WO2013061645A1 - 密封容器の内圧検査装置および内圧検査方法 - Google Patents

密封容器の内圧検査装置および内圧検査方法 Download PDF

Info

Publication number
WO2013061645A1
WO2013061645A1 PCT/JP2012/064110 JP2012064110W WO2013061645A1 WO 2013061645 A1 WO2013061645 A1 WO 2013061645A1 JP 2012064110 W JP2012064110 W JP 2012064110W WO 2013061645 A1 WO2013061645 A1 WO 2013061645A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal pressure
lid
sealed container
lid portion
pressure inspection
Prior art date
Application number
PCT/JP2012/064110
Other languages
English (en)
French (fr)
Inventor
太一 伊集院
則彦 尾作
哲也 高富
Original Assignee
大和製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和製罐株式会社 filed Critical 大和製罐株式会社
Priority to US14/350,704 priority Critical patent/US9453776B2/en
Priority to KR1020147014334A priority patent/KR101582338B1/ko
Priority to EP12843122.8A priority patent/EP2772740B1/en
Publication of WO2013061645A1 publication Critical patent/WO2013061645A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/36Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature

Definitions

  • the present invention relates to an apparatus and method for inspecting an internal pressure of a sealed container such as a three-piece can or a bottle-type can, and more particularly to an internal pressure inspection apparatus and an internal pressure inspection method for a metal can.
  • Containers such as cans filled with food and beverages are usually sealed in an airtight state after filling the contents. Therefore, if there are abnormalities such as pinholes, poor winding, or deterioration of the contents, the outside air In some cases, the vacuum degree of the container decreases due to the intrusion of gas or the generation of gas, or the internal pressure decreases due to leakage of the internal gas. Therefore, conventionally, the internal pressure of a sealed container such as a can filled with contents is inspected, and so-called defective products are excluded from the line.
  • an internal pressure inspection method for example, as described in Japanese Patent Publication No. 63-67845, Japanese Patent Application Laid-Open No. 6-213748, Japanese Patent Application Laid-Open No. 2002-148133, or the like, an impact force is applied to a sealed container to generate sound or vibration
  • a method for detecting an abnormality of internal pressure that is, an abnormality of a sealed container by analyzing the frequency of the sound or vibration.
  • Japanese Patent Application Laid-Open No. 8-219915 discloses the position of one point on the center of a can lid in a can that is being transported in a box and two points on the winding portion of the can lid, above these three points. Measured by an eddy current type distance sensor arranged on the base, calculates the amount of deformation at the center of the can lid based on the measured value, and compares the amount of deformation with a reference value to determine whether the internal pressure of the can is good or bad Is described. Japanese Patent Application Laid-Open No.
  • 2009-210451 discloses a top depth that is a distance from the upper end of a can that is put in a carton case and conveyed by a conveyor, and a bottom depth that is a distance from the lower end to the bottom panel. Is measured by an eddy current type displacement sensor, and the total value of those depths is compared with a determination reference value to determine whether the internal pressure is good or bad.
  • the devices described in the above Japanese Patent Laid-Open Nos. 8-219915 and 2009-210451 are configured to determine whether the internal pressure is good or not based on a change in the shape of the sealed container. It is possible to determine whether the internal pressure is good or not with little influence from properties and types.
  • the apparatus described in JP-A-8-219915 first calculates the average distance of the tightening portion, and uses the difference between the average distance of the tightening portion and the distance of the central portion of the can lid as the amount of deformation. Since the measurement accuracy of the deformation amount is not necessarily high, and the threshold value for pass / fail judgment must be made small, there is a possibility that a failure is judged even though the internal pressure is normal.
  • the deformation amount other than the central portion of the can lid increases due to the shape of the can lid or the state of processing of the surface of the can lid, the deformation amount of the central portion of the can lid becomes the largest, but from the normal state Therefore, the pass / fail judgment threshold value must be reduced.
  • both the device described in Japanese Patent Application Laid-Open No. 8-219915 and the device described in Japanese Patent Application Laid-Open No. 2009-210451 measure the distance by an eddy current sensor, the distance detection accuracy or the internal pressure It was difficult to improve the pass / fail judgment accuracy.
  • the apparatus described in Japanese Patent Application Laid-Open No. 8-219915 is configured to measure the position of the upper end of the tightening portion, but the upper end is narrow and the projected area is small when viewed from above.
  • an eddy current type sensor generates eddy currents in a part of a relatively large area and measures the distance (distance) accordingly.
  • Japanese Patent Application Laid-Open No. 8-219915 describes that the deformation amount of the central portion of the can lid panel is measured by measuring the position or distance of a total of three points between the central portion of the can lid panel and both sides thereof. However, in such a device, since the deformation direction of the central portion of the can lid panel is the same as the deformation direction of the two points on both sides thereof, accurate measurement and internal pressure determination cannot be performed. Has been.
  • the present invention has been made against the background of the above circumstances, and an object thereof is to provide an internal pressure inspection device and an inspection method for a sealed container that can easily and accurately determine the internal pressure using deformation of the sealed container. To do.
  • the present invention provides an internal pressure inspection device for a sealed container having a lid portion at least one of an upper end portion and a lower end portion of a body portion, and the lid portion is deformed by internal pressure.
  • a laser displacement sensor that irradiates the lid with a laser beam and measures the distance between the lid and the lid is disposed so as to be movable relative to the lid in a direction along a plane parallel to the lid.
  • a predetermined reference portion having a short distance to the laser displacement sensor and a predetermined long portion among a plurality of portions on a central side of the lid portion than a coupling portion in which the lid portion is integrated with the body portion An integral value of a relative displacement amount between any one of the reference points and the other point is obtained, and the quality of the internal pressure is determined based on the integral value. It is.
  • this invention is characterized in that, in the above invention, the plurality of locations are a central location of the lid portion and a plurality of locations on a straight line passing through the central location and drawn in the diameter direction of the lid portion.
  • This is an internal pressure inspection device for a sealed container.
  • the lid portion is formed continuously on the inner peripheral side of the coupling portion and is recessed in the sealed container, and an inner peripheral inclined wall of the annular groove portion A projecting end to the outside of the sealed container, and a panel portion that is a portion on the center side of the lid portion from the projecting end, the reference location includes the projecting end, and the other location is: It is an internal pressure test
  • the present invention is the internal pressure inspection device for a sealed container according to any one of the above inventions, wherein the total number of the reference location and the other location is 700 or more.
  • the present invention provides a method for inspecting an internal pressure of a sealed container in which at least one of an upper end portion and a lower end portion of a barrel portion has a lid portion, and the lid portion is deformed by an internal pressure.
  • the relative displacement amount at a plurality of locations in the center side portion of the lid portion with respect to the joint portion integrated with the laser is measured by a laser displacement sensor, and an integral value of these relative displacement amounts is obtained and the integration is performed.
  • the quality of the internal pressure is determined based on the value.
