JP2014130826A - Negative electrode active material for electricity storage device, and manufacturing method for the same - Google Patents

Negative electrode active material for electricity storage device, and manufacturing method for the same Download PDF

Info

Publication number
JP2014130826A
JP2014130826A JP2014022499A JP2014022499A JP2014130826A JP 2014130826 A JP2014130826 A JP 2014130826A JP 2014022499 A JP2014022499 A JP 2014022499A JP 2014022499 A JP2014022499 A JP 2014022499A JP 2014130826 A JP2014130826 A JP 2014130826A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
storage device
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014022499A
Other languages
Japanese (ja)
Inventor
Hideo Yamauchi
英郎 山内
Tomohiro Nagakane
知浩 永金
Akihiko Sakamoto
明彦 坂本
Tetsuo Sakai
哲男 境
Bi Sei Su
ビセイ スウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Electric Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014022499A priority Critical patent/JP2014130826A/en
Publication of JP2014130826A publication Critical patent/JP2014130826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for an electricity storage device that achieves a higher capacity as compared with conventional negative electrode active materials and is excellent in charging and discharging cycle characteristics and safety.SOLUTION: A negative electrode active material for an electricity storage device includes 70 to 95 mol% of SnO, and 5 to 30 mol% of PO(excluding 70 mol% of SnO and 30 mol% of PO).

Description

本発明は、携帯型電子機器や電気自動車に用いられるリチウムイオン二次電池に代表される非水二次電池等の蓄電デバイスに用いられる負極活物質及びその製造方法に関する。   The present invention relates to a negative electrode active material used for power storage devices such as non-aqueous secondary batteries represented by lithium ion secondary batteries used in portable electronic devices and electric vehicles, and a method for producing the same.

近年、携帯用パソコンや携帯電話の普及に伴い、リチウムイオン二次電池等の蓄電デバイスの高容量化と小サイズ化に対する要望が高まっている。蓄電デバイスの高容量化が進めば電池材料の小サイズ化も容易となるため、蓄電デバイス用電極材料の高容量化へ向けての開発が急務となっている。   In recent years, with the spread of portable personal computers and mobile phones, there is an increasing demand for higher capacity and smaller size of power storage devices such as lithium ion secondary batteries. If the capacity of the electricity storage device is increased, it will be easy to reduce the size of the battery material. Therefore, there is an urgent need to develop an electrode material for the electricity storage device with a higher capacity.

例えば、リチウムイオン二次電池用の正極材料には高電位型のLiCoO2、LiCo1-xNix2、LiNiO2、LiMn24等が広く用いられている。一方、負極材料には一般に炭素質材料が用いられている。これらの材料は充放電によってリチウムイオンを可逆的に吸蔵および放出する電極活物質として機能し、非水電解液あるいは固体電解質によって電気化学的に連結されたいわゆるロッキングチェア型の二次電池を構成する。 For example, high-potential type LiCoO 2 , LiCo 1-x Ni x O 2 , LiNiO 2 , LiMn 2 O 4 and the like are widely used as positive electrode materials for lithium ion secondary batteries. On the other hand, a carbonaceous material is generally used as the negative electrode material. These materials function as electrode active materials that reversibly occlude and release lithium ions by charging and discharging, and constitute so-called rocking chair type secondary batteries that are electrochemically connected by a non-aqueous electrolyte or a solid electrolyte. .

負極において、リチウムイオンを吸蔵あるいは放出できる活物質(負極活物質)として用いられる炭素質材料には、黒鉛質炭素材料、ピッチコークス、繊維状カーボン、低温で焼成される高容量型のソフトカーボンなどがある。しかしながら、炭素材料はリチウム挿入容量が比較的小さいため、電池容量が低いという問題がある。具体的には、化学量論量のリチウム挿入容量を実現できたとしても、炭素材料の電池容量は約372mAh/gが限界である。   Carbonaceous materials used as active materials (negative electrode active materials) that can occlude or release lithium ions in the negative electrode include graphitic carbon materials, pitch coke, fibrous carbon, and high-capacity soft carbon that is fired at low temperatures. There is. However, since the carbon material has a relatively small lithium insertion capacity, there is a problem that the battery capacity is low. Specifically, even if a stoichiometric amount of lithium insertion capacity can be realized, the battery capacity of the carbon material is limited to about 372 mAh / g.

そこで、リチウムイオンを吸蔵および放出することが可能であり、カーボン系材料を超える高容量密度を有する負極活物質として、SnOを含有する負極活物質が提案されている(例えば、特許文献1参照)。しかし、特許文献1で提案されている負極活物質は、充放電時にLiイオンの吸蔵および放出反応に起因する体積変化を緩和できず、繰り返し充放電した際に負極活物質の構造劣化が著しく亀裂が生じやすくなる。亀裂が進行すると、場合によっては負極活物質中に空洞が形成され、微粉化してしまうこともある。負極活物質に亀裂が生じると、電子伝導パスが分断されるため、繰り返し充放電した後の放電容量(充放電サイクル特性)の低下が問題となっていた。   Therefore, a negative electrode active material containing SnO has been proposed as a negative electrode active material capable of inserting and extracting lithium ions and having a high capacity density exceeding that of a carbon-based material (see, for example, Patent Document 1). . However, the negative electrode active material proposed in Patent Document 1 cannot relieve the volume change due to the insertion and extraction reactions of Li ions during charge and discharge, and the structure deterioration of the negative electrode active material is significantly cracked when repeatedly charged and discharged. Is likely to occur. As cracks progress, in some cases, cavities are formed in the negative electrode active material and may be pulverized. When a crack occurs in the negative electrode active material, the electron conduction path is interrupted, so that a reduction in discharge capacity (charge / discharge cycle characteristics) after repeated charge / discharge has been a problem.

