WO2013061466A1 - 質量分析装置を用いた定量分析方法及び質量分析装置 - Google Patents
質量分析装置を用いた定量分析方法及び質量分析装置 Download PDFInfo
- Publication number
- WO2013061466A1 WO2013061466A1 PCT/JP2011/074981 JP2011074981W WO2013061466A1 WO 2013061466 A1 WO2013061466 A1 WO 2013061466A1 JP 2011074981 W JP2011074981 W JP 2011074981W WO 2013061466 A1 WO2013061466 A1 WO 2013061466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intensity
- ion
- mass
- ions
- charge ratio
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0036—Step by step routines describing the handling of the data generated during a measurement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/0027—Methods for using particle spectrometers
- H01J49/0031—Step by step routines describing the use of the apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
Definitions
- the present invention relates to a quantitative analysis method in which the intensity of ions derived from a target compound is measured by a mass spectrometer and the target compound is quantified based on the measurement result, and a mass spectrometer using the method.
- ions having a specific mass-to-charge ratio m / z derived from the target compound in the sample can be selectively detected, and an ionic strength corresponding to the amount of the ions can be obtained.
- This ionic strength varies depending on the concentration (content) of the target compound. That is, when detecting the ionic strength for the same compound, the ionic strength increases if the concentration of the compound is high, and the ionic strength decreases if the concentration is low. Therefore, when quantitative analysis is performed with a chromatograph mass spectrometer combining a liquid chromatograph (LC) or gas chromatograph (GC) and a mass spectrometer (MS), a plurality of standards having different concentrations of the target compound are used.
- LC liquid chromatograph
- GC gas chromatograph
- MS mass spectrometer
- a mass spectrometer selectively detects a predetermined mass-to-charge ratio m / z with respect to a target compound.
- a mass chromatogram showing the change over time of ions having the mass to charge ratio is acquired.
- the area of the peak derived from the target compound appearing in the mass chromatogram is calculated, and this peak area is used as the ionic strength of the calibration curve. Since the SN ratio of the peak area is higher as the peak intensity is higher, the mass-to-charge ratio for quantification is generally selected as the mass-to-charge ratio of ions derived from the target compound as high as possible. .
- an ion intensity signal obtained by a detector is converted into a digital signal by an analog / digital (A / D) converter, and data processing such as waveform processing is performed.
- the dynamic range of the A / D converter is generally about 10 6 at the maximum, and if a signal exceeding the upper limit is input, the output is saturated and accurate data cannot be obtained. That is, the range in which the quantitative value (concentration) is accurately obtained in the quantitative analysis is restricted by the dynamic range of the A / D converter.
- the present invention has been made to solve the above problems, and its object is to perform quantitative analysis over a wide concentration range without being restricted by the dynamic range of a processing circuit such as an A / D converter. It is to provide a quantitative analysis method that can be performed, and a mass spectrometer that performs quantitative determination by the method.
- a quantitative analysis method using a mass spectrometer that quantifies a target compound based on ionic strength obtained by detecting ions derived from the target compound
- a sample containing the target compound in addition to the ion intensity with respect to the mass-to-charge ratio of the ion showing the maximum intensity among the ions derived from the target compound, It also detects the ionic strength relative to the mass-to-charge ratio
- the detection result of the ionic strength with respect to the mass-to-charge ratio of ions showing the intensity lower than the maximum intensity is converted into the ionic strength with respect to the mass-to-charge ratio of ions showing the maximum intensity
- the ion intensity with respect to the mass-to-charge ratio of the ion exhibiting the maximum intensity is saturated or possibly, use the ion intensity obtained by the conversion to create a calibration curve for quantification or refer to the calibration curve It is characterized in that the quantitative value obtained is derived.
- a second invention made to solve the above problems is a mass spectrometer used in the quantitative analysis method according to the first invention, a) When measuring a sample containing the target compound, in addition to the ionic strength with respect to the mass-to-charge ratio of the ion having the maximum intensity among the ions derived from the target compound, the intensity is lower by a predetermined ratio than the maximum intensity.
- a measurement execution means that also detects the ion intensity with respect to the mass-to-charge ratio of ions; b) Conversion processing means for converting the detection result of the ionic strength with respect to the mass-to-charge ratio of ions exhibiting an intensity lower than the maximum intensity into the ionic strength with respect to the mass-to-charge ratio of ions exhibiting the maximum intensity, c) a saturation detection means for detecting that the ion intensity relative to the mass-to-charge ratio of ions exhibiting the maximum intensity is saturated or possibly saturated; d) When the saturation detection means does not detect the saturation state or the possibility of saturation, the ion intensity with respect to the mass-to-charge ratio of the ion showing the maximum intensity is used, while the saturation detection means detects the saturation state or the possibility of saturation. When it is done, using the ion intensity converted by the conversion processing means, to create a calibration curve for quantification or to derive a quantitative value with reference to the calibration curve, It is characterized by having.
- a calibration curve is obtained using the intensity signal of the ions.
