WO2013056649A1 - 二氧化碳甲烷化催化剂及其制备方法和用途 - Google Patents

二氧化碳甲烷化催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2013056649A1
WO2013056649A1 PCT/CN2012/083095 CN2012083095W WO2013056649A1 WO 2013056649 A1 WO2013056649 A1 WO 2013056649A1 CN 2012083095 W CN2012083095 W CN 2012083095W WO 2013056649 A1 WO2013056649 A1 WO 2013056649A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
power plant
catalyst
biomass power
ash
Prior art date
Application number
PCT/CN2012/083095
Other languages
English (en)
French (fr)
Inventor
王志龙
张岩丰
陈义龙
薛永杰
陶磊明
罗志相
郑兴才
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MYPI2014000994A priority Critical patent/MY185238A/en
Priority to AU2012325412A priority patent/AU2012325412B2/en
Priority to EP12842294.6A priority patent/EP2769766A4/en
Priority to RU2014117562/04A priority patent/RU2014117562A/ru
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to SG11201401569XA priority patent/SG11201401569XA/en
Priority to BR112014009383A priority patent/BR112014009383A2/pt
Priority to AP2014007580A priority patent/AP2014007580A0/xx
Priority to JP2014536103A priority patent/JP5897722B2/ja
Priority to CA2851377A priority patent/CA2851377A1/en
Priority to KR1020147011510A priority patent/KR101614031B1/ko
Priority to MX2014004672A priority patent/MX359223B/es
Publication of WO2013056649A1 publication Critical patent/WO2013056649A1/zh
Priority to US14/242,816 priority patent/US9388091B2/en
Priority to ZA2014/03510A priority patent/ZA201403510B/en
Priority to US15/199,937 priority patent/US9527783B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Carbon dioxide methanation catalyst and preparation method and use thereof
  • the present invention relates to catalytic synthesis techniques, and in particular to a carbon dioxide methanation catalyst, a process for its preparation and its use. Background technique
  • the first is the greenhouse effect caused by the emission of large amounts of greenhouse gases from fossil energy, which causes global warming and has a comprehensive negative impact on ecological, economic and social aspects.
  • the large amount of CO 2 emitted by fossil fuel combustion is the main cause of global climate change, and its contribution to global warming has exceeded 60%.
  • the second is the insecure factors of clean energy, such as nuclear power, which has brought unprecedented challenges to human production and survival.
  • the Chinese invention patent application with the publication number CN1114955A provides a catalyst for carbon dioxide methanation and a preparation method thereof, which is a nickel or ruthenium-based catalyst supported by a special zirconium rubber; the Chinese invention patent application with the publication number CN101773833 provides A carbon dioxide methanation catalyst and a preparation method thereof are nickel-based catalysts based on aerogel oxides.
  • a disadvantage of the above two catalysts is that the special zirconium or aerogel oxide as a carrier is made of an expensive nano material and is not easily popularized.
  • biomass power generation plays an important role in the treatment of agricultural and forestry solid waste and rich energy structure.
  • biomass power generation plays an important role in the treatment of agricultural and forestry solid waste and rich energy structure.
  • difficult problems such as difficult to treat solid waste in biomass power plants, especially the problem of difficult resource utilization of biomass power plant ash (grass ash, rice husk ash).
  • the main component is Si0 2 , and other components A1 2 0 3 , CaO, Fe 2 0 3 , Ti0 2 , MgO, K 2 0, etc., of which various metal oxides are Has an activation effect. But so far, most of the biomass power plant ash has not been effectively utilized. Summary of the invention
  • An object of the present invention is to provide a carbon dioxide methanation catalyst which utilizes waste ash generated by biomass combustion as a carrier and metal nickel as an active component, and a preparation method and use of the catalyst.
  • the carbon dioxide methanation catalyst developed by the invention is obtained by calcining a biomass power plant ash mixed metal nickel compound at a high temperature, and the weight percentage of the metal nickel component in the calcined catalyst is 2-20%.
  • the metal nickel compound is preferably one or a combination of one or more of nickel nitrate, nickel oxalate, cesium formate, nickel acetate, nickel citrate, and nickel tartrate. These readily decomposable nickel compounds provide a sufficient amount of metallic nickel active ingredient to the biomass power plant ash carrier.
  • the calcined catalyst has a metal nickel component in a weight percentage of 5 to 15%.
  • the weight percentage of the metallic nickel component in the calcined catalyst is 10 to 20%.
  • the biomass power plant ash is selected from the ash collected by the bag filter, and the average particle size is controlled within a range of 10 to 15 um.
  • the metal nickel active component formed during the calcination process is better integrated with the biomass power plant ash carrier.
  • the preparation method of the carbon dioxide methanation catalyst of the invention comprises the following steps:
  • the dried biomass biomass ash is calcined at 400 ⁇ 500 °C for 3 ⁇ 6h to prepare a carbon dioxide methanation catalyst.
  • the baking time is controlled in 25 ⁇ 30min; in the step 3), the stirring and turning time is controlled in 6 ⁇ 8h; in the step 4), the drying time is controlled in 0.5 ⁇ 1.0h; In the step 5), the baking time is controlled at 4 to 5 hours.
  • the use of the carbon dioxide methanation catalyst of the present invention is to use it in a carbon dioxide hydrogenation reaction in a fixed bed reactor.