また、上記の問題を解決するために、酸化スズを主体とする酸化物からなる負極活物質と、当該負極活物質を溶融法により製造する方法が提案されている(例えば、特許文献2参照)。さらに、酸化スズおよびケイ素を含有する酸化物からなり、均質で比表面積の大きい負極活物質を製造するための方法として、ゾルゲル法による製造方法が提案されている(例えば、特許文献3参照)。しかし、これらの製造方法で製造された負極活物質は、初回の充電容量に対する放電容量の比率(初回充放電効率)が低く、また繰り返し充放電した後の放電容量(サイクル特性)の低下が問題となっていた。   In order to solve the above problem, a negative electrode active material composed of an oxide mainly composed of tin oxide and a method for producing the negative electrode active material by a melting method have been proposed (for example, see Patent Document 2). . Furthermore, a manufacturing method by a sol-gel method has been proposed as a method for manufacturing a negative electrode active material made of an oxide containing tin oxide and silicon and having a large specific surface area (see, for example, Patent Document 3). However, the negative electrode active material manufactured by these manufacturing methods has a low ratio of the discharge capacity to the initial charge capacity (initial charge / discharge efficiency), and a decrease in the discharge capacity (cycle characteristics) after repeated charge / discharge is a problem. It was.

また、酸化スズを主体とする非晶質酸化物を用いることで、リチウムイオンの吸蔵および放出に伴う体積変化を緩和でき、充放電サイクルに優れた非水二次電池用負極活物質が提案されている(例えば、特許文献4および5参照)。しかし、これらの負極活物質は、非晶質酸化物とするために、リチウムイオンの吸蔵および放出に関係しない、酸化スズ以外の酸化物を相当量含有している。そのため、負極活物質の単位質量あたりの酸化スズ含有量が少なく、さらなる高容量化が困難であるという問題があった。   In addition, by using an amorphous oxide mainly composed of tin oxide, a negative electrode active material for a non-aqueous secondary battery that can relieve the volume change associated with insertion and extraction of lithium ions and has an excellent charge / discharge cycle has been proposed. (For example, see Patent Documents 4 and 5). However, these negative electrode active materials contain a considerable amount of oxides other than tin oxide, which are not related to occlusion and release of lithium ions, so as to be amorphous oxides. For this reason, there is a problem that the tin oxide content per unit mass of the negative electrode active material is small and it is difficult to further increase the capacity.

特許第2887632号公報Japanese Patent No. 2887632 特許第3498380号公報Japanese Patent No. 3498380 特許第3890671号公報Japanese Patent No. 3890671 特許第3605866号公報Japanese Patent No. 3605866 特許第3605875号公報Japanese Patent No. 3605875

本発明の課題は、従来の負極活物質と比較してさらなる高容量化が可能であり、かつ充放電サイクル特性および安全性に優れた蓄電デバイス用負極活物質を提供することである。   An object of the present invention is to provide a negative electrode active material for an electricity storage device that can be further increased in capacity as compared with a conventional negative electrode active material and is excellent in charge / discharge cycle characteristics and safety.

本発明者等は種々の検討を行った結果、組成中に酸化スズを高い割合で含有する蓄電デバイス用負極活物質を用いることで、前記課題を解決できることを見出し、本発明として提案するものである。尚、本明細書において、「蓄電デバイス」には、非水二次電池、特にノートパソコンや携帯電話等の携帯型電子機器や電気自動車等に使用されるリチウムイオン非水二次電池や、リチウムイオンキャパシタ等のハイブリッドキャパシタが含まれる。   As a result of various studies, the present inventors have found that the above problem can be solved by using a negative electrode active material for an electricity storage device containing a high proportion of tin oxide in the composition, and propose the present invention. is there. In this specification, the “electric storage device” includes a non-aqueous secondary battery, in particular, a lithium-ion non-aqueous secondary battery used in portable electronic devices such as notebook computers and mobile phones, electric vehicles, and the like. Hybrid capacitors such as ion capacitors are included.

すなわち、本発明は、モル%で、SnO 70〜95%、P25 5〜30%(SnO 70モル%、P25 30モル%は含まない)を含有することを特徴とする蓄電デバイス用負極活物質に関する。 That is, the present invention contains, in mol%, SnO 70 to 95% and P 2 O 5 5 to 30% (not including SnO 70 mol% and P 2 O 5 30 mol%). The present invention relates to a negative electrode active material for devices.

本発明の蓄電デバイス用負極活物質は、SnOを70〜95%(70モル%は含まない)と高い割合で含有するため、負極活物質の単位質量あたりの酸化スズ含有量が多く、さらなる高容量化が可能となる。なお、本発明においてSnO成分含有量は、SnO以外の酸化スズ成分(SnO2等)もSnOに換算して合算したものを指す。 Since the negative electrode active material for an electricity storage device of the present invention contains SnO at a high ratio of 70 to 95% (not including 70 mol%), the content of tin oxide per unit mass of the negative electrode active material is large, and the further high Capacitance can be achieved. Incidentally, SnO ingredient content in the present invention, the tin oxide component other than SnO (SnO 2, etc.) also refers to that summed in terms of SnO.

本発明において、負極活物質は非晶質であることが好ましい。   In the present invention, the negative electrode active material is preferably amorphous.

上記構成により、リチウムイオンの吸蔵および放出に伴う体積変化を緩和でき、充放電サイクルに優れた蓄電デバイス用負極活物質を得ることができる。なお、「実質的に非晶質である」とは、結晶化度が実質的に0%であることを指し、CuKα線を用いた粉末X線回折測定によって得られる2θ値で、10〜60°の回折線プロファイルにおいて10〜40°にブロードな回折線を有し、回折ピークが確認されないものをいう。   With the above structure, a volume change accompanying insertion and extraction of lithium ions can be reduced, and a negative electrode active material for an electricity storage device having an excellent charge / discharge cycle can be obtained. Note that “substantially amorphous” means that the degree of crystallinity is substantially 0%, which is a 2θ value obtained by powder X-ray diffraction measurement using CuKα rays and is 10 to 60. A diffraction line profile having a broad diffraction line at 10 to 40 ° in a diffraction line profile of 0 ° and no diffraction peak being confirmed.

