WO2013058287A1 - Method for manufacturing coupled printed circuit board and coupled printed circuit board - Google Patents

Method for manufacturing coupled printed circuit board and coupled printed circuit board Download PDF

Info

Publication number
WO2013058287A1
WO2013058287A1 PCT/JP2012/076854 JP2012076854W WO2013058287A1 WO 2013058287 A1 WO2013058287 A1 WO 2013058287A1 JP 2012076854 W JP2012076854 W JP 2012076854W WO 2013058287 A1 WO2013058287 A1 WO 2013058287A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
hole
mounting surface
small
green sheet
Prior art date
Application number
PCT/JP2012/076854
Other languages
French (fr)
Japanese (ja)
Inventor
雄貴 横山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013058287A1 publication Critical patent/WO2013058287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0239Signal transmission by AC coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a method for manufacturing a connection wiring board and a connection wiring board.
  • a wiring board for mounting an electronic component such as a semiconductor element has been formed, for example, by arranging a wiring conductor layer made of a conductive metal on the surface of a substrate body made of a ceramic sintered body or the like. .
  • connection wiring board In recent years, with the demand for miniaturization of electronic devices such as semiconductor devices, the size of wiring boards has also been miniaturized. In order to efficiently obtain a small-sized wiring board, so-called multi-cavity fabrication is generally performed in which a large number of small wiring boards are simultaneously obtained from a single large-area mother board. Hereinafter, such a multi-piece wiring board is referred to as a connection wiring board.
  • connection wiring board for example, a plurality of wiring board regions serving as individual wiring boards are arranged and formed vertically and horizontally, and the division grooves that divide each wiring board region are at least of the mother board constituting the connection wiring board.
  • the connection wiring board may be referred to as a mother board.
  • a mother board By dividing the mother board along the dividing grooves, a plurality of wiring boards can be obtained efficiently.
  • semiconductor elements include a light emitting element such as an LED element.
  • a semiconductor package can be mentioned, for example.
  • the dividing groove is formed by pushing a cutter blade or the like along the boundary between the wiring board regions on at least one surface of a laminate such as a green sheet serving as a mother board.
  • the position where the dividing groove is formed is marked by a method such as printing a conductive material similar to the wiring conductor on the outer peripheral area (substrate outer peripheral area) of the surface of the laminated body on the dividing groove forming side (hereinafter referred to as “the wiring groove”). It is determined with reference to this print mark.
  • Such a positioning method has the following problems.
  • the print mark (first print mark) formed on one side of the laminate is used as a reference.
  • One division groove is formed, and a second division groove is formed on this surface with reference to a print mark (second print mark) formed on the other surface of the laminate.
  • stacking misalignment that is, positional misalignment
  • the first print mark position and the second print mark position shift, and as a result, the first divided grooves formed on both surfaces of the mother board and the second print mark are formed. There was a possibility that the position of the dividing groove would shift.
  • the cracks progress in a predetermined direction when the mother board is divided.
  • burrs, chips, or chipping may occur in the wiring board after separation.
  • the following method is also performed as a positioning method when forming the divided grooves. That is, as shown in FIG. 4, positioning holes of the same size are provided in the substrate outer peripheral regions of the insulating layers 11 a, 11 b, 11 c such as green sheets constituting the laminated body 11, and these positioning holes are arranged in the thickness direction.
  • the insulating layers 11a, 11b, and 11c are stacked so that the communication holes 12 having a constant diameter overlap with each other.
  • the opening end portion 12a on one surface side (for example, the upper surface side) of the communication hole 12 is recognized as a positioning reference, and a first division groove is formed on this surface.
  • an opening end 12b on the other surface side (for example, the lower surface side) of the communication hole 12 is recognized as a positioning reference, and a second divided groove is formed on this surface.
  • the positioning hole formed in the insulating layer 11a is used as a reference on the upper surface side of the multilayer body 11, and the first dividing groove is positioned, and the positioning hole formed in the insulating layer 11c is used as a reference on the lower surface side.
  • the second dividing groove is positioned. Therefore, there is a possibility that the formation positions of the first divided grooves and the second divided grooves are shifted due to the stacking shift between the insulating layers 11a, 11b, and 11c constituting the stacked body and are not formed to face each other. there were.
  • the present invention has been made in order to solve the above-described problem, and the dividing grooves formed on both surfaces of the mother board are positioned with high accuracy and opposed to each other, and the dividing grooves are arranged with respect to the wiring board region. It is an object of the present invention to provide a connection wiring board that is formed with high positional accuracy and prevents occurrence of burrs and chips on the divided wiring board, and a method for manufacturing the connection wiring board.
  • connection wiring board of the present invention (A) a plurality of wiring board regions formed of a plurality of inorganic insulating layers and arranged in a vertical and horizontal direction and a substrate outer peripheral region surrounding the wiring substrate region, and boundaries between the wiring substrate regions in the substrate outer peripheral region; Producing a laminate having a communication opening with a small-size hole and a large-size hole in the boundary extension portion on the extension, and (B) A first dividing groove that divides at least the inorganic insulating layer having the small-sized hole at the boundary on one surface of the laminated body using the first end edge of the small-sized hole as a positioning reference.
  • the one surface of the stacked body is an element mounting surface on which an element mounting portion is formed in the wiring board region, and the communication opening of (A2) is formed.
  • the communication opening of (A2) is formed.
  • connection wiring board of the present invention is A mother board having a plurality of wiring board regions arranged vertically and horizontally and a substrate outer peripheral region surrounding the wiring board region, which is made of a sintered body of an inorganic insulating material, In the mother board, an opening formed in a boundary extension portion that is an extension of a boundary between the wiring board areas in the outer peripheral area of the board, and has a larger opening area than the small size hole and the small size hole.
  • the communication opening portion is configured such that the second end edge portion on the other surface side of the small size hole is exposed through the opening of the large size hole.
  • the mother board has an element mounting surface on which an element mounting portion is formed in the wiring board region and a non-mounting surface on the opposite side of the element mounting surface, and the small size hole is the It is preferable that the large size hole is formed on the element mounting surface side and the non-mounting surface side so that the small size hole and the large size hole are connected in the thickness direction of the mother substrate.
  • the method for dividing a connection wiring board according to the present invention is characterized in that the connection wiring board is divided by applying a bending stress to the mother board along the first division groove or the second division groove.
  • the first dividing groove and the second dividing groove formed on both surfaces of the mother board are positioned with high precision and opposed to each other, and these dividing grooves are positioned higher than the wiring board region. It is possible to obtain a connected wiring board that is formed with high accuracy and prevents the occurrence of burrs and chips on the divided wiring board.
  • connection wiring board of this invention It is a top view which shows one Embodiment of the connection wiring board of this invention. It is a figure which expands and shows a part of FIG. It is a figure which expands and shows the cross section of the X section in FIG. It is sectional drawing for demonstrating the conventional method for positioning of a division groove. In an Example, it is a top view from the upper surface side which shows the shape and dimension of a communicating opening part which were formed in the green sheet laminated body. It is sectional drawing of an example of the wiring board obtained by parting from the connection wiring board of this invention.
  • FIG. 1 is a plan view showing an embodiment of a connection wiring board of the present invention
  • FIG. 2 is an enlarged view of a part of FIG.
  • FIG. 3 is an enlarged view showing a cross section of a portion X in FIG.
  • the connection wiring board 1 of the embodiment has a mother board 2 made of a sintered body of an inorganic insulating material.
  • the element mounting surface 2a which is one main surface of the mother board 2, for example, a total of 30 wiring board regions 21 are arranged adjacent to each other in 5 columns vertically and 6 rows horizontally, and an outer periphery surrounding them. Further, a substrate outer peripheral region 22 is provided.
  • the element mounting surface 2a is a surface on which a semiconductor element such as an LED element is mounted.
  • FIG. 1 is a plan view of the connection wiring board 1 from the element mounting surface 2a side. In FIG. 3, the upper surface is defined as an element mounting surface 2a.
  • the non-mounting surface 2b which is the main surface opposite to the element mounting surface 2a, is located on the non-mounting surface side in a region corresponding to the wiring board region 21 and the substrate outer peripheral region 22 on the element mounting surface 2a side. Wiring board region and substrate outer peripheral region are formed.
  • the substrate outer peripheral region 22 is provided to facilitate handling of the connection wiring substrate 1. Due to the arrangement of the substrate outer peripheral region 22, mechanical destruction such as chipping or cracking occurs in the wiring substrate region 21 when the connection wiring substrate 1 collides with a jig or a device in a transport process or the like. Is prevented.
  • the inorganic insulating material constituting the mother substrate 2 examples include an aluminum oxide sintered body (alumina ceramics), an aluminum nitride sintered body, a mullite sintered body, or a glass ceramic composition containing glass powder and ceramic powder. And a sintered body (Low Temperature Co-fired Ceramics, hereinafter referred to as LTCC).
  • the mother board 2 is formed by laminating a plurality (three in the embodiment) of inorganic insulating layers made of these ceramic materials. In the mother substrate 2 of the embodiment, three layers of an upper inorganic insulating layer 23, an intermediate inorganic insulating layer 24, and a lower inorganic insulating layer 25 are laminated in order from the element mounting surface 2a.
  • a frame part 3 is disposed at the peripheral part, and a concave part (cavity) 4 in which a semiconductor element such as an LED element is mounted is formed at the center part.
  • the semiconductor element mounting portion 5 is provided on the bottom surface of the cavity 4, and element connection terminals 6 are provided on both sides of the mounting portion 5.
  • the wiring board region 21 on the element mounting surface 2a side of the mother board 2 does not have such a cavity 4 and may have a flat shape. And the structure which provided the element mounting part 5 in the center part of such a flat wiring board area
  • external wiring terminals that are electrically connected to external circuits are provided in each wiring board region on the non-mounting surface 2b side of the mother board 2. Further, a through conductor that electrically connects the element connection terminal 6 on the element mounting surface 2 a side and the external electrode terminal on the non-mounting surface 2 b side is provided inside the mother board 2.
  • the external connection terminal and the through conductor as long as they are electrically connected to the element connection terminal ⁇ the through conductor ⁇ the external connection terminal ⁇ the external circuit, the position, shape, and size of the connection are limited. Not. Further, the shape and size of the element connection terminal 6 are not limited as long as the electrical connection is ensured. If FIG.
  • 23 is an upper-layer inorganic insulating layer
  • 24 is an intermediate
  • 25 is a lower-layer inorganic insulating layer
  • the frame portion 3 is formed by the upper inorganic insulating layer 23 by a method described later.
  • the frame portion 3 is disposed at the peripheral portion of the element mounting surface 2a of the wiring substrate 30, and a recess (cavity) in which a semiconductor element such as an LED element is mounted at the center portion.
  • the semiconductor element mounting portion 5 is provided on the bottom surface of the cavity 4, and element connection terminals 6 and 6 are provided on both sides of the mounting portion 5.
  • external electrode terminals 31 and 31 that are electrically connected to an external circuit are provided in each wiring board region on the non-mounting surface 2 b side of the wiring board 30, and the element mounting surface 2 a is provided inside the wiring board 30.
  • a through conductor 32 is provided to electrically connect the element connection terminals 6 and 6 on the side and the external electrode terminals 31 and 31 on the non-mounting surface 2b side.
  • Examples of the material constituting the wiring conductor layer such as the element connection terminal 6, the external connection terminal 31, and the through conductor 32 include conductive metal materials such as silver, palladium, rhodium, tungsten, molybdenum, manganese, copper, platinum, and gold. It is done. The method for forming the wiring conductor layer will be described in detail in the section of the method for manufacturing the connection wiring board 1.
  • the surfaces of the element connection terminals 6 and the external connection terminals 31 are made of nickel in order to prevent corrosion due to oxidation and sulfur gas in the air, and to improve solder wettability and bonding characteristics when connecting bonding wires and the like. It is preferable that a plating layer such as metal is provided.
  • the communication openings 7 reaching the non-mounting surface 2 b are respectively formed in the boundary extension portions that are extensions of the boundaries between the wiring board regions 21 in the substrate outer peripheral region 22 on the element mounting surface 2 a side. Is formed.
  • the communication opening 7 has a small size hole 7a with one end opening to the element mounting surface 2a and a small opening having an opening area opening to the non-mounting surface 2b.
  • the large-sized hole 7b is larger than 7a, and the small-sized hole 7a and the large-sized hole 7b are connected to each other.
  • the communication opening 7 described above is opposed to both the vertical and horizontal sides in the boundary extension portion which is an extension of the boundary between the wiring substrate regions 21 in the substrate outer peripheral region 22 on the element mounting surface 2a side of the mother substrate 2. It is preferable to provide them. It is also possible to form the large size hole 7b in the element mounting surface 2a and form the small size hole 7a in the non-mounting surface 2b.
  • the communication opening 7 When the communication opening 7 is viewed from the element mounting surface 2a side of the mother board 2, the end portion 71a of the small size hole 7a on the element mounting surface 2a side is exposed, and the entire end portion 71a is exposed. Is easily visible from the element mounting surface 2a side. Further, when the communication opening 7 is viewed in plan from the non-mounting surface 2b side of the mother board 2, the small opening is formed through the large size hole 7b opened in the non-mounting surface 2b (that is, through the large size hole 7b). The end portion 71b of the size hole 7a on the non-mounting surface 2b side is exposed, and the entire end portion 71b can be seen through.
  • the end portion 71a on the element mounting surface 2a side and the end portion 71b on the non-mounting surface 2a side, which are both ends of the small size hole 7a, are respectively on the element mounting surface 2a side and the non-mounting surface 2b side. Therefore, it is clearly recognized by an image recognition device or the like.
  • the shape of the opening surface of the small size hole 7a and the large size hole 7b constituting the communication opening 7 (that is, the shape when viewed in plan) can expose the entire inner peripheral edge of both ends of the small size hole 7a.
  • Various shapes such as a quadrangular shape such as a trapezoidal shape and a rectangular shape, an elliptical shape, and a circular shape can be adopted as long as they can be formed. Since the accuracy of shape recognition by the image recognition device is high, a rectangular shape is preferable.
  • the first division grooves 8 are formed along the boundary between the wiring board regions 21 on the element mounting surface 2a side. Also on the non-mounting surface side of the mother board 2, a second dividing groove (not shown) is formed so as to face the first dividing groove 8 along the boundary between the wiring board regions. Yes.
  • the first dividing groove 8 is formed from the element mounting surface 2a side of the mother board 2 with the end 71a exposed to the element mounting surface 2a side of the small size hole 7a constituting the communication opening 7 as a reference for positioning.
  • the second dividing groove is a non-mounting surface of the mother board 2 with an end 71b that can be seen from the non-mounting surface 2b side through the opening of the large size hole 7b as a reference for positioning. It is formed from the 2b side.
  • the first dividing groove 8 and the second dividing groove are formed so that the bottoms face each other with the intermediate part in the thickness direction of the mother board 2 interposed therebetween.
  • Such first dividing grooves 8 and second dividing grooves are formed not only at the boundary between the wiring substrate regions 21 but also at the boundary between the wiring substrate region 21 and the substrate outer peripheral region 22 arranged on the outermost periphery.
  • the wiring board region 21 and the substrate outer peripheral region 22 can be divided.
  • the division holes 9 penetrating the mother board 2 can be formed so as to cut out the four corners of the wiring board region 21.
  • each wiring board region 21 is provided inside the mother board 2.
  • Thermal vias may be embedded, or a heat dissipation layer parallel to the element mounting surface 2a may be provided.
  • a reflection film containing, for example, silver as a main component in the widest possible area of the bottom surface of the cavity 4 in order to increase the light extraction efficiency from the light emitting element. May be formed so as not to be electrically connected to the element connection terminal 6, and a protective overcoat glass layer may be coated on the reflective film.
  • connection wiring board 1 of the embodiment configured as described above bending stress is applied to the mother substrate 2 along the first divided grooves 8 or the second divided grooves, whereby the opposing first divided grooves 8 are formed.
  • the mother board 2 is broken between the bottom part and the bottom part of the second dividing groove, and division is performed, whereby each wiring board can be obtained. It may be divided after electronic parts such as semiconductor elements are mounted in advance on each wiring board region 21 of the mother board 2. Whether the bending stress is applied to the element mounting surface 2a or the non-mounting surface 2b of the mother board 2 is determined in consideration of the smoothness of the divided surfaces, the occurrence of burrs and chips, and the like.
  • the communication opening 7 is disposed in the boundary extension portion of the mother board 2, and both end portions 71 a and 71 b of the small size hole 7 a constituting the communication opening 7 are positioned.
  • the first dividing groove 8 and the second dividing groove are formed on the element mounting surface 2a side and the non-mounting surface 2b side, respectively, the first dividing groove 8 and the second dividing groove are formed.
  • the bottoms of each other are arranged so as to oppose each other with high accuracy without any deviation. Therefore, division along these division grooves becomes easy and accurate, and defects such as burrs and chippings are prevented from occurring on the individual wiring boards divided at the boundaries of the wiring board regions 21. .
  • both ends of the small-sized hole 7a that opens in the same element mounting surface 2a as the cavity 4 of the wiring board region 21 are used as positioning references, and the divided grooves (that is, the first divided groove 8 and the second divided groove) are formed on both sides. Since the grooves are formed, it is possible to accurately match the positions of these divided grooves with the boundaries between the wiring board regions 21. Therefore, in the divided wiring board, the positional deviation of the cavity 4 and the like with respect to the outer side is suppressed, and wiring with excellent mounting accuracy and workability for mounting electronic components such as semiconductor elements and external electric circuit boards It can be a substrate.
  • connection wiring board 1 of the present invention has been described by way of an example.
  • the configuration can be appropriately changed as long as it does not contradict the gist of the present invention.
  • the manufacturing method of the connection wiring board 1 which concerns on embodiment of this invention has the following processes (A), (B), (C), and (D).
  • a laminate having a plurality of wiring board regions arranged vertically and horizontally and a substrate outer peripheral region surrounding the wiring substrate region, and comprising a plurality of inorganic insulating layers, and between the wiring substrate regions in the substrate outer peripheral region.
