JP5892364B2 - Method for producing oxide material - Google Patents

Method for producing oxide material Download PDF

Info

Publication number
JP5892364B2
JP5892364B2 JP2011236576A JP2011236576A JP5892364B2 JP 5892364 B2 JP5892364 B2 JP 5892364B2 JP 2011236576 A JP2011236576 A JP 2011236576A JP 2011236576 A JP2011236576 A JP 2011236576A JP 5892364 B2 JP5892364 B2 JP 5892364B2
Authority
JP
Japan
Prior art keywords
oxide material
raw material
sno
oxide
batch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011236576A
Other languages
Japanese (ja)
Other versions
JP2013095601A (en
Inventor
英郎 山内
英郎 山内
木村 裕司
裕司 木村
博之 岡村
博之 岡村
伸敏 伊藤
伸敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011236576A priority Critical patent/JP5892364B2/en
Priority to PCT/JP2012/077568 priority patent/WO2013062037A1/en
Publication of JP2013095601A publication Critical patent/JP2013095601A/en
Application granted granted Critical
Publication of JP5892364B2 publication Critical patent/JP5892364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は酸化物材料の製造方法に関し、特にリチウムイオン二次電池、リチウムイオンキャパシタ等の蓄電デバイス用の負極材料として好適である酸化物材料の製造方法に関する。   The present invention relates to a method for producing an oxide material, and more particularly to a method for producing an oxide material suitable as a negative electrode material for an electricity storage device such as a lithium ion secondary battery or a lithium ion capacitor.

近年、携帯用パソコンや携帯電話の普及に伴い、蓄電デバイスの高容量化と小サイズ化に対する要望が高まっている。蓄電デバイスの高容量化が進めば電池材料の小サイズ化も容易となるため、蓄電デバイス用電極材料の高容量化へ向けての開発が急務となっている。   In recent years, with the widespread use of portable personal computers and mobile phones, there is an increasing demand for higher capacity and smaller size of power storage devices. If the capacity of the electricity storage device is increased, it will be easy to reduce the size of the battery material. Therefore, there is an urgent need to develop an electrode material for the electricity storage device with a higher capacity.

例えば、リチウムイオン二次電池用の正極材料には高電位型のLiCoO、LiNiO、LiCo1−xNi(0<x<1)、LiMn等が広く用いられている。一方、負極材料には一般に炭素材料が用いられている。これらの材料は充放電によってリチウムイオンを可逆的に吸蔵および放出する電極活物質として機能し、非水電解液または固体電解質によって電気化学的に連結されたいわゆるロッキングチェア型の二次電池を構成する。 For example, high potential type LiCoO 2 , LiNiO 2 , LiCo 1-x Ni x O 2 (0 <x <1), LiMn 2 O 4, etc. are widely used as positive electrode materials for lithium ion secondary batteries. . On the other hand, a carbon material is generally used as the negative electrode material. These materials function as an electrode active material that reversibly occludes and releases lithium ions by charging and discharging, and constitute a so-called rocking chair type secondary battery that is electrochemically connected by a non-aqueous electrolyte or a solid electrolyte. .

負極材料として用いられる炭素材料には、黒鉛質炭素材料、ピッチコークス、繊維状カーボン、低温で焼成される高容量型のソフトカーボン等がある。しかしながら、炭素材料はリチウム吸蔵容量が比較的小さいため、容量が低いという問題がある。具体的には、化学量論量のリチウム吸蔵容量を実現できたとしても、炭素材料の容量は約372mAh/gが限界である。   Examples of the carbon material used as the negative electrode material include graphitic carbon material, pitch coke, fibrous carbon, and high-capacity soft carbon fired at a low temperature. However, since the carbon material has a relatively small lithium storage capacity, there is a problem that the capacity is low. Specifically, even if a stoichiometric amount of lithium storage capacity can be realized, the capacity of the carbon material is limited to about 372 mAh / g.

リチウムイオンを吸蔵および放出することが可能であり、カーボン系材料を超える高容量密度を有する負極材料として、特許文献1には、酸化スズを主体とする非晶質酸化物が開示されている。当該非晶質酸化物を用いることで、リチウムイオンの吸蔵および放出に伴う体積変化を緩和でき、充放電サイクルに優れた非水二次電池を作製することが可能となる。   As a negative electrode material capable of inserting and extracting lithium ions and having a high capacity density exceeding that of a carbon-based material, Patent Document 1 discloses an amorphous oxide mainly composed of tin oxide. By using the amorphous oxide, volume change associated with insertion and extraction of lithium ions can be reduced, and a non-aqueous secondary battery excellent in charge / discharge cycle can be manufactured.

特許第3498380号公報Japanese Patent No. 3498380

特許文献1に記載の負極材料の製造工程では、原料に五酸化二リンが用いられている。五酸化二リンは非常に吸湿性が高いため、所望の組成を有する負極材料を製造するためには低露点の雰囲気を保つ設備が必要であり高コストとなる。また、特許文献1には、原料として五酸化二リン以外にもピロリン酸第一スズ等の複合酸化物を用いる方法も記載されているが、ピロリン酸第一スズは高価であるため、結果的に、製品コストも高騰してしまうという問題を有していた。   In the manufacturing process of the negative electrode material described in Patent Document 1, diphosphorus pentoxide is used as a raw material. Since diphosphorus pentoxide is very hygroscopic, equipment for maintaining an atmosphere with a low dew point is necessary to produce a negative electrode material having a desired composition, resulting in high costs. Patent Document 1 also describes a method using a composite oxide such as stannous pyrophosphate as a raw material in addition to diphosphorus pentoxide. However, since stannous pyrophosphate is expensive, as a result In addition, the product cost has increased.

なお、比較的安定かつ安価なリン酸原料としてオルトリン酸(HPO)も使用される。しかしながら、オルトリン酸は原料調合過程において酸化第一スズ(SnO)との下記反応が急激に進行し、過剰に発熱する(例えば200℃以上)とともに原料バッチが硬化し、不均質な塊状の固形物になってしまうという問題がある。その結果、均質な原料バッチを得ることが難しいだけでなく、得られた酸化物材料(負極材料)中に脈理や分相が生じたり、望まない異種結晶(例えばSnやSnO)が析出するおそれがある。 Orthophosphoric acid (H 3 PO 4 ) is also used as a relatively stable and inexpensive phosphoric acid raw material. However, orthophosphoric acid undergoes the following reaction with stannous oxide (SnO) rapidly in the raw material preparation process, generates excessive heat (for example, 200 ° C. or higher), and the raw material batch is cured, resulting in a heterogeneous bulky solid. There is a problem of becoming. As a result, not only is it difficult to obtain a homogeneous raw material batch, but also the resulting oxide material (negative electrode material) has striae or phase separation, or unwanted dissimilar crystals (for example, Sn 2 P 2 O 7 or SnO 2 ) may be precipitated.