- the target compound at an unknown concentration was quantified in light of the calibration curve.
- ions other than those having the maximum intensity among the ions derived from the target compound may be used for quantification.
- a calibration curve is created using the intensity of one quantification ion, and the calibration curve is illuminated.
- the target compound of unknown concentration was quantified.
- the quantitative analysis method according to the first invention and the mass spectrometer according to the second invention not only the ion showing the maximum intensity among the ions derived from the target compound but also the mass charge different from the mass to charge ratio of the ions.
- the intensity of one or more ions having a ratio, which is lower than the maximum intensity by a predetermined ratio, is also detected.
- a mass-to-charge ratio range that includes the mass-to-charge ratio of ions exhibiting the maximum intensity and the mass-to-charge ratio of ions exhibiting an intensity that is lower than the maximum intensity by a predetermined ratio If the scan measurement is carried out with the above set, the target ion intensity can be obtained.
- the mass-to-charge ratio of an ion that exhibits the maximum intensity and the mass-to-charge ratio of an ion that exhibits an intensity lower by a predetermined ratio than the maximum intensity are measured. If SIM measurement is performed after setting, the target ion intensity can be obtained.
- signal saturation occurs when a signal (ion intensity) exceeding the upper limit is input due to restrictions on the dynamic range of a processing circuit such as an A / D converter.
- a processing circuit such as an A / D converter.
- the ionic strength with respect to the mass-to-charge ratio of ions exhibiting the maximum intensity saturates, the ionic strength with respect to the mass-to-charge ratio of ions exhibiting an intensity lower by a predetermined ratio than the maximum intensity It has a sufficient margin and does not saturate. Therefore, in the quantitative analysis method according to the first invention and the mass spectrometer according to the second invention, the ion intensity with respect to the mass-to-charge ratio of the ion showing the maximum intensity is actually saturated, or is saturated or still saturated.
- the mass-to-charge ratio of ionic strength used to create a calibration curve or to derive a quantitative value depends on whether or not the ionic strength with respect to the mass-to-charge ratio of ions exhibiting the maximum intensity is saturated or likely to be saturated. .
- the ion having the maximum intensity among the ions derived from the target compound is a main ion composed of a main isotope element, and is a predetermined ratio with respect to the maximum intensity.
- the ion showing a low intensity can be a sub-ion containing an isotope element other than the main isotope element.
- the number of sub ions is not limited to one, and a plurality of mass to charge ratios may be different.
- the composition of the target compound is usually known, and the isotope abundance ratios of various elements constituting the compound are also known. Therefore, the abundance ratio between the main ion and the secondary ion derived from the target compound can be obtained by theoretical calculation. And the ratio of the intensity
- the peak intensity with respect to the main ion and the peak with respect to the secondary ion actually obtained by sample measurement can be performed using the ratio with the strength.
- the ion intensity of the secondary ion containing an isotope element other than the main isotope element is not used as the ion intensity with respect to the mass-to-charge ratio of the ion that is lower than the maximum intensity by a predetermined ratio.
- the ion intensity typically the rising slope of the peak
- at a position deviated on the mass-to-charge ratio axis ie, at a deviated mass-to-charge ratio
- an ionic strength at a certain position on the falling slope portion may be used.
- One peak appearing on the mass spectrum should ideally be a single line, but in practice, profile data having a certain width is obtained, and the peak width is determined by each part of the apparatus. Depends on parameter adjustment / setting status. Therefore, the peak width is constant under the condition that the parameter adjustment / setting state is the same, and the position on the peak slope portion where the intensity is low by a predetermined ratio with respect to the intensity of the peak top of a certain peak, that is, mass charge. The ratio is calculated. If this is utilized, even if there is no isotope peak or the intensity of the peak top of the isotope peak is too small, only one peak is used and the quantitative analysis method according to the first invention is used. It is possible to perform quantification.
- the quantitative analysis method according to the first invention can also be applied to quantification using the intensity of product ions obtained by selecting and cleaving ions derived from the target compound.
- a target compound is quantified using a chromatograph mass spectrometer that combines a chromatograph such as LC or GC and a mass spectrometer
- a mass chromatogram or total ion chromatograph for ions derived from the target compound is used.
- the area of the peak derived from the target compound appearing on the gram is generally used. Therefore, when the quantitative analysis method according to the first invention is applied to a chromatograph mass spectrometer, the calibration curve may show the relationship between the target compound-derived chromatogram peak area and the compound concentration.
- the dynamic range of the processing circuit such as an A / D converter that digitizes the signal obtained by the ion detector
- the processing circuit such as an A / D converter that digitizes the signal obtained by the ion detector
- the schematic block diagram of the liquid chromatograph mass spectrometer which is one Example of the mass spectrometer which implements the quantitative analysis method based on this invention.
- the figure which shows an example of the acquired mass spectrum profile data
- the figure which shows the other example of the acquired mass spectrum profile data
- the figure which shows an example of the mass chromatogram acquired.