  • the catalyst carrier of the invention directly selects the biomass power plant ash, which not only has a wide source, does not require cost, but also can turn waste into treasure, recycle, and solve the problem that the biomass power plant burning waste cannot be solved. Handling puzzles.
  • the biomass power plant ash is naturally mixed with a variety of metal or non-metal oxides, which are mainly composed of Si0 2 , A1 2 0 3 , CaO, Fe 2 0 3 , Ti0 2 , MgO, K 2 0, etc.
  • the content of the active component nickel metal in the carrier can be controlled within a range of less than 20%, and the optimal control is within 10-20%, thereby greatly reducing the production cost.
  • the average particle size of the biomass power plant ash is in the range of 10-15 ⁇ m, and the specific surface area is large, and the metal nickel or its compound can be loaded without mechanical crushing treatment, which can further save production costs.
  • the multi-metal oxide in the biomass power plant ash can also support the metal nickel, and the multi-metal oxide can activate the nickel metal on the SiO 2 carrier to adjust the carrier surface area, pore volume and average pore radius. Easy to reduce, low temperature activity, low cost.
  • the catalyst of the present invention not only has high catalytic activity and selectivity, but also has higher stability, and can effectively catalyze carbon dioxide hydrogenation reaction under normal pressure to promote it to methane.
  • Preparation method of the invention It can not only turn waste into treasure, but also easy to operate. The cost from raw material source to finished product is very low, which is especially suitable for the resource utilization of biomass power plant ash.
  • the biomass power plant ash is calcined at a temperature of 30 CTC for 40 min to remove impurities such as H 2 0, C, S0 3 which are combustible in the ash.
  • the obtained 5% nickel-based carbon dioxide methanation catalyst was sieved to prepare particles of between 40 and 60 mesh.
  • Weigh 5% nickel-based carbon dioxide methanation catalyst lg, placed in a fixed-bed reactor, and then warm the fixed-bed reactor, to 400 ° C with a flow rate of lOOml / min 3 ⁇ 4 reduction lh, the molar ratio is H 2 /C0 2 4 / l mixed reaction gas, in the reaction temperature of 250 ⁇ 450 ° C, reaction pressure O.lMPa, volumetric space velocity 5500 ⁇ 9000h - cycle reaction time of 2h, the product is analyzed by gas chromatography online Detection. When the reaction temperature was 400 ° C and the volumetric space velocity was 6000 h -1 , the conversion of CO 2 was measured to be 91.36%.
  • Ni-based carbon dioxide methanation catalyst (metal nickel component accounts for about 10% of the total weight of the catalyst, the rest is biomass power plant ash and unavoidable impurities): 1) Take 3.367g of nickel nitrate hexahydrate in a beaker, add deionized water to dissolve and dilute to a 45ml volumetric flask to obtain a nickel nitrate solution.
  • the biomass power plant ash is calcined at a temperature of 35 CTC for 30 minutes to remove impurities such as H 2 0, C, S0 3 which are combustible in the ash.
  • the dried biomass biomass power plant ash is placed in a muffle furnace and calcined at a temperature of 45 CTC for 6 hours to decompose the salt. After being cooled to room temperature, a 10% nickel-based carbon dioxide methanation catalyst can be obtained.
  • the obtained 10% nickel-based carbon dioxide methanation catalyst was subjected to sieving treatment to prepare particles of between 40 and 60 mesh.
  • reaction temperature 250 ⁇ 450 °C, reaction pressure 0.1Mpa, volumetric space velocity 5500 ⁇ 9000h-cycle reaction time 2h the product was detected by gas chromatography on-line analysis.
  • the reaction temperature was 300 ° C and the volume space velocity was 7000 h -1 , the conversion of CO 2 was measured to be 95.21%.
  • the biomass power plant ash is calcined at a temperature of 35 CTC for 30 minutes to remove impurities such as H 2 0, C, S0 3 which are combustible in the ash.
  • the dried biomass biomass power plant ash is placed in a muffle furnace and calcined at a temperature of 45 CTC for 4 hours to decompose the salt therein, and after being lowered to room temperature, a 15% nickel-based carbon dioxide methanation catalyst can be obtained.
  • the application and detection analysis of the above 15% nickel-based carbon dioxide methanation catalyst are as follows:
  • the obtained 15% nickel-based carbon dioxide methanation catalyst was sieved to prepare particles of between 40 and 60 mesh.
  • Weigh 15% nickel-based carbon dioxide methanation catalyst lg, placed in a fixed-bed reactor, and then heat the fixed-bed reactor to 400 ° C with a flow rate of lOOml / min 3 ⁇ 4 reduction lh, the molar ratio is H 2 / C0 2 4 / l mixed reaction gas.
  • reaction temperature 250 ⁇ 450 °C, reaction pressure 0.1Mpa, volumetric space velocity 5500 ⁇ 9000h-cycle reaction time 2h the product was detected by gas chromatography on-line analysis.
  • the conversion of C0 2 was measured to be 97.87%.
  • the biomass power plant ash is baked at a temperature of 40 CTC for 20 minutes to remove impurities such as H 2 0, C, S0 3 which are combustible in the ash.
  • the obtained 20% nickel-based carbon dioxide methanation catalyst was sieved to prepare particles of between 40 and 60 mesh.
  • reaction temperature 250 ⁇ 450 °C, reaction pressure 0.1Mpa, volumetric space velocity 5500 ⁇ 9000h-cycle reaction time 2h the product was detected by gas chromatography on-line analysis.
  • the reaction temperature was 400 ° C and the volume space velocity was 6000 h -1 , the conversion of CO 2 was found to be 96.91%.