  • a plurality of inorganic insulating layers are prepared, and in a predetermined layer of the plurality of inorganic insulating layers, a small-sized hole is formed in a region corresponding to the boundary extension portion, and each layer of the inorganic insulating layer other than the one layer
  • a step of forming a large size hole having a larger opening area than the small size hole in a region corresponding to the boundary extension portion (A2) A step of laminating the plurality of inorganic insulating layers in which the small-sized holes or the large-sized holes are formed, and forming a predetermined communication opening in the obtained laminated body. Steps (B), (C), and (D) follow the step (A) described above.
  • a preferred embodiment is the order of step (A), step (B), step (C), and step (D).
  • the order of the (B) process and the (C) process after the (A) process is not necessarily limited, and the (B) process and then the (C) process may be continued after the (A) process.
  • Step (A) may be followed by step (C) and then step (B), or step (B) and step (C) may be performed at the same timing.
  • the step (D) described above follows the step (B) or the step (C).
  • the order of the (A1) process and the (A2) process in the (A) process is preferably the order of the (A1) process and then the (A2) process, but in the order of the (A2) process and then the (A1) process. There may be.
  • the order of (B) process and (C) process and (A1) process and (A2) process is reversed, the small size hole and large size hole of each process are as needed Shall be re-read.
  • connection wiring board 1 shown in FIGS.
  • the frame green sheet and the upper inorganic insulating layer are represented by the same symbol 23
  • the element connecting terminal metal paste layer and the element connecting terminal are represented by the same symbol 6. Others are the same.
  • substantially flat form means flat form on a visual level.
  • a glass ceramic composition containing glass powder and ceramic powder, a binder and, if necessary, a plasticizer A slurry is prepared by adding a solvent or the like. Next, this is formed into a sheet by a doctor blade method or the like and dried to produce an original green sheet.
  • the base substrate 2 is a ceramic substrate such as an alumina substrate, a ceramic powder such as an alumina powder is used instead of the glass ceramic composition, and an original green sheet is produced in the same manner.
  • glass powder and ceramic powder for preparing the glass ceramic composition known glass powder and ceramic powder conventionally used for the production of LTCC substrates can be used without particular limitation.
  • binder for example, polyvinyl butyral, acrylic resin and the like can be suitably used.
  • plasticizer for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • solvent for example, aromatic organic solvents such as toluene and xylene, and alcohol organic solvents such as butanol can be used.
  • a dispersing agent and a leveling agent can also be used.
  • the central portion of the area corresponding to each wiring board area is punched into a predetermined shape such as a circle or an ellipse using a punching die or a punching machine.
  • a large opening is formed.
  • a small-sized hole 7a is also formed at a predetermined position in a region corresponding to the boundary extension portion by punching using a punching die or a punching machine.
  • the frame green sheet 23 laminated on the first layer on the element mounting surface 2a side is manufactured.
  • the frame green sheet 23 can be formed with alignment marks for lamination.
  • the original green sheet used may be a stack of a plurality of sheets formed by a doctor blade method or the like as long as the small size hole 7a can be punched out.
  • the small size holes 7a described above are provided so as to face the boundary extension portions on the left and right of the boundary between the respective wiring board regions and the upper and lower extensions in the region serving as the substrate outer peripheral region of the frame green sheet. Is preferred.
  • the large opening for forming the cavity 4 is not formed in the original green sheet. Instead, only the small size hole 7a is formed.
  • the green sheet which does not have such a large opening part for cavity 4 formation shall show the green sheet for frames in the following description.
  • a plurality of the obtained original green sheets (for example, two original green sheets.
  • the green sheet for the frame body is the green sheet 24 for the intermediate layer, and the green sheet for the lower layer is the opposite side to the green sheet for the frame body. )
  • a predetermined position of a region corresponding to each wiring board region is mechanically punched using a punching die or a punching machine to form via holes for interlayer connection.
  • a large-sized hole 7b having an opening area larger than that of the small-sized hole 7a is formed at a predetermined position in a region corresponding to the boundary extension portion by a punching process similar to the method for the frame green sheet.
  • the large-size holes 7b described above are formed on the left and right and upper and lower sides of the boundary between the respective wiring board regions in a region serving as the substrate peripheral region of a plurality of original green sheets, for example, the intermediate layer green sheet 24 and the lower layer green sheet 25. It is preferable to be provided so as to be opposed to the boundary extension portions which are on the extension of each. In this way, the intermediate layer green sheet 24 laminated on the second layer and the lower layer green sheet 25 laminated on the third layer are respectively produced.
  • the formation of the small size hole 7a and the large size hole 7b in each green sheet may be performed by laser processing.
  • via holes for interlayer connection and large openings for forming the cavities 4 can be formed by laser processing, as with the small size holes 7a and the large size holes 7b.
  • the element connection terminal metal paste layer 6 is formed at a predetermined position in each wiring board region on the element mounting surface side of the intermediate layer green sheet 24. Further, in each wiring board region on the non-mounting surface side of the lower layer green sheet 25, a metal paste layer for external connection terminals is formed at a predetermined position. Further, a metal paste is filled in the interlayer connection via holes of the intermediate layer green sheet 24 and the lower layer green sheet 25 to form a metal paste layer for through conductors. In this way, the green sheet for intermediate layers and the green sheet for lower layers with a metal paste layer are manufactured. In addition, the alignment mark for lamination
  • Examples of a method for forming the element connection terminal metal paste layer 6, the external connection terminal metal paste layer, and the through conductor metal paste layer include a method of applying and filling the metal paste by screen printing.
  • the metal paste when the mother substrate 2 is an LTCC substrate, a paste made by adding a vehicle such as ethyl cellulose, a solvent, an additive or the like to a metal powder mainly composed of copper, silver, gold or the like. Use the shape.
  • the metal powder is preferably a metal powder made of silver, or a metal powder made of silver and platinum or palladium.
  • the mother substrate 2 is a ceramic substrate such as an alumina substrate, it is preferable to use a metal paste whose main component is a refractory metal such as tungsten or molybdenum.
  • the communication opening 7 of the green sheet laminate is formed in the small size hole 7a formed in the frame green sheet 23, the intermediate layer green sheet 24 with the metal paste layer, and the lower layer green sheet 25 with the metal paste layer.
  • the large size holes 7b are formed by overlapping in the thickness direction (that is, the stacking direction) of the green sheet stack.
  • the communication opening 7 has an end portion 71a on the element mounting surface 2a side of the small size hole 7a formed in the frame green sheet 23 when viewed from the element mounting surface 2a side of the green sheet laminate.
  • the non-mounting surface of the small size hole 7a through the opening of the large size hole 7b of the green sheet 24 for the intermediate layer and the green sheet 25 for the lower layer The shape and the structure are such that the end portion 71b on the 2b side is completely exposed without being shielded.
  • inclusions for maintaining the shape are provided in the small size holes 7a of the frame green sheet 23 and the large size holes 7b of the intermediate layer green sheet 24 and the lower layer green sheet 25. It is preferable to fill and laminate in that state.
  • the inclusion for maintaining the shape is preferably a flexible material having a high elongation rate, such as a silicone resin.
  • a cutting tool such as a cutter blade is pressed along the boundary between the wiring board regions 21 on the element mounting surface 2a side.
  • the unsintered first divided grooves 8 are formed by cutting at a predetermined depth into the frame green sheet 23 constituting at least the uppermost layer of the green sheet laminate.
  • the unsintered first dividing groove 8 is the end of the small size hole 7a exposed to the element mounting surface 2a (that is, the end on the element mounting surface 2a side) in the communication opening 7 formed in the green sheet laminate.
  • the unsintered first dividing groove 8 is formed, for example, to a depth at which a part or all of the thickness of the green body sheet 23 is cut.
  • the intermediate layer green sheet 24 may be formed to a depth reaching the intermediate layer green sheet 24.
  • each wiring is connected from the non-mounting surface 2b side so as to face the non-fired first divided groove 8 of the non-mounting surface 2b of the green sheet laminate in which the unfired first dividing grooves 8 are thus formed.
  • a cutting tool such as a cutter blade along the boundary between the substrate regions and cutting at a predetermined depth into the green sheet 25 for the lower layer constituting at least the lowermost layer of the laminate.
  • the unsintered second divided groove is formed by the small size hole 7a exposed to the non-mounting surface 2b through the large size hole 7b disposed on the non-mounting surface 2b side of the communication opening 7 formed in the green sheet laminate.
  • the end portion (that is, the end portion on the non-mounting surface 2b side) 71b is recognized by an image recognition device or the like from the non-mounting surface 2b side, and is formed at the boundary position between the wiring board regions determined based on the recognition position. .
  • the unsintered second divided grooves are formed, for example, to a depth that cuts part or all of the thickness of the lower layer green sheet 25, but the entire thickness of the lower layer green sheet 25 is further cut and further intermediate the upper layer. You may form in the depth which reaches the green sheet 24 for layers. In this way, the unfired connection wiring board 1 is obtained.
  • Either the step of forming the unfired first divided groove 8 and the step of forming the unfired second divided groove may be performed first.
  • a circular through hole is formed at the intersection of the unfired first division groove 8 formed on the element mounting surface 2 a side by using a punching machine or the like.
  • Unfired divided holes 9 can be formed.
  • the unfired connection wiring board 1 obtained in the above step is degreased to decompose and remove a binder such as a resin contained in the green sheet, if necessary, and then the inorganic constituting the green sheet Firing is performed to sinter the insulating material.
  • the inorganic insulating material constituting the green sheet is a glass ceramic composition
  • it is fired at a temperature of 800 ° C. or higher and 930 ° C. or lower, for example.
  • Calcination is appropriately adjusted in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the substrate and productivity. Specifically, it is preferably held at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower for 20 minutes or longer and 60 minutes or shorter. If the firing temperature is less than 800 ° C., a substrate having a dense structure may not be obtained. On the other hand, when the firing temperature exceeds 930 ° C., productivity and the like may be lowered due to deformation of the substrate.
  • the inorganic insulating material which comprises a green sheet is ceramic compositions, such as an alumina
  • the baking is performed at a temperature of 1700 ° C. or lower.
  • the unfired connection wiring board 1 is fired to obtain the connection wiring board 1.
  • a gold plating layer or a nickel plating layer as a conductor protective layer on the surfaces of the element connection terminals 6 and the external connection terminals as necessary.
  • the gold plating layer or the nickel plating layer is formed by, for example, immersing a wiring conductor layer such as the element connection terminal 6 or the external connection terminal in a plating solution, supplying a current to the surface of the wiring conductor layer in the plating solution, and performing electrolytic plating. It can be formed by applying.
  • a light emitting element such as an LED element is arranged and fixed on the element mounting portion 5 on the bottom surface of the cavity 4 of the wiring board region 21 on the element mounting surface 2a side.
  • both end portions of the small size hole 7a constituting the uppermost layer on the element mounting surface 2a side of the green sheet laminate that is, the end portion 71a on the element mounting surface 2a side and the non-end portion are not connected.
  • the end portion 71b) on the side of the mounting surface 2b is recognized by the image recognition device, and the unsintered first division is performed on the element mounting surface 2a and the non-mounting surface 2b of the green sheet laminate based on the recognized positions. Since the groove 8 and the unsintered second divided groove are formed, the divided grooves on both sides of the mother board 2 (that is, the first divided groove 8 and the second divided groove) are opposed to each other with high precision. Can be formed.
  • connection wiring board 1 along the boundary of each wiring board region 21 becomes easy and accurate, and the wiring board 1 obtained by dividing the connection wiring board 1 has defects such as burrs and chips. Is prevented from occurring.
  • a preferred embodiment has been described in which small size holes are formed on the element mounting surface side of the green sheet laminate, but large size holes are formed on both corresponding ends of the green sheet laminate on the element mounting surface side. It is also possible to form these large-sized holes and use them as a reference for forming the dividing grooves.
  • a crack is generated in the mother board 2 by applying a bending stress so as to bend along the first dividing groove 8 or the second dividing groove to the opposite surface side. Progress and complete when the mother board 2 is broken. In this way, the individual wiring boards are obtained by dividing the connection wiring board.
  • the bottom of the first dividing groove 8 and the bottom of the second dividing groove face each other with high accuracy. Therefore, a crack is generated at the bottom of one split groove on the surface to which the stress is applied, and the crack progresses toward the other split groove located immediately above and in the direction in which the stress acts. As a result, cracks do not progress in directions other than the division grooves facing each other inside the mother board 2, and the occurrence of defects such as burrs and chips is suppressed.
  • the position of the cavity 4 in the wiring board region 21 is The formation position of the small size hole 7a is difficult to shift. Then, both ends of the small size hole 7a of the frame green sheet 23 (that is, the end portion 71a on the element mounting surface 2a side and the end portion 71b on the non-mounting surface 2b side) are determined at positions determined as references. Since the first dividing groove 8 on the element mounting surface 2a side and the second dividing groove on the non-mounting surface side are respectively formed, the position of these dividing grooves is set higher than the boundary position of each wiring board region 21. It becomes possible to match the accuracy.
  • the intermediate layer green sheet 24 and the lower layer green sheet 25 are not necessarily a single green sheet. Alternatively, a laminate of a plurality of green sheets may be used. Further, only one of the intermediate layer green sheet 24 and the lower layer green sheet 25 may be used. Further, the frame green sheet 23 is not necessarily made of a single green sheet, and may be a laminate of a plurality of green sheets as long as the small-sized hole 7a can be punched. Further, the order of forming each part can be changed as appropriate as long as the connection wiring board 1 can be manufactured.
  • the small size hole 7a serving as a positioning reference is formed in the frame green sheet 23 laminated on the uppermost layer on the element mounting surface 2a side.
  • the connection wiring board 1 having a flat wiring board region 22 on the element mounting surface 2a side is manufactured, the lower layer green sheet 25 laminated on the lowermost layer on the non-mounting face 2b side is provided with a positioning reference.
  • a small-sized hole is formed. In this case, large-sized holes having an opening area larger than the small-sized holes are formed in the intermediate layer green sheet 24 and the frame green sheet 23.
  • the end portion on the non-mounting surface side of the small size hole formed in the lower layer green sheet is directly exposed.
  • the end portions of the small-sized holes on the element mounting surface side are all exposed without being shielded through the openings of the large-sized holes of the intermediate layer green sheet and the frame green sheet. Then, using the end portions on both sides of the small-sized hole thus exposed as a reference for positioning, the dividing grooves can be formed on both surfaces of the mother substrate with high accuracy.
  • connection wiring board sample was manufactured by the method described below.
  • the glass composition is expressed in terms of mol percentage in terms of oxide, SiO 2 is 60.4 mol%, B 2 O 3 is 15.6 mol%, Al 2 O 3 is 6 mol%, CaO is 15 mol%, and K 2 O is 1 mol. %, Na 2 O was mixed and mixed so that the raw material was 2 mol%.
  • the raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder.
  • ethyl alcohol was used as a solvent for pulverization.
  • This glass powder is 35% by mass
  • alumina filler manufactured by Showa Denko, trade name: AL-45H
  • zirconia filler manufactured by Daiichi Rare Element Chemical Industry, trade name: HSY-3F-J.
  • a glass ceramic composition was prepared by blending and mixing at 25% by mass. Next, 50 g of this glass ceramic composition was mixed with 15 g of an organic solvent (toluene, xylene, 2-propanol, 2-butanol mixed at a mass ratio of 4: 2: 2: 1), and a plasticizer (di-2-phthalate).
  • Ethylhexyl 2.5 g, polyvinyl butyral (made by Denka Co., Ltd., trade name: PVK # 3000K) 5 g as a binder, and 0.5 g of a dispersant (Bick Chemie, trade name: BYK180) 0.5 g are mixed and mixed to prepare a slurry. Prepared.
  • This slurry was applied onto a PET film by a doctor blade method and dried to produce four green sheets for a substrate having a substantially flat plate shape having a size of 100 mm ⁇ 100 mm and a thickness of 1 mm after firing.
  • One of the four substrate green sheets was an upper layer green sheet, and two of the remaining three sheets were intermediate layer green sheets and one lower layer green sheet.
  • small-sized holes 7a having a 0.7 mm ⁇ 0.7 mm square cross-sectional shape are spaced at intervals of 25 mm (this distance is the center of the hole). 5 is formed in the same manner.
  • the large size hole 7b having a rectangular sectional shape of 1.8 mm ⁇ 3.5 mm is formed by punching the green sheet for the intermediate layer and the green sheet for the lower layer using a punching machine.
  • the small size hole 7a five pieces were formed at 25 mm intervals in the same positions as the small size hole 7a.
  • a mark for alignment at the time of lamination was formed with silver paste on the upper surface of each of these four green sheets.
  • a green sheet laminate was obtained.
  • the green sheet laminate is viewed in plan from the upper surface side, as shown in FIG. 5, the upper end of the small size hole 7a formed in the upper layer green sheet is directly exposed, and the lower surface side
  • the communication is such that the end portions on the lower surface side of the small size hole 7a are all exposed through the openings of the large size hole 7b of the two intermediate layer green sheets and the lower layer green sheet. An opening was formed.
  • a green sheet laminate cutting machine (G-cut 6 manufactured by UHT) is used to form up and down five unfired dividing grooves having a depth of 0.4 mm in the parallel direction. Formed one by one.
  • the unsintered dividing groove on the upper surface side allows the image recognition device to recognize the end of the small size hole 7a exposed on the upper surface from the upper surface side in the communication opening formed in the green sheet laminate, and the recognition position is a reference. Formed in a predetermined position determined as.
  • the unsintered dividing groove on the lower surface side allows the image recognition device to recognize the end of the small size hole 7a exposed on the lower surface through the large size hole 7b of the communication opening formed in the green sheet laminate from the lower surface side. , And formed at a predetermined position determined based on the recognition position.
  • connection wiring board was degreased by holding at 550 ° C. for 5 hours, and then fired by holding at 870 ° C. for 30 minutes to obtain a sample of the connection wiring board.
  • the squares of the same size (0.5 mm ⁇ 0.5 mm) are used for the four green sheets for connecting wiring boards (upper green sheet, two intermediate green sheets, and lower green sheet). A positioning hole having a cross-sectional shape was formed. Subsequently, these green sheets were laminated
  • the unsintered dividing groove on the upper surface side was formed at a predetermined position determined based on the recognition position by causing the image recognition device to recognize the opening end on the upper surface side of the communication hole formed in the green sheet laminate.