- the figure which shows an example of the created calibration curve. The figure for demonstrating another example of the quantitative analysis method which concerns on this invention.
- FIG. 2 is a diagram illustrating an example of a mass spectrum (profile data) obtained by mass-analyzing reserpine having a chemical composition formula of C 33 H 4 N 2 O 9 in a positive ionization mode.
- a main peak P1 having a maximum ionic strength appears at m / z 609.3.
- This main peak P1 is a molecular ion ([M + H] + ) peak of reserpine composed only of the main isotope element.
- sub-peaks P2 and P3 which are isotope peaks of reserpine containing isotopes other than the main isotope, appear at m / z 610.3 and m / z 611.3, which are separated by 1 Da and 2 Da from the main peak P1. ing.
- the natural isotope abundance ratios of carbon C, hydrogen H, nitrogen N, and oxygen O, which are constituent elements of reserpine, are well known.
- the ratio of the ion intensity matches the abundance ratio of the isotope compound, and the ion intensity of the main peak P1
- the ratio of the ionic strengths of the sub-peaks P2 and P3 with respect to is easily determined.
- the ion intensity of the secondary peak P2 at m / z 610.3 is 38.4% of the ion intensity of the main peak P1 at m / z 609.3, and the ion intensity of the secondary peak 3 at m / z 611.3 is the main peak. It is 9.0% of the ionic strength of P1.
- FIG. 2 shows the results of measurement of reserpine at such a concentration that signal saturation does not occur. For example, when a high concentration of reserpine with a maximum ion intensity of 2 ⁇ 10 6 is measured, the mass spectrum is shown in FIG. As shown, the peak top of the main peak P1 is cut off. Naturally, if a calibration curve is prepared or quantified based on the ion intensity of m / z 609.3 corresponding to the main peak P1, accurate quantification cannot be performed.
- the sub-peaks P2 and P3 which are m / z 610.3 and m / z 611.3 are not saturated. That is, even in a situation where the main peak P1 is saturated, the ion intensities of these sub-peaks P2 and P3 can be used for calibration curve creation and quantitative work. Therefore, in the quantitative analysis method according to the present invention, when the main peak P1 is saturated, the ion intensity of the sub-peak P3 whose ion intensity is originally lower than the main peak P1, for example, m / z 611.3, is used for quantification. That is, the ion intensity I P3 of the peak top of the sub peak P3 of m / z 611.3 is first obtained.
- the ionic strength of the sub-peak P3 should theoretically be 9.0% of the ionic strength of the main peak P1
- converting the ionic strength I P3 of sub-peak P3 in the ionic strength of the main peak P1 is m / z 609.3.
- the noise level is considered to be substantially constant, the SN ratio is higher at the peak with higher ion intensity. Therefore, as shown in FIG. 2, under the situation where the main peak P1 is not saturated, the ion intensity of the main peak P1 is used for the creation of a calibration curve and quantitative calculation.
- the converted value converted according to the compound abundance ratio is used for calibration curve creation and quantitative calculation. As a result, it is possible to perform quantitative analysis of a concentration range obtained by substantially expanding the dynamic range of the A / D converter by about 10 times.
- FIG. 1 is a schematic configuration diagram of the LC / MS.
- the liquid feed pump 12 sucks the mobile phase from the mobile phase container 11 and delivers it at a constant flow rate.
- the autosampler 15 selects one of a standard sample or target sample (s) prepared in advance, and the injector 13 injects the selected sample into the mobile phase flow at a predetermined timing.
- the injected sample rides on the mobile phase and is introduced into the column 14, and while passing through the column 14, various compounds in the sample are separated in the time direction and eluted.
- the eluent supplied from the column outlet is electrosprayed from the ionization probe 21 into an ionization chamber that is an atmosphere of substantially atmospheric pressure, and the compound in the eluate is ionized.
- the generated ions are introduced into a quadrupole mass filter 25 disposed in a high vacuum atmosphere through a desolvation tube 22 and ion guides 23 and 24, and applied to the quadrupole mass filter 25 from a voltage source (not shown). Ions having a specific mass-to-charge ratio m / z according to the voltage (DC voltage + high-frequency voltage) that selectively passes through the quadrupole mass filter 25 and reaches the ion detector 26.
- the ion detector 26 outputs a detection signal corresponding to the amount of ions that have reached.
- the data processing unit 3 includes an A / D converter (ADC) 31 that digitizes an analog detection signal, a data collection unit 32, a saturation detection unit 33, a data selection control unit 34, an ion intensity conversion unit 35, and a chromatogram creation.
- the functional block includes a unit 36, a calibration curve creation unit 37, a calibration curve storage unit 38, and a quantitative calculation unit 39.
- the analysis control unit 4 controls the operations of the LC unit 1, the MS unit 2, and the data processing unit 3 in accordance with instructions from the central control unit 5.
- An operation unit 6 such as a keyboard and a display unit 7 such as a monitor display are connected to the central control unit 5 and serve as an input / output interface and control the entire system.