SnO+HPO → SnHPO+HO+ΔH・・・(1) SnO + H 3 PO 4 → SnHPO 4 + H 2 O + ΔH (1)

以上に鑑み、本発明は、SnOおよびPを含有する酸化物材料を製造するための方法であって、所望組成を有する均質な酸化物材料を安価に製造することが可能な方法を提供することを目的とする。 In view of the above, the present invention provides a method for producing an oxide material containing SnO and P 2 O 5, and capable of producing a homogeneous oxide material having a desired composition at low cost. The purpose is to provide.

本発明は、SnOおよびPを含有する酸化物材料の製造方法であって、リン酸水溶液およびSnO粉末を混合して原料バッチを作製する工程、および、原料バッチを溶融する工程を含むことを特徴とする製造方法に関する。 The present invention is a method for producing an oxide material containing SnO and P 2 O 5 and includes a step of mixing a phosphoric acid aqueous solution and SnO powder to produce a raw material batch, and a step of melting the raw material batch The present invention relates to a manufacturing method.

SnOおよびPを含有する酸化物材料を溶融法により製造するに際し、原料として酸化第一スズとリン酸(例えばオルトリン酸)を直接混合した場合は、既述の通り、過剰に発熱したり、原料バッチが塊状化するといった不具合が起こる。そこで、本発明者らは、原料としてリン酸を直接使用するのではなく、リン酸水溶液として使用することにより、上記問題を解決できることを見出した。具体的には、リン酸水溶液およびSnO粉末を混合して原料バッチを作製することにより、リン酸とSnOの反応に伴う過剰な発熱を抑制しつつ、均質なスラリー状の原料バッチを作製することができ、当該原料バッチを溶融することにより、脈理、分相または異種結晶等の不具合がほとんど存在しない酸化物材料を作製することが可能となる。 When an oxide material containing SnO and P 2 O 5 is manufactured by a melting method, when stannous oxide and phosphoric acid (for example, orthophosphoric acid) are directly mixed as raw materials, excessive heat is generated as described above. Or the raw material batch becomes agglomerated. Accordingly, the present inventors have found that the above problem can be solved by using phosphoric acid as a raw material instead of directly as a raw material. Specifically, by preparing a raw material batch by mixing an aqueous phosphoric acid solution and SnO powder, a uniform slurry-like raw material batch is prepared while suppressing excessive heat generation due to the reaction between phosphoric acid and SnO. By melting the raw material batch, it is possible to produce an oxide material having almost no defects such as striae, phase separation, or different crystals.

第二に、本発明の酸化物材料の製造方法において、リン酸水溶液の濃度が10〜70質量%であることが好ましい。   2ndly, in the manufacturing method of the oxide material of this invention, it is preferable that the density | concentration of phosphoric acid aqueous solution is 10-70 mass%.

当該構成によれば、上記式(1)の反応が緩やかに進行し、発熱や原料バッチの塊状化を効果的に抑制でき、均質な原料バッチが得られやすくなる。なお、本発明においてリン酸水溶液の濃度は、オルトリン酸として換算した濃度をいう。   According to the said structure, reaction of the said Formula (1) advances slowly, can suppress heat_generation | fever and agglomeration of a raw material batch effectively, and it becomes easy to obtain a homogeneous raw material batch. In the present invention, the concentration of the phosphoric acid aqueous solution refers to a concentration converted as orthophosphoric acid.

第三に、本発明の酸化物材料の製造方法において、リン酸がオルトリン酸であることが好ましい。   Third, in the method for producing an oxide material of the present invention, it is preferable that phosphoric acid is orthophosphoric acid.

オルトリン酸は比較的安定であるため、取扱いが容易であり、所望の組成を有する酸化物材料が得られやすい。また安価であるため、原料コストを低減できる。   Since orthophosphoric acid is relatively stable, it is easy to handle and an oxide material having a desired composition is easily obtained. Moreover, since it is cheap, raw material cost can be reduced.

第四に、本発明の酸化物材料の製造方法において、原料バッチを乾燥した後に溶融することが好ましい。   Fourth, in the method for producing an oxide material of the present invention, it is preferable to melt the raw material batch after drying it.

当該構成によれば、原料バッチの溶融炉内への投入が容易となるだけでなく、前記原料バッチ中の固形原料の分離や沈降による酸化物材料の組成ズレを抑制することが可能となる。さらに、原料バッチを溶融炉内に投入する際に急激な水の蒸発や水蒸気爆発等の危険が生じることを回避できるだけでなく、原料バッチの飛散を抑制することができる。   According to this configuration, it is possible not only to easily feed the raw material batch into the melting furnace, but also to suppress composition deviation of the oxide material due to separation or sedimentation of the solid raw material in the raw material batch. Furthermore, it is possible not only to avoid dangers such as rapid water evaporation and steam explosion when the raw material batch is put into the melting furnace, but also to suppress the scattering of the raw material batch.

第五に、本発明の酸化物材料の製造方法において、原料バッチを溶融する雰囲気が還元雰囲気または不活性雰囲気であることが好ましい。   Fifth, in the method for producing an oxide material of the present invention, the atmosphere for melting the raw material batch is preferably a reducing atmosphere or an inert atmosphere.

Snは、2価で存在するよりも4価で存在するほうが安定であるため、酸化物材料中のSnOは溶融工程で容易に酸化され、望まない異種結晶(例えばSnOやSnP等)が析出する傾向がある。そこで、原料バッチを溶融する雰囲気を還元雰囲気または不活性雰囲気とすることにより、SnOが酸化して前記異種結晶が析出することを抑制できる。 Since Sn is more stable when it is tetravalent than when it is divalent, SnO in the oxide material is easily oxidized in the melting step, and unwanted foreign crystals (for example, SnO 2 and SnP 2 O 7). ) Tends to precipitate. Therefore, by setting the atmosphere for melting the raw material batch to a reducing atmosphere or an inert atmosphere, it is possible to suppress the oxidation of SnO and the precipitation of the heterogeneous crystals.

第六に、本発明の酸化物材料の製造方法において、酸化物材料が、組成としてモル%で、SnO 45〜95%、P 5〜55%を含有することが好ましい。 Sixth, in the method for producing an oxide material of the present invention, the oxide material preferably contains SnO 45 to 95% and P 2 O 5 5 to 55% in terms of a composition.

第七に、本発明は、前記いずれかの方法により製造されてなることを特徴とする酸化物材料に関する。   Seventh, the present invention relates to an oxide material manufactured by any one of the methods described above.