  • the unsintered dividing groove on the lower surface side is formed at a predetermined position determined based on the recognition position by causing the image recognition device to recognize the opening end on the lower surface side of the communication hole formed in the green sheet laminate. did.
  • the obtained unbaking connection wiring board was baked like the Example, and the sample of the connection wiring board was manufactured.
  • Each of the wiring boards obtained by dividing was not found to have burrs, chips, or burrs.
  • the evaluation was made with the divided grooves formed in the parallel direction, but the same evaluation as above was obtained even when the divided grooves were formed in the orthogonal direction as shown in FIG.
  • connection wiring board manufactured by the manufacturing method of the connection wiring board of this invention can be utilized for electronic devices, such as a small-sized semiconductor element.
  • electronic devices such as a small-sized semiconductor element.
  • SYMBOLS 1 Connection wiring board, 2 ... Mother board, 2a ... Element mounting surface, 2b ... Non-mounting surface, 3 ... Frame part, 4 ... Cavity, 6 ... Element connection terminal, 7 ... Communication opening, 7a ... Small size hole, 7 ... Large size hole, 8 ... First dividing groove, 21 ... Wiring substrate region, 22 ... Substrate peripheral region, 23 ... Green sheet for frame (upper inorganic insulating layer), 24 ... Green sheet for intermediate layer (intermediate layer) Inorganic insulating layer), 25 ... Green sheet for lower layer (lower inorganic insulating layer), 30 ... Wiring substrate, 31 ... External electrode terminal, 32 through conductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided is a coupled printed circuit board wherein split grooves are accurately positioned and arranged opposite each other, and are formed with high positional accuracy with respect to a printed circuit board region so that a burr and a chip are prevented from occurring in a printed circuit board after split. A green sheet (23) for a frame-body having a small-sized hole (7a) formed in a prescribed region, a green sheet (24) for an intermediate layer having a large-sized hole (7b) and a green sheet (25) for a lower layer are laminated. A communicating opening (7) is formed such that the end portion (71a) of the small-sized hole (7a) on the side of an element mounting surface (2a) is directly exposed when planarly viewed from the side of the element mounting surface (2a), and the end portion (71b) of the small-sized hole (7a) on the side of a non element mounting surface (2b) is entirely exposed through the opening of the large-sized hole (7b) when planarly viewed from the side of the non element mounting surface (2b). Thereafter, the split grooves are respectively formed on both surfaces with reference to the end portions (71a and 71b) on both sides of the small-sized hole (7a).

Description

連結配線基板の製造方法および連結配線基板CONNECTED WIRING BOARD MANUFACTURING METHOD AND CONNECTED WIRING BOARD
 本発明は、連結配線基板の製造方法、および連結配線基板に関する。 The present invention relates to a method for manufacturing a connection wiring board and a connection wiring board.
 従来から、半導体素子等の電子部品を搭載するための配線基板は、例えば、セラミックス焼結体等から成る基板本体の表面に、導電性金属からなる配線導体層が配設されて形成されている。 Conventionally, a wiring board for mounting an electronic component such as a semiconductor element has been formed, for example, by arranging a wiring conductor layer made of a conductive metal on the surface of a substrate body made of a ceramic sintered body or the like. .
 近年、半導体装置等の電子装置の小型化の要求に伴い、配線基板のサイズも小型化が進んでいる。小サイズの配線基板を効率よく得るため、一枚の広い面積の母基板から多数個の小型の配線基板を同時に得るようにした、いわゆる多数個取りの製作が一般的に行われている。以下、このような多数個取りの配線基板を連結配線基板という。 In recent years, with the demand for miniaturization of electronic devices such as semiconductor devices, the size of wiring boards has also been miniaturized. In order to efficiently obtain a small-sized wiring board, so-called multi-cavity fabrication is generally performed in which a large number of small wiring boards are simultaneously obtained from a single large-area mother board. Hereinafter, such a multi-piece wiring board is referred to as a connection wiring board.
 連結配線基板においては、例えば、個々の配線基板となる複数の配線基板領域が縦横に配列・形成されており、各配線基板領域を区分する分割溝が、連結配線基板を構成する母基板の少なくとも一方の主面に、縦横に形成されている。なお、連結配線基板を母基板ということがある。母基板を分割溝に沿って分割することにより、複数の配線基板を効率的に得ることができる。また、連結配線基板の一方の面の配線基板領域に半導体素子等の電子部品を実装した後、分割溝に沿って母基板を分割することで、複数の半導体装置を効率的に製造できる。ここで、半導体素子としては、例えばLED素子のような発光素子を挙げることができる。また、半導体装置としては、例えば半導体パッケージを挙げることができる。 In the connection wiring board, for example, a plurality of wiring board regions serving as individual wiring boards are arranged and formed vertically and horizontally, and the division grooves that divide each wiring board region are at least of the mother board constituting the connection wiring board. One main surface is formed vertically and horizontally. The connection wiring board may be referred to as a mother board. By dividing the mother board along the dividing grooves, a plurality of wiring boards can be obtained efficiently. In addition, after mounting electronic components such as semiconductor elements on the wiring board region on one surface of the connection wiring board, a plurality of semiconductor devices can be efficiently manufactured by dividing the mother board along the dividing grooves. Here, examples of the semiconductor element include a light emitting element such as an LED element. Moreover, as a semiconductor device, a semiconductor package can be mentioned, for example.
 分割溝は、母基板となるグリーンシート等の積層体の少なくとも一方の面において、配線基板領域の間の境界に沿ってカッター刃等を押し入れて形成される。このとき、分割溝を形成する位置は、前記積層体の分割溝形成側の面の外周領域(基板外周領域)に、配線導体と同様の導電性材料を印刷する等の方法でマーク(以下、印刷マークと示す。)を形成しておき、この印刷マークを基準にして決められている。 The dividing groove is formed by pushing a cutter blade or the like along the boundary between the wiring board regions on at least one surface of a laminate such as a green sheet serving as a mother board. At this time, the position where the dividing groove is formed is marked by a method such as printing a conductive material similar to the wiring conductor on the outer peripheral area (substrate outer peripheral area) of the surface of the laminated body on the dividing groove forming side (hereinafter referred to as “the wiring groove”). It is determined with reference to this print mark.
 しかしながら、このような位置決め方法では、以下に示す問題があった。すなわち、母基板となるグリーンシート等の積層体の両面に分割溝を形成する場合、積層体の一方の面に形成された印刷マーク(第1の印刷マーク)を基準にして、この面に第1の分割溝を形成するとともに、積層体の他方の面に形成された印刷マーク(第2の印刷マーク)を基準にして、この面に第2の分割溝を形成している。しかし、積層体を構成する複数のグリーンシートの間で積層ずれ(すなわち、積層の際の位置ずれ)が生じる場合がある。そして、そのような積層ずれに起因して、第1の印刷マークの位置と第2の印刷マークの位置にずれが生じる結果、母基板の両面に形成される第1の分割溝と第2の分割溝の位置がずれてしまうおそれがあった。 However, such a positioning method has the following problems. In other words, when dividing grooves are formed on both sides of a laminate such as a green sheet as a mother substrate, the print mark (first print mark) formed on one side of the laminate is used as a reference. One division groove is formed, and a second division groove is formed on this surface with reference to a print mark (second print mark) formed on the other surface of the laminate. However, there may be a case where stacking misalignment (that is, positional misalignment) occurs between the plurality of green sheets constituting the stack. Then, as a result of such a misalignment, the first print mark position and the second print mark position shift, and as a result, the first divided grooves formed on both surfaces of the mother board and the second print mark are formed. There was a possibility that the position of the dividing groove would shift.
 そして、第1の分割溝と第2の分割溝の形成位置がずれて、母基板の両面の対向した位置に分割溝が形成されないと、母基板を分割する際に亀裂が所定の方向に進まず、個片化後の配線基板にバリや欠け、えぐれが生じるおそれがあった。 If the formation positions of the first division groove and the second division groove are shifted and the division grooves are not formed at opposite positions on both sides of the mother board, the cracks progress in a predetermined direction when the mother board is divided. First, there is a possibility that burrs, chips, or chipping may occur in the wiring board after separation.
 また、分割溝を形成する際の位置決め方法として、以下に示す方法も行われている。すなわち、図4に示すように、積層体11を構成するグリーンシート等の絶縁層11a、11b、11cの基板外周領域に、同じ大きさの位置決め孔を設け、これらの位置決め孔が厚さ方向に重なって一定の径の連通孔12が形成されるように、絶縁層11a、11b、11cを積層する。そして、連通孔12の一方の面側(例えば上面側)の開口端部12aを位置決めの基準として認識させて、この面に第1の分割溝を形成する。また、前記連通孔12の他方の面側(例えば下面側)の開口端部12bを位置決めの基準として認識させて、この面に第2の分割溝を形成することが行われている。 Further, the following method is also performed as a positioning method when forming the divided grooves. That is, as shown in FIG. 4, positioning holes of the same size are provided in the substrate outer peripheral regions of the insulating layers 11 a, 11 b, 11 c such as green sheets constituting the laminated body 11, and these positioning holes are arranged in the thickness direction. The insulating layers 11a, 11b, and 11c are stacked so that the communication holes 12 having a constant diameter overlap with each other. Then, the opening end portion 12a on one surface side (for example, the upper surface side) of the communication hole 12 is recognized as a positioning reference, and a first division groove is formed on this surface. In addition, an opening end 12b on the other surface side (for example, the lower surface side) of the communication hole 12 is recognized as a positioning reference, and a second divided groove is formed on this surface.
 しかし、この方法では、積層体11の上面側では絶縁層11aに形成された位置決め孔を基準とし、第1の分割溝の位置決めを行い、下面側では絶縁層11cに形成された位置決め孔を基準として、第2の分割溝の位置決めを行っている。そのため、積層体を構成する絶縁層11a、11b、11cの間の積層ずれに起因して、第1の分割溝と第2の分割溝の形成位置にずれが生じ、対向して形成されないおそれがあった。 However, in this method, the positioning hole formed in the insulating layer 11a is used as a reference on the upper surface side of the multilayer body 11, and the first dividing groove is positioned, and the positioning hole formed in the insulating layer 11c is used as a reference on the lower surface side. As a result, the second dividing groove is positioned. Therefore, there is a possibility that the formation positions of the first divided grooves and the second divided grooves are shifted due to the stacking shift between the insulating layers 11a, 11b, and 11c constituting the stacked body and are not formed to face each other. there were.
 別の方法として、まず、基板外周領域である捨て代領域に、一方の面側を大径として、他方の面側に階段状に開口面積が小さくなるように小径の開口部が形成された積層体を用意する。次に、その小径側の開口部に、前記捨て代領域に形成した印刷マークを目印にして最初の分割溝(第1の分割溝)を形成した後、この第1の分割溝を大径側の開口部から視認しながら、大径側の面に第2の分割溝を形成する方法が提案されている(例えば、特許文献1参照。)。 As another method, first, in the abandon margin area, which is the outer peripheral area of the substrate, a laminate having a large diameter on one side and a small-diameter opening on the other side so that the opening area is reduced stepwise. Prepare your body. Next, after the first divided groove (first divided groove) is formed in the opening on the small diameter side with the print mark formed in the discard margin region as a mark, the first divided groove is formed on the large diameter side. A method has been proposed in which a second dividing groove is formed on the surface on the large-diameter side while visually recognizing from the opening (see, for example, Patent Document 1).
 しかしながら、特許文献1に記載された方法では、印刷マークの形成は、打ち抜き等による配線基板領域の形成や開口部の形成とは別の工程で行われるため、開口部の位置に対して印刷マークの形成位置がずれやすい。そして、このように開口部に対して位置ずれしやすい印刷マークを基準にして、最初の分割溝を形成しているため、分割溝の形成位置が配線基板領域に対して面方向にずれやすく、配線基板領域に対して高い位置精度で分割溝を形成できなかった。 However, in the method described in Patent Document 1, since the formation of the print mark is performed in a process different from the formation of the wiring board region or the opening by punching or the like, the print mark is formed with respect to the position of the opening. The formation position of is easy to shift. And, since the first divided groove is formed on the basis of the print mark which is easily displaced with respect to the opening as described above, the formation position of the divided groove is easily displaced in the plane direction with respect to the wiring board region. The dividing grooves could not be formed with high positional accuracy with respect to the wiring board region.
日本特許第4667150号公報Japanese Patent No. 4667150
 本発明は、上記課題を解決するためになされたものであって、母基板の両面に形成された分割溝が、精度良く位置決めされて対向配置され、かつ前記分割溝が配線基板領域に対して高い位置精度で形成されて、分割後の配線基板のバリや欠けの発生が防止された連結配線基板、およびその連結配線基板の製造方法の提供を目的とする。 The present invention has been made in order to solve the above-described problem, and the dividing grooves formed on both surfaces of the mother board are positioned with high accuracy and opposed to each other, and the dividing grooves are arranged with respect to the wiring board region. It is an object of the present invention to provide a connection wiring board that is formed with high positional accuracy and prevents occurrence of burrs and chips on the divided wiring board, and a method for manufacturing the connection wiring board.
 本発明の連結配線基板の製造方法は、
 (A)複数の無機絶縁層からなり、縦横に配列された複数の配線基板領域と前記配線基板領域を囲む基板外周領域を有し、かつ前記基板外周領域で前記各配線基板領域間の境界の延長上である境界延長部にそれぞれ小サイズ孔と大サイズ孔とを備えた連通開口部を有する積層体を作製する工程と、
 (B)前記小サイズ孔の第1の端縁部を位置決めの基準として、前記積層体の一方の面における前記境界に、少なくとも前記小サイズ孔を有する無機絶縁層を分割する第1の分割溝を形成する工程と、
 (C)前記大サイズ孔の開口から露出する前記小サイズ孔の第2の端縁部を位置決めの基準として、前記積層体の他方の面における前記境界に、前記大サイズ孔を有する無機絶縁層のうちで少なくとも前記他方の面側の一層を分割する第2の分割溝を形成する工程と、
 (D)前記第1の分割溝および第2の分割溝を有する積層体を焼成する工程と、
 を備える連結配線基板の製造方法であり、
 かつ、前記した積層体を作製する工程(A)は、
 (A1)前記複数の無機絶縁層の所定の一層において、前記境界延長部に対応する領域に、前記小サイズ孔を形成するとともに、前記一層以外の前記無機絶縁層の各層において、前記境界延長部に対応する領域に、前記小サイズ孔より開口面積が大きい前記大サイズ孔を形成する工程と、
 (A2)前記小サイズ孔または前記大サイズ孔が形成された前記複数の無機絶縁層を積層し、得られた積層体において、前記一方の面側から平面視した場合に、前記小サイズ孔の前記一方の面側の前記第1の端縁部が全て露出し、かつ前記他方の面側から平面視した場合に、前記大サイズ孔の開口を介して前記小サイズ孔の前記他方の面側の前記第2の端縁部が見通せるように、前記連通開口部を形成する工程と、
を備えることを特徴とする。
The manufacturing method of the connection wiring board of the present invention,
(A) a plurality of wiring board regions formed of a plurality of inorganic insulating layers and arranged in a vertical and horizontal direction and a substrate outer peripheral region surrounding the wiring substrate region, and boundaries between the wiring substrate regions in the substrate outer peripheral region; Producing a laminate having a communication opening with a small-size hole and a large-size hole in the boundary extension portion on the extension, and
(B) A first dividing groove that divides at least the inorganic insulating layer having the small-sized hole at the boundary on one surface of the laminated body using the first end edge of the small-sized hole as a positioning reference. Forming a step;
(C) An inorganic insulating layer having the large-sized hole at the boundary on the other surface of the laminate using the second edge of the small-sized hole exposed from the opening of the large-sized hole as a reference for positioning. Forming a second dividing groove that divides at least one layer on the other surface side,
(D) firing the laminate having the first divided grooves and the second divided grooves;
A method of manufacturing a connection wiring board comprising:
And the process (A) which produces an above described laminated body,
(A1) In the predetermined layer of the plurality of inorganic insulating layers, the small-sized hole is formed in a region corresponding to the boundary extending portion, and the boundary extending portion is formed in each layer of the inorganic insulating layer other than the one layer. Forming the large size hole having a larger opening area than the small size hole in a region corresponding to
(A2) Laminating the plurality of inorganic insulating layers in which the small-sized holes or the large-sized holes are formed, and when the obtained laminated body is viewed in plan from the one surface side, When the first end edge portion on the one surface side is completely exposed and viewed from the other surface side, the other surface side of the small size hole through the opening of the large size hole Forming the communication opening so that the second edge portion of the second portion can be seen through;
It is characterized by providing.
 本発明の連結配線基板の製造方法において、前記積層体の前記一方の面が、前記配線基板領域に素子搭載部が形成される素子搭載面であり、前記(A2)の連通開口部を形成する工程において、前記素子搭載面に前記小サイズ孔が直接開口するような連通開口部を形成することが好ましい。 In the method for manufacturing a connection wiring board according to the present invention, the one surface of the stacked body is an element mounting surface on which an element mounting portion is formed in the wiring board region, and the communication opening of (A2) is formed. In the process, it is preferable to form a communication opening that directly opens the small size hole on the element mounting surface.
