 3 and Comparative Example 4 have the same thermal history in the firing step, but Example 3 is an arrayed sintered body, since a solid electrolyte layer parallel to the thickness direction of the positive electrode is intentionally provided. It is considered that this is because more lithium ion conduction paths are formed as compared with Comparative Example 4 in which the LLTO distribution is random.
 実施例2と実施例5~10を比較すると、実施例5、6の方が、初回放電容量と初回充電容量とクーロン効率に優れる。実施例2と実施例5~10は焼成工程における熱履歴は同じであるが、実施例5~10には、導電助剤としてアセチレンブラックや気相成長炭素繊維を添加しており、LTOとLLTOに電子伝導を頼る実施例2に比べて、正極の電子伝導性が高くなったためであると考えられる。 When Example 2 is compared with Examples 5 to 10, Examples 5 and 6 are more excellent in the initial discharge capacity, the initial charge capacity, and the coulombic efficiency. Example 2 and Example 5 to 10 have the same heat history in the firing step, but in Example 5 to 10, acetylene black and vapor grown carbon fiber as a conductive additive are added, and LTO and LLTO are added. It is considered that the electron conductivity of the positive electrode is higher than that of Example 2 which relies on the electron conductivity.
 実施例7、8と実施例9、10を比較すると、実施例7、8の方が、初回放電容量と初回充電容量に優れる。また充電曲線より、実施例7、8の方が、過電圧が低いことがわかる。実施例7~10は焼成工程における熱履歴や、添加成分(アセチレンブラック、気相成長炭素繊維)は同じであるが、実施例7、8はLTO層の厚みが10μm以下となっており、実施例9、10に比べてLTO層内をリチウムイオンが移動する距離が短く、抵抗が小さくなっているためであると考えられる。 When Examples 7 and 8 are compared with Examples 9 and 10, Examples 7 and 8 are superior in initial discharge capacity and initial charge capacity. Further, from the charging curve, it can be understood that the overvoltage is lower in Examples 7 and 8. Examples 7 to 10 have the same heat history in the firing step and the same additives (acetylene black and vapor grown carbon fiber), but Examples 7 and 8 have an LTO layer thickness of 10 μm or less, so It is considered that this is because the distance in which the lithium ions move in the LTO layer is shorter than in Examples 9 and 10, and the resistance is smaller.
 10  複合体電極
 11  電極活物質層
 13  固体電解質層
 15  複合体電極の厚み方向
 21  複合体電極
 23  金属層
 25  電極活物質層
 31  電池
 33  対極層
 35  セパレータ層
 41  積層焼結体
 51  複合体電極
 53  固体電解質層
 55  電極活物質部分
 57  固体電解質部分
 61  積層焼結体
101  電池
103、103a~103c  負極帯
105、105a~105c  セパレータ帯
107、107a~107c  正極帯
109、109a~109g  集電体
111、111a~111g  集電体
113a~113d  負極活物質シート
115a~115g  セパレータシート
117a~117d  正極活物質シート
123a~123c  固体電解質シート
127a~127c  固体電解質シート
133a、113b  負極活物質グリーンシート
135a~135d  セパレータグリーンシート
137a、137b  正極活物質グリーンシート
143a、143b  固体電解質グリーンシート
147a、147b  固体電解質グリーンシート
151  組電池
153  電極帯
161  組電池
163  集電体
165  集電体
167  集電体
169  接続部
171  絶縁体
173  絶縁体
175  絶縁体
177  絶縁体
181  組電池
183  集電体
185  接続部
DESCRIPTION OF SYMBOLS 10 composite electrode 11 electrode active material layer 13 solid electrolyte layer 15 thickness direction of composite electrode 21 composite electrode 23 metal layer 25 electrode active material layer 31 battery 33 counter electrode layer 35 separator layer 41 laminated sintered body 51 composite electrode 53 Solid electrolyte layer 55 electrode active material portion 57 solid electrolyte portion 61 laminated sintered body 101 battery 103, 103a to 103c negative electrode band 105, 105a to 105c separator band 107, 107a to 107c positive electrode band 109, 109a to 109g current collector 111, 111a to 111g current collectors 113a to 113d