  • the plurality of locations are a central location of the lid portion and a plurality of locations on a straight line passing through the central location and drawn in the diameter direction of the lid portion. This is an internal pressure inspection method.
  • the lid portion includes an annular groove portion that is continuous to the inner peripheral side of the coupling portion and is recessed in the sealed container, and the sealing in the inner peripheral inclined wall of the annular groove portion.
  • This invention is the internal pressure inspection method for a sealed container according to any one of the above inventions, wherein the relative displacement amount is a relative displacement amount at 700 or more locations.
  • the displacement amount or the relative displacement amount at a plurality of locations in the inner peripheral portion of the joint portion connecting the lid portion to the trunk portion is measured by the laser displacement sensor. Therefore, it is possible to accurately determine the displacement amount or relative displacement amount of a minute location, and in particular, to obtain the relative displacement amounts at a plurality of locations on the inner peripheral side from the above-mentioned coupling portion, Even when the sealed container or its lid portion is inclined and relatively moved, the influence of the inclination on the relative displacement amount can be suppressed, and the relative displacement amount can be accurately obtained in this respect as well.
  • the relative displacement is integrated, if there is a deviation from the normal value in the relative displacement, the deviation is also integrated, so even if there is a slight deviation from the normal state or normal shape at each location
  • the change in the shape of the entire lid portion can be reliably determined.
  • the threshold value for determination can be increased, and by doing so, erroneous determination that the internal pressure is defective can be reduced as much as possible.
  • the measurement of the relative displacement extends to the surrounding area. Therefore, it is possible to reliably determine whether the internal pressure is abnormal.
  • the quality of an internal pressure can be determined by calculating the detection value of a laser type displacement sensor, the structure of an apparatus can be simplified and addition to the existing installation is easy.
  • the quality of the internal pressure is determined including the deformation of the central portion where the deformation due to the internal pressure is the largest. Therefore, the quality of the internal pressure can be determined reliably and accurately.
  • FIG. 1 It is a figure showing typically an example of an internal pressure inspection device concerning this invention. It is a schematic diagram for demonstrating the integral value or area calculated
  • A) is a figure which shows the measurement result of area data and internal pressure by this invention
  • (b) is a figure which shows the relationship between the displacement data measured with the laser type sensor, and internal pressure.
  • a sealed container targeted by the present invention is a container in which a body part filled with contents is sealed in a gastight state by a lid part.
  • a so-called three-piece type container with a canopy attached to the upper end and a bottom lid attached to the lower end, a so-called two-piece type container with a canopy attached to the upper end of the trunk formed integrally with the bottom, and a bottom at the lower end of the trunk The bottle-type container etc. which attached the lid
  • the material of the container is not particularly limited, but the present invention can be applied to an internal pressure inspection for a metal can made of a metal such as aluminum, an alloy thereof, or steel.
  • the sealed container may be a negative pressure container whose internal pressure is lower than atmospheric pressure, or a positive pressure container whose internal pressure is higher than atmospheric pressure.
  • FIG. 1 shows an example in which the internal pressure of the bottle-type can 1 is inspected.
  • the bottle-type can 1 filled with contents is inverted with its cap 2 on the lower side. It installs on the conveyor 3 in a state, and it is comprised so that an internal pressure test
  • the bottle-shaped can 1 will be described more specifically.
  • a bottom lid 5 is attached to one end portion (upper end portion in FIG. 1) of the metal barrel portion 4.
  • the bottom cover 5 is formed in a substantially disk shape, and is attached to the body portion 4 by winding the outer peripheral flange portion 6 around the opening end of the body portion 4. This winding portion corresponds to the coupling portion in the present invention.
  • An annular groove portion 7 called a counter sink is formed on the inner peripheral side of the flange portion 6 in the bottom cover 5, and the inner peripheral edge of the annular groove portion 7, that is, the protrusion of the inner peripheral inclined wall 8 in the annular groove portion 7.
  • a panel portion 10 is formed continuously from the end (projecting end toward the bottom side of the bottle-shaped can 1) 9 to the inner peripheral side.
  • the panel portion 10 is bent in a dome shape toward the inside of the bottle-shaped can 1 with the protruding end 9 as a starting point.
  • the bottle type can 1 in the example shown in FIG. 1 is configured as a negative pressure container whose internal pressure is lower than atmospheric pressure.
  • the other end portion (lower end portion in FIG. 1) of the body portion 4 is formed with a mouth neck portion 11 having a screw portion on the outer peripheral surface, and the cap 2 is screwed to the mouth neck portion 11. Yes.
  • the conveyor 3 continuously conveys the bottle-shaped can 1 in an inverted state, and for example, a belt conveyor can be adopted.
  • the conveyance speed can be set as appropriate, and may be, for example, about 70 m / min.
  • a rotary encoder (not shown) is attached to the driving side or driven side roller or driving motor shaft of the conveyor 3, and the rotary encoder can detect the traveling speed and the traveling position of the conveyor 3. . Therefore, it is comprised so that the bottle-type can 1 on the conveyor 3 can be specified based on the traveling position information.
  • a laser type displacement sensor (hereinafter simply referred to as a displacement sensor) 13 is disposed above the conveyor 3, above the pass line (passing position) of the bottom lid 5 in the bottle-shaped can 1 that is placed and transported in an inverted state on the conveyor 3, more specifically, on a plane parallel to the lid 5
  • a laser type displacement sensor hereinafter simply referred to as a displacement sensor 13
  • the displacement sensor 13 has a known configuration configured to irradiate a laser beam toward the bottom lid 5 of the bottle-shaped can 1 conveyed by the conveyor 3 and capture the reflected light to measure the distance.
  • the diameter on the irradiation surface of the laser beam, that is, the spot diameter is preferably 30 ⁇ m or a diameter close thereto.
  • the laser beam is repeatedly irradiated at a high speed, and therefore, the position of a large number of points (a large number of points) on the bottom cover 5 or the distances thereof are continuously measured. That is, the displacement sensor 13 is configured to output a laser pulse, and the repetition rate (pulse interval) is 700 times or more while the bottom cover 5 passes below the displacement sensor 13. 5 is set to a speed at which a laser beam can be irradiated. Further, the displacement sensor 13 irradiates a laser beam along a straight line passing through the center of the bottom cover 5, that is, along a straight line along the diameter direction of the bottom cover 5 by passing the bottle-shaped can 1 below the displacement sensor 13. It is arranged at the position to do.
  • a sensor that detects that the bottle-shaped can 1 has reached the internal pressure inspection start position is disposed above the conveyor 3.
  • the photoelectric sensor 14 that detects the bottle-shaped can 1 in a non-contact manner is disposed on the side of the region through which the body 4 passes, and the bottle-shaped can 1 blocks the irradiated light.
  • the bottle-type can 1 is configured to detect that the internal pressure inspection start position has been reached and to output a detection signal thereof.
  • the relative position between the photoelectric sensor 14 and the displacement sensor 13 described above is a position where the body 4 first blocks the irradiation light of the photoelectric sensor 14, and the front end portion in the conveyance direction of the winding portion in the bottle-type can 1 or It is set at a position where the laser beam is irradiated slightly outside. That is, the photoelectric sensor 14 detects the bottle-type can 1, and at the same time, starts measuring the position of the front end portion in the transport direction of the bottle-type can 1 or the distance from the displacement sensor 13.