 本発明の連結配線基板は、
 無機絶縁材料の焼結体からなり、縦横に配列された複数の配線基板領域と前記配線基板領域を囲む基板外周領域を有する母基板と、
 前記母基板において、前記基板外周領域で前記各配線基板領域間の境界の延長上である境界延長部に形成された開口部であって、小サイズ孔と前記小サイズ孔より開口面積が大きい大サイズ孔とを厚さ方向に連接してなる形状を有し、一方の面側から平面視した場合に、前記小サイズ孔の前記一方の面側の第1の端縁部が全て露出し、かつ他方の面側から平面視した場合に、前記大サイズ孔の開口を介して前記小サイズ孔の前記他方の面側の第2の端縁部が全て露出するように構成された連通開口部と、
 前記母基板の前記一方の面側の前記配線基板領域間の境界に、前記小サイズ孔の前記第1の端縁部を位置決めの基準として形成された第1の分割溝と、前記母基板の前記他方の面側の前記配線基板領域間の境界に、前記大サイズ孔の開口を介して露出する前記小サイズ孔の前記第2の端縁部を位置決めの基準として形成された第2の分割溝と、
 を備えることを特徴とする。
 本発明の連結配線基板において、前記母基板は、前記配線基板領域に素子搭載部が形成される素子搭載面と当該素子搭載面と反対側に非搭載面を有し、前記小サイズ孔が前記素子搭載面側に、また前記大サイズ孔が前記非搭載面側に、前記小サイズ孔と前記大サイズ孔とが前記母基板の厚さ方向に連接するように形成されているのが好ましい。
 本発明の連結配線基板の分割方法は、前記連結配線基板を前記第1の分割溝または第2の分割溝に沿って母基板に曲げ応力を加えることにより分割することを特徴とする。
The connection wiring board of the present invention is
A mother board having a plurality of wiring board regions arranged vertically and horizontally and a substrate outer peripheral region surrounding the wiring board region, which is made of a sintered body of an inorganic insulating material,
In the mother board, an opening formed in a boundary extension portion that is an extension of a boundary between the wiring board areas in the outer peripheral area of the board, and has a larger opening area than the small size hole and the small size hole. When having a shape formed by connecting the size holes in the thickness direction, and when viewed in plan from one surface side, all the first edge portions on the one surface side of the small size holes are exposed, In addition, when viewed in plan from the other surface side, the communication opening portion is configured such that the second end edge portion on the other surface side of the small size hole is exposed through the opening of the large size hole. When,
A first dividing groove formed on the boundary between the wiring board regions on the one surface side of the mother board using the first edge of the small-sized hole as a positioning reference; and A second division formed at the boundary between the wiring board regions on the other surface side with the second edge of the small size hole exposed through the opening of the large size hole as a reference for positioning. Groove,
It is characterized by providing.
In the connection wiring board of the present invention, the mother board has an element mounting surface on which an element mounting portion is formed in the wiring board region and a non-mounting surface on the opposite side of the element mounting surface, and the small size hole is the It is preferable that the large size hole is formed on the element mounting surface side and the non-mounting surface side so that the small size hole and the large size hole are connected in the thickness direction of the mother substrate.
The method for dividing a connection wiring board according to the present invention is characterized in that the connection wiring board is divided by applying a bending stress to the mother board along the first division groove or the second division groove.
 本発明によれば、母基板の両面に形成された第1の分割溝と第2の分割溝が、精度良く位置決めされて対向配置され、かつこれらの分割溝が配線基板領域に対して高い位置精度で形成されており、分割後の配線基板のバリや欠けの発生が防止された連結配線基板を得ることができる。特に、本発明によれば、LED素子等の半導体素子が搭載される電子部品用として有用な連結配線基板を提供することができる。 According to the present invention, the first dividing groove and the second dividing groove formed on both surfaces of the mother board are positioned with high precision and opposed to each other, and these dividing grooves are positioned higher than the wiring board region. It is possible to obtain a connected wiring board that is formed with high accuracy and prevents the occurrence of burrs and chips on the divided wiring board. In particular, according to the present invention, it is possible to provide a connection wiring board useful as an electronic component on which a semiconductor element such as an LED element is mounted.
本発明の連結配線基板の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the connection wiring board of this invention. 図1の一部を拡大して示す図である。It is a figure which expands and shows a part of FIG. 図1におけるX部の断面を拡大して示す図である。It is a figure which expands and shows the cross section of the X section in FIG. 分割溝の位置決めのための従来からの方法を説明するための断面図である。It is sectional drawing for demonstrating the conventional method for positioning of a division groove. 実施例において、グリーンシート積層体に形成された連通開口部の形状および寸法を示す、上面側からの平面図である。In an Example, it is a top view from the upper surface side which shows the shape and dimension of a communicating opening part which were formed in the green sheet laminated body. 本発明の連結配線基板から分断されて得られた配線基板の一例の断面図である。It is sectional drawing of an example of the wiring board obtained by parting from the connection wiring board of this invention.
 以下、図1~6を参照して、本発明の実施の形態について説明するが、本発明はこれに限定されるものではない。図1は、本発明の連結配線基板の一実施形態を示す平面図であり、図2は、図1の一部を拡大して示す図である。また、図3は、図1におけるX部の断面を拡大して示す図である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 6, but the present invention is not limited thereto. FIG. 1 is a plan view showing an embodiment of a connection wiring board of the present invention, and FIG. 2 is an enlarged view of a part of FIG. FIG. 3 is an enlarged view showing a cross section of a portion X in FIG.
 図1~図3に示すように、実施形態の連結配線基板1は、無機絶縁材料の焼結体からなる母基板2を有している。母基板2の一方の主面である素子搭載面2aには、例えば縦に5列、横に6行、合計30個の配線基板領域21が互いに隣接して配列されており、これらを取り囲む外周に、基板外周領域22が配設されている。なお、素子搭載面2aは、LED素子のような半導体素子が搭載される面であり、図1は、連結配線基板1を素子搭載面2a側から平面視した図である。また、図3においては、上面を素子搭載面2aとする。 As shown in FIGS. 1 to 3, the connection wiring board 1 of the embodiment has a mother board 2 made of a sintered body of an inorganic insulating material. On the element mounting surface 2a, which is one main surface of the mother board 2, for example, a total of 30 wiring board regions 21 are arranged adjacent to each other in 5 columns vertically and 6 rows horizontally, and an outer periphery surrounding them. Further, a substrate outer peripheral region 22 is provided. The element mounting surface 2a is a surface on which a semiconductor element such as an LED element is mounted. FIG. 1 is a plan view of the connection wiring board 1 from the element mounting surface 2a side. In FIG. 3, the upper surface is defined as an element mounting surface 2a.
 母基板2において、素子搭載面2aと反対側の主面である非搭載面2bには、前記素子搭載面2a側の配線基板領域21および基板外周領域22と対応する領域に、非搭載面側の配線基板領域および基板外周領域が形成されている。
 基板外周領域22は、連結配線基板1の取り扱いを容易にするために設けられている。基板外周領域22の配設により、例えば搬送工程等において、治具や装置等に連結配線基板1がぶつかったような場合に、配線基板領域21に欠けや割れ等の機械的な破壊が生じることが防止される。
In the mother board 2, the non-mounting surface 2b, which is the main surface opposite to the element mounting surface 2a, is located on the non-mounting surface side in a region corresponding to the wiring board region 21 and the substrate outer peripheral region 22 on the element mounting surface 2a side. Wiring board region and substrate outer peripheral region are formed.
The substrate outer peripheral region 22 is provided to facilitate handling of the connection wiring substrate 1. Due to the arrangement of the substrate outer peripheral region 22, mechanical destruction such as chipping or cracking occurs in the wiring substrate region 21 when the connection wiring substrate 1 collides with a jig or a device in a transport process or the like. Is prevented.
 母基板2を構成する無機絶縁材料としては、酸化アルミニウム質焼結体(アルミナセラミックス)、窒化アルミニウム質焼結体、ムライト質焼結体、もしくはガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体(Low Temperature Co-fired Ceramics。以下、LTCCと示す。)等が挙げられる。母基板2は、これらのセラミック材料から成る複数(実施形態では3層)の無機絶縁層が積層されて構成されている。実施形態の母基板2においては、素子搭載面2aから順に、上層無機絶縁層23、中間無機絶縁層24、下層無機絶縁層25の3層が、積層されている。 Examples of the inorganic insulating material constituting the mother substrate 2 include an aluminum oxide sintered body (alumina ceramics), an aluminum nitride sintered body, a mullite sintered body, or a glass ceramic composition containing glass powder and ceramic powder. And a sintered body (Low Temperature Co-fired Ceramics, hereinafter referred to as LTCC). The mother board 2 is formed by laminating a plurality (three in the embodiment) of inorganic insulating layers made of these ceramic materials. In the mother substrate 2 of the embodiment, three layers of an upper inorganic insulating layer 23, an intermediate inorganic insulating layer 24, and a lower inorganic insulating layer 25 are laminated in order from the element mounting surface 2a.
 母基板2の素子搭載面2a側の各配線基板領域21には、周縁部に枠部3が配設され、中央部にLED素子のような半導体素子が搭載される凹部(キャビティ)4が形成されている。そして、キャビティ4の底面には、前記半導体素子の搭載部5が設けられ、搭載部5の両側に素子接続端子6が設けられている。
 なお、母基板2の素子搭載面2a側の配線基板領域21は、このようなキャビティ4を持たず、平坦な形状であってもよい。そして、そのような平坦な配線基板領域21の中央部に素子搭載部5を設け、素子搭載部5を挟んで両側に素子接続端子6を設けた構造でもよい。
In each wiring board region 21 on the element mounting surface 2a side of the mother board 2, a frame part 3 is disposed at the peripheral part, and a concave part (cavity) 4 in which a semiconductor element such as an LED element is mounted is formed at the center part. Has been. The semiconductor element mounting portion 5 is provided on the bottom surface of the cavity 4, and element connection terminals 6 are provided on both sides of the mounting portion 5.
The wiring board region 21 on the element mounting surface 2a side of the mother board 2 does not have such a cavity 4 and may have a flat shape. And the structure which provided the element mounting part 5 in the center part of such a flat wiring board area | region 21, and provided the element connection terminal 6 on both sides on both sides of the element mounting part 5 may be sufficient.
 また、図1~3では省略されているが、母基板2の非搭載面2b側の各配線基板領域には、外部回路と電気的に接続される外部電極端子が設けられている。また、母基板2の内部には、素子搭載面2a側の前記素子接続端子6と非搭載面2b側の外部電極端子とを電気的に接続する貫通導体が設けられている。ここで、外部接続端子および貫通導体については、これらが素子接続端子→貫通導体→外部接続端子→外部回路と電気的に接続される限りは、その配設される位置や形状、大きさは限定されない。また、素子接続端子6についても、上記電気的な接続が確保されていれば、形状、大きさについては限定されない。
 本発明の連結配線基板から分断されて得られた配線基板の一例を示す図6によって説明すれば、23は上層無機絶縁層、24は、中間無機絶縁層、25は下層無機絶縁層であり、これらの層により無機絶縁層の積層体が構成されている。後述する方法によって、上層無機絶縁層23によって枠部3が形成される。図6に示された配線基板30においては、配線基板30の素子搭載面2aの周縁部には枠部3が配設され、中央部にLED素子のような半導体素子が搭載される凹部(キャビティ)4が形成され、キャビティ4の底面には、前記半導体素子の搭載部5が設けられ、搭載部5の両側に素子接続端子6、6が設けられている。また、配線基板30の非搭載面2b側の各配線基板領域には、外部回路と電気的に接続される外部電極端子31,31が設けられ、配線基板30の内部には、素子搭載面2a側の前記素子接続端子6、6と、非搭載面2b側の外部電極端子31、31とを電気的に接続する貫通導体32が設けられている。そして、配線基板30の中央部に半導体素子が搭載されると、半導体素子は、素子接続端子6、貫通導体32および外部接続端子31を経て外部回路と電気的に接続されるようになる。
Although not shown in FIGS. 1 to 3, external wiring terminals that are electrically connected to external circuits are provided in each wiring board region on the non-mounting surface 2b side of the mother board 2. Further, a through conductor that electrically connects the element connection terminal 6 on the element mounting surface 2 a side and the external electrode terminal on the non-mounting surface 2 b side is provided inside the mother board 2. Here, as for the external connection terminal and the through conductor, as long as they are electrically connected to the element connection terminal → the through conductor → the external connection terminal → the external circuit, the position, shape, and size of the connection are limited. Not. Further, the shape and size of the element connection terminal 6 are not limited as long as the electrical connection is ensured.
If FIG. 6 which shows an example of the wiring board obtained by dividing | segmenting from the connection wiring board of this invention demonstrates, 23 is an upper-layer inorganic insulating layer, 24 is an intermediate | middle inorganic insulating layer, 25 is a lower-layer inorganic insulating layer, These layers constitute a laminate of inorganic insulating layers. The frame portion 3 is formed by the upper inorganic insulating layer 23 by a method described later. In the wiring substrate 30 shown in FIG. 6, the frame portion 3 is disposed at the peripheral portion of the element mounting surface 2a of the wiring substrate 30, and a recess (cavity) in which a semiconductor element such as an LED element is mounted at the center portion. ) 4 is formed, and the semiconductor element mounting portion 5 is provided on the bottom surface of the cavity 4, and element connection terminals 6 and 6 are provided on both sides of the mounting portion 5. In addition, external electrode terminals 31 and 31 that are electrically connected to an external circuit are provided in each wiring board region on the non-mounting surface 2 b side of the wiring board 30, and the element mounting surface 2 a is provided inside the wiring board 30. A through conductor 32 is provided to electrically connect the element connection terminals 6 and 6 on the side and the external electrode terminals 31 and 31 on the non-mounting surface 2b side. When a semiconductor element is mounted on the central portion of the wiring board 30, the semiconductor element is electrically connected to an external circuit through the element connection terminal 6, the through conductor 32, and the external connection terminal 31.
 素子接続端子6、外部接続端子31、貫通導体32等の配線導体層を構成する材料としては、銀、パラジウム、ロジウム、タングステン、モリブデン、マンガン、銅、白金、金等の導電性金属材料が挙げられる。配線導体層の形成方法については、連結配線基板1の製造方法の項で詳細に説明する。 Examples of the material constituting the wiring conductor layer such as the element connection terminal 6, the external connection terminal 31, and the through conductor 32 include conductive metal materials such as silver, palladium, rhodium, tungsten, molybdenum, manganese, copper, platinum, and gold. It is done. The method for forming the wiring conductor layer will be described in detail in the section of the method for manufacturing the connection wiring board 1.
 素子接続端子6や外部接続端子31の表面には、酸化や空気中の硫化ガスによる腐食を防止するとともに、ボンディングワイヤ等を接続する際のはんだの濡れ性やボンディング特性を向上させるために、ニッケルや金等のメッキ層が設けられていることが好ましい。 The surfaces of the element connection terminals 6 and the external connection terminals 31 are made of nickel in order to prevent corrosion due to oxidation and sulfur gas in the air, and to improve solder wettability and bonding characteristics when connecting bonding wires and the like. It is preferable that a plating layer such as metal is provided.
 また、母基板2において、素子搭載面2a側の基板外周領域22で各配線基板領域21の間の境界の延長上である境界延長部には、非搭載面2bまで達する連通開口部7がそれぞれ形成されている。この連通開口部7は、一方の端部が素子搭載面2aに開口する面積が小さい小サイズ孔7aとなっており、また他方の端部は非搭載面2bに開口する開口面積が小サイズ孔7aより大きい大サイズ孔7bとなっており、小サイズ孔7aと大サイズ孔7bとは連接された連通構造となっている。上記した連通開口部7は、母基板2の素子搭載面2a側の基板外周領域22で各配線基板領域21の間の境界の延長上である境界延長部において、その縦横の両側にそれぞれ対向して設けるのが好ましい。なお、素子搭載面2aに大サイズ孔7bを形成し、非搭載面2bに小サイズ孔7aを形成することもできる。 Further, in the mother board 2, the communication openings 7 reaching the non-mounting surface 2 b are respectively formed in the boundary extension portions that are extensions of the boundaries between the wiring board regions 21 in the substrate outer peripheral region 22 on the element mounting surface 2 a side. Is formed. The communication opening 7 has a small size hole 7a with one end opening to the element mounting surface 2a and a small opening having an opening area opening to the non-mounting surface 2b. The large-sized hole 7b is larger than 7a, and the small-sized hole 7a and the large-sized hole 7b are connected to each other. The communication opening 7 described above is opposed to both the vertical and horizontal sides in the boundary extension portion which is an extension of the boundary between the wiring substrate regions 21 in the substrate outer peripheral region 22 on the element mounting surface 2a side of the mother substrate 2. It is preferable to provide them. It is also possible to form the large size hole 7b in the element mounting surface 2a and form the small size hole 7a in the non-mounting surface 2b.
 そして、この連通開口部7を母基板2の素子搭載面2a側から平面視した場合に、小サイズ孔7aの素子搭載面2a側の端部71aが露出されており、この端部71aの全体が素子搭載面2a側から容易に視認される。また、この連通開口部7を母基板2の非搭載面2b側から平面視した場合には、非搭載面2bに開口した大サイズ孔7bを介して(すなわち、大サイズ孔7bを通して)、小サイズ孔7aの非搭載面2b側の端部71bが露出しており、この端部71bの全体が見通せるようになっている。すなわち、連通開口部7において、小サイズ孔7aの両端部である素子搭載面2a側の端部71aおよび非搭載面2a側の端部71bは、それぞれ素子搭載面2a側および非搭載面2b側から、画像認識装置等により明確に認識されるようになっている。 When the communication opening 7 is viewed from the element mounting surface 2a side of the mother board 2, the end portion 71a of the small size hole 7a on the element mounting surface 2a side is exposed, and the entire end portion 71a is exposed. Is easily visible from the element mounting surface 2a side. Further, when the communication opening 7 is viewed in plan from the non-mounting surface 2b side of the mother board 2, the small opening is formed through the large size hole 7b opened in the non-mounting surface 2b (that is, through the large size hole 7b). The end portion 71b of the size hole 7a on the non-mounting surface 2b side is exposed, and the entire end portion 71b can be seen through. That is, in the communication opening 7, the end portion 71a on the element mounting surface 2a side and the end portion 71b on the non-mounting surface 2a side, which are both ends of the small size hole 7a, are respectively on the element mounting surface 2a side and the non-mounting surface 2b side. Therefore, it is clearly recognized by an image recognition device or the like.
 連通開口部7を構成する小サイズ孔7aおよび大サイズ孔7bの開口面形状(すなわち、平面視したときの形状)は、小サイズ孔7aの両端の内周端縁部全体を露出させることができるような形状であれば、台形状や長方形状等の四角形状、楕円形状、円形状等、種々の形状を採用できる。画像認識装置による形状認識の精度が高いことから、四角形状が好ましい。 The shape of the opening surface of the small size hole 7a and the large size hole 7b constituting the communication opening 7 (that is, the shape when viewed in plan) can expose the entire inner peripheral edge of both ends of the small size hole 7a. Various shapes such as a quadrangular shape such as a trapezoidal shape and a rectangular shape, an elliptical shape, and a circular shape can be adopted as long as they can be formed. Since the accuracy of shape recognition by the image recognition device is high, a rectangular shape is preferable.