第八に、本発明は、SnOおよびPを含有し、β−OH値が0.1〜1.7/mmであることを特徴とする酸化物材料に関する。 Eighth, the present invention relates to an oxide material containing SnO and P 2 O 5 and having a β-OH value of 0.1 to 1.7 / mm.

「β−OH値」は組成物中の水分量を示す指標であり、以下の式で表すことができる。   The “β-OH value” is an index indicating the amount of water in the composition, and can be represented by the following formula.

β−OH値=(1/X)log10(T1/T2)
X:試料肉厚(mm)
T1:参照波長3846cm−1(=2600nm)における透過率(%)
T2:水酸基吸収波長3000−3400cm−1(=3333−2941nm)付近における最低透過率(%)
β-OH value = (1 / X) log 10 (T1 / T2)
X: Sample thickness (mm)
T1: Transmittance (%) at a reference wavelength of 3846 cm −1 (= 2600 nm)
T2: Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3000 to 3400 cm −1 (= 3333 to 2941 nm)

本発明者等の調査によれば、上記製造方法により酸化物材料を作製した場合は、リン酸水溶液とSnO粉末の反応により、結晶水を含有する均質なリン酸塩(例えばSnHPO)が原料バッチ中に生成し、溶融時に、原料バッチ中における水に加え、当該結晶水からも水分が供給されるため、得られる酸化物材料中のβ−OH値が一定値以上になることがわかった。 According to the investigation by the present inventors, when an oxide material is produced by the above production method, a homogeneous phosphate containing crystal water (for example, SnHPO 4 ) is obtained as a raw material by the reaction between an aqueous phosphoric acid solution and SnO powder. It was found that the β-OH value in the resulting oxide material becomes a certain value or more because it is generated in the batch, and water is supplied from the crystal water in addition to the water in the raw material batch at the time of melting. .

一方で、酸化物材料のβ−OH値が高くなるほど、溶融ガラス中のSnOが酸化される傾向が高くなり、既述の異種結晶の析出量が増加することが確認された。この結果から、一定値以下のβ−OH値となるように酸化物材料を製造すれば、異種結晶の発生を効果的に抑制できることがわかった。   On the other hand, it was confirmed that the higher the β-OH value of the oxide material, the higher the tendency of SnO in the molten glass to be oxidized, and the amount of precipitation of the aforementioned different crystals increased. From this result, it was found that the generation of heterogeneous crystals can be effectively suppressed if the oxide material is produced so as to have a β-OH value of a certain value or less.

本発明によれば、SnOおよびPを含有する所望組成の酸化物材料を、均質かつ安価に製造することが可能となる。 According to the present invention, an oxide material having a desired composition containing SnO and P 2 O 5 can be produced uniformly and inexpensively.

実施例1および比較例1で作製した試験電池のサイクル試験の結果を示すグラフである。4 is a graph showing the results of a cycle test of test batteries produced in Example 1 and Comparative Example 1.

本発明はSnOおよびPを含有する酸化物材料の製造方法であって、リン酸水溶液およびSnO粉末を混合して原料バッチを作製する工程、および、原料バッチを溶融する工程を含むことを特徴とする。 The present invention is a method for producing an oxide material containing SnO and P 2 O 5 , and includes a step of preparing a raw material batch by mixing an aqueous phosphoric acid solution and SnO powder, and a step of melting the raw material batch It is characterized by.

SnOおよびPを含有する酸化物材料は、例えば非水二次電池等の蓄電デバイスにおいて、高容量かつサイクル特性に優れた負極活物質としての役割を果たす。SnOを含有する負極活物質を用いた場合、充放電の際に負極にて以下のような反応が起こることが知られている。 An oxide material containing SnO and P 2 O 5 plays a role as a negative electrode active material having a high capacity and excellent cycle characteristics in a power storage device such as a non-aqueous secondary battery. When a negative electrode active material containing SnO is used, it is known that the following reaction occurs in the negative electrode during charge and discharge.

SnO+2Li+2e → Sn+LiO ・・・(2)
Sn+yLi+ye ←→ LiSn ・・・(3)
SnO + 2Li + + 2e → Sn + Li 2 O (2)
Sn + yLi + + ye ← → Li y Sn (3)

まず初回の充電時に、SnOが電子を受容して金属Snが生成する反応が不可逆的に起こる(式(2))。続いて、生成した金属Snは、正極から電解液を通って移動したリチウムイオンと回路から供給された電子と結合し、LiSn合金を形成する反応が起こる(式(3))。LiSn合金としては、Li2.6Sn、Li3.5Sn、Li4.4Sn等が知られている。当該反応は、充電時には右方向に反応が進み、放電時には左方向に進む可逆反応として起こる。以降、式(3)の充放電反応が繰り返し行われる。 First, during the first charge, a reaction in which SnO accepts electrons and metal Sn is generated occurs irreversibly (formula (2)). Subsequently, the produced metal Sn combines with lithium ions that have moved from the positive electrode through the electrolyte and electrons supplied from the circuit, and a reaction occurs to form a Li y Sn alloy (formula (3)). As Li y Sn alloys, Li 2.6 Sn, Li 3.5 Sn, Li 4.4 Sn, and the like are known. The reaction occurs as a reversible reaction that proceeds rightward during charging and proceeds leftward during discharging. Thereafter, the charge / discharge reaction of the formula (3) is repeatedly performed.

ここで、式(3)の充放電反応では体積変化を伴うが、負極活物質としてSnOおよびPを含有する酸化物材料を用いた場合、酸化物材料中のSnx+イオンがリン酸ネットワークに包括された状態で存在するため、充放電に伴うSnの体積変化を当該リン酸ネットワークで緩和することができる。よって、サイクル特性の低下を抑制することが可能となる。 Here, the charge / discharge reaction of formula (3) involves a volume change, but when an oxide material containing SnO and P 2 O 5 is used as the negative electrode active material, Sn x + ions in the oxide material are phosphoric acid. Since it exists in the state included in the network, the volume change of Sn accompanying charging / discharging can be relieved with the said phosphate network. Therefore, it is possible to suppress a decrease in cycle characteristics.

SnOおよびPを含有する酸化物材料の具体例としては、組成としてモル%で、SnO 45〜95%、P 5〜55%を含有するものであることが好ましい。組成をこのように限定した理由を以下に説明する。なお、以下の組成の説明において、「%」は特に断りのない限り「モル%」を意味する。 As a specific example of the oxide material containing SnO and P 2 O 5 , it is preferable that the composition contains mol% and contains SnO 45 to 95% and P 2 O 5 5 to 55%. The reason for limiting the composition in this way will be described below. In the description of the composition below, “%” means “mol%” unless otherwise specified.