  • the bottle-shaped can 1 on the conveyor 3 can be specified by the detection signal of the photoelectric sensor 14 and the detection signal of the rotary encoder.
  • the above rotary encoder, displacement sensor 13 and photoelectric sensor 14 are connected to the controller 15.
  • the controller 15 is mainly composed of a microcomputer, and outputs a control signal to the rotary encoder, the displacement sensor 13 and the photoelectric sensor 14, receives a detection signal, and performs a predetermined calculation based on the detection signal. And determining whether the internal pressure of each bottle-type can 1 is good or not, and specifying the bottle-type can 1 that has been determined to have poor internal pressure.
  • the contents of the control that is, the internal pressure inspection method according to the present invention will be described below.
  • the bottle-type cans 1 to be inspected are continuously placed on the conveyor 3 in the inverted state shown in FIG. 1, and are conveyed by the conveyor 3 with a predetermined interval between the bottle-type cans 1.
  • the predetermined bottle-shaped can 1 advances to the installation position of the photoelectric sensor 14 described above, the distance to the bottom lid 5 detected by the displacement sensor 13 is taken into the controller 15.
  • the bottle-shaped can 1 is transported at a constant speed, and the displacement sensor 13 intermittently outputs laser pulses to measure the distance to measure the distances at a large number (700 or more) of the bottom lid 5.
  • a deviation (relative displacement amount) between a predetermined reference point and another point is calculated, and the calculated value is integrated or integrated.
  • the controller 15 corresponds to the relative displacement amount integration means in the present invention, or the integration function or integration function in the controller 15 corresponds to the relative displacement amount integration means in the present invention.
  • the reference portion is the protruding end 9 which is the base point of deformation of the panel portion 10 described above, and the measured value of the protruding end 9 and the measured value of each point on the center side from the measured value. Deviation is integrated or integrated.
  • a reference portion is obtained by previously measuring a distance (an interval measured in the radial direction of the body part 3) in the transport direction between the forward end and the protruding end 9 in the transport direction in the body part 4 to which the photoelectric sensor 14 is sensitive.
  • a point where the time from when the photoelectric sensor 14 outputs a detection signal until the protruding end 9 reaches the position measured by the displacement sensor 13 is obtained, and a measurement value at the time when the time has elapsed is generated.
  • the end of the measurement may be determined by the passage of time determined from the diameter of the panel unit 10 and the conveyance speed by the conveyor 3, or the data at the protruding end 9 appears as a minimum value. Measurement or data capture may be terminated by detecting the value.
  • the distance measurement points by the displacement sensor 13 are a large number of points along a straight line passing through the center of the bottom cover 5, and therefore the integrated value or integrated value of the deviation of the measured value is the value of the protruding end 9.
  • Area A will be substantially meant. This is schematically shown in FIG. If the internal pressure of the bottle-type can 1 is within a normal range, the value of the area A thus determined falls within a predetermined range according to the internal pressure.
  • the amount of deformation of the panel section 10 will be reduced, so that the measurement is performed.
  • the value of the area A is smaller than the lower limit value defining the normal range.
  • the internal pressure of the bottle-type can 1 is excessively low, the amount of deformation of the panel portion 10 increases and the measured value of the area A becomes larger than the upper limit value defining the normal range.
  • the controller 15 compares the area A obtained as described above with each of the upper and lower limits determined in advance, and if it exceeds the normal range, the internal pressure is poor. Judgment is made.
  • the bottle-shaped can 1 on the conveyor 3 is specified by the detection value of the rotary encoder and the detection signal of the photoelectric sensor 14, the bottle-shaped can 1 determined as having an internal pressure failure as described above. Therefore, the bottle-shaped can 1 having a poor internal pressure is removed from the conveying line by a predetermined discharging mechanism (not shown) on the downstream side in the conveying direction on the conveyor 3. Therefore, the controller 15 corresponds to the determination means in the present invention, or the determination function as described above in the controller 15 corresponds to the determination means in the present invention.
  • FIG. 3 (a) shows a result of measuring a plurality of areas A for each internal pressure by decreasing the internal pressure from 0 kPa to 10 kPa by deformation according to the internal pressure of the bottom lid 5 in the bottle-type can 1 described above. . From this measurement result, it was recognized that there is a strong correlation between the internal pressure and the area A.
  • “R 2 ” is a probability distribution.
  • FIG. 3 shows the result of measuring the distance from the reference location to a plurality of points on the panel unit 10 for each of a plurality of internal pressures using a laser displacement sensor as a reference location.
  • the object of measurement is the bottle-type can 1 measured in FIG.
  • FIG. 3 (b) more often displacement data is shifted to a large value, the variation in the data, as indicated by the value of the probability distribution R 2, larger than that shown in FIG. 3 (a) It was. That is, the correlation between the displacement data and the internal pressure is weak, and there is a possibility that the accuracy of the determination of the quality of the internal pressure based on the displacement data is lacking.
  • the integrated value or integrated value of the deformation amount of the lid portion and the internal pressure show a strong correlation
  • the integrated value or integrated value is compared with a reference value prepared in advance.
  • the quality of the internal pressure can be accurately determined.
  • displacements at many locations are integrated or integrated, even if there is a slight deviation from the normal value at each measurement location, the amount of displacement when integrated or integrated increases, so accurate measurement of the amount of deviation is possible.
  • the displacement amount is measured using a laser beam having a small spot diameter, the displacement amounts at a large number of locations on the lid can be accurately measured. It can be carried out.
  • the protruding end 9 is used as the measurement reference point for the amount of displacement, even if the bottle-shaped can 1 being transported is tilted or the like is misaligned, the measured portion of the panel portion 10 that is deformed by the internal pressure is measured. Since the point and the reference point are close to each other, a measurement error due to a deviation in posture is reduced. And in this invention, since the quality of an internal pressure can be determined by calculating and processing the measurement data obtained by the laser type displacement sensor, the configuration of the apparatus can be simplified and additionally installed in existing equipment. Is easy.
  • the sealed container to be inspected may be a can container other than a bottle-type can or a synthetic resin container, and a negative pressure container in which depression deformation occurs due to internal pressure. It is not limited to this, and it may be a positive pressure (positive pressure) container in which expansion deformation occurs due to internal pressure.
  • the center part of the lid part swells most and the amount of displacement associated with the swelling is obtained, so the reference point is the part of the lid part farthest from the displacement sensor.
  • standard location for measuring or calculating the amount of relative displacement in this invention is not restricted to said protrusion end 9, The appropriate location in the said panel part 10 may be sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 胴部の上端部と下端部との少なくともいずれか一方に蓋部を有し、内圧によってその蓋部が変形する密封容器の内圧検査装置において、前記蓋部にレーザービームを照射して前記蓋部との間の距離を測定するレーザー式変位センサーが、前記蓋部と平行な平面に沿う方向に前記蓋部に対して相対移動可能に配置され、前記蓋部を前記胴部に対して一体化させている結合部よりも前記蓋部の中心側の部分の複数箇所のうち前記レーザー式変位センサーとの距離が短い所定の基準箇所および長い所定の基準箇所のいずれか一方の基準箇所と他の箇所との相対変位量の積分値を求め、その積分値に基づいて前記内圧の良否を判定するように構成されている。