Abstract

一种二氧化碳甲烷化催化剂及制备方法和用途。该催化剂由生物质电厂灰混合金属镍化合物经高温焙烧而成,其中金属镍成分的重量百分比为2~20%。其制备方法如下:)将金属镍化合物配制成质量浓度为5~30%的水溶液;2)将生物质电厂灰在300~400℃的温度下焙烧20~40min;3)按催化剂中镍成分的重量百分比换算原料用量,取步骤1)配制的金属镍化合物水溶液与步骤2)焙烧的生物质电厂灰混合,搅拌翻转5~10h,浸渍均匀;4)将浸渍后的生物质电厂灰在110~150℃的温度下干燥0.5~1.5h;5)将干燥后的生物质电厂灰在400~500℃的温度下焙烧3~6h即可。该催化剂不仅可以变废为宝,而且具有极好的催化活性,可以在常压下催化二氧化碳加氢反应,促使其变成甲烷。特别适于生物质电厂灰的资源化利用。

Description

二氧化碳甲烷化催化剂及其制备方法和用途
技术领域
本发明涉及催化合成技术, 具体地指一种二氧化碳甲烷化催化剂及其制备方法和用 途。 背景技术
目前, 能源与环境问题已成为全世界关注的热点。 其一是化石能源排放大量温室气 体所造成的温室效应, 由此引起全球气候变暖, 对生态、 经济、 社会各方面产生综合性 负面影响。 随着全球气候的变化, 世界各国对地球温室效应问题越来越关注。 化石燃料 燃烧排放的大量 C02是造成全球气候变化的主要原因, 其对全球变暖的贡献率已超过了 60%。 其二是清洁能源如核电能源的不安全因素, 给人类的生产和生存带来了前所未有 的挑战。
如何有效减少工业排放的。02并将其转化成可用资源显得尤为重要。而将 C02氢化转 变成 CH4, 通过催化达到快速甲烷化, 既可实现 C02的资源化利用, 又可合成新的能源。 因此, C02催化加氢的甲烷化反应已成为碳化学研究中颇为引人注目的课题之一。在 C02 加氢甲烷化反应研究中, 选择性能优良即价格低廉、高活性、高稳定性的催化剂是关键。
在传统的二氧化碳甲烷化催化剂中, 大部分都是以氧化铝为载体, 以单一的镍或镍 加单一稀土元素为活性组份所构成的。 这些类型催化剂的催化活性比较低, 要求较高的 压力、 低空速、 氢气过量等苛刻反应条件, 因而造成高投入、 低产出的结果。 公开号为 CN1107078A 的中国发明专利申请提供了一种用于二氧化碳加氢反应的催化剂, 其以天 然海泡石为载体, 但天然海泡石来源狭窄, 成本较高, 不具有工业应用价值。 公开号为 CN1114955A 的中国发明专利申请提供了一种用于二氧化碳甲烷化的催化剂及其制备方 法, 它是以特制锆胶为载体的镍或钌基催化剂; 公开号为 CN101773833的中国发明专利 申请提供了一种二氧化碳甲烷化催化剂及其制备方法, 它是以气凝胶氧化物为载体的镍 基催化剂。 上述两种催化剂存在的缺陷是作为载体的特制锆胶或气凝胶氧化物由昂贵的 纳米材料制成的, 不易推广应用。
另一方面, 在生物质发电领域主要是利用农林废弃物直接燃烧发电。 2003年以来, 我国加快了推动生物质发电技术发展的步伐, 已公布的 《可再生能源中长期发展规划》 也确定了到 2020年生物质发电装机 3000万千瓦的发展目标。 作为一种前景广阔的可再 生能源, 生物质发电在处理农林固废、 丰富能源结构上起到了重要作用。 但随着生物质 发电行业的持续发展, 也带来了生物质电厂燃烧固体废弃物难以处理等棘手问题, 特别 是生物质电厂灰 (草木灰、 稻壳灰) 等难以资源化利用的问题。 在生物质电厂灰中, 其 主要成分以 Si02为主, 其它成分 A1203、 CaO、 Fe203、 Ti02、 MgO、 K20等为辅, 其中的 多种金属氧化物均具有活化作用。 但到目前为止, 大部分生物质电厂灰均没有得到有效 利用。 发明内容
本发明的目的就是要提供一种利用生物质燃烧所产生的废弃灰分作为载体、 以金属 镍作为活性组份的二氧化碳甲烷化催化剂, 以及该催化剂的制备方法和用途。
为实现上述目的, 本发明所研制的二氧化碳甲烷化催化剂, 它由生物质电厂灰混合 金属镍化合物经高温焙烧而成, 所述焙烧而成的催化剂中金属镍成分的重量百分比为 2-20%
上述方案中, 所述金属镍化合物优选硝酸镍、 草酸镍、 甲酸镰、 醋酸镍、 柠檬酸镍、 酒石酸镍中的一种或一种以上的组合。 这些易分解的镍化合物可以为生物质电厂灰载体 提供足量的金属镍活性成分。
作为较佳的方案之一,所述焙烧而成的催化剂中金属镍成分的重量百分比为 5~15%。 作为较佳的方案之二, 所述焙烧而成的催化剂中金属镍成分的重量百分比为 10~20%。
作为更为优选的方案, 所述生物质电厂灰选用布袋除尘器捕集下来的灰分, 其平均 粒径控制在 10~15um的范围内。以便焙烧过程所形成的金属镍活性成分更好地与生物质 电厂灰载体融合。