negative electrode active material sheets 115a to 115 g separator sheets 117a to 117d positive electrode active material sheets 123a to 123c solid electrolyte sheets 127a to 127c solid electrolyte sheets 133a and 113b negative electrode active material grease Sheets 135a to 135d Separator Green Sheets 137a and 137b Positive Electrode Active Material Green Sheets 143a and 143b Solid Electrolyte Green Sheets 147a and 147b Solid Electrolyte Green Sheets 151 Battery Battery 153 Electrode Band 161 Battery Battery 163 Current Collector 165 Current Collector 167 Current Collector 169 connection portion 171 insulator 173 insulator 175 insulator 177 insulator 181 assembled battery 183 current collector 185 connection portion

Claims (22)

  1.  電極活物質と固体電解質を含む、焼結体である複合体電極であって、
     前記複合体電極が、酸化物系電極活物質を含むシート状の電極活物質層と、酸化物系固体電解質を含むシート状の固体電解質層が交互に並ぶ交互配列体であり、
     前記電極活物質層の幅が、10nm以上20μm以下であり、
     前記固体電解質層の幅が、10nm以上20μm以下であり、
     前記固体電解質層が前記複合体電極を貫通する
    ことを特徴とする複合体電極。
    A composite electrode which is a sintered body containing an electrode active material and a solid electrolyte,
    The composite electrode is an alternating arrangement in which a sheet-like electrode active material layer containing an oxide-based electrode active material and a sheet-like solid electrolyte layer containing an oxide-based solid electrolyte are alternately arranged.
    The width of the electrode active material layer is 10 nm or more and 20 μm or less,
    The width of the solid electrolyte layer is 10 nm or more and 20 μm or less,
    The composite electrode, wherein the solid electrolyte layer penetrates the composite electrode.
  2.  前記電極活物質層の幅が、10nm以上10μm以下であり、
     前記固体電解質層の幅が、10nm以上10μm以下である
    ことを特徴とする請求項1に記載の複合体電極。
    The width of the electrode active material layer is 10 nm or more and 10 μm or less,
    The composite electrode according to claim 1, wherein the width of the solid electrolyte layer is 10 nm or more and 10 μm or less.
  3.  前記複合体電極の厚さが、10μm以上3mm以下であることを特徴とする請求項1又は2に記載の複合体電極。 The thickness of the said composite electrode is 10 micrometers or more and 3 mm or less, The composite electrode of Claim 1 or 2 characterized by the above-mentioned.
  4.  前記電極活物質が、スピネル型又はラムズデライト型のチタン酸リチウム、酸化チタン、酸化ニオブ、酸化タングステン、酸化モリブデン、層状岩塩型のコバルト酸リチウム、層状岩塩型のニッケル酸リチウム、層状岩塩型の三元系Li(NiCoMn)O(x+y+z=1)、層状岩塩型の三元系Li(NiCoAl)O(x+y+z=1)、スピネル型のマンガン酸リチウム、スピネル型のマンガン酸リチウムニッケル(LiMn1.5Ni0.5)、LiMPO(M=Fe、Mn、Co、Ni)で表されるオリビン型リン酸遷移金属リチウム、及びNASICON構造のLi(POからなる群から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか1項に記載の複合体電極。 The electrode active material is a spinel type or ramsdellite type lithium titanate, titanium oxide, niobium oxide, tungsten oxide, molybdenum oxide, layered rock salt type lithium cobaltate, layered rock salt type lithium nickelate, layered rock salt type three based system Li (Ni x Co y Mn z ) O 2 (x + y + z = 1), a layered rock-salt type ternary Li (Ni x Co y Al z ) O 2 (x + y + z = 1), the spinel-type lithium manganate, Lithium spinel type lithium manganese oxide (LiMn 1.5 Ni 0.5 O 4 ), lithium olivine type transition metal phosphate represented by LiMPO 4 (M = Fe, Mn, Co, Ni), and Li having a NASICON structure 3 V 2 (PO 4) any one of claims 1 to 3, wherein the at least one selected from the group consisting of 3 Composite electrode as described in.