また、本発明は、上記の蓄電デバイス用負極活物質を製造する方法であって、原料粉末を還元雰囲気または不活性雰囲気中で溶融してガラス化することを特徴とする製造方法に関する。   The present invention also relates to a method for producing the above negative electrode active material for an electricity storage device, wherein the raw material powder is melted and vitrified in a reducing atmosphere or an inert atmosphere.

当該方法によれば、初回充放電効率(初回の充電容量に対する放電容量の比率)に優れた二次電池とすることが可能な負極活物質を得ることができる。この理由は以下のように説明できる。   According to this method, it is possible to obtain a negative electrode active material that can be a secondary battery having excellent initial charge / discharge efficiency (ratio of discharge capacity to initial charge capacity). The reason for this can be explained as follows.

例えば非水二次電池の一例として、リチウムイオン二次電池は充放電の際、負極にて以下のような反応が起こることが知られている。   For example, as an example of a non-aqueous secondary battery, it is known that a lithium ion secondary battery undergoes the following reaction at the negative electrode during charging and discharging.

Snx++xe‐→Sn ・・・(1)
Sn+yLi++ye‐←→LiySn ・・・(2)
Sn x + + xe− → Sn (1)
Sn + yLi + + ye− ← → Li y Sn (2)

まず初回の充電時に、Snx+イオンが電子を受容して金属Snが生成する反応が不可逆的に起こる(式(1))。続いて、生成した金属Snは正極から電解液を通って移動したLiイオンと回路から供給された電子と結合し、Sn−Li合金を形成する反応が起こる。当該反応は、充電時には右方向に反応が進み、放電時には左方向に進む可逆反応として起こる(式(2))。 First, during the first charge, a reaction in which Sn x + ions accept electrons and produce metal Sn occurs irreversibly (formula (1)). Subsequently, the produced metal Sn combines with Li ions that have moved from the positive electrode through the electrolytic solution and electrons supplied from the circuit, and a reaction occurs to form a Sn—Li alloy. This reaction occurs as a reversible reaction that proceeds rightward during charging and proceeds leftward during discharging (formula (2)).

ここで初回の充電時に生じる式(1)の反応に着目すると、当該反応に要するエネルギーが小さければ小さいほど、初回充電容量が小さくなり、結果として初回充放電効率に優れることになる。ここで、Snx+イオンの価数が小さい(還元状態)ほど、還元に必要な電子が少なくて済むため、二次電池の初回充放電効率を向上させるために有利である。そこで、原料粉末を還元雰囲気または不活性雰囲気中で溶融してガラス化することにより、効果的にSnx+イオンを還元し価数を低減することができ、初回充電効率に優れた二次電池を得ることが可能となる。 Here, focusing on the reaction of the formula (1) that occurs during the first charge, the smaller the energy required for the reaction, the smaller the initial charge capacity, and as a result, the first charge / discharge efficiency is excellent. Here, the smaller the valence of Sn x + ions (reduced state), the fewer electrons required for the reduction, which is advantageous for improving the initial charge / discharge efficiency of the secondary battery. Therefore, by melting the raw material powder in a reducing atmosphere or an inert atmosphere and vitrifying it, Sn x + ions can be reduced effectively and the valence can be reduced, and a secondary battery with excellent initial charge efficiency can be obtained. Can be obtained.

上記の製造方法で用いる原料粉末は、リンとスズを含む複合酸化物であることが好ましい。   The raw material powder used in the above production method is preferably a composite oxide containing phosphorus and tin.

出発原料粉末にリンとスズを含む複合酸化物を用いることにより、均質性に優れた負極活物質が得られやすくなる。そして、当該負極活物質を含有する負極材料を負極として用いることにより、放電容量が安定した非水二次電池が得られる。   By using a composite oxide containing phosphorus and tin as the starting raw material powder, a negative electrode active material excellent in homogeneity can be easily obtained. And the non-aqueous secondary battery with stable discharge capacity is obtained by using the negative electrode material containing the said negative electrode active material as a negative electrode.

本発明に係る蓄電デバイス用負極活物質は、モル%表示で、SnO 70〜95%、P25 5〜30%(SnO 70%、P25 30%は含まない)を含有する。組成をこのように限定した理由を以下に説明する。なお以下の記載において、特に断りがない限り「%」は「モル%」を示す。 The negative electrode active material for an electricity storage device according to the present invention contains SnO 70 to 95% and P 2 O 5 5 to 30% (not including SnO 70% and P 2 O 5 30%) in terms of mol%. The reason for limiting the composition in this way will be described below. In the following description, “%” means “mol%” unless otherwise specified.

SnOは負極活物質中でリチウムイオンを吸蔵および放出するサイトとなる活物質成分である。SnOの含有量は70〜95%(70%は含まない)、70.1〜87%、70.5〜82%、特に71〜77%であることが好ましい。SnOの含有量が70%以下であると、負極活物質単位質量あたりの放電容量が小さくなる。また、初回充放電時の充放電効率が小さくなる。SnOの含有量が95%より多いと、負極活物質中の非晶質成分が少なくなって、充放電時のリチウムイオンの吸蔵および放出に伴う体積変化を十分に緩和できずに充放電を繰り返した際に急速な容量低下を招くおそれがある。   SnO is an active material component that serves as a site for occluding and releasing lithium ions in the negative electrode active material. The SnO content is preferably 70 to 95% (70% not included), 70.1 to 87%, 70.5 to 82%, and particularly 71 to 77%. When the SnO content is 70% or less, the discharge capacity per unit mass of the negative electrode active material becomes small. Moreover, the charging / discharging efficiency at the time of first charge / discharge becomes small. When the content of SnO is more than 95%, the amorphous component in the negative electrode active material is reduced, and the volume change due to insertion and extraction of lithium ions during charging and discharging cannot be sufficiently relaxed, and charging and discharging are repeated. There is a risk of rapid capacity loss.