Description

密封容器の内圧検査装置および内圧検査方法
 この発明は、スリーピース缶やボトル型缶などの密閉された容器の内圧を検査する装置および方法に関し、特に金属缶を対象とする内圧検査装置および内圧検査方法に関するものである。
 食品や飲料を充填した缶詰などの容器は内容物の充填後に気密状態に封止されるのが通常であり、したがってピンホールや巻締め不良あるいは内容物の変敗などの異常があると、外気の侵入やガスの発生などによって容器の真空度が低下したり、あるいは内部のガスの漏洩などによって内圧が低下するなどの事態が生じる。そこで従来、内容物を充填した缶詰などの密封容器の内圧を検査し、いわゆる不良品をラインから排除している。この内圧検査方法として、例えば特公昭63ー67845号公報や特開平6-213748号公報あるいは特開2002-148133号公報などに記載されているように、密封容器に打撃力を与えて音もしくは振動を生じさせ、その音もしくは振動の周波数を解析して内圧の異常、すなわち密封容器の異常を検出する方法が知られている。
 一方、最近では、固形分のある内容物あるいはコーンスープのように粘度の高い内容物を充填した缶詰製品も多量に流通するようになってきている。この種の密封容器にあっては、打撃力を付与される缶蓋(天蓋もしくは底蓋)の内面に内容物が付着し、あるいはその成分である固形分が付着し、しかもその量や位置が一定しない。そのために、上記のいわゆる打検によって生じる音もしくは振動の振動数やその分布が、缶蓋に対する内容物もしくはこの固形分の付着の態様によって異なってしまい、内圧が正常であるにも拘わらず、不良の判定を行ってしまう不都合があった。
 このような不都合を解消できる検査方法あるいは検査装置として、内圧による容器の変形を検出する方法あるいは装置が提案されている。例えば特開平8ー219915号公報には、箱詰めされて搬送されている缶における缶蓋の中心部の一点と、その缶蓋の巻締部上の二点との位置を、これら三点の上方に配置された渦電流式距離センサーによって計測し、その計測値に基づいて缶蓋の中心部の変形量を算出し、その変形量と基準値とを比較して缶内圧の良否を判定する装置が記載されている。また、特開2009ー210451号公報には、カートンケースに入れられてコンベヤによって搬送されている缶詰の上端から開封タブまでの距離であるトップデプスと、下端からボトムパネルまでの距離であるボトムデプスとを、渦電流式の変位センサーによって計測し、それらのデプスの合計値を判定基準値と比較して内圧の良否を判定するように構成された装置が記載されている。
 上記の特開平8ー219915号公報や特開2009ー210451号公報に記載された装置は、密封容器の形状の変化に基づいて内圧の良否を判定するように構成されているので、内容物の性状や種類などによる影響を殆ど受けずに内圧の良否を判定することができる。しかしながら、特開平8ー219915号公報に記載された装置は、巻締部の平均距離を先ず求め、その巻締部の平均距離と缶蓋中央部の距離との差を変形量としているので、変形量の計測精度が必ずしも高くなく、そのため良否判定のしきい値を小さくせざるを得ないので、内圧が正常であるにも拘わらず、不良の判定を行ってしまう可能性がある。すなわち、缶蓋の形状あるいは缶蓋の表面の加工の状態などが要因となって缶蓋中央部以外の変形量が大きくなると、缶蓋中央部の変形量が最も大きくなるものの、正常な状態からの変形量が小さくなるので、良否判定のしきい値を小さくせざるを得なくなる。
 また、特開2009ー210451号公報に記載された装置では、缶の上端側と下端側との両方にセンサーを配置し、上述したトップデプスおよびボトムデプスとを計測する必要があり、そのため設備コストが嵩む不都合がある。特に、缶をコンベヤで搬送している途中で内圧検査を行う場合、ボトムデプスを計測するためのセンサーをそのコンベヤの内部に組み込むことになるので、設備全体の構成が複雑になる上に、既存の設備に内圧検査装置を追加するとした場合、コンベヤを含むライン全体の改造が必要になるので、既存設備に組み込むことは実用上、困難であるなどの課題があった。
 さらに、特開平8ー219915号公報に記載された装置および特開2009ー210451号公報に記載された装置のいずれも渦電流式のセンサーによって距離を測定しているので、距離の検出精度あるいは内圧の良否判定精度を向上させることが困難であった。例えば特開平8ー219915号公報に記載された装置は、巻締部の上端の位置を計測するように構成されているが、その上端は幅が狭く、上側から見た場合の投影面積の小さい部分であり、これに対して渦電流式のセンサーは、ある程度広い面積の部分で渦電流を生じさせ、それに伴って間隔(距離)を計測するものであるから、巻締部の位置もしくは距離を正確に計測することが困難であり、これが内圧の判定精度に影響を及ぼし、その判定精度が低くならざるを得ない。なお、特開平8ー219915号公報には、缶蓋パネルの中心部とその両側との合計三点の位置もしくは距離を計測して缶蓋パネルの中心部の変形量を計測することが記載されているが、このような装置では、缶蓋パネルの中央部の変形方向と、その両側の二点の変形方向とが同じであるために、正確な計測や内圧判定を行うことができない、とされている。
 この発明は上記の事情を背景としてなされたものであり、密封容器の変形を利用した内圧の判定を容易かつ精度良く行うことのできる密封容器の内圧検査装置および検査方法を提供することを目的とするものである。
 上記の目的を達成するために、この発明は、胴部の上端部と下端部との少なくともいずれか一方に蓋部を有し、内圧によってその蓋部が変形する密封容器の内圧検査装置において、前記蓋部にレーザービームを照射して前記蓋部との間の距離を測定するレーザー式変位センサーが、前記蓋部と平行な平面に沿う方向に前記蓋部に対して相対移動可能に配置され、前記蓋部を前記胴部に対して一体化させている結合部よりも前記蓋部の中心側の部分の複数箇所のうち前記レーザー式変位センサーとの距離が短い所定の基準箇所および長い所定の基準箇所のいずれか一方の基準箇所と他の箇所との相対変位量の積分値を求め、その積分値に基づいて前記内圧の良否を判定するように構成されていることを特徴とするものである。
 また、この発明は、上記の発明において、前記複数箇所は、前記蓋部の中心箇所と、その中心箇所を通り前記蓋部の直径方向に引いた直線上の複数箇所であることを特徴とする密封容器の内圧検査装置である。
 この発明は、上記の発明において、前記蓋部は、前記結合部の内周側に連続して形成されかつ前記密封容器の内部に窪んでいる環状溝部と、その環状溝部の内周側傾斜壁における前記密封容器の外側への突出端と、その突出端より前記蓋部の中心側の部分であるパネル部とを有し、前記基準箇所は、前記突出端を含み、前記他の箇所は、前記パネル部における複数箇所を含むことを特徴とする密封容器の内圧検査装置である。
 さらに、この発明は、上記いずれかの発明において、前記基準箇所と前記他の箇所との合計数は700以上であることを特徴とする密封容器の内圧検査装置である。
 他方、この発明は、胴部の上端部と下端部との少なくともいずれか一方に蓋部を有し、内圧によってその蓋部が変形する密封容器の内圧検査方法において、前記蓋部を前記胴部に対して一体化させている結合部よりも前記蓋部の中心側の部分の複数箇所の相対変位量をレーザー式変位センサーによって測定するとともに、それらの相対変位量の積分値を求め、その積分値に基づいて前記内圧の良否を判定することを特徴とする方法である。