酸化物材料中のSnOはリチウムイオンを吸蔵および放出するサイトとなる活物質成分である。SnOの含有量は45〜95%、50〜90%、55〜87%、60〜85%、68〜83%、特に71〜82%であることが好ましい。SnOの含有量が少なすぎると、酸化物材料の単位質量当たりの充放電容量が小さくなるため、結果的に負極活物質の充放電容量も小さくなる。一方、SnOの含有量が多すぎると、酸化物材料中の非晶質成分が少なくなるため、繰り返し充放電時のリチウムイオンの吸蔵および放出に伴う体積変化を緩和できずに、放電容量が急速に低下するおそれがある。なお、本発明においてSnO成分含有量は、SnO以外の酸化スズ成分(SnO等)もSnOに換算して合算したものを指す。 SnO in the oxide material is an active material component that becomes a site for occluding and releasing lithium ions. The SnO content is preferably 45 to 95%, 50 to 90%, 55 to 87%, 60 to 85%, 68 to 83%, particularly 71 to 82%. When the content of SnO is too small, the charge / discharge capacity per unit mass of the oxide material becomes small, and as a result, the charge / discharge capacity of the negative electrode active material also becomes small. On the other hand, if the content of SnO is too large, the amorphous component in the oxide material decreases, so that the volume change associated with insertion and extraction of lithium ions during repeated charge and discharge cannot be alleviated, and the discharge capacity increases rapidly. May decrease. Incidentally, SnO ingredient content in the present invention, the tin oxide component other than SnO (SnO 2, etc.) also refers to that summed in terms of SnO.

は網目形成酸化物であり、Sn原子におけるリチウムイオンの吸蔵および放出サイトを包括し、リチウムイオンが移動可能な固体電解質としての機能を果たす。Pの含有量は5〜55%、10〜50%、13〜45%、15〜40%、17〜32%、特に18〜29%であることが好ましい。Pの含有量が少なすぎると、充放電時のリチウムイオンの吸蔵および放出に伴うSn原子の体積変化を緩和できず構造劣化を起こすため、繰り返し充放電時に放電容量が低下しやすくなる。一方、Pの含有量が多すぎると、耐水性が低下しやすくなる。また、吸湿することで異種結晶(例えばSnHPO)が多量に形成され、繰り返し充放電した際に容量が低下しやすくなる。また、Sn原子とともに安定な結晶(例えばSnP)を形成しやすく、鎖状Pにおける酸素原子が有する孤立電子対によるSn原子への配位結合の影響がより強い状態となる。このため、初回充電反応においてSnイオンを還元するために電子が多く必要となり、初回充放電効率が低下する傾向にある。 P 2 O 5 is a network-forming oxide and includes lithium ion storage and release sites in Sn atoms, and functions as a solid electrolyte to which lithium ions can move. The content of P 2 O 5 is preferably 5 to 55%, 10 to 50%, 13 to 45%, 15 to 40%, 17 to 32%, particularly 18 to 29%. If the content of P 2 O 5 is too small, the volume change of Sn atoms accompanying the insertion and extraction of lithium ions during charge / discharge cannot be alleviated, resulting in structural deterioration, and the discharge capacity tends to decrease during repeated charge / discharge. . On the other hand, when the content of P 2 O 5 is too large, the water resistance tends to lower. Further, by absorbing moisture, a large amount of heterogeneous crystals (for example, SnHPO 4 ) are formed, and the capacity is likely to decrease when repeatedly charged and discharged. Further, it is easy to form a stable crystal (for example, SnP 2 O 7 ) together with the Sn atom, and the influence of the coordinate bond to the Sn atom by the lone electron pair of the oxygen atom in the chain P 2 O 5 becomes stronger. . For this reason, many electrons are required to reduce Sn ions in the initial charge reaction, and the initial charge / discharge efficiency tends to decrease.

なお、SnO/P(モル比)は、0.8〜19、1〜18、特に1.2〜17であることが好ましい。SnO/Pが小さすぎると、SnOにおけるSn原子がPの配位の影響を受けやすくなり、初回充放電効率が低下する傾向にある。一方、SnO/Pが大きすぎると、繰り返し充放電した際に放電容量が低下しやすくなる。これは、酸化物中のSn原子に配位するPが少なくなってSn原子を十分に包括できず、結果として、リチウムイオンの吸蔵および放出に伴うSn原子の体積変化を緩和できなくなり、構造劣化を引き起こすためであると考えられる。 Incidentally, SnO / P 2 O 5 (molar ratio), 0.8~19,1~18, particularly preferably from 1.2 to 17. When SnO / P 2 O 5 is too small, Sn atoms in SnO are easily affected by the coordination of P 2 O 5 , and the initial charge / discharge efficiency tends to decrease. On the other hand, if SnO / P 2 O 5 is too large, the discharge capacity tends to decrease when charging and discharging are repeated. This is because P 2 O 5 coordinated to the Sn atom in the oxide is reduced and the Sn atom cannot be sufficiently covered, and as a result, the volume change of the Sn atom due to insertion and extraction of lithium ions cannot be relaxed. This is considered to cause structural deterioration.

また酸化物材料には、上記成分に加えてさらに種々の成分を添加することができる。例えば、CuO、ZnO、B、MgO、CaO、Al、SiO、RO(RはLi、Na、KまたはCsを示す)を合量で0〜20%、0〜10%、特に0.1〜7%含有することができる。これらの成分が多くなると、構造が無秩序になって非晶質材料が得られやすくなるが、リン酸ネットワークが切断されやすくなる。結果的に、充放電に伴う負極活物質の体積変化を緩和できずサイクル特性が低下するおそれがある。 In addition to the above components, various components can be further added to the oxide material. For example, CuO, ZnO, B 2 O 3 , MgO, CaO, Al 2 O 3 , SiO 2 , R 2 O (R represents Li, Na, K, or Cs) in a total amount of 0 to 20%, 0 to It can contain 10%, especially 0.1-7%. When these components increase, the structure becomes disordered and an amorphous material is easily obtained, but the phosphate network is easily cut. As a result, the volume change of the negative electrode active material accompanying charge / discharge cannot be relaxed, and the cycle characteristics may be deteriorated.