本发明的二氧化碳甲烷化催化剂的制备方法, 包括如下步骤:
1 ) 将金属镍化合物配制成质量浓度为 5~30%的水溶液;
2) 将生物质电厂灰在 300~400°C的温度下焙烧 20~40min, 去除灰分中可燃烧掉的 杂质; 3 )按催化剂成品中金属镍成分的重量百分比换算原料用量, 取步骤 1 )所配制的金 属镍化合物水溶液与步骤 2) 所焙烧的生物质电厂灰混合, 搅拌翻转 5~10h, 使其浸渍 均匀;
4) 将经过浸渍处理的生物质电厂灰在 110~150°C的温度下干燥 0.5~1.5h;
5 ) 将经过干燥处理的生物质电厂灰在 400~500°C的温度下焙烧 3~6h, 即可制成二 氧化碳甲烷化催化剂。
进一步地, 所述步骤 2) 中, 焙烧时间控制在 25~30min; 所述步骤 3 ) 中, 搅拌翻 转时间控制在 6~8h; 所述步骤 4) 中, 干燥时间控制在 0.5~1.0h; 所述步骤 5 ) 中, 焙 烧时间控制在 4~5h。
本发明的二氧化碳甲烷化催化剂的用途, 是将其用于固定床反应器中的二氧化碳加 氢反应。具体地, 上述催化剂的活化条件是: 催化剂颗粒为 40~60目, 反应压力为常压, 进料组成摩尔比为 H2/C02=4/l, 体积空速为 5500~9000h- 反应温度为 250~450°C, 反 应时间为 l~2h。
更为优选地: 上述催化剂的活化条件是: 催化剂颗粒为 40~60目, 反应压力为常压, 进料组成摩尔比为 ¾/。02=4 / 1, 体积空速为 6000~8000h— 反应温度为 350 400 °C, 反 应时间为 lho
本发明具有如下几方面的优点:其一,本发明的催化剂载体直接选用生物质电厂灰, 不仅来源广泛、 不需成本, 而且可以变废为宝、 循环利用, 解决生物质电厂燃烧废弃物 无法处理的难题。 其二, 生物质电厂灰中天然混合有多种金属或非金属氧化物, 其主要 以 Si02为主, A1203、 CaO、 Fe203、 Ti02、 MgO、 K20等为辅, 作为催化剂的载体不需要 再添加其他助剂, 这样载体中活性组份金属镍的含量可控制在小于 20%的范围内, 最佳 控制在 10~20%以内,从而大幅降低生产成本。其三,生物质电厂灰的平均粒径在 10~15um 的范围内, 比表面积大, 无需机械破碎处理就可以负载金属镍或其化合物, 可进一步节 约生产成本。 其四, 生物质电厂灰中的多金属氧化物也可以负载金属镍, 同时多金属的 氧化物可以活化镍金属在 Si02载体上活性, 可以调节载体表面积、 孔容和平均孔半径等 性能, 容易还原, 低温活性好, 成本低廉。
综上所述, 本发明的催化剂不仅具有较高的催化活性和选择性, 而且具有更高的稳 定性, 可以在常压下有效催化二氧化碳加氢反应, 促使其变成甲烷。 本发明的制备方法 不仅可以变废为宝, 而且操作简单易行, 从原料来源到制成产品的成本非常低廉, 特别 适于生物质电厂灰的资源化利用。 具体实施方式
为了更好地解释本发明, 以下结合具体实施例进一步阐明本发明的主要内容, 但本 发明的内容不仅仅局限于以下实施例。
实施例 1:
5%镍基二氧化碳甲烷化催化剂的制备 (金属镍成分占催化剂总重量的约 5%, 其余 为生物质电厂灰和不可避免的杂质):
1 ) 取 1.441g六水合硝酸镍置于烧杯中, 加去离子水溶解后定容到 45ml容量瓶中, 即得硝酸镍溶液。
2) 将生物质电厂灰在 30CTC的温度下焙烧 40min, 去除灰分中可燃烧掉的 H20、 C、 S03等杂质。
3) 称取 10g焙烧好的生物质电厂灰置于蒸发皿中, 将容量瓶内 45ml硝酸镍溶液倒 入蒸发皿中浸渍生物质电厂灰, 搅拌翻转 5h。
4) 将经过浸渍处理的生物质电厂灰在 12CTC的温度下干燥 1.0h。
5)将经过干燥处理的生物质电厂灰置于马弗炉中, 在 45CTC的温度下焙烧 5h, 使其 中的盐分解, 降至室温后, 即可获得 5%镍基二氧化碳甲烷化催化剂。
上述 5%镍基二氧化碳甲烷化催化剂的应用和检测分析如下:
将获得的 5%镍基二氧化碳甲烷化催化剂进行筛分处理, 制成为 40~60 目之间的颗 粒。 称取 5%镍基二氧化碳甲烷化催化剂 lg, 置于固定床反应器中, 然后对固定床反应 器进行升温, 至 400°C用流量 lOOml/min的 ¾还原 lh后, 通入摩尔比为 H2/C02=4/l的混 合反应气, 在反应温度 250~450°C, 反应压力 O.lMPa, 体积空速 5500~9000h- 循环反 应时间为 2h的条件下, 产物由气相色谱在线分析检测。 当反应温度为 400°C、 体积空速 为 6000h- 1时, 测得 C02转化率为 91.36%。
实施例 2:
10%镍基二氧化碳甲烷化催化剂的制备 (金属镍成分占催化剂总重量的约 10%, 其 余为生物质电厂灰和不可避免的杂质): 1 ) 取 3.367g六水合硝酸镍置于烧杯中, 加去离子水溶解后定容到 45ml容量瓶中, 即得硝酸镍溶液。
2) 将生物质电厂灰在 35CTC的温度下焙烧 30min, 去除灰分中可燃烧掉的 H20、 C、 S03等杂质。
3) 称取 10g焙烧好的生物质电厂灰置于蒸发皿中, 将容量瓶内 45ml硝酸镍溶液倒 入蒸发皿中浸渍生物质电厂灰, 搅拌翻转 6h。
4) 将经过浸渍处理的生物质电厂灰在 150°C的温度下干燥 1.5h。
5)将经过干燥处理的生物质电厂灰置于马弗炉中, 在 45CTC的温度下焙烧 6h, 使其 中的盐分解, 降至室温后, 即可获得 10%镍基二氧化碳甲烷化催化剂。
上述 10%镍基二氧化碳甲烷化催化剂的应用和检测分析如下:
将获得的 10%镍基二氧化碳甲烷化催化剂进行筛分处理, 制成为 40~60目之间的颗 粒。 称取 10%镍基二氧化碳甲烷化催化剂 lg, 置于固定床反应器中, 然后对固定床反应 器进行升温, 至 400°C用流量 lOOml/min的 ¾还原 lh后, 通入摩尔比为 H2/C02=4/l的混 合反应气。 在反应温度 250~450°C、 反应压力 0.1Mpa、 体积空速 5500~9000h- 循环反 应时间为 2h的条件下, 产物由气相色谱在线分析检测。 当反应温度为 300°C、 体积空速 为 7000h- 1时, 测得 C02转化率为 95.21%。
实施例 3:
15%镍基二氧化碳甲烷化催化剂的制备 (金属镍成分占催化剂总重量的约 15%, 其 余为生物质电厂灰和不可避免的杂质):
1 ) 取 6.073g六水合硝酸镍置于烧杯中, 加去离子水溶解后定容到 45ml容量瓶中, 即得硝酸镍溶液。
2) 将生物质电厂灰在 35CTC的温度下焙烧 30min, 去除灰分中可燃烧掉的 H20、 C、 S03等杂质。
3) 称取 10g焙烧好的生物质电厂灰置于蒸发皿中, 将容量瓶内 45ml硝酸镍溶液倒 入蒸发皿中浸渍生物质电厂灰, 搅拌翻转 7h。
4) 将经过浸渍处理的生物质电厂灰在 150°C的温度下干燥 0.5h。
5)将经过干燥处理的生物质电厂灰置于马弗炉中, 在 45CTC的温度下焙烧 4h, 使其 中的盐分解, 降至室温后, 即可获得 15%镍基二氧化碳甲烷化催化剂。 上述 15%镍基二氧化碳甲烷化催化剂的应用和检测分析如下:
将获得的 15%镍基二氧化碳甲烷化催化剂进行筛分处理, 制成为 40~60目之间的颗 粒。 称取 15%镍基二氧化碳甲烷化催化剂 lg, 置于固定床反应器中, 然后对固定床反应 器进行升温, 至 400°C用流量 lOOml/min的 ¾还原 lh后, 通入摩尔比为 H2/C02=4/l的混 合反应气。 在反应温度 250~450°C、 反应压力 0.1Mpa、 体积空速 5500~9000h- 循环反 应时间为 2h的条件下, 产物由气相色谱在线分析检测。 当反应温度为 400°C、 体积空速 为 7000h- 1时, 测得 C02转化率为 97.87%。
实施例 4:
20%镍基二氧化碳甲烷化催化剂的制备 (金属镍成分占催化剂总重量的约 20%, 其 余为生物质电厂灰和不可避免的杂质):
1 )取 10.152g六水合硝酸镍置于烧杯中, 加去离子水溶解后定容到 45ml容量瓶中, 即得硝酸镍溶液。
2) 将生物质电厂灰在 40CTC的温度下焙烧 20min, 去除灰分中可燃烧掉的 H20、 C、 S03等杂质。
3 ) 称取 10g焙烧好的生物质电厂灰置于蒸发皿中, 将容量瓶内 45ml硝酸镍溶液倒 入蒸发皿中浸渍生物质电厂灰, 搅拌翻转 8h。
4) 将经过浸渍处理的生物质电厂灰在 150°C的温度下干燥 1.0h。
5 )将经过干燥处理的生物质电厂灰置于马弗炉中, 在 45CTC的温度下焙烧 3h, 使其 中的盐分解, 降至室温后, 即可获得 20%镍基二氧化碳甲烷化催化剂。
上述 20%镍基二氧化碳甲烷化催化剂的应用和检测分析如下:
将获得的 20%镍基二氧化碳甲烷化催化剂进行筛分处理, 制成为 40~60目之间的颗 粒。 称取 20%镍基二氧化碳甲烷化催化剂 lg, 置于固定床反应器中, 然后对固定床反应 器进行升温, 至 400°C用流量 lOOml/min的 ¾还原 lh后, 通入摩尔比为 H2/C02=4/l的混 合反应气。 在反应温度 250~450°C、 反应压力 0.1Mpa、 体积空速 5500~9000h- 循环反 应时间为 2h的条件下, 产物由气相色谱在线分析检测。 当反应温度为 400°C、 体积空速 为 6000h- 1时, 测得 C02转化率为 96.91%。