- At least a part of the central control unit 5, the analysis control unit 4, and the data processing unit 3 can be operated by using a personal computer as a hardware resource and operating dedicated control / processing software installed in the computer. It can be set as the structure which implement
- the operation of the LC / MS of this example will be described by taking as an example the case of quantifying a known target compound.
- a calibration curve is prepared using a standard sample containing the target compound.
- the mass-to-charge ratio of the ion showing the maximum intensity and the mass-to-charge ratio of the isotope ion are also known.
- the mass-to-charge ratio of ions exhibiting the maximum intensity is 609.3
- the mass-to-charge ratio of isotope ions is 610.3 and 611.3.
- the abundance ratio of these isotope ions can also be obtained by theoretical calculation. Therefore, for example, the user (analyst) sets the measurement mode in the MS unit 2 to the SIM measurement mode and sets the mass-to-charge ratio of the measurement target to three points m / z 609.3, 610.3, 611.3 from the operation unit 6. deep.
- the abundance ratio of isotope ions is also input from the operation unit 6 as one of parameters for data processing.
- a standard sample containing a target compound with a known concentration is injected from the injector 13 into the mobile phase, and the MS unit 2 repeatedly executes SIM measurement for the mass-to-charge ratio set as described above.
- the data collection unit 32 collects data corresponding to the ion intensity with respect to the three mass-to-charge ratios at predetermined sampling time intervals.
- the target compound begins to elute in the eluate from the outlet of the column 14, the ionic strength starts to increase with time at any of the above mass-to-charge ratios, and gradually decreases after the respective strength reaches its maximum. If ion intensity data at a specific mass-to-charge ratio (for example, m / z ⁇ 609.3) is plotted with time, a mass chromatogram is obtained.
- a specific mass-to-charge ratio for example, m / z ⁇ 609.3
- the output data is saturated. For example, the same maximum value data regardless of the input signal level. Is output from the A / D converter 31.
- the saturation detection unit 33 determines whether the time series data collected by the data collection unit 32 is within a predetermined margin range with respect to the maximum value data corresponding to the signal saturation. Judged to be saturated. As a result, it is possible to detect a state where there is a high possibility of saturation before actual signal saturation occurs.
- the signal saturation as described above occurs when the concentration of the target compound is high, but due to the separation characteristics in the LC section 1, the ionic strength changes with time as described above. Therefore, in the mass chromatogram, as shown in FIG. 4A, the chromatogram peak derived from the target compound begins to rise, and the ionic strength reaches a certain threshold Vth (the upper limit of the input dynamic range of the A / D converter 31). The intensity is saturated (becomes constant) when exceeding a predetermined value), and the chromatogram peak also falls when the original ion intensity falls below a certain threshold Vth.
- the saturation detector 33 distinguishes the time range ⁇ P1> from the time range ⁇ P3> and sends a signal corresponding to the time range to the data selection controller 34.
- the data selection control unit 34 selects the ion intensity data at m / z 609.3 that gives the maximum ion intensity in the time range ⁇ P1>, and the ion at m / z 611.3 in which the original ion intensity is low in the time range ⁇ P3>.
- the data collection unit 32 is controlled to select and output intensity data. Note that ion intensity data at m / z 610.3 may be selected and output in the time range ⁇ P3>.
- the ion intensity conversion unit 35 passes the data as it is in the time range ⁇ P1> and the input ion intensity in the time range ⁇ P3> with respect to the ion intensity data sequentially sent while being selected by the data collection unit 32.
- the ion intensity is converted into the strength with respect to m / z 609.3 and output. .
- the chromatogram creation unit 36 plots the data obtained from the ion intensity conversion unit 35 in time series order to create a mass chromatogram.
- the chromatogram creation unit 36 has a time range ⁇ P3> as shown in FIG.
- a mass chromatogram in which a pseudo peak portion is formed is created.
- Theoretical calculation of the isotope abundance ratio is accurate, and conditions that affect ion intensity data such as ionization efficiency in the ion source and ion detection sensitivity in the ion detector 26 in a narrow mass-to-charge ratio range of several Da or less are Can be considered identical. Therefore, it can be said that the accuracy of the pseudo peak portion is quite high.
- the calibration curve creation unit 37 detects the peak derived from the target compound from the mass chromatogram as described above, and calculates the peak area (area of the hatched portion in FIG. 4B). When the peak area of the chromatogram is obtained by performing the same measurement on a plurality of standard samples having different concentrations of the target compound, the calibration curve creation unit 37 has a concentration as shown in FIG. A calibration curve representing the relationship between the peak area and the peak area is created and stored in the calibration curve storage unit 38. This calibration curve becomes reference data for quantifying the target compound (reserpine in this example).
- the peak area derived from the target compound is obtained in the mass chromatogram by performing the same measurement as described above on the target sample.
- a part of the peak of the mass chromatogram is m / z 609.3. It is based on data obtained by conversion from ion intensity data of m / z 611.3 (or m / z 610.3). In this way, highly accurate quantification is possible even for a high concentration compound that provides an ionic strength that exceeds the upper limit of the input dynamic range of the A / D converter 31.