  5.  前記固体電解質が、ペロブスカイト型のチタン酸リチウムランタン、ペロブスカイト型のニオブ酸リチウムランタン(LiLa(1-x)/3NbO)(0≦x≦1)、ガーネット型のLiLaZr12、ガーネット型のLiLaNb12、ガーネット型のLiLaTa12、ガーネット型のLiLaBaTa12、リン酸リチウム(LiPO)、ニオブ酸リチウム(LiNbO)、NASICON構造のLAGP(Li1+xAlGe2-x(PO(0≦x≦1))、NASICON構造のLATP(Li1+xAlTi2-x(PO(0≦x≦1))、及びNASICON構造のLZP(Li1+4xZr2―x(PO(0≦x≦0.4))からなる群から選ばれる少なくとも1種であることを特徴とする請求項1~4のいずれか1項に記載の複合体電極。 The solid electrolyte comprises a perovskite-type lithium lanthanum titanate, a perovskite-type lithium lanthanum niobate (Li x La (1-x) / 3 NbO 3 ) (0 ≦ x ≦ 1), and a garnet-type Li 7 La 3 Zr 2 O 12 , garnet-type Li 5 La 3 Nb 2 O 12 , garnet-type Li 5 La 3 Ta 2 O 12 , garnet-type Li 6 La 2 BaTa 2 O 12 , lithium phosphate (Li 3 PO 4 ), Lithium niobate (LiNbO 3 ), LAGP with NASICON structure (Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 1)), LATP with NASICON structure (Li 1 + x Al x Ti 2-x (PO 4) 4 ) 3 (0 ≦ x ≦ 1), and LZP (Li 1 + 4x Zr 2-x (PO 4 ) of the NASICON structure 5. The composite electrode according to any one of claims 1 to 4, which is at least one selected from the group consisting of 3 (0 ≦ x ≦ 0.4).
  6.  前記電極活物質がスピネル型又はラムズデライト型のチタン酸リチウムであり、前記固体電解質がペロブスカイト型のチタン酸リチウムランタンであることを特徴とする請求項1~5のいずれか1項に記載の複合体電極。 The composite according to any one of claims 1 to 5, wherein the electrode active material is a spinel type or ramsdellite type lithium titanate, and the solid electrolyte is a perovskite type lithium lanthanum titanate. Body electrode.
  7.  前記複合体電極が、アルキメデス法で算出する空隙率が40%以下の焼結体であり、
     正極である前記複合体電極と、セパレータ層としてのドライポリマー電解質と、負極としての金属リチウムを積層した全固体型のセルにおいて、温度60℃、0.002mA/cmのレートで充放電試験をした際の前記複合体電極の初期充電容量及び/又は初期放電容量が10mAh/g以上であることを特徴とする請求項1~6のいずれか1項に記載の複合体電極。
    The composite electrode is a sintered body having a porosity of 40% or less calculated by the Archimedes method,
    Charge and discharge tests were performed at a rate of 0.002 mA / cm 2 at a temperature of 60 ° C. in an all-solid cell in which the composite electrode as the positive electrode, the dry polymer electrolyte as the separator layer, and metallic lithium as the negative electrode were laminated. The composite electrode according to any one of claims 1 to 6, wherein an initial charge capacity and / or an initial discharge capacity of the composite electrode at the time of carrying out is 10 mAh / g or more.
  8.  前記複合体電極が、さらに、前記固体電解質層と平行な金属層を有し、
     前記金属層が、金、銀、銅、ニッケル、及びアルミニウムからなる群から選ばれる少なくとも一種の金属を含むことを特徴とする請求項1~7のいずれか1項に記載の複合体電極。
    The composite electrode further has a metal layer parallel to the solid electrolyte layer,
    The composite electrode according to any one of claims 1 to 7, wherein the metal layer contains at least one metal selected from the group consisting of gold, silver, copper, nickel, and aluminum.
  9.  前記固体電解質層が、導電助剤を含むことを特徴とする請求項1~8のいずれか1項に記載の複合体電極。 The composite electrode according to any one of claims 1 to 8, wherein the solid electrolyte layer contains a conductive aid.