 この発明は、上記の発明において、前記複数箇所は、前記蓋部の中心箇所と、その中心箇所を通り前記蓋部の直径方向に引いた直線上の複数箇所であることを特徴とする密封容器の内圧検査方法である。
 この発明は、上記の発明において、前記蓋部は、前記結合部の内周側に連続しかつ前記密封容器の内部に窪んでいる環状溝部と、その環状溝部の内周側傾斜壁における前記密封容器の外側への突出端と、その突出端より前記蓋部の中心側の部分であるパネル部とを有し、前記相対変位量は、前記突出端に対する前記パネル部における複数箇所の変位量を含むことを特徴とする密封容器の内圧検査方法である。
 この発明は、上記いずれかの発明において、前記相対変位量は、700箇所以上での相対変位量であることを特徴とする密封容器の内圧検査方法である。
 この発明に係る内圧検査装置あるいは内圧検査方法によれば、蓋部を胴部に連結している結合部より内周側の部分における複数箇所の変位量もしくは相対変位量をレーザー式変位センサーによって計測するので、微小箇所の変位量もしくは相対変位量を正確に求めることができ、特に上記の結合部より内周側の部分の複数箇所についての相対変位量を求めるので、レーザー式変位センサーに対して密封容器もしくはその蓋部が傾いて相対移動する場合であっても、その傾きによる相対変位量に対する影響を抑制でき、この点でも相対変位量を正確に求めることが可能になる。また、相対変位量を積分するので、その相対変位量に正常値からのズレがあれば、そのズレも積算されるので、各箇所での正常状態もしくは正常形状からのズレが僅かであっても、蓋部全体としての形状の変化を確実に判定することができる。言い換えれば、ズレが積算されるので、判定のためのしきい値を大きくすることができ、こうすることにより内圧が不良であることの誤判定を可及的に少なくすることができる。特に蓋部の中心部分での変形が小さく、その周囲での変形によって内圧の増大もしくは減少が吸収されている場合であっても、相対変位量の計測が、当該周囲の部分にも及んでいるので、確実に内圧の異常を判定することができる。そして、この発明では、レーザー式変位センサーの検出値を演算処理することにより内圧の良否を判定できるので、装置の構成を簡素化でき、また既存設備への追加が容易である。
 また、この発明では、その中心部を通る直線上の複数箇所について相対変位量を求めるように構成すれば、内圧による変形が最も大きい中心部の変形を含んで内圧の良否を判定することになるので、確実かつ正確に内圧の良否を判定することができる。
この発明に係る内圧検査装置の一例を模式的に示す図である。 この発明で求められる積分値もしくは面積を説明するための模式図である。 (a)はこの発明による面積データと内圧との計測結果を示す図であり、(b)はレーザー式センサーで計測した変位データと内圧との関係を示す図である。
 先ず、この発明に係る内圧検査装置を具体的に説明すると、この発明で対象とする密封容器は、内容物を充填する胴部を蓋部によって気密状態に封止した容器であり、胴部の上端部に天蓋を取り付けるとともに下端部に底蓋を取り付けたいわゆるスリーピースタイプの容器、底部を一体に形成した胴部の上端部に天蓋を取り付けたいわゆるツーピースタイプの容器、胴部の下端部に底蓋を取り付け、かつ上端部にネジ部を有する口頸部を一体に形成するとともにその口頸部にキャップを螺合させたボトル型の容器などであってよい。また、容器の素材は特には限定されないが、この発明は、アルミニウムやその合金、もしくはスチールなどの金属を素材とした金属缶を対象とする内圧検査に適用することができる。また、密封容器は、内圧が大気圧より低い負圧容器であってもよく、あるいは大気圧より高い陽圧容器であってもよい。
 図1には、ボトル型缶1の内圧を検査するように構成した例を示してあり、ここに示す例では、内容物を充填したボトル型缶1を、そのキャップ2が下側となる倒立状態でコンベヤ3上に設置し、その状態で搬送しつつ内圧検査を行うように構成されている。そのボトル型缶1について更に具体的に説明すると、金属製の胴部4の一方の端部(図1では上端部)に底蓋5が取り付けられている。その底蓋5はほぼ円板状に形成され、その外周部のフランジ部6を胴部4の開口端に巻締めて胴部4に取り付けられている。この巻締部分がこの発明における結合部に相当している。底蓋5における上記のフランジ部6の内周側にはカウンタシンクと称される環状溝部7が形成されており、その環状溝部7の内周縁すなわち環状溝部7における内周側傾斜壁8の突出端(ボトル型缶1の底部側への突出端)9から内周側に続けてパネル部10が形成されている。図1に示す例では、このパネル部10は、前記突出端9を起点としてボトル型缶1の内部に向けてドーム状に撓んでいる。すなわち、図1に示す例におけるボトル型缶1は内圧が大気圧より低圧の負圧容器として構成されている。また、胴部4の他方の端部(図1では下端部)には、ネジ部を外周面に設けた口頸部11が形成され、その口頸部11にキャップ2が螺合させられている。
 コンベヤ3は上記のボトル型缶1を倒立状態で連続的に搬送するものであって、例えばベルトコンベヤを採用することができる。その搬送速度は、適宜に設定でき、例えば70m/min程度であってもよい。このコンベヤ3における駆動側あるいは従動側のローラもしくは駆動モータ軸にはロータリーエンコーダ(それぞれ図示せず)が取り付けられ、このロータリーエンコーダによってコンベヤ3の走行速度や走行位置を検出できるように構成されている。したがって、コンベヤ3上のボトル型缶1を、その走行位置情報に基づいて特定できるように構成されている。
 コンベヤ3の上方で、そのコンベヤ3に倒立状態で載せられて搬送されるボトル型缶1における底蓋5のパスライン(通過位置)より上側、より具体的には蓋部5と平行な平面上に、レーザー式変位センサー(以下、単に変位センサーと記す)13が配置されている。この変位センサー13は、コンベヤ3によって搬送されているボトル型缶1の底蓋5に向けてレーザービームを照射し、その反射光を捕捉して距離を計測するように構成された公知の構成のものであり、そのレーザービームの照射面での径すなわちスポット径は30μmもしくはこれに近い径であることが好ましい。また、そのレーザービームは高速で繰り返し照射され、したがって底蓋5における多数の箇所(多数の点)の位置あるいはその距離を連続的に計測するように構成されている。すなわち、上記の変位センサー13は、レーザーパルスを出力するように構成され、その繰り返し速度(パルス間隔)は、底蓋5が変位センサー13の下方を通過する間に700回もしくはそれ以上、底蓋5に対してレーザービームを照射できる速度に設定されている。さらに、変位センサー13は、その下方をボトル型缶1が通過することにより、その底蓋5の中心を通る直線に沿って、すなわち底蓋5の直径方向に沿う直線に沿ってレーザービームを照射する位置に配置されている。
 上記のコンベヤ3の上方には、ボトル型缶1が内圧の検査開始位置に到達したことを検出するセンサーが配置されている。図1に示す例では、非接触でボトル型缶1を検出する光電センサー14が、上記の胴部4が通過する領域の側方に配置され、照射した光をボトル型缶1が遮ることにより、ボトル型缶1が内圧検査開始位置に到達したことを検出し、その検出信号を出力するように構成されている。この光電センサー14と上述した変位センサー13との相対位置は、胴部4が光電センサー14の照射光を最初に遮った位置で、ボトル型缶1における巻締部の搬送方向での前端部もしくはそれより僅か外側にレーザービームが照射される位置に設定されている。すなわち、光電センサー14がボトル型缶1を検出すると同時にボトル型缶1の搬送方向での前端側の部分の位置、もしくは変位センサー13からの距離を計測し始めるように構成されている。なお、この光電センサー14の検出信号と、前記ロータリーエンコーダの検出信号とによって、コンベヤ3上のボトル型缶1を特定できる。