- the SIM measurement is performed by the MS unit 2, but data is collected by performing a scan measurement over a mass-to-charge ratio range that includes the target mass-to-charge ratio. You may make it do. That is, as long as it is possible to measure the ion intensity with respect to the mass-to-charge ratio of ions exhibiting the maximum intensity and the ion intensity of an isotope ion whose intensity is lower than the maximum intensity, the SIM measurement mode, the scan measurement mode, etc. There are no restrictions on the measurement mode.
- the MS unit 2 is a mass spectrometer capable of MS / MS analysis such as a triple quadrupole mass spectrometer
- the ion intensity signal obtained by detecting product ions is also as described above. It is also possible to carry out quantification by performing a simple process. For example, when reserpine is quantified by MS / MS analysis in SRM (selective reaction monitoring) measurement mode, it is usually generated by CID (collision-induced dissociation), etc., using m / z 609.3 indicating the maximum intensity as a precursor ion. The product ion of m / z 195 is selectively detected and quantified using its ion intensity.
- the output data is saturated and accurate quantification cannot be performed.
- the product ion of m / z 197 produced by CID or the like is selectively detected by using the isotope-derived m / z 611.3 as a precursor ion, as described above. Accurate quantification can be performed without causing signal saturation.
- the mass-to-charge ratio for ions composed only of the main isotope element is used as the mass-to-charge ratio of ions exhibiting the maximum intensity, and the signal corresponding to the maximum intensity is replaced when saturation occurs.
- the mass-to-charge ratio for isotope ions containing elements other than the main isotope element was used as the mass-to-charge ratio of ions used for The mass-to-charge ratio does not necessarily correspond to a peak derived from an isotope ion.
- the ion intensity of the mass-to-charge ratio deviated from the peak-top mass-to-charge ratio by a predetermined amount becomes lower than the peak-top intensity by a predetermined ratio.
- the intensity can be used instead of the ionic intensity of the isotope ions described above. According to this, even when the abundance ratio of compounds containing isotopes other than the main isotope is very low, accurate identification over a wide concentration range is possible even when the intensity of the isotope ions derived from the compounds is very low It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
目的化合物を含む試料を測定する際に、該目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比に対するイオン強度のほかに、該最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比に対するイオン強度も併せて検出し、
その最大強度よりも低い強度を示すイオンの質量電荷比に対するイオン強度の検出結果を最大強度を示すイオンの質量電荷比に対するイオン強度に換算し、
最大強度を示すイオンの質量電荷比に対するイオン強度が飽和する場合又はその可能性がある場合に前記換算により求まるイオン強度を利用して、定量のための検量線を作成する又は該検量線を参照した定量値の導出を行うことを特徴としている。
a)目的化合物を含む試料を測定する際に、該目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比に対するイオン強度のほかに、該最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比に対するイオン強度も併せて検出する測定実行手段と、
b)その最大強度よりも低い強度を示すイオンの質量電荷比に対するイオン強度の検出結果を最大強度を示すイオンの質量電荷比に対するイオン強度に換算する換算処理手段と、
c)最大強度を示すイオンの質量電荷比に対するイオン強度が飽和した状態であること又は飽和する可能性があることを検出する飽和検出手段と、
d)前記飽和検出手段により飽和状態又は飽和の可能性が検出されないときには、最大強度を示すイオンの質量電荷比に対するイオン強度を利用する一方、前記飽和検出手段により飽和状態又は飽和の可能性が検出されたときには、前記換算処理手段により換算されたイオン強度を利用して、定量のための検量線を作成する又は該検量線を参照した定量値の導出を行う定量処理手段と、
を備えることを特徴としている。
図2は、化学組成式がC33H4N2O9であるレセルピン(reserpine)を正イオン化モードで質量分析することにより得られるマススペクトル(プロファイルデータ)の一例を示す図である。図から分かるように、m/z 609.3にイオン強度が最大である主ピークP1が現れる。この主ピークP1は主同位体元素のみから構成されるレセルピンの分子イオン([M+H]+)ピークである。これに対し、主ピークP1から1Da及び2Daだけ離れたm/z 610.3及びm/z 611.3に、主同位体元素以外の同位体元素を含むレセルピンの同位体ピークである副ピークP2、P3が現れている。