25はリチウムイオンの吸蔵および放出のサイトとなるSnOを包括するマトリックス成分であり、SnOがリチウムイオンを吸蔵および放出する際に伴う体積変化を緩和して充放電サイクル特性を向上させる作用がある。さらに、P25は網目形成酸化物であり、リチウムイオンが移動可能な固体電解質としての機能を果たす。P25の含有量は5〜30%(30%は含まない)、5〜29.2%、特に8〜29.5%であることが好ましい。P25の含有量が5%より少ないと、充放電時のリチウムイオンの吸蔵および放出に伴う体積変化を緩和できず構造劣化を起こしやすくなる。そのため、サイクル性が非常に悪く急速な容量低下を招くおそれがある。P25の含有量が30%以上であると、負極活物質単位質量当たりの放電容量が低下する傾向がある。また、耐水性が悪化しやすく、長期間高温高湿に曝されると望まない異種結晶(例えば、SnHPO4など)が生じたり、水分が負極活物質内に含浸または吸着しやすくなる。その結果、非水二次電池内部で水が分解し、酸素放出による破裂や、リチウムと水との反応による発熱のため発火原因になるため安全性に劣る。 P 2 O 5 is a matrix component that includes SnO, which is a site for the insertion and release of lithium ions, and the effect of relaxing the volume change associated with the storage and release of lithium ions by SnO to improve the charge / discharge cycle characteristics. There is. Furthermore, P 2 O 5 is a network-forming oxide and functions as a solid electrolyte to which lithium ions can move. The content of P 2 O 5 is preferably 5 to 30% (not including 30%), 5 to 29.2%, and particularly preferably 8 to 29.5%. When the content of P 2 O 5 is less than 5%, the volume change associated with insertion and extraction of lithium ions during charge and discharge cannot be relaxed, and structural deterioration is likely to occur. Therefore, the cycle performance is very poor and there is a risk of causing a rapid capacity drop. When the content of P 2 O 5 is 30% or more, the discharge capacity per unit mass of the negative electrode active material tends to decrease. In addition, the water resistance is likely to deteriorate, and when exposed to high temperature and high humidity for a long time, undesired foreign crystals (for example, SnHPO 4 etc.) are formed, and moisture is easily impregnated or adsorbed in the negative electrode active material. As a result, water is decomposed inside the non-aqueous secondary battery, and it is inferior in safety because it causes explosion due to release of oxygen and heat generation due to reaction between lithium and water.

なお、SnOとP25の合量は80%以上、85%以上、特に87%以上であることが好ましい。SnOとP25の合量が80%より少ないと、サイクル特性と高容量の両立が困難となる。 The total amount of SnO and P 2 O 5 is preferably 80% or more, 85% or more, particularly 87% or more. If the total amount of SnO and P 2 O 5 is less than 80%, it becomes difficult to achieve both cycle characteristics and high capacity.

SnOとP25のモル比(SnO/P25)は、2.3〜19、2.3〜18、特に2.4〜17であることが好ましい。SnO/P25が2.3より小さいと、SnOにおけるSn原子がP25の配位の影響を受けやすく、Sn原子の価数が大きくなる傾向があり、結果として、初回充電効率が低下する傾向がある。SnO/P25が19より大きいと、繰り返し充放電時の放電容量の低下が大きくなりやすい。これは、負極活物質中のSnOに配位するP25が少なくなってP25成分がSnOを包括できず、結果として、リチウムイオンの吸蔵および放出に伴うSnOの体積変化が緩和できなくなり、構造劣化を引き起こすためであると考えられる。 The molar ratio of SnO to P 2 O 5 (SnO / P 2 O 5 ) is preferably 2.3 to 19, 2.3 to 18, and particularly preferably 2.4 to 17. When SnO / P 2 O 5 is smaller than 2.3, the Sn atom in SnO tends to be affected by the coordination of P 2 O 5 , and the valence of Sn atom tends to increase, resulting in the initial charge efficiency. Tends to decrease. If SnO / P 2 O 5 is greater than 19, the reduction in discharge capacity during repeated charge / discharge tends to increase. This is because the P 2 O 5 coordinated to SnO in the negative electrode active material is reduced and the P 2 O 5 component cannot contain SnO, and as a result, the volume change of SnO associated with insertion and extraction of lithium ions is mitigated. This is considered to be because it becomes impossible to cause structural deterioration.

また、本発明の効果を損なわない範囲で、上記成分に加えてさらに種々の成分を添加することができる。このような成分としては、例えばCuO、ZnO、B23、MgO、CaO、Al23、SiO2、R2O(RはLi、Na、KまたはCsを示す)などが挙げられる。上記成分の含有量は、合量で0〜20%、0〜15%、特に0.1〜13%であることが好ましい。 Further, various components can be added in addition to the above components within the range not impairing the effects of the present invention. Examples of such components include CuO, ZnO, B 2 O 3 , MgO, CaO, Al 2 O 3 , SiO 2 , R 2 O (R represents Li, Na, K, or Cs). The total content of the above components is preferably 0 to 20%, 0 to 15%, particularly preferably 0.1 to 13%.

本発明に係る蓄電デバイス用負極活物質は、結晶化度が95%以下、80%以下、70%以下、50%以下、特に30%以下であることが好ましく、最も好ましくは実質的に非晶質からなる(結晶化度が実質的に0%である)ことが好ましい。SnOを高い割合で含有する負極活物質において、結晶化度が小さい(非晶質相の割合が大きい)ほど、繰り返し充放電時の体積変化を緩和できるため放電容量の低下抑制の観点から有利である。   The negative electrode active material for an electricity storage device according to the present invention preferably has a crystallinity of 95% or less, 80% or less, 70% or less, 50% or less, particularly 30% or less, most preferably substantially amorphous. It is preferable that the material is of a quality (crystallinity is substantially 0%). In a negative electrode active material containing SnO in a high proportion, the smaller the crystallinity (the larger the proportion of the amorphous phase), the more the volume change during repeated charging / discharging can be reduced, which is advantageous from the viewpoint of suppressing the reduction in discharge capacity. is there.