  10.  電極活物質又はその前駆体と、固体電解質又はその前駆体を含み、焼結により請求項1~9のいずれか1項に記載の複合体電極を与える複合体電極の前駆体であって、
     前記複合体電極の前駆体中に、前記複合体電極の前駆体を貫通する固体電解質又はその前駆体の層を有し、
     前記複合体電極の前駆体が、酸化物系電極活物質又はその前駆体を含むシート状の電極活物質又はその前駆体の層と、酸化物系固体電解質又はその前駆体を含むシート状の固体電解質層はその前駆体の層が交互に並ぶ交互配列体であり、
     前記電極活物質又はその前駆体の比表面積が、0.5m/g以上であり、
     前記固体電解質又はその前駆体の比表面積が、0.5m/g以上である
    ことを特徴とする複合体電極の前駆体。
    A precursor of a composite electrode comprising an electrode active material or a precursor thereof, and a solid electrolyte or a precursor thereof, and providing the composite electrode according to any one of claims 1 to 9 by sintering,
    The precursor of the composite electrode has a layer of a solid electrolyte or a precursor thereof penetrating the precursor of the composite electrode,
    A sheet-like solid including a layer of a sheet-like electrode active material or a precursor thereof containing an oxide-based electrode active material or a precursor thereof, and a precursor of the composite electrode containing an oxide-based solid electrolyte or a precursor thereof The electrolyte layer is an alternating array of layers of its precursors,
    The specific surface area of the electrode active material or its precursor is 0.5 m 2 / g or more,
    A precursor of a composite electrode, wherein a specific surface area of the solid electrolyte or a precursor thereof is 0.5 m 2 / g or more.
  11.  さらに、前記複合体電極の前駆体が、焼結中に熱分解する有機系バインダーを含むことを特徴とする請求項10に記載の複合体電極の前駆体。 11. The precursor of a composite electrode according to claim 10, further comprising an organic binder which is pyrolyzed during sintering.
  12.  請求項1~9のいずれか1項に記載の複合体電極を製造する方法であって、
     電極活物質又はその前駆体を含む層と、固体電解質又はその前駆体を含む層とが交互に積層した積層体を得る積層工程と、
     前記積層体を焼結し、電極活物質層と固体電解質層が交互に積層した積層焼結体を得る焼結工程と、
    を有することを特徴とする複合体電極の製造方法。
    A method of producing the composite electrode according to any one of claims 1 to 9,
    Obtaining a laminate in which a layer containing an electrode active material or a precursor thereof and a layer containing a solid electrolyte or a precursor thereof are alternately laminated;
    Sintering the laminated body to obtain a laminated sintered body in which an electrode active material layer and a solid electrolyte layer are alternately laminated;
    A method of manufacturing a composite electrode, comprising:
  13.  前記積層工程が、チタン酸リチウム又はその前駆体を含む層と、チタン酸リチウムランタン又はその前駆体を含む層とが交互に積層した積層体を得る工程であり、
     前記焼結工程が、1000℃超で焼結した後、400℃以上1000℃以下で焼結する工程であり、
     前記複合体電極が、スピネル型チタン酸リチウムを含む電極活物質層と、ペロブスカイト型チタン酸リチウムランタンを含む固体電解質層が交互に並ぶ交互配列体である
    ことを特徴とする請求項12に記載の複合体電極の製造方法。
    The laminating step is a step of obtaining a laminate in which a layer containing lithium titanate or a precursor thereof and a layer containing lithium lanthanum titanate or a precursor thereof are alternately laminated.
    The sintering step is a step of sintering at a temperature of 400 ° C. or more and 1000 ° C. or less after sintering at a temperature of more than 1000 ° C.
    The composite electrode according to claim 12, wherein the composite electrode is an alternating arrangement in which an electrode active material layer containing spinel lithium titanate and a solid electrolyte layer containing lithium lanthanum perovskite lithium titanate are alternately arranged. Method of manufacturing composite electrode.
  14.  リチウムイオンを吸蔵放出する負極層と、リチウムイオンを伝導するセパレータ層と、リチウムイオンを吸蔵放出する正極層とをこの順に積層しており、
     前記負極層又は前記正極層として請求項1~9のいずれか1項に記載の複合体電極を使用することを特徴とするリチウムイオン電池。
    A negative electrode layer for absorbing and releasing lithium ions, a separator layer for conducting lithium ions, and a positive electrode layer for absorbing and releasing lithium ions are laminated in this order,
    A lithium ion battery using the composite electrode according to any one of claims 1 to 9 as the negative electrode layer or the positive electrode layer.