 さらに、母基板2においては、素子搭載面2a側の配線基板領域21の間の境界に沿って、第1の分割溝8が形成されている。また、母基板2の非搭載面側においても、配線基板領域の間の境界に沿って第2の分割溝(図示を省略。)が、第1の分割溝8と対向するように形成されている。第1の分割溝8は、前記連通開口部7を構成する小サイズ孔7aの素子搭載面2a側に露出した端部71aを、位置決めの基準として、母基板2の素子搭載面2a側から形成されたものであり、第2の分割溝は、同じ小サイズ孔7aにおいて、大サイズ孔7bの開口を通して非搭載面2b側から見通せる端部71bを位置決めの基準として、母基板2の非搭載面2b側から形成されたものである。これら第1の分割溝8と第2の分割溝とは、母基板2の厚さ方向の中間部を間に挟んで、底部が対向するように形成されている。 Furthermore, in the mother board 2, the first division grooves 8 are formed along the boundary between the wiring board regions 21 on the element mounting surface 2a side. Also on the non-mounting surface side of the mother board 2, a second dividing groove (not shown) is formed so as to face the first dividing groove 8 along the boundary between the wiring board regions. Yes. The first dividing groove 8 is formed from the element mounting surface 2a side of the mother board 2 with the end 71a exposed to the element mounting surface 2a side of the small size hole 7a constituting the communication opening 7 as a reference for positioning. In the same small size hole 7a, the second dividing groove is a non-mounting surface of the mother board 2 with an end 71b that can be seen from the non-mounting surface 2b side through the opening of the large size hole 7b as a reference for positioning. It is formed from the 2b side. The first dividing groove 8 and the second dividing groove are formed so that the bottoms face each other with the intermediate part in the thickness direction of the mother board 2 interposed therebetween.
 このような第1の分割溝8および第2の分割溝は、配線基板領域21の間の境界だけでなく、最外周に配列された配線基板領域21と基板外周領域22との境界にも形成されていて、配線基板領域21と基板外周領域22との間の分割ができるようになっている。さらに、分割の際の欠け等の不具合を防止するために、母基板2を貫通する分割孔9を、配線基板領域21の4隅を切り欠くように形成することもできる。 Such first dividing grooves 8 and second dividing grooves are formed not only at the boundary between the wiring substrate regions 21 but also at the boundary between the wiring substrate region 21 and the substrate outer peripheral region 22 arranged on the outermost periphery. Thus, the wiring board region 21 and the substrate outer peripheral region 22 can be divided. Furthermore, in order to prevent defects such as chipping during the division, the division holes 9 penetrating the mother board 2 can be formed so as to cut out the four corners of the wiring board region 21.
 さらに、図面には示されていないが、実施形態の連結配線基板1を分割溝8から分割してなる配線基板の熱抵抗を低減するために、各配線基板領域21において母基板2の内部にサーマルビアを埋設したり、素子搭載面2aに平行する放熱層を設けたりしてもよい。また、半導体素子としてLED素子のような発光素子を搭載する場合には、発光素子からの光の取り出し効率を上げるために、キャビティ4底面のできるだけ広い範囲に、例えば銀を主成分とする反射膜を、前記素子接続端子6に電気的に接続しないように形成してもよく、さらに反射膜の上に保護用のオーバーコートガラス層を被覆してもよい。 Further, although not shown in the drawing, in order to reduce the thermal resistance of the wiring board formed by dividing the connection wiring board 1 of the embodiment from the dividing groove 8, each wiring board region 21 is provided inside the mother board 2. Thermal vias may be embedded, or a heat dissipation layer parallel to the element mounting surface 2a may be provided. Further, when a light emitting element such as an LED element is mounted as a semiconductor element, a reflection film containing, for example, silver as a main component in the widest possible area of the bottom surface of the cavity 4 in order to increase the light extraction efficiency from the light emitting element. May be formed so as not to be electrically connected to the element connection terminal 6, and a protective overcoat glass layer may be coated on the reflective film.
 このように構成される実施形態の連結配線基板1では、第1の分割溝8または第2の分割溝に沿って母基板2に曲げ応力を加えることにより、対向する第1の分割溝8の底部と第2の分割溝の底部の間で母基板2が破断し、分割が行われ、各個片の配線基板を得ることができる。母基板2の各配線基板領域21に予め半導体素子のような電子部品を搭載した後に、分割してもよい。なお、曲げ応力を母基板2の素子搭載面2aに加えるか、非搭載面2bに加えるかは、分割面の平滑性、バリや欠けの発生等を考慮して決定する。 In the connection wiring board 1 of the embodiment configured as described above, bending stress is applied to the mother substrate 2 along the first divided grooves 8 or the second divided grooves, whereby the opposing first divided grooves 8 are formed. The mother board 2 is broken between the bottom part and the bottom part of the second dividing groove, and division is performed, whereby each wiring board can be obtained. It may be divided after electronic parts such as semiconductor elements are mounted in advance on each wiring board region 21 of the mother board 2. Whether the bending stress is applied to the element mounting surface 2a or the non-mounting surface 2b of the mother board 2 is determined in consideration of the smoothness of the divided surfaces, the occurrence of burrs and chips, and the like.
 そして、実施形態の連結配線基板1においては、母基板2の境界延長部に連通開口部7が配設され、この連通開口部7を構成する小サイズ孔7aの両端部71a、71bを位置決めの基準として、素子搭載面2a側と非搭載面2b側にそれぞれ第1の分割溝8と第2の分割溝が形成されているので、第1の分割溝8と第2の分割溝の形成位置にずれが生じることなく、互いの底部が精度よく対向して配置される。したがって、これらの分割溝に沿った分割が容易かつ正確なものとなり、各配線基板領域21の境界で分割してなる個片の配線基板に、バリや欠け等の不具合が生じることが防止される。 In the connection wiring board 1 according to the embodiment, the communication opening 7 is disposed in the boundary extension portion of the mother board 2, and both end portions 71 a and 71 b of the small size hole 7 a constituting the communication opening 7 are positioned. As a reference, since the first dividing groove 8 and the second dividing groove are formed on the element mounting surface 2a side and the non-mounting surface 2b side, respectively, the first dividing groove 8 and the second dividing groove are formed. The bottoms of each other are arranged so as to oppose each other with high accuracy without any deviation. Therefore, division along these division grooves becomes easy and accurate, and defects such as burrs and chippings are prevented from occurring on the individual wiring boards divided at the boundaries of the wiring board regions 21. .
 また、配線基板領域21のキャビティ4と同じ素子搭載面2aに開口する小サイズ孔7aの両端部を位置決め基準として、両面側にそれぞれ分割溝(すなわち、第1の分割溝8と第2の分割溝)が形成されているので、これらの分割溝の位置を、配線基板領域21の間の境界に正確に合わせることが可能となる。したがって、分割後の個片の配線基板において、外辺に対するキャビティ4等の位置ずれが抑えられ、半導体素子等の電子部品の搭載や外部電気回路基板に対する実装の精度、および作業性に優れた配線基板とすることができる。 In addition, both ends of the small-sized hole 7a that opens in the same element mounting surface 2a as the cavity 4 of the wiring board region 21 are used as positioning references, and the divided grooves (that is, the first divided groove 8 and the second divided groove) are formed on both sides. Since the grooves are formed, it is possible to accurately match the positions of these divided grooves with the boundaries between the wiring board regions 21. Therefore, in the divided wiring board, the positional deviation of the cavity 4 and the like with respect to the outer side is suppressed, and wiring with excellent mounting accuracy and workability for mounting electronic components such as semiconductor elements and external electric circuit boards It can be a substrate.
 以上、本発明の連結配線基板1について一例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更できる。 As described above, the connection wiring board 1 of the present invention has been described by way of an example. However, the configuration can be appropriately changed as long as it does not contradict the gist of the present invention.
 次に、前記した構造を有する連結配線基板1の製造方法について記載する。
 本発明の実施形態に係る連結配線基板1の製造方法は、以下の(A)、(B)、(C)及び(D)の工程を有する。
(A)縦横に配列された複数の配線基板領域と前記配線基板領域を取り囲む基板外周領域を有し、複数の無機絶縁層からなる積層体であり、前記基板外周領域で各配線基板領域間の境界の延長上である境界延長部に連通開口部を有する積層体を作製する工程、
(B)前記積層体の一方の面(素子搭載面)における前記配線基板領域の間の境界に、第1の分割溝を形成する工程、
(C)前記積層体の他方の面(非搭載面)における前記配線基板領域の間の境界に、第2の分割溝を形成する工程、
(D)前記第1および第2の分割溝が形成された積層体を焼成する工程。
 そして、前記(A)積層体を作製する工程は、以下の(A1)及び(A2)の工程を有する。
(A1)複数の無機絶縁層を用意し、前記複数の無機絶縁層の所定の一層において、前記境界延長部に対応する領域に小サイズ孔を形成するとともに、前記一層以外の無機絶縁層の各層において、前記境界延長部に対応する領域に前記小サイズ孔よりも開口面積の大きい大サイズ孔を形成する工程、
(A2)前記小サイズ孔または前記大サイズ孔が形成された前記複数の無機絶縁層を積層し、得られた積層体に所定の連通開口部を形成する工程。
 上記した(A)工程の後には、(B)、(C)及び(D)工程が続く。好ましい態様は、(A)工程、(B)工程、(C)工程、そして(D)工程の順である。しかし、(A)工程の後の(B)工程および(C)工程の順は必ずしも問わず、(A)工程の後に(B)工程、次いで(C)工程が続いても良いし、また(A)工程の後に(C)工程、次いで(B)工程が続いても良いし、また(B)工程と(C)工程を同じタイミングで施してもよい。前記した(D)工程は、(B)工程また(C)工程の後に続く。
 また、(A)工程における(A1)工程と(A2)工程との順は、(A1)工程、次いで(A2)工程の順が好ましいが、(A2)工程、次いで(A1)工程の順であってもよい。なお、(B)工程と(C)工程、また(A1)工程と(A2)工程との順が逆になった場合には、各工程の小サイズ孔と大サイズ孔とは、必要に応じて読みかえるものとする。
Next, the manufacturing method of the connection wiring board 1 having the above-described structure will be described.
The manufacturing method of the connection wiring board 1 which concerns on embodiment of this invention has the following processes (A), (B), (C), and (D).
(A) A laminate having a plurality of wiring board regions arranged vertically and horizontally and a substrate outer peripheral region surrounding the wiring substrate region, and comprising a plurality of inorganic insulating layers, and between the wiring substrate regions in the substrate outer peripheral region. Producing a laminate having a communication opening in a boundary extension which is an extension of the boundary;
(B) forming a first dividing groove at a boundary between the wiring board regions on one surface (element mounting surface) of the laminate;
(C) forming a second divided groove at a boundary between the wiring board regions on the other surface (non-mounting surface) of the stacked body;
(D) The process of baking the laminated body in which the said 1st and 2nd division | segmentation groove | channel was formed.
And the process of producing the said (A) laminated body has the process of the following (A1) and (A2).
(A1) A plurality of inorganic insulating layers are prepared, and in a predetermined layer of the plurality of inorganic insulating layers, a small-sized hole is formed in a region corresponding to the boundary extension portion, and each layer of the inorganic insulating layer other than the one layer In the step of forming a large size hole having a larger opening area than the small size hole in a region corresponding to the boundary extension portion,
(A2) A step of laminating the plurality of inorganic insulating layers in which the small-sized holes or the large-sized holes are formed, and forming a predetermined communication opening in the obtained laminated body.
Steps (B), (C), and (D) follow the step (A) described above. A preferred embodiment is the order of step (A), step (B), step (C), and step (D). However, the order of the (B) process and the (C) process after the (A) process is not necessarily limited, and the (B) process and then the (C) process may be continued after the (A) process. Step (A) may be followed by step (C) and then step (B), or step (B) and step (C) may be performed at the same timing. The step (D) described above follows the step (B) or the step (C).
Further, the order of the (A1) process and the (A2) process in the (A) process is preferably the order of the (A1) process and then the (A2) process, but in the order of the (A2) process and then the (A1) process. There may be. In addition, when the order of (B) process and (C) process and (A1) process and (A2) process is reversed, the small size hole and large size hole of each process are as needed Shall be re-read.
 以下、各工程について説明する。以下の説明では、製造に用いる部材について、完成品である図1~図3に示す連結配線基板1を構成する部材と同一の符号を付して説明する。例えば、枠体用グリーンシートと上層無機絶縁層とは、同じ23の符号をもって表記し、また、素子接続用端子用金属ペースト層と素子接続端子とは、同じ6の符号をもって表記しており、他も同様である。 Hereinafter, each process will be described. In the following description, the members used for manufacturing will be described with the same reference numerals as the members constituting the connection wiring board 1 shown in FIGS. For example, the frame green sheet and the upper inorganic insulating layer are represented by the same symbol 23, and the element connecting terminal metal paste layer and the element connecting terminal are represented by the same symbol 6. Others are the same.
[(A)積層体を作製する工程]
<(A1)無機絶縁層を用意し、小サイズ孔または大サイズ孔を形成する工程>
 まず、無機絶縁層として、略平板状の複数枚(例えば2枚)の基板用グリーンシートと、1枚の枠体用グリーンシートを製造する。なお、略平板状とは、目視レベルで平板状の意味である。
 基板用グリーンシートおよび枠体用グリーンシートの製造において、LTCCからなる母基板2を製造する場合は、まずガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物に、バインダーと必要に応じて可塑剤、溶剤等を添加してスラリーを調製する。次に、これをドクターブレード法等によりシート状に成形し、乾燥させることで、原グリーンシートを製造する。母基板2がアルミナ基板等のセラミックス基板の場合は、ガラスセラミックス組成物に代えて、アルミナ粉末等のセラミックス粉末を使用し、同様にして原グリーンシートを製造する。
[(A) Step of Producing Laminate]
<(A1) Step of preparing an inorganic insulating layer and forming a small size hole or a large size hole>
First, as the inorganic insulating layer, a plurality of substantially flat (for example, two) substrate green sheets and one frame green sheet are manufactured. In addition, substantially flat form means flat form on a visual level.
In the production of the substrate green sheet and the frame green sheet, when producing the mother substrate 2 made of LTCC, first, a glass ceramic composition containing glass powder and ceramic powder, a binder and, if necessary, a plasticizer, A slurry is prepared by adding a solvent or the like. Next, this is formed into a sheet by a doctor blade method or the like and dried to produce an original green sheet. When the base substrate 2 is a ceramic substrate such as an alumina substrate, a ceramic powder such as an alumina powder is used instead of the glass ceramic composition, and an original green sheet is produced in the same manner.
 ガラスセラミックス組成物を調製するためのガラス粉末およびセラミックス粉末としては、従来からLTCC基板の製造に用いられる公知のガラス粉末およびセラミックス粉末を、特に制限なく使用できる。
 バインダーとしては、例えばポリビニルブチラール、アクリル樹脂等が好適に使用できる。可塑剤としては、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等が使用できる。また、溶剤としては、例えばトルエン、キシレン等の芳香族系の有機溶剤、ブタノール等のアルコール系の有機溶剤が使用できる。さらに、分散剤やレベリング剤を使用することもできる。
As the glass powder and ceramic powder for preparing the glass ceramic composition, known glass powder and ceramic powder conventionally used for the production of LTCC substrates can be used without particular limitation.
As the binder, for example, polyvinyl butyral, acrylic resin and the like can be suitably used. As the plasticizer, for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used. As the solvent, for example, aromatic organic solvents such as toluene and xylene, and alcohol organic solvents such as butanol can be used. Furthermore, a dispersing agent and a leveling agent can also be used.
 こうして得られた原グリーンシートの1枚において、各配線基板領域に対応する領域の中央部を、打ち抜き型あるいはパンチングマシーンを使用して円形、楕円形等の所定形状に打ち抜いて、キャビティ4形成用の大開口部を形成する。また、境界延長部に対応する領域の所定の位置に、打ち抜き型あるいはパンチングマシーンを使用した打ち抜き加工により、小サイズ孔7aも形成する。こうして、素子搭載面2a側の1層目に積層される枠体用グリーンシート23を製造する。なお、枠体用グリーンシート23には、積層のための位置合わせの印を形成できる。ここで、使用した原グリーンシートは、小サイズ孔7aを打ち抜き加工できるものであれば、ドクターブレード法等で形成したシートを複数枚重ねたものであってもよい。上記した小サイズ孔7aは、枠体用グリーンシートの前記基板外周領域となる領域で前記各配線基板領域間の境界の左右、および上下の延長上である境界延長部にそれぞれ対向して設けるのが好ましい。 In one of the original green sheets obtained in this way, the central portion of the area corresponding to each wiring board area is punched into a predetermined shape such as a circle or an ellipse using a punching die or a punching machine. A large opening is formed. Further, a small-sized hole 7a is also formed at a predetermined position in a region corresponding to the boundary extension portion by punching using a punching die or a punching machine. In this way, the frame green sheet 23 laminated on the first layer on the element mounting surface 2a side is manufactured. The frame green sheet 23 can be formed with alignment marks for lamination. Here, the original green sheet used may be a stack of a plurality of sheets formed by a doctor blade method or the like as long as the small size hole 7a can be punched out. The small size holes 7a described above are provided so as to face the boundary extension portions on the left and right of the boundary between the respective wiring board regions and the upper and lower extensions in the region serving as the substrate outer peripheral region of the frame green sheet. Is preferred.
 ここで、母基板2の素子搭載面2a側の配線基板領域21がキャビティ4を持たず、平坦な形状である場合には、原グリーンシートに前記したキャビティ4形成用の大開口部は形成せず、小サイズ孔7aの形成のみを行う。なお、このようなキャビティ4形成用の大開口部を持たないグリーンシートも、以下の記載では、枠体用グリーンシートを示すものとする。 Here, when the wiring board region 21 on the element mounting surface 2a side of the mother board 2 does not have the cavity 4 and has a flat shape, the large opening for forming the cavity 4 is not formed in the original green sheet. Instead, only the small size hole 7a is formed. In addition, the green sheet which does not have such a large opening part for cavity 4 formation shall show the green sheet for frames in the following description.