酸化物材料は非晶質であることが好ましい。この場合、酸化物材料の結晶化度は95%以下、80%以下、70%以下、50%以下、40%以下、特に20%以下であることが好ましく、実質的に非晶質であることが最も好ましい。結晶化度が小さい(非晶質相の割合が大きい)ほど、繰り返し充放電時の体積変化を緩和でき、放電容量の低下抑制の観点から有利である。なお、「実質的に非晶質である」とは、結晶化度が実質的に0%(具体的には0.1%未満)であることを指し、具体的には、下記のCuKα線を用いた粉末X線回折測定において、結晶性回折線が検出されないものをいう。   The oxide material is preferably amorphous. In this case, the crystallinity of the oxide material is preferably 95% or less, 80% or less, 70% or less, 50% or less, 40% or less, particularly 20% or less, and is substantially amorphous. Is most preferred. The smaller the degree of crystallinity (the greater the proportion of the amorphous phase), the more the volume change during repeated charging / discharging can be alleviated, which is advantageous from the viewpoint of suppressing the decrease in discharge capacity. Note that “substantially amorphous” means that the crystallinity is substantially 0% (specifically, less than 0.1%). Specifically, the following CuKα ray In a powder X-ray diffraction measurement using, a crystal diffraction line is not detected.

結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で10〜60°の回折線プロファイルから求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10〜60°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10〜60°において検出される各結晶性回折線をピーク分離して求めた積分強度の総和をIcとした場合、結晶化度Xcは次式から求められる。   The degree of crystallinity is obtained from a diffraction line profile of 10 to 60 degrees as a 2θ value obtained by powder X-ray diffraction measurement using CuKα rays. Specifically, the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 60 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia, 10 When the total integrated intensity obtained by peak separation of each crystalline diffraction line detected at ˜60 ° is Ic, the crystallinity Xc can be obtained from the following equation.

Xc=[Ic/(Ic+Ia)]×100(%)     Xc = [Ic / (Ic + Ia)] × 100 (%)

以下、本発明の製造方法の各工程毎に具体的にその手法を説明する。   Hereinafter, the method will be specifically described for each step of the production method of the present invention.

リン酸水溶液の濃度は10〜70質量%、12〜60質量%、特に15〜50質量%であることが好ましい。リン酸水溶液の濃度が低すぎると、原料バッチ中でリン酸とSnOが接触しにくくなり、未反応のリン酸が残るため、粉末原料や反応生成物粉末(例えばSnHPO)とセグリゲーションを起こしやすく、得られる酸化物材料が不均質となる傾向にある。一方、リン酸水溶液の濃度が高すぎると、原料を均一に混合することが難しくなる。また、上記式(1)の反応における発熱を緩和できず、水分が蒸発して粉末原料が継粉の状態となりやすく、得られる酸化物材料が不均質となる傾向にある。 The concentration of the phosphoric acid aqueous solution is preferably 10 to 70% by mass, 12 to 60% by mass, and particularly preferably 15 to 50% by mass. If the concentration of the phosphoric acid aqueous solution is too low, phosphoric acid and SnO are less likely to come into contact with each other in the raw material batch, and unreacted phosphoric acid remains, so that segregation is likely to occur with the powder raw material and reaction product powder (for example, SnHPO 4 ). The resulting oxide material tends to be heterogeneous. On the other hand, when the concentration of the phosphoric acid aqueous solution is too high, it is difficult to uniformly mix the raw materials. Moreover, the heat generation in the reaction of the above formula (1) cannot be alleviated, the water is evaporated and the powder raw material tends to be in a state of spattering, and the resulting oxide material tends to be inhomogeneous.

リン酸としては特に限定されず、例えばオルトリン酸(HPO)、ピロリン酸(H)、トリポリリン酸(H10)、メタリン酸((HPO)等を使用することができる。 It is not particularly limited as phosphoric acid, for example, orthophosphoric acid (H 3 PO 4), pyrophosphoric acid (H 4 P 2 O 7) , tripolyphosphate (H 5 P 3 O 10) , metaphosphoric acid ((HPO 3) n) Etc. can be used.

リン酸水溶液とSnO粉末を混合した後、乾燥させて例えば粉末状の原料バッチにすることが好ましい。乾燥温度は水分が十分に蒸発する限り特に限定されず、例えば50〜250℃、80〜200℃、特100〜180℃の範囲で適宜調整すればよい。乾燥時の雰囲気は特に限定されないが、原料バッチ(特にSnO)の酸化を抑制するため、還元雰囲気または不活性雰囲気が好ましい。   After mixing phosphoric acid aqueous solution and SnO powder, it is preferable to make it dry, for example to make a powdery raw material batch. The drying temperature is not particularly limited as long as moisture sufficiently evaporates. For example, the drying temperature may be appropriately adjusted within the range of 50 to 250 ° C, 80 to 200 ° C, and particularly 100 to 180 ° C. The atmosphere during drying is not particularly limited, but a reducing atmosphere or an inert atmosphere is preferable in order to suppress oxidation of the raw material batch (particularly SnO).

還元雰囲気とするためには、例えば窒素と水素の混合気体が使用される。具体的には、体積%で、N 90〜99.5%、H 0.5〜10%、特にN 92〜99%、H 1〜8%の混合気体を使用することが好ましい。 In order to obtain a reducing atmosphere, for example, a mixed gas of nitrogen and hydrogen is used. Specifically, it is preferable to use a mixed gas of N 2 90 to 99.5% and H 2 0.5 to 10%, particularly N 2 92 to 99% and H 2 1 to 8% in volume%. .

不活性雰囲気としては、窒素、アルゴン、ヘリウムのいずれかを使用することが好ましい。   As the inert atmosphere, it is preferable to use any of nitrogen, argon, and helium.

また、当該原料バッチを粉砕することで均質性を向上させても良い。粉砕には乳鉢、らいかい機、ボールミル、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル等の一般的な粉砕機を用いることができ、湿式または乾式のいずれの方法を用いても良い。   Moreover, you may improve a homogeneity by grind | pulverizing the said raw material batch. For the pulverization, a general pulverizer such as a mortar, a rake machine, a ball mill, a vibration ball mill, a satellite ball mill, a planetary ball mill, a jet mill or the like can be used, and either a wet or dry method may be used.

本発明によって得られる原料バッチの平均粒子径は2〜500μm、5〜300μm、10〜250μm、特に20〜150μmであることが好ましい。原料バッチの平均粒子径が小さすぎると、流動性が低下して、溶融装置の原料バッチ投入口が詰まる等の不具合が生じやすくなる。また、溶融炉内へ投入する際に、原料バッチが飛散する傾向にある。その結果、投入量にばらつきが生じることから安定生産が困難になるだけでなく、得られる酸化物材料の組成ずれが生じやすくなる。一方、原料バッチの平均粒子径が大きすぎると、溶融時に溶け残りが生じやすく、得られる酸化物材料が不均質になる傾向にある。   The average particle diameter of the raw material batch obtained by the present invention is preferably 2 to 500 μm, 5 to 300 μm, 10 to 250 μm, particularly 20 to 150 μm. If the average particle size of the raw material batch is too small, the fluidity is lowered and problems such as clogging of the raw material batch inlet of the melting apparatus are likely to occur. Moreover, when it puts in a melting furnace, it exists in the tendency for a raw material batch to scatter. As a result, variation in input amount not only makes stable production difficult, but also tends to cause a composition shift of the obtained oxide material. On the other hand, if the average particle size of the raw material batch is too large, undissolved material is likely to be generated during melting, and the resulting oxide material tends to be heterogeneous.