Claims

权利要求书
1、一种二氧化碳甲烷化催化剂,它由生物质电厂灰混合金属镍化合物经高温焙烧而 成, 所述焙烧而成的催化剂中金属镍成分的重量百分比为 2~20%。
2、根据权利要求 1所述的二氧化碳甲烷化催化剂, 其特征在于: 所述焙烧而成的催 化剂中金属镍成分的重量百分比为 5~15%。
3、根据权利要求 1所述的二氧化碳甲烷化催化剂, 其特征在于: 所述焙烧而成的催 化剂中金属镍成分的重量百分比为 10~20%。
4、根据权利要求 1或 2或 3所述的二氧化碳甲烷化催化剂, 其特征在于: 所述金属 镍化合物为硝酸镍、 草酸镍、 甲酸镰、 醋酸镍、 柠檬酸镍、 酒石酸镍中的一种或一种以 上的组合。
5、根据权利要求 1或 2或 3所述的二氧化碳甲烷化催化剂, 其特征在于: 所述生物 质电厂灰选用布袋除尘器捕集下来的灰分, 其平均粒径为 10~15um。
6、根据权利要求 4所述的二氧化碳甲烷化催化剂, 其特征在于: 所述生物质电厂灰 的平均粒径为 10~15um。
7、 一种权利要求 1所述的二氧化碳甲烷化催化剂的制备方法, 包括如下步骤:
1 ) 将金属镍化合物配制成质量浓度为 5~30%的水溶液;
2) 将生物质电厂灰在 300~400°C的温度下焙烧 20~40min, 去除灰分中可燃烧掉的 杂质;
3 )按催化剂成品中金属镍成分的重量百分比换算原料用量, 取步骤 1 )所配制的金 属镍化合物水溶液与步骤 2) 所焙烧的生物质电厂灰混合, 搅拌翻转 5~10h, 使其浸渍 均匀; 4) 将经过浸渍处理的生物质电厂灰在 110~150°C的温度下干燥 0.5~1.5h;
5 ) 将经过干燥处理的生物质电厂灰在 400~500°C的温度下焙烧 3~6h, 即可制成二 氧化碳甲烷化催化剂。
8、根据权利要求 7所述的二氧化碳甲烷化催化剂的制备方法, 其特征在于: 所述步 骤 2) 中, 焙烧时间控制在 25~30min; 所述步骤 3 ) 中, 搅拌翻转时间控制在 6~8h; 所 述步骤 4) 中, 干燥时间控制在 0.5~1.0h; 所述步骤 5 ) 中, 焙烧时间控制在 4~5h。
9、一种权利要求 1所述的二氧化碳甲烷化催化剂的用途,用于固定床反应器中的二 氧化碳加氢反应, 其特征在于: 所述催化剂的活化条件是: 催化剂颗粒为 40~60目, 反 应压力为常压, 进料组成摩尔比为 H2/C02=4/l, 体积空速为 5500~9000h- 反应温度为 250-450 °C , 反应时间为 l~2h。
10、 根据权利要求 9所述的二氧化碳甲烷化催化剂的用途, 其特征在于: 所述催化 剂的活化条件是:催化剂颗粒为 40~60目,反应压力为常压,进料组成摩尔比为 H2/C02=4 / 1, 体积空速为 6000~8000h— 反应温度为 350 400 °C, 循环反应时间为 2h。
PCT/CN2012/083095 2011-10-19 2012-10-17 二氧化碳甲烷化催化剂及其制备方法和用途 WO2013056649A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
BR112014009383A BR112014009383A2 (pt) 2011-10-19 2012-10-17 catalisador de metanação de dióxido de carbono, preparação e uso do mesmo
EP12842294.6A EP2769766A4 (en) 2011-10-19 2012-10-17 METHANIZATION CATALYST OF CARBON DIOXIDE, METHOD OF MANUFACTURE AND ITS USE
RU2014117562/04A RU2014117562A (ru) 2011-10-19 2012-10-17 Катализатор метанизации диоксида углерода и способ его получения и использования
JP2014536103A JP5897722B2 (ja) 2011-10-19 2012-10-17 二酸化炭素メタン化触媒の調製方法
SG11201401569XA SG11201401569XA (en) 2011-10-19 2012-10-17 Methanation catalyst of carbon dioxide, preparation method and usage of same
AU2012325412A AU2012325412B2 (en) 2011-10-19 2012-10-17 Methanation catalyst of carbon dioxide, preparation method and usage of same
AP2014007580A AP2014007580A0 (en) 2011-10-19 2012-10-17 Methanation catalyst of carbon dioxide, preparation method and usage of same
MYPI2014000994A MY185238A (en) 2011-10-19 2012-10-17 Methanation catalyst of carbon dioxide,preparation method and usage of same
CA2851377A CA2851377A1 (en) 2011-10-19 2012-10-17 Methanation catalyst of carbon dioxide, preparation method and usage of same
KR1020147011510A KR101614031B1 (ko) 2011-10-19 2012-10-17 이산화탄소의 메탄화촉매, 이의 제조방법 및 이의 용도
MX2014004672A MX359223B (es) 2011-10-19 2012-10-17 Catalizador para la metanación de dióxido de carbono; método de preparación y su uso.
US14/242,816 US9388091B2 (en) 2011-10-19 2014-04-01 Catalyst for methanation of carbon dioxide, preparation method and usage thereof
ZA2014/03510A ZA201403510B (en) 2011-10-19 2014-05-15 Methanation catalyst of carbon dioxide, preparation method and usage of same
US15/199,937 US9527783B2 (en) 2011-10-19 2016-06-30 Catalyst for methanation of carbon dioxide, preparation method and usage thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110317947.1A CN102416324B (zh) 2011-10-19 2011-10-19 二氧化碳甲烷化催化剂及其制备方法和用途
CN201110317947.1 2011-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/242,816 Continuation-In-Part US9388091B2 (en) 2011-10-19 2014-04-01 Catalyst for methanation of carbon dioxide, preparation method and usage thereof