 また、得られた原グリーンシートの複数枚(例えば2枚の原グリーンシート。この場合、枠体用グリーンシート側が中間層用グリーンシート24となり、枠体用グリーンシートと反対側が下層用グリーンシート25となる。)において、各配線基板領域に対応する領域の所定位置を、打ち抜き型あるいはパンチングマシーンを使用して機械的に打ち抜いて、層間接続用のビアホールを形成する。また、境界延長部に対応する領域の所定の位置に、前記枠体用グリーンシートにおける方法と同様な打ち抜き加工により、小サイズ孔7aよりも開口面積の大きい大サイズ孔7bを形成する。上記した大サイズ孔7bは、複数枚の原グリーンシート、たとえば中間層用グリーンシート24と下層用グリーンシート25の前記基板外周領域となる領域で前記各配線基板領域間の境界の左右、および上下の延長上である境界延長部にそれぞれ対向して設けるのが好ましい。こうして、2層目に積層される中間層用グリーンシート24および3層目に積層される下層用グリーンシート25をそれぞれ製造する。 Also, a plurality of the obtained original green sheets (for example, two original green sheets. In this case, the green sheet for the frame body is the green sheet 24 for the intermediate layer, and the green sheet for the lower layer is the opposite side to the green sheet for the frame body. )), A predetermined position of a region corresponding to each wiring board region is mechanically punched using a punching die or a punching machine to form via holes for interlayer connection. In addition, a large-sized hole 7b having an opening area larger than that of the small-sized hole 7a is formed at a predetermined position in a region corresponding to the boundary extension portion by a punching process similar to the method for the frame green sheet. The large-size holes 7b described above are formed on the left and right and upper and lower sides of the boundary between the respective wiring board regions in a region serving as the substrate peripheral region of a plurality of original green sheets, for example, the intermediate layer green sheet 24 and the lower layer green sheet 25. It is preferable to be provided so as to be opposed to the boundary extension portions which are on the extension of each. In this way, the intermediate layer green sheet 24 laminated on the second layer and the lower layer green sheet 25 laminated on the third layer are respectively produced.
 なお、各グリーンシートにおける小サイズ孔7aおよび大サイズ孔7bの形成は、レーザー加工により行ってもよい。また、層間接続用のビアホールやキャビティ4形成用の大開口部の形成も、小サイズ孔7aおよび大サイズ孔7bと同様に、レーザー加工により行うことができる。 In addition, the formation of the small size hole 7a and the large size hole 7b in each green sheet may be performed by laser processing. Also, via holes for interlayer connection and large openings for forming the cavities 4 can be formed by laser processing, as with the small size holes 7a and the large size holes 7b.
 次に、前記工程で得られた中間層用グリーンシート24および下層用グリーンシート25において、配線基板領域に相当する領域(以下、単に配線基板領域と示すこともある。)の所定の位置に、配線導体ペースト層を形成する。まず、中間層用グリーンシート24の素子搭載面側の各配線基板領域において、所定の位置に素子接続端子用金属ペースト層6を形成する。また、下層用グリーンシート25の非搭載面側の各配線基板領域において、所定の位置に外部接続端子用金属ペースト層を形成する。さらに、これら中間層用グリーンシート24および下層用グリーンシート25の層間接続用のビアホールに金属ペーストを充填し、貫通導体用金属ペースト層を形成する。こうして金属ペースト層付きの中間層用グリーンシートおよび下層用グリーンシートを製造する。なお、これらの中間層用グリーンシートおよび下層用グリーンシートに、積層のための位置合わせの印を形成できる。 Next, in the green sheet 24 for the intermediate layer and the green sheet 25 for the lower layer obtained in the above step, at a predetermined position in a region corresponding to the wiring substrate region (hereinafter sometimes simply referred to as a wiring substrate region). A wiring conductor paste layer is formed. First, the element connection terminal metal paste layer 6 is formed at a predetermined position in each wiring board region on the element mounting surface side of the intermediate layer green sheet 24. Further, in each wiring board region on the non-mounting surface side of the lower layer green sheet 25, a metal paste layer for external connection terminals is formed at a predetermined position. Further, a metal paste is filled in the interlayer connection via holes of the intermediate layer green sheet 24 and the lower layer green sheet 25 to form a metal paste layer for through conductors. In this way, the green sheet for intermediate layers and the green sheet for lower layers with a metal paste layer are manufactured. In addition, the alignment mark for lamination | stacking can be formed in these green sheets for intermediate | middle layers and green sheets for lower layers.
 素子接続端子用金属ペースト層6、外部接続端子用金属ペースト層、および貫通導体用金属ペースト層の形成方法としては、金属ペーストをスクリーン印刷により塗布、充填する方法が挙げられる。金属ペーストとしては、母基板2がLTCC基板である場合は、銅、銀、金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤、添加剤等を添加してペースト状にしたものを用いる。上記金属粉末としては、銀からなる金属粉末、銀と白金またはパラジウムからなる金属粉末が好ましい。母基板2がアルミナ基板等のセラミックス基板である場合は、タングステンやモリブデンのような高融点金属を主成分とする金属ペーストを使用することが好ましい。 Examples of a method for forming the element connection terminal metal paste layer 6, the external connection terminal metal paste layer, and the through conductor metal paste layer include a method of applying and filling the metal paste by screen printing. As the metal paste, when the mother substrate 2 is an LTCC substrate, a paste made by adding a vehicle such as ethyl cellulose, a solvent, an additive or the like to a metal powder mainly composed of copper, silver, gold or the like. Use the shape. The metal powder is preferably a metal powder made of silver, or a metal powder made of silver and platinum or palladium. When the mother substrate 2 is a ceramic substrate such as an alumina substrate, it is preferable to use a metal paste whose main component is a refractory metal such as tungsten or molybdenum.
<(A2)積層および連通開口部の形成工程>
 前記(A1)工程で得られた枠体用グリーンシート23と金属ペースト層付きの中間層用グリーンシート24および金属ペースト層付きの下層用グリーンシート25を、位置合わせしつつ素子搭載面2a側からこの順で積層し、加熱および加圧して一体化する。そして、境界延長部に連通開口部7を有するグリーンシート積層体を形成する。
<(A2) Stacking and communication opening forming step>
From the element mounting surface 2a side, the frame green sheet 23 obtained in the step (A1), the intermediate layer green sheet 24 with the metal paste layer, and the lower layer green sheet 25 with the metal paste layer are aligned. Laminate in this order, and integrate by heating and pressing. And the green sheet laminated body which has the communication opening part 7 in a boundary extension part is formed.
 グリーンシート積層体の連通開口部7は、枠体用グリーンシート23に形成された小サイズ孔7aと、金属ペースト層付き中間層用グリーンシート24および金属ペースト層付き下層用グリーンシート25にそれぞれ形成された大サイズ孔7bとが、グリーンシート積層体の厚さ方向(すなわち、積層方向)に重なることにより形成されたものである。そして、この連通開口部7は、グリーンシート積層体の素子搭載面2a側から平面視した場合に、枠体用グリーンシート23に形成された小サイズ孔7aの素子搭載面2a側の端部71aが直接露出し、かつ非搭載面2b側から平面視した場合に、中間層用グリーンシート24および下層用グリーンシート25の大サイズ孔7bの開口を介して、前記小サイズ孔7aの非搭載面2b側の端部71bが遮蔽されることなく全て露出するような、形状および構造となっている。 The communication opening 7 of the green sheet laminate is formed in the small size hole 7a formed in the frame green sheet 23, the intermediate layer green sheet 24 with the metal paste layer, and the lower layer green sheet 25 with the metal paste layer. The large size holes 7b are formed by overlapping in the thickness direction (that is, the stacking direction) of the green sheet stack. The communication opening 7 has an end portion 71a on the element mounting surface 2a side of the small size hole 7a formed in the frame green sheet 23 when viewed from the element mounting surface 2a side of the green sheet laminate. Is exposed directly and when viewed in plan from the non-mounting surface 2b side, the non-mounting surface of the small size hole 7a through the opening of the large size hole 7b of the green sheet 24 for the intermediate layer and the green sheet 25 for the lower layer The shape and the structure are such that the end portion 71b on the 2b side is completely exposed without being shielded.
 なお、キャビティ4形成用の大開口部を有するグリーンシートに小サイズ孔7aを形成した枠体用グリーンシート23を積層する場合は、このような枠体用グリーンシート23の小サイズ孔7aの開口断面の形状が、積層の際に変形しやすい。小サイズ孔7aの断面形状が変形すると、後述する分割溝の形成において、位置精度の低下や直線性の低下が生じるおそれがある。また、中間層用グリーンシート24および下層用グリーンシート25の大サイズ孔7bの開口断面の形状も、積層の際に変形するおそれがあり、その場合は、小サイズ孔7aの素子搭載面2a側および非搭載面2b側の端部71a、71bの露出が不十分になるおそれがある。 In addition, when laminating | stacking the green sheet 23 for frames which formed the small size hole 7a on the green sheet which has the large opening part for cavity 4 formation, opening of the small size hole 7a of such a green sheet 23 for frames The cross-sectional shape is easily deformed during lamination. If the cross-sectional shape of the small size hole 7a is deformed, there is a risk that the position accuracy and the linearity may be lowered in the formation of the divided grooves described later. Further, the shape of the opening cross section of the large size hole 7b of the intermediate layer green sheet 24 and the lower layer green sheet 25 may also be deformed during lamination. In this case, the element mounting surface 2a side of the small size hole 7a In addition, the exposure of the end portions 71a and 71b on the non-mounting surface 2b side may be insufficient.
 したがって、本発明の実施形態においては、枠体用グリーンシート23の小サイズ孔7a、ならびに中間層用グリーンシート24および下層用グリーンシート25の大サイズ孔7bに、形状保持のための介在物を充填し、その状態で積層することが好ましい。形状保持のための介在物としては、柔軟で伸び率の高い材料が好ましく、例えばシリコーン樹脂等が挙げられる。 Therefore, in the embodiment of the present invention, inclusions for maintaining the shape are provided in the small size holes 7a of the frame green sheet 23 and the large size holes 7b of the intermediate layer green sheet 24 and the lower layer green sheet 25. It is preferable to fill and laminate in that state. The inclusion for maintaining the shape is preferably a flexible material having a high elongation rate, such as a silicone resin.
[(B)第1の分割溝の形成工程および(C)第2の分割溝の形成工程]
 まず、前記(A2)工程で形成された連通開口部7を有するグリーンシート積層体において、素子搭載面2a側の各配線基板領域21の間の境界に沿って、カッター刃等の切断具を押しつけ、少なくともグリーンシート積層体の最上層を構成する枠体用グリーンシート23に所定の深さの切り込みを入れることにより、未焼成第1の分割溝8を形成する。未焼成第1の分割溝8は、グリーンシート積層体に形成された連通開口部7において、素子搭載面2aに露出した小サイズ孔7aの端部(すなわち、素子搭載面2a側の端部)71aを、素子搭載面2a側から画像認識装置等により認識させ、その認識位置を基準として決定された配線基板領域21間の境界位置に形成する。未焼成第1の分割溝8は、例えば枠体用グリーンシート23の厚さの一部あるいは全部を切断する深さに形成するが、枠体用グリーンシート23の全厚を切断し、さらに下層の中間層用グリーンシート24に達する深さに形成してもよい。
[(B) First Divided Groove Forming Step and (C) Second Divided Groove Forming Step]
First, in the green sheet laminate having the communication opening 7 formed in the step (A2), a cutting tool such as a cutter blade is pressed along the boundary between the wiring board regions 21 on the element mounting surface 2a side. The unsintered first divided grooves 8 are formed by cutting at a predetermined depth into the frame green sheet 23 constituting at least the uppermost layer of the green sheet laminate. The unsintered first dividing groove 8 is the end of the small size hole 7a exposed to the element mounting surface 2a (that is, the end on the element mounting surface 2a side) in the communication opening 7 formed in the green sheet laminate. 71a is recognized by an image recognition device or the like from the element mounting surface 2a side, and is formed at a boundary position between the wiring board regions 21 determined based on the recognition position. The unsintered first dividing groove 8 is formed, for example, to a depth at which a part or all of the thickness of the green body sheet 23 is cut. The intermediate layer green sheet 24 may be formed to a depth reaching the intermediate layer green sheet 24.
 また、こうして未焼成第1の分割溝8が形成されたグリーンシート積層体の非搭載面2bの前記未焼成第1の分割溝8と対向するように、当該非搭載面2b側から、各配線基板領域間の境界に沿ってカッター刃等の切断具を押しつけ、少なくとも積層体の最下層を構成する下層用グリーンシート25に所定の深さの切り込みを入れることにより、未焼成第2の分割溝を形成する。未焼成第2の分割溝は、グリーンシート積層体に形成された連通開口部7の非搭載面2b側に配設された大サイズ孔7bを通して、非搭載面2bに露出した小サイズ孔7aの端部(すなわち、非搭載面2b側の端部)71bを、非搭載面2b側から画像認識装置等により認識させ、その認識位置を基準として決定された配線基板領域間の境界位置に形成する。未焼成第2の分割溝は、例えば、下層用グリーンシート25の厚さの一部あるいは全部を切断する深さに形成するが、下層用グリーンシート25の全厚を切断し、さらに上層の中間層用グリーンシート24に達する深さに形成してもよい。こうして、未焼成連結配線基板1を得る。 In addition, each wiring is connected from the non-mounting surface 2b side so as to face the non-fired first divided groove 8 of the non-mounting surface 2b of the green sheet laminate in which the unfired first dividing grooves 8 are thus formed. By pressing a cutting tool such as a cutter blade along the boundary between the substrate regions and cutting at a predetermined depth into the green sheet 25 for the lower layer constituting at least the lowermost layer of the laminate, the unsintered second divided groove Form. The unsintered second divided groove is formed by the small size hole 7a exposed to the non-mounting surface 2b through the large size hole 7b disposed on the non-mounting surface 2b side of the communication opening 7 formed in the green sheet laminate. The end portion (that is, the end portion on the non-mounting surface 2b side) 71b is recognized by an image recognition device or the like from the non-mounting surface 2b side, and is formed at the boundary position between the wiring board regions determined based on the recognition position. . The unsintered second divided grooves are formed, for example, to a depth that cuts part or all of the thickness of the lower layer green sheet 25, but the entire thickness of the lower layer green sheet 25 is further cut and further intermediate the upper layer. You may form in the depth which reaches the green sheet 24 for layers. In this way, the unfired connection wiring board 1 is obtained.
 未焼成第1の分割溝8の形成工程と未焼成第2の分割溝の形成工程は、どちらの工程を先に行ってもよい。また、このような未焼成連結配線基板1において、素子搭載面2a側に形成された未焼成第1の分割溝8の交点の位置に、円形の貫通孔を孔開け機等を用いて形成し、未焼成分割孔9を形成できる。 Either the step of forming the unfired first divided groove 8 and the step of forming the unfired second divided groove may be performed first. In such an unfired connection wiring board 1, a circular through hole is formed at the intersection of the unfired first division groove 8 formed on the element mounting surface 2 a side by using a punching machine or the like. Unfired divided holes 9 can be formed.
[(D)積層体の焼成工程]
 次いで、前記工程で得られた未焼成連結配線基板1に、必要に応じて、グリーンシートに含まれる樹脂等のバインダー等を分解・除去するための脱脂を行った後、グリーンシートを構成する無機絶縁材料を焼結させるための焼成を行う。
[(D) Laminate firing step]
Next, the unfired connection wiring board 1 obtained in the above step is degreased to decompose and remove a binder such as a resin contained in the green sheet, if necessary, and then the inorganic constituting the green sheet Firing is performed to sinter the insulating material.
 グリーンシートを構成する無機絶縁材料がガラスセラミックス組成物である場合は、例えば800℃以上930℃以下の温度で焼成する。また、焼成の前に、例えば500℃以上600℃以下の温度で1時間以上10時間以下保持する脱脂を行い、バインダー等を除去することが好ましい。 When the inorganic insulating material constituting the green sheet is a glass ceramic composition, it is fired at a temperature of 800 ° C. or higher and 930 ° C. or lower, for example. Moreover, before baking, it is preferable to perform the degreasing which hold | maintains for 1 hour or more and 10 hours or less, for example at the temperature of 500 degreeC or more and 600 degrees C or less, and removes a binder etc.
 焼成は、基板の緻密な構造の獲得と生産性を考慮して、800℃乃至930℃の温度範囲で適宜時間を調整する。具体的には、850℃以上900℃以下の温度で20分以上60分以下保持することが好ましく、特に860℃以上880℃以下の温度で20分以上60分以下保持することが好ましい。焼成温度が800℃未満では、緻密な構造の基板が得られないおそれがある。一方、焼成温度が930℃を超えると基板が変形するなど生産性等が低下するおそれがある。また、銀を主成分とする金属粉末を含有する金属ペーストを用いた場合、焼成温度が880℃を超えると、金属ペーストが過度に軟化して所定の形状を維持できなくなるおそれがある。 Calcination is appropriately adjusted in a temperature range of 800 ° C. to 930 ° C. in consideration of obtaining a dense structure of the substrate and productivity. Specifically, it is preferably held at a temperature of 850 ° C. or higher and 900 ° C. or lower for 20 minutes or longer and 60 minutes or shorter, particularly preferably at a temperature of 860 ° C. or higher and 880 ° C. or lower for 20 minutes or longer and 60 minutes or shorter. If the firing temperature is less than 800 ° C., a substrate having a dense structure may not be obtained. On the other hand, when the firing temperature exceeds 930 ° C., productivity and the like may be lowered due to deformation of the substrate. Moreover, when the metal paste containing the metal powder which has silver as a main component is used and a calcination temperature exceeds 880 degreeC, there exists a possibility that a metal paste may soften too much and it may become impossible to maintain a predetermined shape.