 上記のロータリーエンコーダおよび変位センサー13ならびに光電センサー14は、コントローラ15に接続されている。このコントローラ15は、マイクロコンピュータを主体にして構成されており、これらロータリーエンコーダおよび変位センサー13ならびに光電センサー14に制御信号を出力するとともに、検出信号を受信し、その検出信号に基づいて所定の演算を行い、各ボトル型缶1の内圧の良否の判定や、内圧不良と判定されたボトル型缶1の特定などの制御を行うように構成されている。その制御の内容すなわちこの発明に係る内圧検査方法を以下に説明する。
 検査の対象であるボトル型缶1は、図1に示す倒立状態でコンベヤ3上に連続して載せられ、各ボトル型缶1同士の間に所定の間隔を空けてコンベヤ3によって搬送される。所定のボトル型缶1が前述した光電センサー14の設置位置にまで進行すると、変位センサー13で検出された底蓋5までの距離がコントローラ15に取り込まれる。以降、ボトル型缶1が一定速度で搬送されるとともに、変位センサー13が断続的にレーザーパルスを出力して距離の計測を行って底蓋5における多数箇所(700箇所以上)の距離が計測される。そして、これらの計測値のうち、所定の基準箇所と他の箇所との距離の偏差(相対変位量)が演算され、かつその演算値が積分もしくは積算される。これらの演算や積分もしくは積算は、コントローラ15によって実行される。したがって、コントローラ15がこの発明における相対変位量積分手段に相当し、あるいはコントローラ15における積分機能もしくは積算機能がこの発明における相対変位量積分手段に相当する。
 その基準箇所は、この発明では、前述したパネル部10の変形の基点となる前記突出端9とされており、その突出端9の計測値とそれよりも中心側の各点の計測値との偏差が積分もしくは積算される。このような基準箇所は、例えば前記光電センサー14を感応させる胴部4における搬送方向での前進端と突出端9との搬送方向での距離(胴部3の半径方向に計った間隔)を予め求めておき、光電センサー14が検出信号を出力した時点から、突出端9が変位センサー13により計測される位置に到るまでの時間を求め、その時間が経過した時点の計測値を生じさせる箇所とすればよい。あるいは、前述した環状溝部7についての計測値が極大となり、その後、計測値が小さくなって突出端9で極小となるから、このようにして極小値を生じさせる箇所を基準箇所としてもよい。
 なお、計測の終了は、パネル部10の直径とコンベヤ3による搬送速度とから求められる時間の経過によって決定してもよく、あるいは上記の突出端9でのデータが極小値として現れるので、この極小値を検出することにより計測あるいはデータの取り込みを終了することとしてもよい。
 前述したように、変位センサー13による距離の計測箇所は、底蓋5の中心を通る直線に沿う多数箇所であり、したがってその計測値の偏差の積分値もしくは積算値は、前記突出端9のうち直径上で対向する二点を結んだ直線と、ボトル型缶1の内側に窪んでいるパネル部10の表面の母線(表面の窪み形状に沿う円弧状の輪郭線)とによって囲まれた部分の面積Aを実質的に意味することになる。これを図2に模式的に示してある。このようにして求められる面積Aの値は、ボトル型缶1の内圧が正常な範囲内にあれば、内圧に応じた所定の範囲内に入る。これに対して、ピンホールや内容物の変敗によるガスの発生などによって内圧が高くなっていれば(負圧が不足していれば)、パネル部10の変形量が少なくなるので、計測された面積Aの値が、正常範囲を規定している下限値より小さくなる。また反対にボトル型缶1の内圧が過度に低圧であれば、パネル部10の変形量が大きくなって計測された面積Aの値が正常範囲を規定している上限値より大きくなる。
 したがって、この発明では、上記のコントローラ15によって、上述のようにして求められた面積Aを予め定めた上下限の各値と比較し、正常範囲を超えている場合には、内圧が不良であることの判定を行う。前述したように、コンベヤ3上のボトル型缶1は、ロータリーエンコーダの検出値と光電センサー14の検出信号とによって特定されるから、上記のようにして内圧不良と判定されたボトル型缶1を特定することができ、したがって内圧不良のボトル型缶1はコンベヤ3での搬送方向での下流側で、所定の排斥機構(図示せず)によって搬送ラインから取り除かれる。したがって、コントローラ15がこの発明における判定手段に相当し、もしくはコントローラ15における上記のような判定機能がこの発明における判定手段に相当する。
 ここで、上記の面積Aと内圧との相関関係を測定した結果を示す。図3の(a)は、前述したボトル型缶1における底蓋5の内圧に応じた変形による面積Aを、内圧を0kPaから10kPaずつ下げて各内圧毎に複数、計測した結果を示している。この測定結果から、内圧と上記の面積Aとの間に強い相関関係があることが認められた。なお、図3の(a)中「R」は確率分布である。
 一方、図3の(b)は、レーザー式変位センサーを使用し、巻締部を基準箇所として、その基準箇所からパネル部10の複数点までの距離を、複数の内圧毎に測定した結果を示している。なお、その計測の対象は上述した図3の(a)で計測したボトル型缶1である。図3の(b)に示すように、変位データが大きい値にずれる頻度が高く、確率分布Rの値が示すようにデータのバラツキが、図3の(a)に示す場合よりも大きくなった。すなわち、変位データと内圧との相関関係が弱く、変位データに基づく内圧の良否の判定の正確さが欠ける可能性がある。
 この発明によれば、上述したように、蓋部の変形量の積分値もしくは積算値と内圧とが強い相関関係を示すので、その積分値もしくは積算値を予め用意した基準値と比較することにより、内圧の良否を正確に判定することができる。特に、多数箇所の変位量を積分もしくは積算するので、各計測箇所での正常値からのズレが僅かであっても、積分もしくは積算した場合のズレ量が大きくなるので、正確なズレ量の計測もしくは正確な内圧の判定が可能になる。また、この発明では、スポット径が小さいレーザービームを使用して変位量を計測するから、蓋部の多数の箇所の変位量を正確に測定することができ、この点においても正確な内圧判定を行うことができる。さらに、変位量の測定基準箇所を前述した突出端9としているので、搬送中のボトル型缶1が傾くなど、その姿勢にズレが生じても、内圧で変形するパネル部10のうちの被計測点と基準箇所とが接近していることにより、姿勢のズレによる計測誤差が小さくなる。そして、この発明では、レーザー式変位センサーで得られた計測データを演算処理することにより内圧の良否を判定できるので、装置の構成を簡素化することができ、また既存の設備に追加設置することが容易である。
 なお、この発明は上述した具体例に限定されないのであって、検査対象である密封容器はボトル型缶以外の缶容器や合成樹脂容器であってもよく、また内圧によって窪み変形が生じる負圧容器に限らず、内圧によって膨張変形が生じる正圧(陽圧)容器であってもよい。正圧容器を対象とする場合、蓋部の中心部が最も膨出し、その膨出に伴う変位量を求めることになるから、基準箇所は蓋部のうち変位センサーから最も遠い箇所とすることになる。さらに、変位センサーと検査対象である密封容器とは変位の計測の際に相対的に移動すればよいので、密封容器を固定し、変位センサーを移動させることとしてもよい。そして、この発明における相対変位量を測定もしくは算出するための基準箇所は、上記の突出端9に限られず、前記パネル部10内の適宜な箇所であってもよい。