LC部1において、送液ポンプ12は移動相容器11から移動相を吸引し一定流量で以て送給する。オートサンプラ15は予め用意された標準試料や目的試料(複数も可)のうちの1つを選択し、インジェクタ13は選択された試料を所定のタイミングで移動相流中に注入する。注入された試料は移動相に乗ってカラム14に導入され、カラム14を通過する間に試料中の各種化合物は時間方向に分離されて溶出する。
11…移動相容器
12…送液ポンプ
13…インジェクタ
14…カラム
15…オートサンプラ
2…MS部
21…イオン化プローブ
22…脱溶媒管
23、24…イオンガイド
25…四重極マスフィルタ
26…イオン検出器
3…データ処理部
31…A/D変換器
32…データ収集部
33…飽和検出部
34…データ選択制御部
35…イオン強度換算部
36…クロマトグラム作成部
37…検量線作成部
38…検量線記憶部
39…定量演算部
4…分析制御部
5…中央制御部
6…操作部
7…表示部
Claims (9)
- 目的化合物由来のイオンを検出して得られるイオン強度に基づいて目的化合物を定量する質量分析装置を用いた定量分析方法において、
目的化合物を含む試料を測定する際に、該目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比に対するイオン強度のほかに、該最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比に対するイオン強度も併せて検出し、
その最大強度よりも低い強度を示すイオンの質量電荷比に対するイオン強度の検出結果を最大強度を示すイオンの質量電荷比に対するイオン強度に換算し、
最大強度を示すイオンの質量電荷比に対するイオン強度が飽和する場合又はその可能性がある場合に前記換算により求まるイオン強度を利用して、定量のための検量線を作成する又は該検量線を参照した定量値の導出を行うことを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1に記載の質量分析装置を用いた定量分析方法であって、
前記目的化合物由来のイオンの中で最大強度を示すイオンとは主同位体元素から構成される主イオンであり、前記最大強度に対し所定比率だけ低い強度を示すイオンとは主同位体元素以外の同位体元素を含む副イオンであることを特徴とする質量分析装置を用いた定量分析方法。 - 請求項2に記載の質量分析装置を用いた定量分析方法であって、
前記所定比率は既知の同位体存在比に基づいて求まる前記主イオンと前記副イオンとの存在比であり、理論計算により求まる前記存在比を利用して前記換算を行うことを特徴とする質量分析装置を用いた定量分析方法。 - 請求項2に記載の質量分析装置を用いた定量分析方法であって、
試料測定により得られた、前記主イオンに対するピークの強度と前記副イオンに対するピークの強度との比を利用して前記換算を行うことを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1~4のいずれかに記載の質量分析装置を用いた定量分析方法であって、
前記目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比と、前記最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比と、をそれぞれ検出対象のイオンに設定した選択イオンモニタリング測定を行うことにより、それらイオンの強度を得ることを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1~4のいずれかに記載の質量分析装置を用いた定量分析方法であって、
前記目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比と、前記最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比と、を含む質量電荷比範囲のスキャン測定を行うことにより、それらイオンの強度を得ることを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1~4のいずれかに記載の質量分析装置を用いた定量分析方法であって、
前記最大強度を示すイオン及び前記最大強度に対し所定比率だけ低い強度を示すイオンは、目的化合物由来の異なるイオンをプリカーサイオンとしてMSn分析して得られたプロダクトイオンであることを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1~7のいずれかに記載の質量分析装置を用いた定量分析方法であって、
該質量分析装置はクロマトグラフにより分離された化合物を質量分析するものであって、前記検量線は目的化合物由来のクロマトグラムピーク面積と化合物濃度との関係を示すものであることを特徴とする質量分析装置を用いた定量分析方法。 - 請求項1に記載の定量分析方法に用いる質量分析装置であって、
a)目的化合物を含む試料を測定する際に、該目的化合物由来のイオンの中で最大強度を示すイオンの質量電荷比に対するイオン強度のほかに、該最大強度に対し所定比率だけ低い強度を示すイオンの質量電荷比に対するイオン強度も併せて検出する測定実行手段と、
b)その最大強度よりも低い強度を示すイオンの質量電荷比に対するイオン強度の検出結果を最大強度を示すイオンの質量電荷比に対するイオン強度に換算する換算処理手段と、
c)最大強度を示すイオンの質量電荷比に対するイオン強度が飽和した状態であること又は飽和する可能性があることを検出する飽和検出手段と、
d)前記飽和検出手段により飽和状態又は飽和の可能性が検出されないときには、最大強度を示すイオンの質量電荷比に対するイオン強度を利用する一方、前記飽和検出手段により飽和状態又は飽和の可能性が検出されたときには、前記換算処理手段により換算されたイオン強度を利用して、定量のための検量線を作成する又は該検量線を参照した定量値の導出を行う定量処理手段と、
を備えることを特徴とする質量分析装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/354,385 US8969791B2 (en) | 2011-10-28 | 2011-10-28 | Quantitative analysis method using mass spectrometer |
JP2013540597A JP5737419B2 (ja) | 2011-10-28 | 2011-10-28 | 質量分析装置を用いた定量分析方法及び質量分析装置 |
PCT/JP2011/074981 WO2013061466A1 (ja) | 2011-10-28 | 2011-10-28 | 質量分析装置を用いた定量分析方法及び質量分析装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/074981 WO2013061466A1 (ja) | 2011-10-28 | 2011-10-28 | 質量分析装置を用いた定量分析方法及び質量分析装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013061466A1 true WO2013061466A1 (ja) | 2013-05-02 |
Family
ID=48167329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074981 WO2013061466A1 (ja) | 2011-10-28 | 2011-10-28 | 質量分析装置を用いた定量分析方法及び質量分析装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8969791B2 (ja) |
JP (1) | JP5737419B2 (ja) |
WO (1) | WO2013061466A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140127A3 (en) * | 2012-03-19 | 2014-05-30 | Micromass Uk Limited | Improved time of flight quantitation using alternative characteristic ions |