Publications (1)

Publication Number Publication Date
WO2013056649A1 true WO2013056649A1 (zh) 2013-04-25

Family

ID=45941118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083095 WO2013056649A1 (zh) 2011-10-19 2012-10-17 二氧化碳甲烷化催化剂及其制备方法和用途

Country Status (15)

Country Link
US (2) US9388091B2 (zh)
EP (1) EP2769766A4 (zh)
JP (1) JP5897722B2 (zh)
KR (1) KR101614031B1 (zh)
CN (1) CN102416324B (zh)
AP (1) AP2014007580A0 (zh)
AU (1) AU2012325412B2 (zh)
BR (1) BR112014009383A2 (zh)
CA (1) CA2851377A1 (zh)
MX (1) MX359223B (zh)
MY (1) MY185238A (zh)
RU (1) RU2014117562A (zh)
SG (1) SG11201401569XA (zh)
WO (1) WO2013056649A1 (zh)
ZA (1) ZA201403510B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416324B (zh) * 2011-10-19 2014-03-12 武汉凯迪工程技术研究总院有限公司 二氧化碳甲烷化催化剂及其制备方法和用途
CN104152197B (zh) * 2013-05-14 2017-02-08 中国科学院大连化学物理研究所 一种密闭空间内co2富集及甲烷化工艺与反应器
CN107399797B (zh) * 2017-09-22 2021-04-27 中夏新能源(上海)有限公司 一种草木灰-火山灰天然絮凝剂及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107078A (zh) 1994-07-07 1995-08-23 南开大学 用于二氧化碳加氢反应的催化剂
CN1114955A (zh) 1995-04-21 1996-01-17 南开大学 一种用于二氧化碳甲烷化的催化剂及其制备方法
CN101773833A (zh) 2010-02-06 2010-07-14 山西大学 一种二氧化碳甲烷化催化剂及其制备方法
CN102416324A (zh) * 2011-10-19 2012-04-18 武汉凯迪工程技术研究总院有限公司 二氧化碳甲烷化催化剂及其制备方法和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750475B2 (ja) * 1990-11-29 1998-05-13 日本鋼管株式会社 高カロリーガスの製造方法
ATE452997T1 (de) * 1998-11-10 2010-01-15 Univ Sheffield Gewinnung von metallen aus erdreich
JP4214218B2 (ja) * 2001-03-07 2009-01-28 独立行政法人産業技術総合研究所 二酸化炭素からのメタンの製造方法
JP4958301B2 (ja) * 2007-12-10 2012-06-20 独立行政法人産業技術総合研究所 天然鉱物膜
WO2011064462A1 (fr) * 2009-11-26 2011-06-03 Centre National De La Recherche Scientifique Utilisation de plantes accumulatrices de metaux pour la preparation de catalyseurs utilisables dans des reactions chimiques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1107078A (zh) 1994-07-07 1995-08-23 南开大学 用于二氧化碳加氢反应的催化剂
CN1114955A (zh) 1995-04-21 1996-01-17 南开大学 一种用于二氧化碳甲烷化的催化剂及其制备方法
CN101773833A (zh) 2010-02-06 2010-07-14 山西大学 一种二氧化碳甲烷化催化剂及其制备方法
CN102416324A (zh) * 2011-10-19 2012-04-18 武汉凯迪工程技术研究总院有限公司 二氧化碳甲烷化催化剂及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, F.W. ET AL.: "Nickel Supported on Rice Husk Ash-Activity and Selectivity in CO2 Methanation", APPLIED CATALYSIS A: GENERAL, vol. 164, 1997, pages 225 - 236, XP055064424 *
See also references of EP2769766A4