Claims (8)

  1.  胴部の上端部と下端部との少なくともいずれか一方に蓋部を有し、内圧によってその蓋部が変形する密封容器の内圧検査装置において、
     前記蓋部と平行な平面に沿う方向に前記蓋部に対して相対移動可能に配置され、かつ前記蓋部にレーザービームを照射して前記蓋部との間の距離を測定するレーザー式変位センサーと、
     前記蓋部を前記胴部に対して一体化させている結合部よりも前記蓋部の中心側の部分の複数箇所のうち前記レーザー式変位センサーとの距離が短い所定の基準箇所および長い所定の基準箇所のいずれか一方の基準箇所と他の箇所との相対変位量の積分値を求める相対変位量積分手段と、
     その相対変位量積分手段で求められた積分値に基づいて前記内圧の良否を判定する判定手段と
    を備えていることを特徴とする密封容器の内圧検査装置。
  2.  前記複数箇所は、前記蓋部の中心箇所と、その中心箇所を通り前記蓋部の直径方向に引いた直線上の複数箇所であることを特徴とする請求項1に記載の密封容器の内圧検査装置。
  3.  前記蓋部は、前記結合部の内周側に連続しかつ前記密封容器の内部に窪んでいる環状溝部と、その環状溝部の内周側傾斜壁における前記密封容器の外側への突出端と、その突出端より前記蓋部の中心側の部分であるパネル部とを有し、
     前記基準箇所は、前記突出端を含み、
     前記他の箇所は、前記パネル部における複数箇所を含む
    ことを特徴とする請求項1または2に記載の密封容器の内圧検査装置。
  4.  前記基準箇所と前記他の箇所との合計数は700以上であることを特徴とする請求項1ないし3のいずれかに記載の密封容器の内圧検査装置。
  5.  胴部の上端部と下端部との少なくともいずれか一方に蓋部を有し、内圧によってその蓋部が変形する密封容器の内圧検査方法において、
     前記蓋部を前記胴部に対して一体化させている結合部よりも前記蓋部の中心側の部分の複数箇所の相対変位量をレーザー式変位センサーによって測定するとともに、
     それらの相対変位量の積分値を求め、
     その積分値に基づいて前記内圧の良否を判定する
    ことを特徴とする密封容器の内圧検査方法。
  6.  前記複数箇所は、前記蓋部の中心箇所と、その中心箇所を通り前記蓋部の直径方向に引いた直線上の複数箇所であることを特徴とする請求項5に記載の密封容器の内圧検査方法。
  7.  前記蓋部は、前記結合部の内周側に連続しかつ前記密封容器の内部に窪んでいる環状溝部と、その環状溝部の内周側傾斜壁における前記密封容器の外側への突出端と、その突出端より前記蓋部の中心側の部分であるパネル部とを有し、
     前記相対変位量は、前記突出端に対する前記パネル部における複数箇所の変位量を含む
    ことを特徴とする請求項5または6に記載の密封容器の内圧検査方法。
  8.  前記相対変位量は、700箇所以上での相対変位量であることを特徴とする請求項5ないし7のいずれかに記載の密封容器の内圧検査方法。
PCT/JP2012/064110 2011-10-28 2012-05-31 密封容器の内圧検査装置および内圧検査方法 WO2013061645A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/350,704 US9453776B2 (en) 2011-10-28 2012-05-31 Internal pressure inspection apparatus and method for a sealed container
KR1020147014334A KR101582338B1 (ko) 2011-10-28 2012-05-31 밀봉 용기의 내압 검사 장치 및 내압 검사 방법
EP12843122.8A EP2772740B1 (en) 2011-10-28 2012-05-31 Sealed container internal pressure inspection device and internal pressure inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236610A JP5847536B2 (ja) 2011-10-28 2011-10-28 密封容器の内圧検査装置および内圧検査方法
JP2011-236610 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061645A1 true WO2013061645A1 (ja) 2013-05-02