なお本発明において、平均粒子径は一次粒子のメジアン径でD50(50%体積累積径)を示し、レーザー回折式粒度分布測定装置(島津製作所社製 SALD−2000シリーズ)により測定された値をいう。   In the present invention, the average particle diameter is a median diameter of primary particles and indicates D50 (50% volume cumulative diameter), which is a value measured by a laser diffraction particle size distribution analyzer (SALD-2000 series, manufactured by Shimadzu Corporation). .

次に、原料バッチを加熱溶融してガラス化する。ここで、溶融時の溶融雰囲気は還元雰囲気または不活性雰囲気中で行うことが、既述の理由から好ましい。還元雰囲気または不活性雰囲気で溶融する場合は、溶融炉中へ既述のいずれかのガスを供給することが好ましい。還元性ガスまたは不活性ガスは、溶融炉において溶融ガラスの上部雰囲気に供給してもよいし、バブリングノズルから溶融ガラス中に直接供給してもよく、両手法を同時に行ってもよい。   Next, the raw material batch is heated and melted to be vitrified. Here, the melting atmosphere at the time of melting is preferably performed in a reducing atmosphere or an inert atmosphere for the reasons described above. When melting in a reducing atmosphere or an inert atmosphere, it is preferable to supply any of the aforementioned gases into the melting furnace. The reducing gas or the inert gas may be supplied to the upper atmosphere of the molten glass in a melting furnace, may be directly supplied into the molten glass from a bubbling nozzle, or both methods may be performed simultaneously.

原料バッチ中は金属粉末または炭素粉末を含んでいても良い。これにより溶融ガラス中のSnOの酸化を抑制することができる。金属粉末としては、Sn、Al、Si、Tiのいずれかの粉末を用いることが好ましい。なかでも、Sn、Al、Siの粉末を用いることが好ましい。   The raw material batch may contain metal powder or carbon powder. Thereby, the oxidation of SnO in the molten glass can be suppressed. As the metal powder, any one of Sn, Al, Si, and Ti is preferably used. Among these, it is preferable to use Sn, Al, and Si powders.

その後、溶融ガラスを所望の形状に成形して酸化物材料を得る。酸化物材料の形状は特に限定されず、例えばバルク状、フィルム状または粉末状等が挙げられる。   Thereafter, the molten glass is formed into a desired shape to obtain an oxide material. The shape of the oxide material is not particularly limited, and examples thereof include a bulk shape, a film shape, and a powder shape.

既述の理由から、本発明の製造方法により得られた酸化物材料は、β−OH値が一定値以上になる。具体的には、本発明の酸化物材料は、β−OH値が例えば0.1/mm以上、特に0.2/mm以上である。一方、酸化物材料のβ−OH値が大きすぎると、溶融ガラス中のSnOが酸化されやすくなり、望まない異種結晶が増加する傾向にある。よって、酸化物材料のβ−OH値は1.7/mm以下、1.6/mm以下、特に1.5/mm以下であることが好ましい。   For the reasons already described, the β-OH value of the oxide material obtained by the production method of the present invention is a certain value or more. Specifically, the oxide material of the present invention has a β-OH value of, for example, 0.1 / mm or more, particularly 0.2 / mm or more. On the other hand, if the β-OH value of the oxide material is too large, SnO in the molten glass is likely to be oxidized, and unwanted foreign crystals tend to increase. Therefore, the β-OH value of the oxide material is preferably 1.7 / mm or less, 1.6 / mm or less, and particularly preferably 1.5 / mm or less.

酸化物材料のβ−OH値は、還元性ガスまたは不活性ガスを溶融雰囲気中へ供給することで制御(特に低減)できる。特に、バブリングノズルから溶融ガラス中に前記ガスを直接供給することにより、酸化物材料のβ−OH値をより効果的に低減することができる。また、原料バッチ中の水分量を低減する(リン酸水溶液濃度を高くする)ことによっても、酸化物材料のβ−OH値を低減することができる。   The β-OH value of the oxide material can be controlled (particularly reduced) by supplying a reducing gas or an inert gas into the molten atmosphere. In particular, the β-OH value of the oxide material can be more effectively reduced by supplying the gas directly from the bubbling nozzle into the molten glass. Also, the β-OH value of the oxide material can be reduced by reducing the amount of water in the raw material batch (increasing the phosphoric acid aqueous solution concentration).

以上、主に酸化物材料をリチウムイオン二次電池用負極活物質の用途に適用した例について説明してきたが、本発明はこれに限定されるものではなく、他の非水系二次電池の負極活物質や、さらには、リチウムイオン二次電池用の負極材料と非水系電気二重層キャパシタ用の正極材料とを組み合わせたハイブリットキャパシタに使用される負極活物質にも適用できる。   As mentioned above, although the example which mainly applied the oxide material to the use of the negative electrode active material for lithium ion secondary batteries has been demonstrated, this invention is not limited to this, The negative electrode of another non-aqueous secondary battery The present invention can also be applied to an active material or a negative electrode active material used in a hybrid capacitor in which a negative electrode material for a lithium ion secondary battery and a positive electrode material for a non-aqueous electric double layer capacitor are combined.

以下、本発明の酸化物材料の製造方法を、非水二次電池用負極材料の用途に適用した実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the manufacturing method of the oxide material of this invention is described about the Example applied to the use of the negative electrode material for non-aqueous secondary batteries, this invention is not limited to these Examples.

(1)酸化物材料(負極活物質)の作製
酸化物材料の組成として、モル%で、SnO 72%、P 28%となるように、原料に粉末状の酸化第一スズ(日本化学工業製SnO)、液状のオルトリン酸(ラサ工業製強リン酸、HPO濃度として105質量%)を秤量した。次に、表1に示す濃度になるように水の量を秤量し、ここに秤量したオルトリン酸をゆっくりと添加してリン酸水溶液を調整した。リン酸水溶液に酸化第一スズ粉末を添加し、混合して原料バッチを調整した。なお、実施例4〜6は大気中で表1記載の条件で乾燥させて、粉末状の原料バッチとした。
(1) Preparation of Oxide Material (Negative Electrode Active Material) Powdered stannous oxide (Japan) is used so that the composition of the oxide material is mol%, SnO 72%, P 2 O 5 28%. Chemical industry SnO) and liquid orthophosphoric acid (Lhasa Industries strong phosphoric acid, H 3 PO 4 concentration 105 mass%) were weighed. Next, the amount of water was weighed so as to have the concentration shown in Table 1, and the weighed orthophosphoric acid was slowly added to prepare an aqueous phosphoric acid solution. Stannous oxide powder was added to the phosphoric acid aqueous solution and mixed to prepare a raw material batch. Examples 4 to 6 were dried in the atmosphere under the conditions shown in Table 1 to obtain powdery raw material batches.