  15.  リチウムイオンを吸蔵放出する負極帯と、リチウムイオンを伝導するセパレータ帯と、リチウムイオンを吸蔵放出する正極帯とがこの順に隣接しており、
     前記負極帯及び/又は前記正極帯が、請求項1~9のいずれか1項に記載の複合体電極であり、
     前記複合体電極中の前記固体電解質層が、前記セパレータ帯と垂直な方向に伸び、前記セパレータ帯と接触することを特徴とするリチウムイオン電池。
    The negative electrode zone for inserting and extracting lithium ions, the separator zone for conducting lithium ions, and the positive electrode zone for inserting and extracting lithium ions are adjacent in this order,
    The negative electrode band and / or the positive electrode band is the composite electrode according to any one of claims 1 to 9,
    The lithium ion battery, wherein the solid electrolyte layer in the composite electrode extends in a direction perpendicular to the separator zone and is in contact with the separator zone.
  16.  前記複合体電極中の前記固体電解質層の厚みが前記セパレータ帯の幅よりも小さいことを特徴とする請求項15に記載のリチウムイオン電池。 The lithium ion battery according to claim 15, wherein the thickness of the solid electrolyte layer in the composite electrode is smaller than the width of the separator band.
  17.  前記負極帯の幅が、20μm以上500μm以下であり、
     前記セパレータ帯の幅が、100μm以下であり、
     前記正極帯の幅が、20μm以上500μm以下である
    ことを特徴とする請求項15又は16に記載のリチウムイオン電池。
    The width of the negative electrode band is not less than 20 μm and not more than 500 μm,
    The width of the separator band is 100 μm or less,
    The lithium ion battery according to claim 15 or 16, wherein the width of the positive electrode band is 20 μm or more and 500 μm or less.
  18.  前記リチウムイオン電池が、さらに、第1の集電体及び/又は第2の集電体を有し、
     前記第1の集電体と、前記負極帯と、前記セパレータ帯とがこの順に隣接しており、及び/又は、前記セパレータ帯と、前記正極帯と、前記第2の集電体とがこの順に隣接しており、
     前記複合体電極中の前記固体電解質層が、前記第1及び/又は第2の集電体と前記セパレータ帯との間を結ぶように、前記複合体電極を貫通していることを特徴とする請求項15~17のいずれか1項に記載のリチウムイオン電池。
    The lithium ion battery further comprises a first current collector and / or a second current collector,
    The first current collector, the negative electrode band, and the separator band are adjacent in this order, and / or the separator band, the positive electrode band, and the second current collector are included. Adjacent in order,
    The solid electrolyte layer in the composite electrode penetrates the composite electrode so as to connect between the first and / or second current collectors and the separator zone. A lithium ion battery according to any one of claims 15 to 17.
  19.  請求項15~17のいずれか1項に記載のリチウムイオン電池を複数有する組電池であって、
     前記組電池が、一対の集電体と、複数の前記リチウムイオン電池と、1つ又は複数の電極体と、を備え、
     複数の前記リチウムイオン電池が、前記一対の集電体の間に一列に配置され、
     一端の前記リチウムイオン電池の前記負極帯又は前記正極帯と前記一対の集電体の一方とが隣接し、他端の前記リチウムイオン電池の前記負極帯又は前記正極帯と前記一対の集電体の他方とが隣接し、
     隣り合う2個の前記リチウムイオン電池が、1つの前記電極体を介して、隣接し、
     当該1つの前記電極体を挟んで、一方の前記リチウムイオン電池の前記負極帯が、前記電極体に隣接し、他方の前記リチウムイオン電池の前記正極帯が、前記電極体に隣接し、
     複数の前記リチウムイオン電池を直列に接続したことを特徴とする組電池。
    An assembled battery comprising a plurality of lithium ion batteries according to any one of claims 15 to 17, comprising:
    The battery assembly includes a pair of current collectors, a plurality of the lithium ion batteries, and one or more electrode bodies.