WO2015132861A1 (ja) * | 2014-03-03 | 2015-09-11 | 株式会社島津製作所 | クロマトグラフ質量分析装置用データ処理装置及びプログラム |
JP2016017941A (ja) * | 2014-07-11 | 2016-02-01 | 株式会社島津製作所 | クロマトグラフ用データ処理装置及びデータ処理方法並びにクロマトグラフ分析システム |
JP2019070547A (ja) * | 2017-10-06 | 2019-05-09 | 日本電子株式会社 | 質量分析データ処理装置及び質量分析データ処理方法 |
JP2019124610A (ja) * | 2018-01-18 | 2019-07-25 | 株式会社島津製作所 | クロマトグラフ質量分析装置 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9548190B2 (en) * | 2012-12-20 | 2017-01-17 | Dh Technologies Development Pte. Ltd. | Scheduled MS3 for quantitation |
US10115576B2 (en) | 2013-12-12 | 2018-10-30 | Waters Technologies Corporation | Method and an apparatus for analyzing a complex sample |
GB201508197D0 (en) * | 2015-05-14 | 2015-06-24 | Micromass Ltd | Trap fill time dynamic range enhancement |
GB2544959B (en) * | 2015-09-17 | 2019-06-05 | Thermo Fisher Scient Bremen Gmbh | Mass spectrometer |
EP3608941B1 (en) * | 2018-08-07 | 2023-11-22 | Thermo Fisher Scientific (Bremen) GmbH | Isotope ratio measurement |
EP3924730B1 (en) * | 2019-03-15 | 2024-05-01 | Waters Technologies Ireland Limited | Apparatus and method for targeted compound analysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318599A (ja) * | 1996-05-31 | 1997-12-12 | Shimadzu Corp | クロマトグラフ/質量分析装置のデータ処理装置 |
JP2000065797A (ja) * | 1998-08-20 | 2000-03-03 | Shimadzu Corp | クロマトグラフ質量分析装置の検量線作成方法 |
JP2010071651A (ja) * | 2008-09-16 | 2010-04-02 | Shimadzu Corp | クロマトグラフ質量分析装置 |
JP2011512534A (ja) * | 2008-02-15 | 2011-04-21 | エムディーエス アナリティカル テクノロジーズ | 質量分析法による定量化法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763875A (en) * | 1991-11-12 | 1998-06-09 | Max Planck Gesellschaft | Method and apparatus for quantitative, non-resonant photoionization of neutral particles |
US7399958B2 (en) * | 1999-07-21 | 2008-07-15 | Sionex Corporation | Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations |
JP3756365B2 (ja) * | 1999-12-02 | 2006-03-15 | 株式会社日立製作所 | イオントラップ質量分析方法 |
US6835927B2 (en) * | 2001-10-15 | 2004-12-28 | Surromed, Inc. | Mass spectrometric quantification of chemical mixture components |
DE10150559C2 (de) * | 2001-10-15 | 2003-10-30 | Bruker Daltonik Gmbh | Verfahren zur Aufnahme von untergrundfreien Fragmentionen-Flugzeitspektren und Flugzeitmassenspektrometer |
EP1697024B1 (en) * | 2003-12-18 | 2017-08-30 | DH Technologies Development Pte. Ltd. | Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification |
GB2423867B (en) * | 2004-04-05 | 2007-01-17 | Micromass Ltd | Mass spectrometer |
US7608818B2 (en) * | 2005-04-29 | 2009-10-27 | Sionex Corporation | Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices |
GB0620963D0 (en) * | 2006-10-20 | 2006-11-29 | Thermo Finnigan Llc | Multi-channel detection |
US7541576B2 (en) * | 2007-02-01 | 2009-06-02 | Battelle Memorial Istitute | Method of multiplexed analysis using ion mobility spectrometer |
US20080237458A1 (en) * | 2007-04-02 | 2008-10-02 | Yongdong Wang | Automated mass spectral identification |
GB0918629D0 (en) * | 2009-10-23 | 2009-12-09 | Thermo Fisher Scient Bremen | Detection apparatus for detecting charged particles, methods for detecting charged particles and mass spectometer |
GB2478300A (en) * | 2010-03-02 | 2011-09-07 | Anatoly Verenchikov | A planar multi-reflection time-of-flight mass spectrometer |
GB201005959D0 (en) * | 2010-04-12 | 2010-05-26 | Univ Leuven Kath | Spectroscopic analysis system |
DE102010032823B4 (de) * | 2010-07-30 | 2013-02-07 | Ion-Tof Technologies Gmbh | Verfahren sowie ein Massenspektrometer zum Nachweis von Ionen oder nachionisierten Neutralteilchen aus Proben |