比較例1では、既述の組成となるように酸化第一スズ粉末とオルトリン酸を秤量し、オルトリン酸に酸化第一スズ粉末を添加し混合することにより原料バッチを作製した。   In Comparative Example 1, stannous oxide powder and orthophosphoric acid were weighed so as to have the composition described above, and the raw material batch was prepared by adding and mixing stannous oxide powder to orthophosphoric acid.

原料バッチを石英ルツボに投入し、電気炉を用いて窒素雰囲気にて950℃、40分間の溶融を行い、ガラス化した。   The raw material batch was put into a quartz crucible and melted at 950 ° C. for 40 minutes in a nitrogen atmosphere using an electric furnace to be vitrified.

次いで、溶融ガラスを一対の回転ローラー間に流し出し、急冷しながら厚み0.1〜2mmのフィルム状に成形した。フィルム状の成形体をボールミルで粉砕した後、空気分級機により分級して、平均粒径2μmのガラス粉末(酸化物材料)を得た。   Next, the molten glass was poured out between a pair of rotating rollers and formed into a film having a thickness of 0.1 to 2 mm while rapidly cooling. The film-shaped molded body was pulverized with a ball mill and then classified with an air classifier to obtain a glass powder (oxide material) having an average particle diameter of 2 μm.

各試料について粉末X線回折測定することにより構造を同定した。実施例1〜6の酸化物材料は非晶質であり、結晶は検出されなかった。比較例1の酸化物材料は、SnOおよびSnの結晶析出が確認された。結晶化度は21%であった。 The structure was identified by powder X-ray diffraction measurement for each sample. The oxide materials of Examples 1 to 6 were amorphous, and no crystals were detected. The oxide material of Comparative Example 1 was confirmed to have SnO 2 and Sn 2 P 2 O 7 crystal precipitation. The degree of crystallinity was 21%.

(2)電池特性の評価
以下、実施例1および比較例1で作製された酸化物材料(負極活物質)を用いて試験電池を作製し、電池特性の評価を行った。
(2) Evaluation of battery characteristics Hereinafter, test batteries were prepared using the oxide materials (negative electrode active materials) prepared in Example 1 and Comparative Example 1, and the battery characteristics were evaluated.

(2−a)負極の作製
ガラス粉末に対し、バインダーとしてポリイミド樹脂、導電性物質としてケッチェンブラックを、ガラス粉末:バインダー:導電性物質=85:10:5(質量比)となるように秤量し、これらをN−メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。次に、隙間150μmのドクターブレードを用いて、負極集電体である厚さ20μmの銅箔上に、得られたスラリーをコートし、乾燥機にて70℃で乾燥後、一対の回転ローラー間に通してプレスすることにより電極シートを得た。電極シートを電極打ち抜き機で直径11mmに打ち抜き、減圧しながら300℃で1時間イミド化させ、円形の作用極を得た。
(2-a) Production of Negative Electrode Weighing of glass powder with polyimide resin as binder and ketjen black as conductive substance so that glass powder: binder: conductive substance = 85: 10: 5 (mass ratio). These were dispersed in N-methylpyrrolidone (NMP), and then sufficiently stirred with a rotation / revolution mixer to form a slurry. Next, using a doctor blade with a gap of 150 μm, the obtained slurry was coated on a copper foil having a thickness of 20 μm as a negative electrode current collector, dried at 70 ° C. with a dryer, and then between a pair of rotating rollers. An electrode sheet was obtained by pressing through a sheet. The electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and imidized at 300 ° C. for 1 hour while reducing the pressure to obtain a circular working electrode.

(2−b)試験電池の作製
コインセルの下蓋に、上記作用極を銅箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および、対極である金属リチウムを積層し、試験電池を作製した。電解液としては、1M LiPF溶液/EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1を用いた。なお試験電池の組み立ては露点温度−40℃以下の環境で行った。
(2-b) Production of test battery A polypropylene porous membrane having a diameter of 16 mm, which was placed on the lower lid of a coin cell with the above working electrode facing the copper foil surface and dried under reduced pressure at 60 ° C. for 8 hours ( A test battery was manufactured by laminating a separator made of Hoechst Celanese Co., Ltd. Celgard # 2400) and metallic lithium as a counter electrode. As the electrolytic solution, 1M LiPF 6 solution / EC (ethylene carbonate): DEC (diethyl carbonate) = 1: 1 was used. The test battery was assembled in an environment with a dew point temperature of −40 ° C. or lower.

(2−c)充放電試験
充電(負極材料へのリチウムイオンの吸蔵)は、0.1Cの定電流で2Vから0Vまで充電を行った。次に、放電(負極材料からのリチウムイオンの放出)は、0.1Cの定電流で0Vから2Vまで放電させた。この充放電サイクルを繰り返し行った。放電容量(mAh/g)は単位質量あたりの酸化物材料から放電された電気量から求めた。
(2-c) Charge / Discharge Test Charge (occlusion of lithium ions into the negative electrode material) was charged from 2 V to 0 V with a constant current of 0.1 C. Next, discharge (release of lithium ions from the negative electrode material) was performed from 0 V to 2 V with a constant current of 0.1 C. This charge / discharge cycle was repeated. The discharge capacity (mAh / g) was determined from the amount of electricity discharged from the oxide material per unit mass.

各試料について充放電試験を行った際の初回の放電容量と、繰り返し充放電した際のサイクル特性の結果を表2および図1に示す。   Table 2 and FIG. 1 show the results of the initial discharge capacity when the charge / discharge test was performed for each sample and the cycle characteristics when the sample was repeatedly charged / discharged.

表2および図1から明らかなように、実施例1の酸化物材料を用いた電池の初回放電容量は705mAh/gであり、80サイクル目の放電容量は511mAh/gと良好であった。一方、比較例1の酸化物材料を用いた電池は、初回放電容量が700mAh/gであったが、80サイクル目の放電容量は261mAh/gと著しく低下した。   As apparent from Table 2 and FIG. 1, the initial discharge capacity of the battery using the oxide material of Example 1 was 705 mAh / g, and the discharge capacity at the 80th cycle was as good as 511 mAh / g. On the other hand, the battery using the oxide material of Comparative Example 1 had an initial discharge capacity of 700 mAh / g, but the discharge capacity at the 80th cycle was significantly reduced to 261 mAh / g.