負極活物質の結晶化度は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で、10〜60°の回折線プロファイルにおいて、結晶性回折線と非晶ハローにピーク分離することで求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10〜40°におけるブロードな回折線(非晶ハロー)をピーク分離して求めた積分強度をIa、10〜60°において検出される各結晶性回折線をピーク分離して求めた積分強度の総和をIcとした場合、結晶化度Xcは次式から求められる。   The degree of crystallinity of the negative electrode active material is a 2θ value obtained by powder X-ray diffraction measurement using CuKα rays, and in a diffraction line profile of 10 to 60 °, the crystal diffraction line and the amorphous halo are separated into peaks. Desired. Specifically, the integrated intensities obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 40 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile are Ia, 10 When the sum of integrated intensities obtained by peak-separating each crystalline diffraction line detected at 60 ° is Ic, the degree of crystallinity Xc is obtained from the following equation.

Xc=[Ic/(Ic+Ia)]×100     Xc = [Ic / (Ic + Ia)] × 100

本発明に係る負極活物質は、金属と酸化物の複合酸化物からなる相、または金属と金属の合金相を含有していてもよい。   The negative electrode active material according to the present invention may contain a phase composed of a complex oxide of metal and oxide, or an alloy phase of metal and metal.

なお、本発明に係る負極活物質を含有する負極材料を用いた非水二次電池等の蓄電デバイスを充放電した後は、当該負極材料はリチウム酸化物、Sn−Li合金または金属スズを含有する場合がある。   In addition, after charging / discharging an electrical storage device such as a non-aqueous secondary battery using the negative electrode material containing the negative electrode active material according to the present invention, the negative electrode material contains lithium oxide, Sn-Li alloy, or metallic tin. There is a case.

本発明に係る負極活物質は、例えば原料粉末を加熱溶融してガラス化することにより製造される。ここで、原料粉末の溶融は還元雰囲気または不活性雰囲気中で行うことが好ましい。   The negative electrode active material according to the present invention is produced, for example, by heating and melting raw material powder to vitrify it. Here, it is preferable to melt the raw material powder in a reducing atmosphere or an inert atmosphere.

Snを含む酸化物は、溶融条件によってSn原子の酸化状態が変わりやすく、電子の結合エネルギーが変化しやすい。還元雰囲気または不活性雰囲気中で溶融を行うことで、既述の通りSn原子の酸化状態の変化を抑制することができ、初回充放電効率に優れた二次電池を得ることが可能となる。   An oxide containing Sn is likely to change the oxidation state of Sn atoms depending on the melting condition, and the bond energy of electrons is likely to change. By performing melting in a reducing atmosphere or an inert atmosphere, the change in the oxidation state of Sn atoms can be suppressed as described above, and a secondary battery excellent in initial charge / discharge efficiency can be obtained.

還元雰囲気で溶融するには、溶融槽中へ還元性ガスを供給することが好ましい。還元性ガスとしては、体積%で、N2 90〜99.5%、H2 0.5〜10%、特にN2 92〜99%、H2 1〜8%の混合気体を用いることが好ましい。 In order to melt in a reducing atmosphere, it is preferable to supply a reducing gas into the melting tank. As the reducing gas, it is preferable to use a mixed gas of N 2 90 to 99.5% and H 2 0.5 to 10%, particularly N 2 92 to 99% and H 2 1 to 8% in volume%. .

不活性雰囲気で溶融する場合は、溶融槽中へ不活性ガスを供給することが好ましい。不活性ガスとしては、窒素、アルゴン、ヘリウムのいずれかを用いることが好ましい。   When melting in an inert atmosphere, it is preferable to supply an inert gas into the melting tank. As the inert gas, it is preferable to use any of nitrogen, argon, and helium.

また、本発明に係る負極活物質の製造方法において、出発原料粉末にリンとスズを含む複合酸化物を使用することが好ましい。出発原料粉末にリンとスズを含む複合酸化物を用いることにより、失透異物が少なく均質性に優れた負極活物質が得られやすくなる。当該負極活物質を含有する負極材料を負極として用いることにより、放電容量が安定した非水二次電池が得られる。リンとスズを含む複合酸化物としては、ピロリン酸第一錫(Sn227)が挙げられる。 In the method for producing a negative electrode active material according to the present invention, it is preferable to use a composite oxide containing phosphorus and tin as a starting material powder. By using a composite oxide containing phosphorus and tin for the starting raw material powder, a negative electrode active material with few devitrified foreign substances and excellent uniformity is easily obtained. By using the negative electrode material containing the negative electrode active material as a negative electrode, a nonaqueous secondary battery with a stable discharge capacity can be obtained. Examples of the composite oxide containing phosphorus and tin include stannous pyrophosphate (Sn 2 P 2 O 7 ).

尚、非水二次電池等の蓄電デバイスの負極は、以上に説明した負極活物質を含有する負極材料を用いて形成する。この負極材料は、具体的には、負極活物質に対して、熱硬化性樹脂等のバインダーや、アセチレンブラック、ケッチェンブラック、高導電性カーボンブラック、グラファイト等の導電助剤を添加してなる。   In addition, the negative electrode of electrical storage devices, such as a non-aqueous secondary battery, is formed using the negative electrode material containing the negative electrode active material demonstrated above. Specifically, the negative electrode material is obtained by adding a binder such as a thermosetting resin or a conductive auxiliary agent such as acetylene black, ketjen black, highly conductive carbon black, or graphite to the negative electrode active material. .

また、本発明の負極活物質及び負極材料は、リチウムイオン二次電池に限らず、他の非水系二次電池や、さらには、非水系電気二重層キャパシタ用の正極材料とリチウムイオン二次電池用の負極材料を組み合わせたハイブリッドキャパシタ等にも適用できる。   Moreover, the negative electrode active material and the negative electrode material of the present invention are not limited to lithium ion secondary batteries, but other nonaqueous secondary batteries, and further, positive electrode materials and lithium ion secondary batteries for nonaqueous electric double layer capacitors It can also be applied to a hybrid capacitor combined with a negative electrode material.