US20130181125A1 (en) * | 2010-08-19 | 2013-07-18 | Dh Technologies Development Pte. Ltd. | Method and system for increasing the dynamic range of ion detectors |
GB2486484B (en) * | 2010-12-17 | 2013-02-20 | Thermo Fisher Scient Bremen | Ion detection system and method |
GB201100302D0 (en) * | 2011-01-10 | 2011-02-23 | Micromass Ltd | A method of correction of data impaired by hardware limitions in mass spectrometry |
GB201100300D0 (en) * | 2011-01-10 | 2011-02-23 | Micromass Ltd | A method of deadtime correction in mass spectrometry |
-
2011
- 2011-10-28 WO PCT/JP2011/074981 patent/WO2013061466A1/ja active Application Filing
- 2011-10-28 JP JP2013540597A patent/JP5737419B2/ja active Active
- 2011-10-28 US US14/354,385 patent/US8969791B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318599A (ja) * | 1996-05-31 | 1997-12-12 | Shimadzu Corp | クロマトグラフ/質量分析装置のデータ処理装置 |
JP2000065797A (ja) * | 1998-08-20 | 2000-03-03 | Shimadzu Corp | クロマトグラフ質量分析装置の検量線作成方法 |
JP2011512534A (ja) * | 2008-02-15 | 2011-04-21 | エムディーエス アナリティカル テクノロジーズ | 質量分析法による定量化法 |
JP2010071651A (ja) * | 2008-09-16 | 2010-04-02 | Shimadzu Corp | クロマトグラフ質量分析装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140127A3 (en) * | 2012-03-19 | 2014-05-30 | Micromass Uk Limited | Improved time of flight quantitation using alternative characteristic ions |
WO2015132861A1 (ja) * | 2014-03-03 | 2015-09-11 | 株式会社島津製作所 | クロマトグラフ質量分析装置用データ処理装置及びプログラム |
JPWO2015132861A1 (ja) * | 2014-03-03 | 2017-03-30 | 株式会社島津製作所 | クロマトグラフ質量分析装置用データ処理装置及びプログラム |
US10488376B2 (en) | 2014-03-03 | 2019-11-26 | Shimadzu Corporation | Data processing system and program for chromatograph mass spectrometer |
JP2016017941A (ja) * | 2014-07-11 | 2016-02-01 | 株式会社島津製作所 | クロマトグラフ用データ処理装置及びデータ処理方法並びにクロマトグラフ分析システム |
JP2019070547A (ja) * | 2017-10-06 | 2019-05-09 | 日本電子株式会社 | 質量分析データ処理装置及び質量分析データ処理方法 |
JP2019124610A (ja) * | 2018-01-18 | 2019-07-25 | 株式会社島津製作所 | クロマトグラフ質量分析装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5737419B2 (ja) | 2015-06-17 |
JPWO2013061466A1 (ja) | 2015-04-02 |
US8969791B2 (en) | 2015-03-03 |
US20140299762A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5737419B2 (ja) | 質量分析装置を用いた定量分析方法及び質量分析装置 | |
US9514922B2 (en) | Mass analysis data processing apparatus | |
JP5482912B2 (ja) | クロマトグラフ質量分析装置 | |
Hoegg et al. | Isotope ratio characteristics and sensitivity for uranium determinations using a liquid sampling-atmospheric pressure glow discharge ion source coupled to an Orbitrap mass analyzer | |
WO2013153647A1 (ja) | 質量分析装置 | |
JP5900631B2 (ja) | 質量分析装置 | |
JP7173293B2 (ja) | クロマトグラフ質量分析装置 | |
JP2016536761A (ja) | 標的化した質量分析 | |
WO2015092862A1 (ja) | 質量分析装置及び質量分析方法 | |
JP2017020877A (ja) | 質量分析を用いた多成分一斉分析方法及び質量分析装置 | |
US9734995B2 (en) | Time of flight quantitation using alternative characteristic ions | |
JP6750687B2 (ja) | 質量分析装置 | |
JP4259221B2 (ja) | クロマトグラフ質量分析装置 | |
JP2016053500A (ja) | クロマトグラフ質量分析装置 | |
JP6954143B2 (ja) | クロマトグラフ質量分析装置 | |
JP6288313B2 (ja) | 質量分析方法、クロマトグラフ質量分析装置、及び質量分析用プログラム | |
JP7359302B2 (ja) | クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム | |
JP5747839B2 (ja) | クロマトグラフ質量分析用データ処理装置 | |
JP7416232B2 (ja) | クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム | |
Wetzel et al. | Overcoming interferences in inductively coupled plasma mass spectrometry via gas-flow modulation Part 1. Fourier transform methods | |
WO2017126067A1 (ja) | 質量分析装置及びそのイオン検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874582 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013540597 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14354385 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11874582 Country of ref document: EP Kind code of ref document: A1 |