本発明の製造方法により得られる酸化物材料は、蓄電デバイス用負極活物質以外にも、白色LED等の発光デバイスの構成部材である波長変換部材や、各種電子部品の封着材料として使用することも可能である。   The oxide material obtained by the production method of the present invention is used as a sealing material for wavelength conversion members that are components of light emitting devices such as white LEDs and various electronic components, in addition to the negative electrode active material for power storage devices. Is also possible.

Claims (6)

組成としてモル%で、SnO 45〜95%およびP 5〜55%を含有し、蓄電デバイス用負極材料に使用される酸化物材料の製造方法であって、リン酸水溶液およびSnO粉末を混合して原料バッチを作製する工程、および、原料バッチを溶融する工程を含むことを特徴とする製造方法。 In mole percent composition containing SnO 45 to 95% and P 2 O 5 5 to 55%, a process for the preparation of an oxide material that is used in the negative electrode material for a power storage device, an aqueous solution of phosphoric acid and SnO powder The manufacturing method characterized by including the process of mixing and producing a raw material batch, and the process of fuse | melting a raw material batch. リン酸水溶液の濃度が10〜70質量%であることを特徴とする請求項1に記載の酸化物材料の製造方法。   The method for producing an oxide material according to claim 1, wherein the concentration of the phosphoric acid aqueous solution is 10 to 70 mass%. リン酸がオルトリン酸であることを特徴とする請求項1または2に記載の酸化物材料の製造方法。   The method for producing an oxide material according to claim 1, wherein the phosphoric acid is orthophosphoric acid. 原料バッチを乾燥した後に溶融することを特徴する請求項1〜3のいずれかに記載の酸化物材料の製造方法。   The method for producing an oxide material according to claim 1, wherein the raw material batch is melted after being dried. 原料バッチを溶融する雰囲気が還元雰囲気または不活性雰囲気であることを特徴する請求項1〜4のいずれかに記載の酸化物材料の製造方法。   The method for producing an oxide material according to any one of claims 1 to 4, wherein the atmosphere for melting the raw material batch is a reducing atmosphere or an inert atmosphere. 組成としてモル%で、SnO 45〜95%およびP 5〜55%を含有し、β−OH値が0.1〜1.7/mmであり、蓄電デバイス用負極材料に使用されることを特徴とする酸化物材料。 In mole percent composition containing SnO 45 to 95% and P 2 O 5 5~55%, β -OH value is 0.1 to 1.7 / mm der is, is used in the negative electrode material for a power storage device An oxide material characterized by that.
JP2011236576A 2011-10-28 2011-10-28 Method for producing oxide material Active JP5892364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011236576A JP5892364B2 (en) 2011-10-28 2011-10-28 Method for producing oxide material
PCT/JP2012/077568 WO2013062037A1 (en) 2011-10-28 2012-10-25 Method for producing oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236576A JP5892364B2 (en) 2011-10-28 2011-10-28 Method for producing oxide material

Publications (2)

Publication Number Publication Date
JP2013095601A JP2013095601A (en) 2013-05-20
JP5892364B2 true JP5892364B2 (en) 2016-03-23

Family

ID=48167863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236576A Active JP5892364B2 (en) 2011-10-28 2011-10-28 Method for producing oxide material

Country Status (2)

Country Link
JP (1) JP5892364B2 (en)
WO (1) WO2013062037A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241130B2 (en) * 2013-01-30 2017-12-06 日本電気硝子株式会社 Negative electrode active material for electricity storage devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3422119B2 (en) * 1995-02-27 2003-06-30 宇部興産株式会社 Non-aqueous secondary battery
JPH08298121A (en) * 1995-04-25 1996-11-12 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP4677743B2 (en) * 2004-08-05 2011-04-27 日本電気硝子株式会社 Li2O-Al2O3-SiO2 transparent crystallized glass for combustion device window
JP5552743B2 (en) * 2008-03-28 2014-07-16 旭硝子株式会社 Frit
JP5381131B2 (en) * 2009-01-30 2014-01-08 旭硝子株式会社 Manufacturing method of glass powder for light emitting device coating
JP5471095B2 (en) * 2009-07-09 2014-04-16 旭硝子株式会社 Sealing glass
JP5740778B2 (en) * 2009-07-24 2015-07-01 日本電気硝子株式会社 Manufacturing method of optical glass
JP2011046550A (en) * 2009-08-26 2011-03-10 Nippon Electric Glass Co Ltd Method for producing sealing glass and sealing glass

Also Published As

Publication number Publication date
JP2013095601A (en) 2013-05-20
WO2013062037A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
Wang et al. Effects of Na+ and Cl− co-doping on electrochemical performance in LiFePO4/C
WO2017073457A1 (en) Positive electrode active material for sodium-ion secondary cell
JP5645056B2 (en) Negative electrode active material for power storage device, negative electrode material for power storage device using the same, and negative electrode for power storage device
JP6300176B2 (en) Negative electrode active material for sodium secondary battery
JP2012182115A (en) Method for manufacturing negative electrode active material for electricity storage device
JP2014096289A (en) Electric power storage device
JP6124062B2 (en) Positive electrode material for power storage device and method for producing the same
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
JPWO2019003903A1 (en) Positive electrode active material for sodium ion secondary battery
JP2014130826A (en) Negative electrode active material for electricity storage device, and manufacturing method for the same
JP5892364B2 (en) Method for producing oxide material
JP6754534B2 (en) Positive electrode active material for power storage devices and its manufacturing method
JP7405342B2 (en) Negative electrode active material for sodium ion secondary battery and method for producing the same
WO2016072315A1 (en) Positive electrode active material for storage device and method for producing positive electrode active material for storage device
JP2012204266A (en) Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
WO2011065307A1 (en) Negative electrode material for an electrical storage device, and negative electrode using said material
JP6175906B2 (en) Negative electrode active material for power storage device and method for producing the same
JP6183590B2 (en) Negative electrode active material for power storage device and method for producing the same
JP6241130B2 (en) Negative electrode active material for electricity storage devices
JP2014146431A (en) Positive electrode material for electric power storage devices
JP2013080664A (en) Power storage device
WO2016136555A1 (en) Positive electrode active material for alkali ion secondary batteries
WO2024024528A1 (en) Negative electrode active material for sodium-ion secondary battery
WO2022176627A1 (en) Method for producing positive electrode active material for alkali ion secondary batteries
JP2014203788A (en) Solid electrolyte material for lithium ion battery, solid electrolyte for lithium ion battery, lithium ion battery, and method for producing solid electrolyte material for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5892364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150