ハイブリッドキャパシタであるリチウムイオンキャパシタは、正極と負極の充放電原理が異なる非対称キャパシタの一種である。リチウムイオンキャパシタは、リチウムイオン二次電池用の負極と電気二重層キャパシタ用の正極を組み合わせた構造を有している。ここで、正極は表面に電気二重層を形成し、物理的な作用(静電気作用)を利用して充放電するのに対し、負極は既述のリチウムイオン二次電池と同様にリチウムイオンの化学反応(吸蔵および放出)により充放電する。   A lithium ion capacitor, which is a hybrid capacitor, is a type of asymmetric capacitor that has different charge / discharge principles for a positive electrode and a negative electrode. The lithium ion capacitor has a structure in which a negative electrode for a lithium ion secondary battery and a positive electrode for an electric double layer capacitor are combined. Here, the positive electrode forms an electric double layer on the surface and is charged / discharged by utilizing a physical action (electrostatic action), whereas the negative electrode has a lithium ion chemistry similar to the lithium ion secondary battery described above. Charge and discharge by reaction (occlusion and release).

リチウムイオンキャパシタの正極には、活性炭、ポリアセン、メソフェーズカーボンなどの高比表面積の炭素質粉末などからなる正極材料が用いられる。一方、負極には、本発明の負極材料に対しリチウムイオンと電子を吸蔵したものを用いることができる。   A positive electrode material made of a carbonaceous powder having a high specific surface area such as activated carbon, polyacene, or mesophase carbon is used for the positive electrode of the lithium ion capacitor. On the other hand, as the negative electrode, the negative electrode material of the present invention in which lithium ions and electrons are occluded can be used.

本発明の負極活物質にリチウムイオンと電子を吸蔵する手段は特に限定されない。例えば、リチウムイオンと電子の供給源である金属リチウム極をキャパシタセル内に配置し、本発明の負極活物質を含む負極と直接あるいは導電体を通じて接触させてもよいし、別のセルで本発明の負極活物質に予めリチウムイオンと電子を吸蔵させたうえで、キャパシタセルに組み込んでもよい。 The means for occluding lithium ions and electrons in the negative electrode active material of the present invention is not particularly limited. For example, a metal lithium electrode as a supply source of lithium ions and electrons may be disposed in a capacitor cell, and may be brought into contact with the negative electrode containing the negative electrode active material of the present invention directly or through a conductor, or in another cell. The negative electrode active material may be preliminarily occluded with lithium ions and electrons and then incorporated into the capacitor cell.

以下、本発明に係る蓄電デバイス用負極活物質を、実施例を用いて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the negative electrode active material for electrical storage devices which concerns on this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

(1)非水二次電池用負極活物質の作製
表1に実施例1〜6および比較例1〜3を示した。各負極活物質は、以下のようにして作製した。
(1) Production of negative electrode active material for non-aqueous secondary battery Table 1 shows Examples 1 to 6 and Comparative Examples 1 to 3. Each negative electrode active material was produced as follows.

表1に示す組成となるように、主原料としてピロリン酸第一錫(Sn227)を用い、各種酸化物、燐酸塩原料、炭酸塩原料、金属、炭素原料などで原料粉末を調製した。原料粉末をアルミナルツボに投入し、電気炉を用いて窒素雰囲気にて950℃、40分間の溶融を行い、ガラス化した。 In order to obtain the composition shown in Table 1, stannous pyrophosphate (Sn 2 P 2 O 7 ) is used as the main raw material, and the raw material powder is made of various oxides, phosphate raw materials, carbonate raw materials, metals, carbon raw materials, etc. Prepared. The raw material powder was put into an alumina crucible and melted at 950 ° C. for 40 minutes in a nitrogen atmosphere using an electric furnace to be vitrified.

次いで、溶融ガラスを一対の回転ローラー間に流し出し、急冷しながら、厚み0.1〜2mmのフィルム状に成形し、ガラス試料を得た。ガラス試料をアルミナらいかい器で粉砕した後、目開き20μmの篩に通過させ、平均粒径5μmのガラス粉末(非水二次電池用負極活物質)を得た。   Next, the molten glass was poured out between a pair of rotating rollers and molded into a film having a thickness of 0.1 to 2 mm while rapidly cooling to obtain a glass sample. The glass sample was pulverized with an alumina separator and then passed through a sieve having an opening of 20 μm to obtain a glass powder having a mean particle size of 5 μm (a negative electrode active material for a non-aqueous secondary battery).

各試料について粉末X線回折測定することにより構造を同定した。実施例5を除く実施例1〜6の負極活物質は非晶質であり、結晶は検出されなかった。実施例5は、非晶質中にSnO2の微結晶析出が確認され、この結晶化度Xcは4%であった。比較例1の負極活物質は製造直後に潮解性を有していたため、析出結晶は測定不能であった。比較例2、3の負極活物質は非晶質部分と結晶部分が混在した構造であった。 The structure was identified by powder X-ray diffraction measurement for each sample. The negative electrode active materials of Examples 1 to 6 except Example 5 were amorphous, and no crystals were detected. In Example 5, fine crystal precipitation of SnO 2 was confirmed in the amorphous material, and the crystallinity Xc was 4%. Since the negative electrode active material of Comparative Example 1 had deliquescence immediately after production, the precipitated crystals were not measurable. The negative electrode active materials of Comparative Examples 2 and 3 had a structure in which an amorphous part and a crystalline part were mixed.