    A plurality of said lithium ion batteries are arranged in a row between said pair of current collectors;
    The negative electrode band or the positive electrode band of the lithium ion battery at one end is adjacent to one of the pair of current collectors, and the negative electrode band or the positive electrode band of the lithium ion battery at the other end and the pair of current collectors Adjacent to the other
    Two adjacent lithium ion batteries are adjacent to each other through one electrode body,
    The negative electrode band of one of the lithium ion batteries is adjacent to the electrode body, and the positive electrode band of the other lithium ion battery is adjacent to the electrode body, with the one electrode body interposed therebetween.
    An assembled battery comprising a plurality of the lithium ion batteries connected in series.
  20.  請求項15~17のいずれか1項に記載のリチウムイオン電池を複数有する組電池であって、
     前記組電池が、複数の集電体と、複数の前記リチウムイオン電池と、を備え、
     複数の前記リチウムイオン電池が、一列に配置され、
     一端の前記リチウムイオン電池の前記負極帯又は前記正極帯と1つの前記集電体とが隣接し、他端の前記リチウムイオン電池の前記負極帯又は前記正極帯と他の1つの前記集電体とが隣接し、
     隣り合う2個の前記リチウムイオン電池が、さらに他の1つの前記集電体を介して、隣接し、
     当該さらに他の1つの前記集電体を挟んで、一方の前記リチウムイオン電池及び他方の前記リチウムイオン電池の前記負極帯が、前記集電体に隣接し、又は、一方の前記リチウムイオン電池及び他方の前記リチウムイオン電池の前記正極帯が、前記集電体に隣接し、
     前記負極帯に隣接する前記集電体どうしが電気的に接続し、
     前記正極帯に隣接する前記集電体どうしが電気的に接続し、
     複数の前記リチウムイオン電池を並列に接続したことを特徴とする組電池。
    An assembled battery comprising a plurality of lithium ion batteries according to any one of claims 15 to 17, comprising:
    The battery assembly includes a plurality of current collectors and a plurality of lithium ion batteries.
    A plurality of said lithium ion batteries are arranged in a row,
    The negative electrode band or the positive electrode band of the lithium ion battery at one end is adjacent to one current collector, and the negative electrode band or the positive electrode band of the lithium ion battery at the other end is other one current collector Are adjacent to each other,
    The two adjacent lithium ion batteries are adjacent to each other via another one of the current collectors,
    The negative electrode band of one of the lithium ion battery and the other of the lithium ion battery is adjacent to the current collector, or one of the lithium ion battery, with the other one of the current collectors interposed therebetween. The positive electrode band of the other lithium ion battery is adjacent to the current collector,
    The current collectors adjacent to the negative electrode band are electrically connected to each other,
    The current collectors adjacent to the positive electrode band electrically connect each other,
    A battery assembly characterized by connecting a plurality of the lithium ion batteries in parallel.
  21.  請求項15~18のいずれか1項に記載のリチウムイオン電池を製造する方法であって、
     負極活物質又はその前駆体を含む第1の部分と、固体電解質又はその前駆体を含む第2の部分と、正極活物質又はその前駆体を含む第3の部分とが、この順に隣接する構造を形成する工程1と、
     固体電解質又はその前駆体を含む第4の部分と、固体電解質又はその前駆体を含む第5の部分と、固体電解質又はその前駆体を含む第6の部分とが、この順に隣接する構造を形成する工程2と、
    を交互に繰り返して、積層体を得る工程と、
     前記積層体を焼結する焼結工程と、
    を有し、
     但し、
     工程2の後に実施する工程1においては、前記第4の部分の上に前記第1の部分を、前記第5の部分の上に前記第2の部分を、前記第6の部分の上に前記第3の部分を形成し、
     工程1の後に実施する工程2においては、前記第1の部分の上に前記第4の部分を、前記第2の部分の上に前記第5の部分を、前記第3の部分の上に前記第6の部分を形成することを特徴とするリチウムイオン電池の製造方法。
    A method of manufacturing a lithium ion battery according to any one of claims 15 to 18, comprising:
    A structure in which a first portion containing a negative electrode active material or a precursor thereof, a second portion containing a solid electrolyte or a precursor thereof, and a third portion containing a positive electrode active material or a precursor thereof in this order Step 1 to form
    The fourth portion containing the solid electrolyte or the precursor thereof, the fifth portion containing the solid electrolyte or the precursor thereof, and the sixth portion containing the solid electrolyte or the precursor thereof form an adjacent structure in this order. Process 2 to
    Alternately to obtain a laminate,
    A sintering step of sintering the laminate;
    Have
    However,
    In step 1 performed after step 2, the first portion is placed on the fourth portion, the second portion is placed on the fifth portion, and the second portion is placed on the sixth portion. Form the third part,
    In step 2, which is performed after step 1, the fourth portion is disposed on the first portion, the fifth portion is disposed on the second portion, and the fourth portion is disposed on the third portion. A method of manufacturing a lithium ion battery, comprising forming a sixth portion.