Family

ID=48167490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064110 WO2013061645A1 (ja) 2011-10-28 2012-05-31 密封容器の内圧検査装置および内圧検査方法

Country Status (5)

Country Link
US (1) US9453776B2 (ja)
EP (1) EP2772740B1 (ja)
JP (1) JP5847536B2 (ja)
KR (1) KR101582338B1 (ja)
WO (1) WO2013061645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296152A (zh) * 2023-05-17 2023-06-23 金乡县联盛菌业科技有限公司 一种鸡枞菌罐头瓶盖封装检测装置及控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346741B2 (ja) * 2013-11-22 2018-06-20 大和製罐株式会社 密封容器の検査装置および検査方法
JP6526978B6 (ja) * 2015-02-04 2019-07-17 大和製罐株式会社 レーザー式検査装置
JP6820461B2 (ja) * 2015-10-14 2021-01-27 東洋製罐株式会社 内圧検査システム
JP6809961B2 (ja) * 2017-03-30 2021-01-06 大和製罐株式会社 密封容器の内圧検査装置
JP7294165B2 (ja) * 2020-01-24 2023-06-20 トヨタ自動車株式会社 ケースの気密性の評価方法及び評価装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367845A (ja) 1986-08-06 1988-03-26 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 一定の電気特性を有するバス構造
JPH03167413A (ja) * 1989-11-28 1991-07-19 Toyo Seikan Kaisha Ltd 自生圧表示容器およびその自生圧の監視方法
JPH06213748A (ja) 1991-01-29 1994-08-05 Toyo Seikan Kaisha Ltd 密封容器の内圧不良検出方法及びその装置
JPH08219915A (ja) 1995-02-20 1996-08-30 Mitsubishi Materials Corp 缶内圧検査装置
JPH09210835A (ja) * 1996-02-05 1997-08-15 Kagome Co Ltd 施栓状態の漏れ検査方法
JP2002014813A (ja) 1999-02-25 2002-01-18 Sony Electronics Inc 分散適応実行時プラットホーム用のアプリケーションプログラム開発方法及びコンピュータ装置
JP2007192646A (ja) * 2006-01-19 2007-08-02 Toyo Seikan Kaisha Ltd 容器検査装置及び容器検査方法
JP2009210451A (ja) 2008-03-05 2009-09-17 Toyo Seikan Kaisha Ltd 缶詰の内圧検査方法及びその装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182530A (ja) * 1982-04-19 1983-10-25 Daiwa Can Co Ltd 密封容器の内圧良否判別法及びその装置
JPS6027833A (ja) * 1983-07-25 1985-02-12 Kishimoto Akira 密封容器の漏洩検査方法及びその装置
JPS6367845U (ja) * 1986-10-21 1988-05-07
US5193014A (en) * 1989-11-28 1993-03-09 Toyo Seikan Kaisha Ltd. Metal vessel having hologram of diffraction grating formed thereon
JPH0410835A (ja) * 1990-04-27 1992-01-16 Nec Corp データ端末装置
JP2002148133A (ja) 2000-11-07 2002-05-22 Toyo Seikan Kaisha Ltd 密封容器の内圧検査方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367845A (ja) 1986-08-06 1988-03-26 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 一定の電気特性を有するバス構造
JPH03167413A (ja) * 1989-11-28 1991-07-19 Toyo Seikan Kaisha Ltd 自生圧表示容器およびその自生圧の監視方法
JPH06213748A (ja) 1991-01-29 1994-08-05 Toyo Seikan Kaisha Ltd 密封容器の内圧不良検出方法及びその装置
JPH08219915A (ja) 1995-02-20 1996-08-30 Mitsubishi Materials Corp 缶内圧検査装置
JPH09210835A (ja) * 1996-02-05 1997-08-15 Kagome Co Ltd 施栓状態の漏れ検査方法
JP2002014813A (ja) 1999-02-25 2002-01-18 Sony Electronics Inc 分散適応実行時プラットホーム用のアプリケーションプログラム開発方法及びコンピュータ装置
JP2007192646A (ja) * 2006-01-19 2007-08-02 Toyo Seikan Kaisha Ltd 容器検査装置及び容器検査方法
JP2009210451A (ja) 2008-03-05 2009-09-17 Toyo Seikan Kaisha Ltd 缶詰の内圧検査方法及びその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296152A (zh) * 2023-05-17 2023-06-23 金乡县联盛菌业科技有限公司 一种鸡枞菌罐头瓶盖封装检测装置及控制方法
CN116296152B (zh) * 2023-05-17 2023-08-11 金乡县联盛菌业科技有限公司 一种鸡枞菌罐头瓶盖封装检测装置及控制方法

Also Published As

Publication number Publication date
KR20140097237A (ko) 2014-08-06
EP2772740B1 (en) 2019-01-23
JP5847536B2 (ja) 2016-01-27
US9453776B2 (en) 2016-09-27
KR101582338B1 (ko) 2016-01-04
EP2772740A4 (en) 2015-11-04
EP2772740A1 (en) 2014-09-03
US20140251018A1 (en) 2014-09-11
JP2013096709A (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2013061645A1 (ja) 密封容器の内圧検査装置および内圧検査方法
EP1884295B1 (en) Method for testing bottles or containers having flexible walls, as well as a plant implementing it
JP6169341B2 (ja) 密封容器の内圧検査装置および方法
JP5454750B2 (ja) 缶詰の内圧検査方法及びその装置
US6237418B1 (en) Method and apparatus for detecting misapplied caps on containers
CN105937883B (zh) 用于检验封闭件的装置和方法
JP2007192646A (ja) 容器検査装置及び容器検査方法
US10330517B2 (en) Method for operating a contactless ultrasound or radar fill level measuring device and contactless ultrasound or radar fill level measuring device practicing said method
JP6346741B2 (ja) 密封容器の検査装置および検査方法
US5566569A (en) Detection of unpressurized moving containers
JP6683464B2 (ja) 密封容器の内圧検査装置
JP6526978B6 (ja) レーザー式検査装置
US20110185792A1 (en) Contactless leak test using pulses
JP2005009931A (ja) シール不良検査装置
JP2010133824A (ja) キャップ検査装置及びキャップ検査方法
JP6809961B2 (ja) 密封容器の内圧検査装置
JP5707932B2 (ja) 密封容器検査方法及び密封容器検査装置
JPH0361897B2 (ja)
JP6820461B2 (ja) 内圧検査システム
JP2013186068A (ja) 缶底深さ測定方法及びその装置並びに缶詰の内圧検査方法及びその装置
JP2000266622A (ja) 缶内圧判別方法及びその装置
JP2000171557A (ja) 物品の検査装置
JP2004271210A (ja) 内圧測定検査方法及びその測定検査装置
JP2005315699A (ja) 缶体変位検出システム及び缶体変位検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350704

Country of ref document: US

Ref document number: 2012843122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147014334

Country of ref document: KR

Kind code of ref document: A