(2)負極の作製
実施例および比較例のガラス粉末(負極活物質)に対し、バインダーとしてポリイミド樹脂、導電性物質としてケッチェンブラックを、ガラス粉末:バインダー:導電性物質=85:10:5(質量比)となるように秤量し、これらをN−メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー状の負極材料を得た。次に、隙間150μmのドクターブレードを用いて、負極集電体である厚さ20μmの銅箔上に、得られたスラリーをコートし、乾燥機にて70℃で乾燥後、一対の回転ローラー間に通してプレスすることにより電極シートを得た。電極シートを電極打ち抜き機で直径11mmに打ち抜き、10時間200℃で減圧しながらイミド化させ、円形の作用極を得た。
(2) Production of Negative Electrode For the glass powders (negative electrode active materials) of Examples and Comparative Examples, polyimide resin as a binder, ketjen black as a conductive material, glass powder: binder: conductive material = 85: 10: 5 (Mass ratio) was weighed and these were dispersed in N-methylpyrrolidone (NMP), and then sufficiently stirred with a rotation / revolution mixer to obtain a slurry-like negative electrode material. Next, using a doctor blade with a gap of 150 μm, the obtained slurry was coated on a copper foil having a thickness of 20 μm as a negative electrode current collector, dried at 70 ° C. with a dryer, and then between a pair of rotating rollers. An electrode sheet was obtained by pressing through a sheet. The electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and imidized while reducing pressure at 200 ° C. for 10 hours to obtain a circular working electrode.

(3)試験電池の作製
コインセルの下蓋に、上記作用極を銅箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および対極である金属リチウムを積層し、試験電池を作製した。電解液としては、1M LiPF6溶液/EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1を用いた。なお試験電池の組み立ては露点温度−60℃以下の環境で行った。
(3) Preparation of test battery The above working electrode was placed on the lower lid of the coin cell with the copper foil surface facing downward, and dried on the polypropylene for 8 hours at 60 ° C. under reduced pressure for 16 hours. A separator comprising Cellguard # 2400 manufactured by Needs Co., Ltd. and metallic lithium as a counter electrode were laminated to prepare a test battery. As the electrolytic solution, 1M LiPF 6 solution / EC (ethylene carbonate): DEC (diethyl carbonate) = 1: 1 was used. The test battery was assembled in an environment with a dew point temperature of −60 ° C. or lower.

(4)充放電試験
充電(負極活物質へのリチウムイオンの吸蔵)は、0.2mAで2Vから0VまでCC(定電流)充電を行った。次に、放電(負極活物質からのリチウムイオンの放出)は、0.2mAの定電流で0Vから2Vまで放電させた。この充放電サイクルを繰り返し行った。
(4) Charging / discharging test Charging (occlusion of lithium ions into the negative electrode active material) was performed by CC (constant current) charging from 2 V to 0 V at 0.2 mA. Next, discharge (release of lithium ions from the negative electrode active material) was discharged from 0 V to 2 V at a constant current of 0.2 mA. This charge / discharge cycle was repeated.

表1に各試料について充放電試験を行った際の初回の充放電特性と、繰り返し充放電した際のサイクル特性の結果を示した。   Table 1 shows the results of the initial charge / discharge characteristics when the charge / discharge test was performed for each sample and the cycle characteristics when the charge / discharge was repeated.

Figure 2014130826
Figure 2014130826

実施例1〜6の負極活物質を用いた電池の初回放電容量は680mAh/g以上であり、50サイクル目の放電容量は382mAh/g以上と良好であった。一方、比較例1の負極活物質は製造直後に潮解性を有しており、非水二次電池用電極として使用できなかった。比較例2の負極活物質を用いた電池は初回放電容量が392mAh/gと低かった。また、比較例3の負極活物質を用いた電池は初回放電容量は901mAh/gであったが、50サイクル目の放電容量は52mAh/gと著しく低下した。   The initial discharge capacity of the batteries using the negative electrode active materials of Examples 1 to 6 was 680 mAh / g or more, and the discharge capacity at the 50th cycle was good at 382 mAh / g or more. On the other hand, the negative electrode active material of Comparative Example 1 had deliquescence immediately after production and could not be used as a non-aqueous secondary battery electrode. The battery using the negative electrode active material of Comparative Example 2 had a low initial discharge capacity of 392 mAh / g. In addition, the battery using the negative electrode active material of Comparative Example 3 had an initial discharge capacity of 901 mAh / g, but the discharge capacity at the 50th cycle was significantly reduced to 52 mAh / g.

本発明の蓄電デバイス用負極活物質は、ノートパソコンや携帯電話等の携帯型電子機器や電気自動車等に使用されるリチウムイオン非水二次電池、さらにリチウムイオンキャパシタ等のハイブリッドキャパシタなどに好適である。   The negative electrode active material for an electricity storage device of the present invention is suitable for a portable electronic device such as a notebook computer or a mobile phone, a lithium ion non-aqueous secondary battery used for an electric vehicle, and a hybrid capacitor such as a lithium ion capacitor. is there.

Claims (5)

モル%で、SnO 70〜95%、P25 5〜30%(SnO 70%、P25 30%は含まない)を含有することを特徴とする蓄電デバイス用負極活物質。 In mol%, SnO 70~95%, P 2 O 5 5~30% negative active material for a power storage device which is characterized by containing (SnO 70%, P 2 O 5 30% is not included). 非晶質からなることを特徴とする請求項1に記載の蓄電デバイス用負極活物質。   The negative electrode active material for an electricity storage device according to claim 1, wherein the negative electrode active material is amorphous. 請求項1または2に記載の蓄電デバイス用負極活物質を含有する蓄電デバイス用負極材料。   The negative electrode material for electrical storage devices containing the negative electrode active material for electrical storage devices of Claim 1 or 2. 請求項1または2に記載の蓄電デバイス用負極活物質を製造する方法であって、原料粉末を還元雰囲気または不活性雰囲気中で溶融してガラス化することを特徴とする蓄電デバイス用負極活物質。   A method for producing a negative electrode active material for an electricity storage device according to claim 1 or 2, wherein the raw material powder is melted and vitrified in a reducing atmosphere or an inert atmosphere. . 原料粉末が、リンとスズを含む複合酸化物であることを特徴とする請求項4に記載の蓄電デバイス用負極活物質の製造方法。   The method for producing a negative electrode active material for an electricity storage device according to claim 4, wherein the raw material powder is a complex oxide containing phosphorus and tin.
JP2014022499A 2009-10-22 2014-02-07 Negative electrode active material for electricity storage device, and manufacturing method for the same Pending JP2014130826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022499A JP2014130826A (en) 2009-10-22 2014-02-07 Negative electrode active material for electricity storage device, and manufacturing method for the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009243655 2009-10-22
JP2009243655 2009-10-22
JP2009267369 2009-11-25
JP2009267369 2009-11-25
JP2010028357 2010-02-12
JP2010028357 2010-02-12
JP2014022499A JP2014130826A (en) 2009-10-22 2014-02-07 Negative electrode active material for electricity storage device, and manufacturing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010236456A Division JP5601615B2 (en) 2009-10-22 2010-10-21 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2014130826A true JP2014130826A (en) 2014-07-10