  22.  請求項15~18のいずれか1項に記載のリチウムイオン電池を製造する方法であって、
     負極活物質を含む負極活物質シートと、固体電解質を含む第1のセパレータシートと、正極活物質を含む正極活物質シートとがこの順に隣接する構造を形成する工程3と、
     固体電解質を含む第1の固体電解質シートと、固体電解質を含む第2のセパレータシートと、固体電解質を含む第2の固体電解質シートとがこの順に隣接する構造を形成する工程4と、
    を交互に繰り返して、積層体を得、
     但し、
     工程4の後に実施する工程3においては、前記第1の固体電解質シートの上に前記負極活物質シートを、前記第2のセパレータシートの上に前記第1のセパレータシートを、前記第2の固体電解質シートの上に前記正極活物質シートを形成し、
     工程3の後に実施する工程4においては、前記負極活物質シートの上に前記第1の固体電解質シートを、前記第1のセパレータシートの上に前記第2のセパレータシートを、前記正極活物質シートの上に前記第2の固体電解質シートを形成することを特徴とするリチウムイオン電池の製造方法。
    A method of manufacturing a lithium ion battery according to any one of claims 15 to 18, comprising:
    Step 3 of forming a structure in which a negative electrode active material sheet containing a negative electrode active material, a first separator sheet containing a solid electrolyte, and a positive electrode active material sheet containing a positive electrode active material are adjacent in this order;
    Step 4 of forming a structure in which a first solid electrolyte sheet containing a solid electrolyte, a second separator sheet containing a solid electrolyte, and a second solid electrolyte sheet containing a solid electrolyte are adjacent in this order;
    Alternately to obtain a laminate,
    However,
    In step 3 performed after step 4, the negative electrode active material sheet is placed on the first solid electrolyte sheet, the first separator sheet is placed on the second separator sheet, and the second solid sheet is placed on the second solid sheet. Forming the positive electrode active material sheet on an electrolyte sheet;
    In step 4 performed after step 3, the first solid electrolyte sheet is placed on the negative electrode active material sheet, the second separator sheet is placed on the first separator sheet, and the positive electrode active material sheet A method of manufacturing a lithium ion battery, wherein the second solid electrolyte sheet is formed on the
PCT/JP2018/038876 2017-10-20 2018-10-18 Composite electrode and all solid lithium battery WO2019078307A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017203302 2017-10-20
JP2017-203302 2017-10-20
JP2018050720 2018-03-19
JP2018-050720 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019078307A1 true WO2019078307A1 (en) 2019-04-25

Family

ID=66174466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038876 WO2019078307A1 (en) 2017-10-20 2018-10-18 Composite electrode and all solid lithium battery

Country Status (2)

Country Link
JP (1) JP2019164980A (en)
WO (1) WO2019078307A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029315A1 (en) * 2019-08-09 2021-02-18 出光興産株式会社 Method for producing solid electrolyte
WO2021085237A1 (en) * 2019-10-29 2021-05-06 三井金属鉱業株式会社 Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid battery using same
WO2021125344A1 (en) * 2019-12-20 2021-06-24 Dowaエレクトロニクス株式会社 Amorphous lithium ion-conductive oxide powder, method for producing same, and method for producing lithium ion-conductive oxide powder having nasicon crystal structure
CN113991170A (en) * 2021-10-15 2022-01-28 深圳大学 All-solid-state battery
WO2024095670A1 (en) * 2022-10-31 2024-05-10 パナソニックエナジー株式会社 Positive electrode for secondary batteries, and secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220008056A (en) * 2020-07-13 2022-01-20 주식회사 엘지에너지솔루션 All solid battery comprising an oxide based solid electrolyte for low temperature sintering process and manufacturing method thereof
WO2023145783A1 (en) * 2022-01-27 2023-08-03 日本碍子株式会社 Lithium secondary battery