 また、グリーンシートを構成する無機絶縁材料が、アルミナ等のセラミックス組成物である場合は、例えば200℃以上500℃以下の温度で1時間以上10時間以下保持する脱脂を行った後、例えば1400℃以上1700℃以下の温度で焼成する。 Moreover, when the inorganic insulating material which comprises a green sheet is ceramic compositions, such as an alumina, after performing the degreasing which hold | maintains at the temperature of 200 degreeC or more and 500 degrees C or less for 1 hour or more and 10 hours or less, for example, 1400 degreeC, for example The baking is performed at a temperature of 1700 ° C. or lower.
 このようにして、未焼成連結配線基板1が焼成されて連結配線基板1が得られる。焼成後、必要に応じて、素子接続端子6および外部接続端子の表面に、導体保護層として金メッキ層またはニッケルメッキ層を形成することが好ましい。金メッキ層またはニッケルメッキ層は、例えば、素子接続端子6や外部接続端子のような配線導体層をメッキ液に浸漬し、メッキ液中で配線導体層の表面に電流を供給して、電解メッキを施すことにより形成できる。 Thus, the unfired connection wiring board 1 is fired to obtain the connection wiring board 1. After firing, it is preferable to form a gold plating layer or a nickel plating layer as a conductor protective layer on the surfaces of the element connection terminals 6 and the external connection terminals as necessary. The gold plating layer or the nickel plating layer is formed by, for example, immersing a wiring conductor layer such as the element connection terminal 6 or the external connection terminal in a plating solution, supplying a current to the surface of the wiring conductor layer in the plating solution, and performing electrolytic plating. It can be formed by applying.
 また、このような分割前の連結配線基板1の状態で、素子搭載面2a側の配線基板領域21のキャビティ4底面の素子搭載部5に、LED素子のような発光素子を配置して固定することもできる。 Further, in the state of the connection wiring board 1 before the division, a light emitting element such as an LED element is arranged and fixed on the element mounting portion 5 on the bottom surface of the cavity 4 of the wiring board region 21 on the element mounting surface 2a side. You can also
 このように構成される実施形態の製造方法では、グリーンシート積層体の素子搭載面2a側の最上層を構成する小サイズ孔7aの両端部(すなわち、素子搭載面2a側の端部71aと非搭載面2b側の端部71b)を、それぞれ画像認識装置により認識させ、認識されたこれらの位置を基準として、グリーンシート積層体の素子搭載面2aおよび非搭載面2bに未焼成第1の分割溝8および未焼成第2の分割溝を形成しているので、母基板2の両面の分割溝(すなわち、第1の分割溝8と第2の分割溝)を、互いの底部を精度よく対向させて形成できる。したがって、得られる連結配線基板1の各配線基板領域21の境界に沿った分割が容易かつ正確なものとなり、連結配線基板1を分割してなる個片の配線基板に、バリや欠け等の不具合が生じることが防止される。上記した説明においては、グリーンシート積層体の素子搭載面側に小サイズ孔を形成するという好ましい実施態様について説明したが、グリーンシート積層体の素子搭載面側の対応する両端側に大サイズ孔を形成し、これら大サイズ孔を分割溝形成の位置の基準にすることもできる。 In the manufacturing method of the embodiment configured as described above, both end portions of the small size hole 7a constituting the uppermost layer on the element mounting surface 2a side of the green sheet laminate (that is, the end portion 71a on the element mounting surface 2a side and the non-end portion are not connected). The end portion 71b) on the side of the mounting surface 2b is recognized by the image recognition device, and the unsintered first division is performed on the element mounting surface 2a and the non-mounting surface 2b of the green sheet laminate based on the recognized positions. Since the groove 8 and the unsintered second divided groove are formed, the divided grooves on both sides of the mother board 2 (that is, the first divided groove 8 and the second divided groove) are opposed to each other with high precision. Can be formed. Accordingly, division of the obtained connection wiring board 1 along the boundary of each wiring board region 21 becomes easy and accurate, and the wiring board 1 obtained by dividing the connection wiring board 1 has defects such as burrs and chips. Is prevented from occurring. In the above description, a preferred embodiment has been described in which small size holes are formed on the element mounting surface side of the green sheet laminate, but large size holes are formed on both corresponding ends of the green sheet laminate on the element mounting surface side. It is also possible to form these large-sized holes and use them as a reference for forming the dividing grooves.
 すなわち、連結配線基板1の分割は、第1の分割溝8または第2の分割溝に沿って、反対面側にたわませるようにして曲げ応力を加えることにより、母基板2に亀裂が発生・進行し、母基板2が破断されることで完成する。このようにして連結配線基板を分断して個々の配線基板が得られる。このとき、第1の分割溝8の底部と第2の分割溝の底部が互いに精度よく対向している。したがって、応力を加えた面の一方の分割溝の底部で亀裂が発生するとともに、応力の作用する方向で直上かつ直近に位置するもう一方の分割溝に向かって亀裂が進行する。その結果、亀裂が、母基板2の内部で対向する分割溝以外の方向に進行することがなく、バリや欠け等の不具合の発生が抑制される。 That is, in the division of the connection wiring board 1, a crack is generated in the mother board 2 by applying a bending stress so as to bend along the first dividing groove 8 or the second dividing groove to the opposite surface side. Progress and complete when the mother board 2 is broken. In this way, the individual wiring boards are obtained by dividing the connection wiring board. At this time, the bottom of the first dividing groove 8 and the bottom of the second dividing groove face each other with high accuracy. Therefore, a crack is generated at the bottom of one split groove on the surface to which the stress is applied, and the crack progresses toward the other split groove located immediately above and in the direction in which the stress acts. As a result, cracks do not progress in directions other than the division grooves facing each other inside the mother board 2, and the occurrence of defects such as burrs and chips is suppressed.
 また、枠体用グリーンシート23の有する小サイズ孔7aは、キャビティ4用の大開口部の形成と同一の打ち抜き加工工程で形成されるので、配線基板領域21のキャビティ4の位置に対して、小サイズ孔7aの形成位置がずれにくい。そして、このような枠体用グリーンシート23の小サイズ孔7aの両端部(すなわち、素子搭載面2a側の端部71aと非搭載面2b側の端部71b)を基準として決められた位置に、素子搭載面2a側の第1の分割溝8と非搭載面側の第2の分割溝をそれぞれ形成しているので、これらの分割溝の位置を、各配線基板領域21の境界位置に高精度に合わせることが可能となる。 Further, since the small size hole 7a of the frame green sheet 23 is formed by the same punching process as the formation of the large opening for the cavity 4, the position of the cavity 4 in the wiring board region 21 is The formation position of the small size hole 7a is difficult to shift. Then, both ends of the small size hole 7a of the frame green sheet 23 (that is, the end portion 71a on the element mounting surface 2a side and the end portion 71b on the non-mounting surface 2b side) are determined at positions determined as references. Since the first dividing groove 8 on the element mounting surface 2a side and the second dividing groove on the non-mounting surface side are respectively formed, the position of these dividing grooves is set higher than the boundary position of each wiring board region 21. It becomes possible to match the accuracy.
 このように、配線基板領域21のキャビティ4に対する分割溝の位置にずれが生じにくいので、分割後の個片の配線基板において、外辺に対するキャビティ4等の位置ずれが抑えられる。その結果、半導体素子等の電子部品の搭載や外部電気回路基板に対する実装の精度および作業性に優れた配線基板とすることができる。 As described above, since the position of the dividing groove with respect to the cavity 4 in the wiring board region 21 is unlikely to shift, the position shift of the cavity 4 and the like with respect to the outer side can be suppressed in the divided wiring board. As a result, it is possible to obtain a wiring board having excellent accuracy and workability for mounting electronic components such as semiconductor elements and mounting on an external electric circuit board.
 以上、本発明の連結配線基板1の製造方法について説明したが、基板用グリーンシートのうちで、中間層用グリーンシート24および下層用グリーンシート25は、必ずしも単一のグリーンシートである必要はなく、複数枚のグリーンシートを積層したものであってもよい。また、中間層用グリーンシート24と下層用グリーンシート25の一方だけであってもよい。
 また、枠体用グリーンシート23も、必ずしも単一のグリーンシートからなる必要はなく、小サイズ孔7aが打ち抜き加工できれば、複数枚のグリーンシートを積層したものであってもよい。さらに、各部の形成順序等についても、連結配線基板1の製造が可能な限度において適宜変更できる。
The manufacturing method of the connection wiring board 1 of the present invention has been described above. Of the green sheets for the substrate, the intermediate layer green sheet 24 and the lower layer green sheet 25 are not necessarily a single green sheet. Alternatively, a laminate of a plurality of green sheets may be used. Further, only one of the intermediate layer green sheet 24 and the lower layer green sheet 25 may be used.
Further, the frame green sheet 23 is not necessarily made of a single green sheet, and may be a laminate of a plurality of green sheets as long as the small-sized hole 7a can be punched. Further, the order of forming each part can be changed as appropriate as long as the connection wiring board 1 can be manufactured.
 さらにまた、実施形態では、素子搭載面2a側の最上層に積層される枠体用グリーンシート23に、位置決めの基準となる小サイズ孔7aを形成している。しかし、素子搭載面2a側の配線基板領域22が平坦な形状の連結配線基板1を製造する場合には、非搭載面2b側の最下層に積層される下層用グリーンシート25に、位置決めの基準となる小サイズ孔を形成する。この場合、中間層用グリーンシート24と枠体用グリーンシート23に、小サイズ孔より開口面積の大きな大サイズ孔を形成する。 Furthermore, in the embodiment, the small size hole 7a serving as a positioning reference is formed in the frame green sheet 23 laminated on the uppermost layer on the element mounting surface 2a side. However, when the connection wiring board 1 having a flat wiring board region 22 on the element mounting surface 2a side is manufactured, the lower layer green sheet 25 laminated on the lowermost layer on the non-mounting face 2b side is provided with a positioning reference. A small-sized hole is formed. In this case, large-sized holes having an opening area larger than the small-sized holes are formed in the intermediate layer green sheet 24 and the frame green sheet 23.
 このように構成した場合には、下層用グリーンシートに形成された小サイズ孔の非搭載面側の端部が直接露出する。一方、素子搭載面側の小サイズ孔の端部は、中間層用グリーンシートおよび枠体用グリーンシートの大サイズ孔の開口を介して、遮蔽されることなく全て露出することになる。そして、こうして露出する小サイズ孔の両面側の端部を位置決めの基準として、母基板の両面に分割溝を精度よく対向させて形成できる。 In such a configuration, the end portion on the non-mounting surface side of the small size hole formed in the lower layer green sheet is directly exposed. On the other hand, the end portions of the small-sized holes on the element mounting surface side are all exposed without being shielded through the openings of the large-sized holes of the intermediate layer green sheet and the frame green sheet. Then, using the end portions on both sides of the small-sized hole thus exposed as a reference for positioning, the dividing grooves can be formed on both surfaces of the mother substrate with high accuracy.
 以下に、本発明の実施例を説明する。なお、本発明はこれら実施例に限定されない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to these examples.
(実施例)
 LTCCを構成材料として、以下に説明する方法で、連結配線基板のサンプルを製造した。
(Example)
Using LTCC as a constituent material, a connection wiring board sample was manufactured by the method described below.
 まず、4枚の連結配線基板用グリーンシートを製造した。すなわち、ガラス組成として酸化物換算のmol百分率表示で、SiOが60.4mol%、Bが15.6mol%、Alが6mol%、CaOが15mol%、KOが1mol%、NaOが2mol%となるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより40時間粉砕してガラス粉末を製造した。なお、粉砕時の溶媒にはエチルアルコールを用いた。 First, four green sheets for connecting wiring boards were manufactured. In other words, the glass composition is expressed in terms of mol percentage in terms of oxide, SiO 2 is 60.4 mol%, B 2 O 3 is 15.6 mol%, Al 2 O 3 is 6 mol%, CaO is 15 mol%, and K 2 O is 1 mol. %, Na 2 O was mixed and mixed so that the raw material was 2 mol%. The raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder. In addition, ethyl alcohol was used as a solvent for pulverization.
 このガラス粉末が35質量%、アルミナフィラー(昭和電工社製、商品名:AL-45H)が40質量%、ジルコニアフィラー(第一稀元素化学工業社製、商品名:HSY-3F-J)が25質量%となるように配合し、混合することによりガラスセラミックス組成物を調製した。次いで、このガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのポリビニルブチラール(デンカ社製、商品名:PVK#3000K)5g、さらに分散剤(ビックケミー社製、商品名:BYK180)0.5gを配合し、混合してスラリーを調製した。 This glass powder is 35% by mass, alumina filler (manufactured by Showa Denko, trade name: AL-45H) is 40% by weight, and zirconia filler (manufactured by Daiichi Rare Element Chemical Industry, trade name: HSY-3F-J). A glass ceramic composition was prepared by blending and mixing at 25% by mass. Next, 50 g of this glass ceramic composition was mixed with 15 g of an organic solvent (toluene, xylene, 2-propanol, 2-butanol mixed at a mass ratio of 4: 2: 2: 1), and a plasticizer (di-2-phthalate). Ethylhexyl) 2.5 g, polyvinyl butyral (made by Denka Co., Ltd., trade name: PVK # 3000K) 5 g as a binder, and 0.5 g of a dispersant (Bick Chemie, trade name: BYK180) 0.5 g are mixed and mixed to prepare a slurry. Prepared.
 このスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥させ、略平板状であって焼成後の大きさが100mm×100mm、厚さが1mmとなる4枚の基板用グリーンシートを製造した。なお、4枚の基板用グリーンシートのうちの1枚を、上層用グリーンシートとし、残りの3枚のうち2枚を中間層用グリーンシート、1枚を下層用グリーンシートとした。 This slurry was applied onto a PET film by a doctor blade method and dried to produce four green sheets for a substrate having a substantially flat plate shape having a size of 100 mm × 100 mm and a thickness of 1 mm after firing. One of the four substrate green sheets was an upper layer green sheet, and two of the remaining three sheets were intermediate layer green sheets and one lower layer green sheet.
 次いで、上層用グリーンシートに対して、パンチングマシーンを使用した打ち抜き加工により、0.7mm×0.7mmの正方形の断面形状を有する小サイズ孔7aを、25mm間隔(この間隔とは、孔の中心間の距離をいう。以下同じ。)で5個形成した。また、中間層用グリーンシートおよび下層用グリーンシートに対して、パンチングマシーンを使用した打ち抜き加工により、1.8mm×3.5mmの長方形の断面形状を有する大サイズ孔7bを、前記小サイズ孔7aと対応する位置に、前記小サイズ孔7aと同様に、前記小サイズ孔7aと同様に、25mm間隔で5個形成した。さらに、これら4枚のグリーンシートのそれぞれの上面に、積層の際の位置合わせ用の印を銀ペーストにより形成した。 Next, by punching the upper layer green sheet using a punching machine, small-sized holes 7a having a 0.7 mm × 0.7 mm square cross-sectional shape are spaced at intervals of 25 mm (this distance is the center of the hole). 5 is formed in the same manner. Further, the large size hole 7b having a rectangular sectional shape of 1.8 mm × 3.5 mm is formed by punching the green sheet for the intermediate layer and the green sheet for the lower layer using a punching machine. Similarly to the small size hole 7a, five pieces were formed at 25 mm intervals in the same positions as the small size hole 7a. Furthermore, a mark for alignment at the time of lamination was formed with silver paste on the upper surface of each of these four green sheets.
 次に、上層用グリーンシート、2枚の中間層用グリーンシート、下層用グリーンシートを、位置合わせ用の印により位置合わせしつつ、上からこの順で積層し、加熱および加圧して一体化し、グリーンシート積層体を得た。そして、このグリーンシート積層体を上面側から平面視した場合に、図5に示すように、上層用グリーンシートに形成された小サイズ孔7aの上面側の端部が直接露出し、かつ下面側から平面視した場合に、2枚の中間層用グリーンシートおよび下層用グリーンシートの大サイズ孔7bの開口を介して、前記小サイズ孔7aの下面側の端部が全て露出するような、連通開口部を形成した。 Next, while aligning the green sheet for the upper layer, the two green sheets for the intermediate layer, and the green sheet for the lower layer with the marks for alignment, they are laminated in this order from above, and are integrated by heating and pressing, A green sheet laminate was obtained. When the green sheet laminate is viewed in plan from the upper surface side, as shown in FIG. 5, the upper end of the small size hole 7a formed in the upper layer green sheet is directly exposed, and the lower surface side When viewed from above, the communication is such that the end portions on the lower surface side of the small size hole 7a are all exposed through the openings of the large size hole 7b of the two intermediate layer green sheets and the lower layer green sheet. An opening was formed.
 次いで、グリーンシート積層体の上下両面の所定の位置に、グリーンシート積層体切断機(UHT社製G-cut6)を用いて、深さ0.4mmの未焼成分割溝を平行方向に上下5本ずつ形成した。上面側の未焼成分割溝は、グリーンシート積層体に形成された連通開口部において、上面に露出した小サイズ孔7aの端部を、上面側から画像認識装置により認識させ、その認識位置を基準として決定された所定の位置に形成した。また、下面側の未焼成分割溝は、グリーンシート積層体に形成された連通開口部の大サイズ孔7bを通して下面に露出した小サイズ孔7aの端部を、下面側から画像認識装置により認識させ、その認識位置を基準として決定された所定の位置に形成した。 Next, at predetermined positions on both the upper and lower surfaces of the green sheet laminate, a green sheet laminate cutting machine (G-cut 6 manufactured by UHT) is used to form up and down five unfired dividing grooves having a depth of 0.4 mm in the parallel direction. Formed one by one. The unsintered dividing groove on the upper surface side allows the image recognition device to recognize the end of the small size hole 7a exposed on the upper surface from the upper surface side in the communication opening formed in the green sheet laminate, and the recognition position is a reference. Formed in a predetermined position determined as. The unsintered dividing groove on the lower surface side allows the image recognition device to recognize the end of the small size hole 7a exposed on the lower surface through the large size hole 7b of the communication opening formed in the green sheet laminate from the lower surface side. , And formed at a predetermined position determined based on the recognition position.
 こうして得られた未焼成連結配線基板を、550℃で5時間保持して脱脂した後、870℃で30分間保持して焼成し、連結配線基板のサンプルを得た。 The thus obtained unfired connection wiring board was degreased by holding at 550 ° C. for 5 hours, and then fired by holding at 870 ° C. for 30 minutes to obtain a sample of the connection wiring board.