Family

ID=44793458

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010236456A Active JP5601615B2 (en) 2009-10-22 2010-10-21 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME
JP2014022499A Pending JP2014130826A (en) 2009-10-22 2014-02-07 Negative electrode active material for electricity storage device, and manufacturing method for the same
JP2014022505A Pending JP2014096390A (en) 2009-10-22 2014-02-07 Negative electrode active material for power storage device and manufacturing method therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010236456A Active JP5601615B2 (en) 2009-10-22 2010-10-21 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRIC STORAGE DEVICE AND METHOD FOR PRODUCING THE SAME

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014022505A Pending JP2014096390A (en) 2009-10-22 2014-02-07 Negative electrode active material for power storage device and manufacturing method therefor

Country Status (1)

Country Link
JP (3) JP5601615B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218855A (en) * 2012-04-06 2013-10-24 Sumitomo Bakelite Co Ltd Negative electrode carbon material, negative electrode active material, negative electrode and lithium ion secondary battery
JP6135156B2 (en) * 2013-02-05 2017-05-31 日本電気硝子株式会社 Negative electrode active material powder for power storage device, negative electrode material for power storage device and negative electrode for power storage device using the same
JP6300176B2 (en) * 2013-02-19 2018-03-28 日本電気硝子株式会社 Negative electrode active material for sodium secondary battery
JP2015173201A (en) * 2014-03-12 2015-10-01 日本電気硝子株式会社 lithium ion capacitor
KR102476411B1 (en) 2016-12-01 2022-12-12 소니 세미컨덕터 솔루션즈 가부시키가이샤 Solid-state imaging device, manufacturing method of solid-state imaging device, and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102331A (en) * 1994-09-29 1996-04-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
WO1996033519A1 (en) * 1995-04-19 1996-10-24 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2004031217A (en) * 2002-06-27 2004-01-29 Sony Corp Battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3605866B2 (en) * 1995-01-30 2004-12-22 宇部興産株式会社 Non-aqueous secondary battery
JP3422119B2 (en) * 1995-02-27 2003-06-30 宇部興産株式会社 Non-aqueous secondary battery
JP3605875B2 (en) * 1995-03-29 2004-12-22 宇部興産株式会社 Non-aqueous secondary battery
JPH08298121A (en) * 1995-04-25 1996-11-12 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10106563A (en) * 1996-09-27 1998-04-24 Fuji Photo Film Co Ltd Now-aqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102331A (en) * 1994-09-29 1996-04-16 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
WO1996033519A1 (en) * 1995-04-19 1996-10-24 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP2004031217A (en) * 2002-06-27 2004-01-29 Sony Corp Battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015023650; Eunjin Kim et al.: 'A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium' Angewandte Chemie International Edition Vol.43, 2004, PP.5987-5990 *
JPN6015023652; Joon-Gon Lee et al.: 'Electrochemical properties of tin phosphates with various mesopore ratios' Journal of Power Sources Vol.172, 20070802, PP.908-912, Elsevier *

Also Published As

Publication number Publication date
JP2011187434A (en) 2011-09-22
JP5601615B2 (en) 2014-10-08
JP2014096390A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5645056B2 (en) Negative electrode active material for power storage device, negative electrode material for power storage device using the same, and negative electrode for power storage device
WO2012063745A1 (en) Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
JP6300176B2 (en) Negative electrode active material for sodium secondary battery
JP2012182115A (en) Method for manufacturing negative electrode active material for electricity storage device
JP2014130826A (en) Negative electrode active material for electricity storage device, and manufacturing method for the same
Zhang et al. Progress and Perspectives of Lithium Aluminum Germanium Phosphate‐Based Solid Electrolytes for Lithium Batteries
JP7447396B2 (en) alkali metal ion battery
JP2013191296A (en) Power storage device
KR20160105986A (en) Negative electrode active material for electricity storage device, and method for producing same
JP5663808B2 (en) Negative electrode material for electric storage device and negative electrode for electric storage device using the same
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same
JP2014143183A (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery
JP2012204266A (en) Negative electrode active material for electricity storage device, negative electrode material for electricity storage device containing the same, and negative electrode for electricity storage device
Siriroj et al. New glass cathode materials for Li-ion battery: Ni-Co doping in Li-BO based glass
CN113764651A (en) High-capacity lithium ion battery negative electrode active material, negative electrode plate and lithium ion battery
JP6175906B2 (en) Negative electrode active material for power storage device and method for producing the same
JP6241130B2 (en) Negative electrode active material for electricity storage devices
JP2020077615A (en) Negative electrode active material for sodium ion secondary battery and manufacturing method thereof
JP2013080664A (en) Power storage device
JP5597015B2 (en) Negative electrode material for electricity storage device and method for producing the same
JP6331395B2 (en) Negative electrode active material for power storage device and method for producing the same
JP5892364B2 (en) Method for producing oxide material
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery
WO2011049158A1 (en) Negative electrode active material for electricity storage device, and method for producing same
JP5621868B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150831