WO2023162454A1 (en) * 2022-02-24 2023-08-31 日本碍子株式会社 Lithium secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2009238576A (en) * 2008-03-27 2009-10-15 Tokyo Metropolitan Univ All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
WO2017018488A1 (en) * 2015-07-30 2017-02-02 セントラル硝子株式会社 Sintered body containing lithium titanate and lithium lanthanum titanate, method for producing same, and lithium battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2009181877A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and method for manufacturing its electrode
JP2009238576A (en) * 2008-03-27 2009-10-15 Tokyo Metropolitan Univ All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
WO2017018488A1 (en) * 2015-07-30 2017-02-02 セントラル硝子株式会社 Sintered body containing lithium titanate and lithium lanthanum titanate, method for producing same, and lithium battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029315A1 (en) * 2019-08-09 2021-02-18 出光興産株式会社 Method for producing solid electrolyte
JPWO2021029315A1 (en) * 2019-08-09 2021-09-13 出光興産株式会社 Method for manufacturing solid electrolyte
JP7008848B2 (en) 2019-08-09 2022-01-25 出光興産株式会社 Method for manufacturing solid electrolyte
WO2021085237A1 (en) * 2019-10-29 2021-05-06 三井金属鉱業株式会社 Sulfide solid electrolyte, and electrode mixture, solid electrolyte layer, and solid battery using same
WO2021125344A1 (en) * 2019-12-20 2021-06-24 Dowaエレクトロニクス株式会社 Amorphous lithium ion-conductive oxide powder, method for producing same, and method for producing lithium ion-conductive oxide powder having nasicon crystal structure
CN113991170A (en) * 2021-10-15 2022-01-28 深圳大学 All-solid-state battery
CN113991170B (en) * 2021-10-15 2023-09-05 深圳大学 All-solid-state battery
WO2024095670A1 (en) * 2022-10-31 2024-05-10 パナソニックエナジー株式会社 Positive electrode for secondary batteries, and secondary battery

Also Published As

Publication number Publication date
JP2019164980A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2019078307A1 (en) Composite electrode and all solid lithium battery
WO2018139657A1 (en) Electrode laminate and all solid lithium cell
US11387454B2 (en) Secondary battery
JP5957618B2 (en) Secondary battery including solid electrolyte layer
JP4797105B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2018123479A1 (en) Lithium ion cell and method for manufacturing same
JPWO2019181909A1 (en) All solid state battery
JP6109672B2 (en) Ceramic cathode-solid electrolyte composite
US11515570B2 (en) Secondary battery
WO2017018488A1 (en) Sintered body containing lithium titanate and lithium lanthanum titanate, method for producing same, and lithium battery
JP6099407B2 (en) All-solid-state energy storage device
JP7056598B2 (en) Negative electrode layer and all-solid-state battery
JP6109673B2 (en) Ceramic cathode-solid electrolyte composite
JPWO2019189311A1 (en) All solid state battery
JP7405151B2 (en) solid state battery
JP2019077573A (en) Method of manufacturing sintered body containing spinel type lithium titanate
KR102342216B1 (en) Anode layer and all solid state battery
JP6153802B2 (en) Electricity storage element
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP6168690B2 (en) Ceramic cathode-solid electrolyte composite
JP6897760B2 (en) All solid state battery
WO2018181576A1 (en) All-solid-state battery
JP7423760B2 (en) Lithium ion secondary battery and its manufacturing method
JP5677181B2 (en) Solid electrolyte and secondary battery using the same
US12074309B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867882

Country of ref document: EP

Kind code of ref document: A1