Also Published As

Publication number Publication date
SG11201401569XA (en) 2014-07-30
MY185238A (en) 2021-04-30
KR20140073544A (ko) 2014-06-16
US9388091B2 (en) 2016-07-12
US20140200279A1 (en) 2014-07-17
AU2012325412B2 (en) 2016-05-12
EP2769766A4 (en) 2015-08-12
US20160311729A1 (en) 2016-10-27
RU2014117562A (ru) 2015-11-10
CA2851377A1 (en) 2013-04-25
CN102416324A (zh) 2012-04-18
CN102416324B (zh) 2014-03-12
JP5897722B2 (ja) 2016-03-30
ZA201403510B (en) 2015-07-29
US9527783B2 (en) 2016-12-27
KR101614031B1 (ko) 2016-04-22
MX2014004672A (es) 2014-06-23
EP2769766A1 (en) 2014-08-27
AP2014007580A0 (en) 2014-04-30
JP2014534901A (ja) 2014-12-25
MX359223B (es) 2018-09-19
AU2012325412A1 (en) 2014-04-24
BR112014009383A2 (pt) 2017-08-08

Similar Documents

Publication Publication Date Title
CN101884927B (zh) 一种用于二氧化碳完全甲烷化的催化剂及其制备方法
CN103394356B (zh) 生物质热解气化多功能铁基催化剂及其制备方法
CN107890870B (zh) 一种二氧化碳和水制甲烷催化剂及其制备方法和应用
CN106732647A (zh) 一种钙钛矿型甲烷燃烧催化剂及其制备方法与应用
CN106268740B (zh) 一种用于液氮洗尾气中低浓度可燃组分缺氧燃烧的负载型催化剂及其制备方法和应用
CN103933991B (zh) 用于生产可调控合成气的钙钛矿型复合氧化物催化剂
CN104028270A (zh) 一种甲烷化催化剂及其制备方法
CN108355662B (zh) 镍负载埃洛石基甲烷干重整催化剂的制备方法
CN104549411A (zh) 一种基于sba-15的镍基催化剂的制备及其在sng制备中的应用
CN105597772B (zh) 核壳结构的钴基催化剂及其制备方法
CN110721690B (zh) 一种生物油水蒸气重整制氢用Ni-Fe双金属多功能催化剂
CN104001538B (zh) 二氧化铈改性镍负载sba-15催化剂及其制备方法和应用
CN111644175A (zh) 一种Ni-煤矸石灰催化剂及其制备方法和在焦油蒸汽重整反应中的应用
CN110721678A (zh) 一种光热耦合催化CO2甲烷化的Ru基催化剂
CN107243342A (zh) 一种负载型催化剂及其制备方法和应用
CN106824252B (zh) 一种镍基介孔二氧化碳甲烷化催化剂及其制备方法
CN102240566B (zh) 一种ch4/co2重整制合成气催化剂的制备方法
CN103816913A (zh) 一种甲烷二氧化碳重整制合成气的催化剂及其制备方法和应用
CN111389405A (zh) 一种预活化甲烷水蒸气制氢催化剂的方法
WO2013056649A1 (zh) 二氧化碳甲烷化催化剂及其制备方法和用途
GUO et al. Recent advances in integrated carbon dioxide capture and methanation technology
CN107199049A (zh) 氨基修饰介孔分子筛、基于该分子筛的镍基催化剂及其制备和应用
CN111068643B (zh) 一种co&co2共甲烷化催化剂及其制备方法和应用
CN107233888A (zh) 生物质制备燃气多功能催化剂及制备方法
CN106867561A (zh) 费托合成柴油馏分的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2851377

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004672

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012325412

Country of ref document: AU

Date of ref document: 20121017

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147011510

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012842294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014117562

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009383

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009383

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140417

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112014009383

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112014009383

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140417