(比較例)
 4枚の連結配線基板用グリーンシート(上層用グリーンシート、2枚の中間層用グリーンシートおよび下層用グリーンシート)に対して、いずれも同じ大きさ(0.5mm×0.5mm)の正方形の断面形状を有する位置決め孔を形成した。次いで、これらのグリーンシートを実施例と同様に積層して、グリーンシート積層体を形成した。グリーンシート積層体には、各グリーンシートの位置決め孔が厚さ方向に重なることで、連通孔が形成された。
(Comparative example)
The squares of the same size (0.5 mm × 0.5 mm) are used for the four green sheets for connecting wiring boards (upper green sheet, two intermediate green sheets, and lower green sheet). A positioning hole having a cross-sectional shape was formed. Subsequently, these green sheets were laminated | stacked similarly to the Example, and the green sheet laminated body was formed. The green sheet laminate was formed with communication holes by overlapping the positioning holes of each green sheet in the thickness direction.
 次に、グリーンシート積層体の上下両面の所定の位置に、深さ0.4mmの未焼成分割溝を上下5本ずつ形成した。上面側の未焼成分割溝は、グリーンシート積層体に形成された連通孔の上面側の開口端部を画像認識装置により認識させ、その認識位置を基準として決定された所定の位置に形成した。また、下面側の未焼成分割溝は、グリーンシート積層体に形成された連通孔の下面側の開口端部を画像認識装置により認識させ、その認識位置を基準として決定された所定の位置に形成した。こうして、得られた未焼成連結配線基板を実施例と同様に焼成して、連結配線基板のサンプルを製造した。 Next, five unsintered divided grooves each having a depth of 0.4 mm were formed at predetermined positions on the upper and lower surfaces of the green sheet laminate. The unsintered dividing groove on the upper surface side was formed at a predetermined position determined based on the recognition position by causing the image recognition device to recognize the opening end on the upper surface side of the communication hole formed in the green sheet laminate. The unsintered dividing groove on the lower surface side is formed at a predetermined position determined based on the recognition position by causing the image recognition device to recognize the opening end on the lower surface side of the communication hole formed in the green sheet laminate. did. Thus, the obtained unbaking connection wiring board was baked like the Example, and the sample of the connection wiring board was manufactured.
 実施例および比較例でそれぞれ得られた連結配線基板のサンプルにおいて、上面側の分割溝と下面側の分割溝の位置ずれを測長器により測定した。5対の分割溝(分割溝対1~5)について、それぞれ位置ずれの大きさを測定し、最大値、最小値、平均値、標準偏差を求め、評価を行った。結果を表1に示す。なお、位置ずれの評価は、平均値が0.02mm以下のものを○、0.02mmを超えるものを×とした。表1から明らかなように、本発明の連結配線基板の製造方法により得られた連結配線基板の第1の分割溝と第2の分割溝のそれぞれの位置ずれは小さく、またこの連結配線基板を分断して得られた配線基板のそれぞれは、バリ、欠け、およびえぐれの発生が見られなかった。
 なお、上記実施例では平行方向に形成した分割溝で評価したが、図1のように、直交方向にも分割溝を形成したものであっても、上記と同様な評価が得られた。
In the sample of the connection wiring board obtained in each of the examples and the comparative examples, the positional deviation between the upper side dividing groove and the lower side dividing groove was measured by a length measuring device. For the five pairs of divided grooves (divided groove pairs 1 to 5), the size of the positional deviation was measured, and the maximum value, minimum value, average value, and standard deviation were determined and evaluated. The results are shown in Table 1. In the evaluation of the positional deviation, the average value of 0.02 mm or less was evaluated as ○, and the average value exceeding 0.02 mm was evaluated as ×. As is apparent from Table 1, each of the first divided grooves and the second divided grooves of the connection wiring board obtained by the method for manufacturing the connection wiring board of the present invention has a small positional shift. Each of the wiring boards obtained by dividing was not found to have burrs, chips, or burrs.
In the above examples, the evaluation was made with the divided grooves formed in the parallel direction, but the same evaluation as above was obtained even when the divided grooves were formed in the orthogonal direction as shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本願発明の、連結配線基板の製造方法によって製造された連結配線基板は、小型の半導体素子等の電子装置に利用することができる。
 なお、2011年10月17日に出願された日本特許出願2011-227853号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The connection wiring board manufactured by the manufacturing method of the connection wiring board of this invention can be utilized for electronic devices, such as a small-sized semiconductor element.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-227853 filed on Oct. 17, 2011 are incorporated herein as the disclosure of the present invention. .
1…連結配線基板、2…母基板、2a…素子搭載面、2b…非搭載面、3…枠部、4…キャビティ、6…素子接続端子、7…連通開口部、7a…小サイズ孔、7b…大サイズ孔、8…第1の分割溝、21…配線基板領域、22…基板外周領域、23…枠体用グリーンシート(上層無機絶縁層)、24…中間層用グリーンシート(中間層無機絶縁層)、25…下層用グリーンシート(下層無機絶縁層)、30…配線基板、31…外部電極端子、32貫通導体。 DESCRIPTION OF SYMBOLS 1 ... Connection wiring board, 2 ... Mother board, 2a ... Element mounting surface, 2b ... Non-mounting surface, 3 ... Frame part, 4 ... Cavity, 6 ... Element connection terminal, 7 ... Communication opening, 7a ... Small size hole, 7 ... Large size hole, 8 ... First dividing groove, 21 ... Wiring substrate region, 22 ... Substrate peripheral region, 23 ... Green sheet for frame (upper inorganic insulating layer), 24 ... Green sheet for intermediate layer (intermediate layer) Inorganic insulating layer), 25 ... Green sheet for lower layer (lower inorganic insulating layer), 30 ... Wiring substrate, 31 ... External electrode terminal, 32 through conductor.

Claims (5)

  1.  (A)複数の無機絶縁層からなり、縦横に配列された複数の配線基板領域と前記配線基板領域を囲む基板外周領域を有し、かつ前記基板外周領域で前記各配線基板領域間の境界の延長上である境界延長部にそれぞれ小サイズ孔と大サイズ孔とを備えた連通開口部を有する積層体を作製する工程と、
     (B)前記小サイズ孔の第1の端縁部を位置決めの基準として、前記積層体の一方の面における前記境界に、少なくとも前記小サイズ孔を有する無機絶縁層を分割する第1の分割溝を形成する工程と、
     (C)前記大サイズ孔の開口から露出する前記小サイズ孔の第2の端縁部を位置決めの基準として、前記積層体の他方の面における前記境界に、前記大サイズ孔を有する無機絶縁層のうちで少なくとも前記他方の面側の一層を分割する第2の分割溝を形成する工程と、
     (D)前記第1の分割溝および第2の分割溝を有する積層体を焼成する工程と、
     を備える連結配線基板の製造方法であり、
     かつ、前記した積層体を作製する工程(A)は、
     (A1)前記複数の無機絶縁層の所定の一層において、前記境界延長部に対応する領域に、前記小サイズ孔を形成するとともに、前記一層以外の前記無機絶縁層の各層において、前記境界延長部に対応する領域に、前記小サイズ孔より開口面積が大きい前記大サイズ孔を形成する工程と、
     (A2)前記小サイズ孔または前記大サイズ孔が形成された前記複数の無機絶縁層を積層し、得られた積層体において、前記一方の面側から平面視した場合に、前記小サイズ孔の前記一方の面側の前記第1の端縁部が全て露出し、かつ前記他方の面側から平面視した場合に、前記大サイズ孔の開口を介して前記小サイズ孔の前記他方の面側の前記第2の端縁部が見通せるように、前記連通開口部を形成する工程と、
    を備えることを特徴とする、前記連結配線基板の製造方法。
    (A) a plurality of wiring board regions formed of a plurality of inorganic insulating layers and arranged in a vertical and horizontal direction and a substrate outer peripheral region surrounding the wiring substrate region, and boundaries between the wiring substrate regions in the substrate outer peripheral region; Producing a laminate having a communication opening with a small-size hole and a large-size hole in the boundary extension portion on the extension, and
    (B) A first dividing groove that divides at least the inorganic insulating layer having the small-sized hole at the boundary on one surface of the laminated body using the first end edge of the small-sized hole as a positioning reference. Forming a step;
    (C) An inorganic insulating layer having the large-sized hole at the boundary on the other surface of the laminate using the second edge of the small-sized hole exposed from the opening of the large-sized hole as a reference for positioning. Forming a second dividing groove that divides at least one layer on the other surface side,
    (D) firing the laminate having the first divided grooves and the second divided grooves;
    A method of manufacturing a connection wiring board comprising:
    And the process (A) which produces an above described laminated body,
    (A1) In the predetermined layer of the plurality of inorganic insulating layers, the small-sized hole is formed in a region corresponding to the boundary extending portion, and the boundary extending portion is formed in each layer of the inorganic insulating layer other than the one layer. Forming the large size hole having a larger opening area than the small size hole in a region corresponding to
    (A2) Laminating the plurality of inorganic insulating layers in which the small-sized holes or the large-sized holes are formed, and when the obtained laminated body is viewed in plan from the one surface side, When the first end edge portion on the one surface side is completely exposed and viewed from the other surface side, the other surface side of the small size hole through the opening of the large size hole Forming the communication opening so that the second edge portion of the second portion can be seen through;
    The manufacturing method of the said connection wiring board characterized by the above-mentioned.
  2.  前記積層体の前記一方の面が、前記配線基板領域に素子搭載部が形成される素子搭載面であり、
     前記(A2)の連通開口部を形成する工程において、前記素子搭載面に前記小サイズ孔が直接開口するような連通開口部を形成する、請求項1に記載の連結配線基板の製造方法。
    The one surface of the laminate is an element mounting surface on which an element mounting portion is formed in the wiring board region,
    2. The method of manufacturing a connection wiring board according to claim 1, wherein in the step of forming the communication opening of (A2), the communication opening is formed such that the small-sized hole directly opens on the element mounting surface.
  3.  無機絶縁材料の焼結体からなり、縦横に配列された複数の配線基板領域と前記配線基板領域を囲む基板外周領域とを有する母基板と、
     前記母基板において、前記基板外周領域で前記各配線基板領域間の境界の延長上である境界延長部に形成された開口部であって、小サイズ孔と前記小サイズ孔より開口面積が大きい大サイズ孔とを厚さ方向に連接してなる形状を有し、一方の面側から平面視した場合に、前記小サイズ孔の前記一方の面側の第1の端縁部が全て露出し、かつ他方の面側から平面視した場合に、前記大サイズ孔の開口を介して前記小サイズ孔の前記他方の面側の第2の端縁部が全て露出するように構成された連通開口部と、
     前記母基板の前記一方の面側の前記配線基板領域間の境界に、前記小サイズ孔の前記第1の端縁部を位置決めの基準として形成された第1の分割溝と、前記母基板の前記他方の面側の前記配線基板領域間の境界に、前記大サイズ孔の開口を介して露出する前記小サイズ孔の前記第2の端縁部を位置決めの基準として形成された第2の分割溝と、
     を備えることを特徴とする連結配線基板。
    A mother board made of a sintered body of an inorganic insulating material, and having a plurality of wiring board areas arranged vertically and horizontally and a board outer peripheral area surrounding the wiring board area,
    In the mother board, an opening formed in a boundary extension portion that is an extension of a boundary between the wiring board areas in the outer peripheral area of the board, and has a larger opening area than the small size hole and the small size hole. When having a shape formed by connecting the size holes in the thickness direction, and when viewed in plan from one surface side, all the first edge portions on the one surface side of the small size holes are exposed, In addition, when viewed in plan from the other surface side, the communication opening portion is configured such that the second end edge portion on the other surface side of the small size hole is exposed through the opening of the large size hole. When,
    A first dividing groove formed on the boundary between the wiring board regions on the one surface side of the mother board using the first edge of the small-sized hole as a positioning reference; and A second division formed at the boundary between the wiring board regions on the other surface side with the second edge of the small size hole exposed through the opening of the large size hole as a reference for positioning. Groove,
    A connection wiring board comprising:
  4.  前記母基板は、前記配線基板領域に素子搭載部が形成される素子搭載面と当該素子搭載面と反対側に非搭載面を有し、前記小サイズ孔が前記素子搭載面側に、また前記大サイズ孔が前記非搭載面側に、前記小サイズ孔と前記大サイズ孔とが前記母基板の厚さ方向に連接するように形成されてなる請求項3に記載の連結配線基板。 The mother board has an element mounting surface on which an element mounting portion is formed in the wiring board region, a non-mounting surface on the opposite side of the element mounting surface, and the small size hole is on the element mounting surface side, and The connection wiring board according to claim 3, wherein a large size hole is formed on the non-mounting surface side, and the small size hole and the large size hole are connected to each other in a thickness direction of the mother board.
  5.  請求項3または4に記載の連結配線基板を前記第1の分割溝または第2の分割溝に沿って母基板に曲げ応力を加えることにより分割することを特徴とする連結配線基板の分割方法。 5. A method for dividing a connection wiring board according to claim 3, wherein the connection wiring board according to claim 3 is divided by applying a bending stress to the mother board along the first division groove or the second division groove.
PCT/JP2012/076854 2011-10-17 2012-10-17 Method for manufacturing coupled printed circuit board and coupled printed circuit board WO2013058287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011227853A JP2015005532A (en) 2011-10-17 2011-10-17 Manufacturing method of coupling wiring board, and coupling wiring board
JP2011-227853 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058287A1 true WO2013058287A1 (en) 2013-04-25

Family

ID=48140932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076854 WO2013058287A1 (en) 2011-10-17 2012-10-17 Method for manufacturing coupled printed circuit board and coupled printed circuit board

Country Status (2)

Country Link
JP (1) JP2015005532A (en)
WO (1) WO2013058287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006966A1 (en) * 2019-07-31 2022-06-01 Denka Company Limited Ceramic substrate and method for manufacturing same, composite substrate and method for manufacturing same, and circuit substrate and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517120B1 (en) * 2015-05-04 2020-01-15 Zkw Group Gmbh METHOD FOR POSITIONING AT LEAST ONE ELECTRONIC COMPONENT ON A CIRCUIT BOARD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142308B1 (en) * 1967-01-09 1976-11-15
JPS61265899A (en) * 1985-05-21 1986-11-25 東芝ケミカル株式会社 Multilayer printed circuit board
JP2002221550A (en) * 2001-01-29 2002-08-09 Hioki Ee Corp Mounting position correction method of position measuring camera in double-sided board inspection device
JP2004071749A (en) * 2002-08-05 2004-03-04 Toppan Printing Co Ltd Method of manufacturing multilayer circuit wiring board
JP2005311077A (en) * 2004-04-21 2005-11-04 Sanyo Electric Co Ltd Method for manufacturing multilayer board
JP2007299842A (en) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd Method for manufacturing multilayer wiring board, semiconductor package, and long-length wiring board
JP2010225973A (en) * 2009-03-25 2010-10-07 Toppan Printing Co Ltd Manufacturing method of multilayer circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142308B1 (en) * 1967-01-09 1976-11-15
JPS61265899A (en) * 1985-05-21 1986-11-25 東芝ケミカル株式会社 Multilayer printed circuit board
JP2002221550A (en) * 2001-01-29 2002-08-09 Hioki Ee Corp Mounting position correction method of position measuring camera in double-sided board inspection device
JP2004071749A (en) * 2002-08-05 2004-03-04 Toppan Printing Co Ltd Method of manufacturing multilayer circuit wiring board
JP2005311077A (en) * 2004-04-21 2005-11-04 Sanyo Electric Co Ltd Method for manufacturing multilayer board
JP2007299842A (en) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd Method for manufacturing multilayer wiring board, semiconductor package, and long-length wiring board
JP2010225973A (en) * 2009-03-25 2010-10-07 Toppan Printing Co Ltd Manufacturing method of multilayer circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4006966A1 (en) * 2019-07-31 2022-06-01 Denka Company Limited Ceramic substrate and method for manufacturing same, composite substrate and method for manufacturing same, and circuit substrate and method for manufacturing same
EP4006966A4 (en) * 2019-07-31 2022-09-28 Denka Company Limited Ceramic substrate and method for manufacturing same, composite substrate and method for manufacturing same, and circuit substrate and method for manufacturing same

Also Published As

Publication number Publication date
JP2015005532A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
KR102031573B1 (en) Optical device package, electronic device and electronic module
JP5731404B2 (en) Multi-cavity wiring board, wiring board and electronic device
WO2013058287A1 (en) Method for manufacturing coupled printed circuit board and coupled printed circuit board
JP2010258189A (en) Manufacturing method of electronic component mounting substrate, and manufacturing method of electronic component mounting motherboard
JP4511311B2 (en) Multi-circuit board and electronic device
JP3427031B2 (en) Method of manufacturing multi-cavity array board for wiring board
JP2012209310A (en) Substrate for light-emitting element, and light-emitting device
JP4595199B2 (en) Manufacturing method of multilayer ceramic substrate
JP4458999B2 (en) Multi-circuit board, electronic component storage package and electronic device
JP6398996B2 (en) Light emitting element substrate and light emitting device
JP2012248593A (en) Light-emitting element substrate and light-emitting device
JP2004146766A (en) Multiple patterning multilayer wiring board
JP2005217099A (en) Multicavity wiring board
JP4733061B2 (en) Plural wiring base, wiring base and electronic device, and division method of multiple wiring base
JP6403092B2 (en) Ceramic substrate and method of manufacturing electronic component using the same
JP4645962B2 (en) Multilayer ceramic substrate
JP5158875B2 (en) Ceramic package for storing electronic components and manufacturing method thereof
JP2011029534A (en) Multilayer wiring board
JP2012039028A (en) Wiring board and coupling substrate
JP2017055056A (en) Package for mounting optical element and electronic device
JP2005136172A (en) Wiring substrate capable of being divided into a multitude of pieces
JP4428883B2 (en) Multi-cavity ceramic wiring board
JP6506132B2 (en) Multi-cavity wiring board and wiring board
JP4646825B2 (en) Multiple wiring board
JP5511603B2 (en) Multiple wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP