WO2013056591A1 - 旋转对切复合锯片 - Google Patents

旋转对切复合锯片 Download PDF

Info

Publication number
WO2013056591A1
WO2013056591A1 PCT/CN2012/079994 CN2012079994W WO2013056591A1 WO 2013056591 A1 WO2013056591 A1 WO 2013056591A1 CN 2012079994 W CN2012079994 W CN 2012079994W WO 2013056591 A1 WO2013056591 A1 WO 2013056591A1
Authority
WO
WIPO (PCT)
Prior art keywords
saw blade
blade
bearing
ring
cutting
Prior art date
Application number
PCT/CN2012/079994
Other languages
English (en)
French (fr)
Inventor
温庆普
Original Assignee
苏州天健旋切技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011204531336U external-priority patent/CN202479610U/zh
Priority claimed from CN2012101002043A external-priority patent/CN102615351A/zh
Priority claimed from CN2012201438630U external-priority patent/CN202517130U/zh
Application filed by 苏州天健旋切技术有限公司 filed Critical 苏州天健旋切技术有限公司
Priority to US14/232,891 priority Critical patent/US20140150622A1/en
Priority to JP2014534926A priority patent/JP6045594B2/ja
Priority to RU2014117872/02A priority patent/RU2572906C2/ru
Priority to EP12841754.0A priority patent/EP2769793A4/en
Priority to CA 2851159 priority patent/CA2851159A1/en
Priority to BR112014009464A priority patent/BR112014009464A2/pt
Priority to AU2012325539A priority patent/AU2012325539A1/en
Publication of WO2013056591A1 publication Critical patent/WO2013056591A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D45/00Sawing machines or sawing devices with circular saw blades or with friction saw discs
    • B23D45/10Sawing machines or sawing devices with circular saw blades or with friction saw discs with a plurality of circular saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D45/00Sawing machines or sawing devices with circular saw blades or with friction saw discs
    • B23D45/10Sawing machines or sawing devices with circular saw blades or with friction saw discs with a plurality of circular saw blades
    • B23D45/105Sawing machines or sawing devices with circular saw blades or with friction saw discs with a plurality of circular saw blades operating within the same plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B5/00Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
    • B27B5/29Details; Component parts; Accessories
    • B27B5/30Details; Component parts; Accessories for mounting or securing saw blades or saw spindles
    • B27B5/32Devices for securing circular saw blades to the saw spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9319Toothed blade or tooth therefor
    • Y10T83/9326Plural separable sections

Definitions

  • the present invention belongs to the field of rotary sawing tools, and relates to a design scheme of a rotary-to-cut composite saw blade and a rotary-cut composite saw blade that realizes the design. It is especially suitable for installation on rotary-cut electric circular saws, oblique-cut saws, and gasoline-powered cutting saws. It is used for cutting and repairing various materials of metal, stone, wood, plastic and other materials and plates. Background technique
  • a rotary pair saw is also known as a double saw blade cutter, which is a concentric output through a drive transmission.
  • the rotary sawing blades manufactured at home and abroad are separated and disposed by the inner saw blade and the outer saw blade, respectively, and the outer outer saw blade and the inner saw blade are pressed against each other after installation.
  • An unreasonable way of interfering with friction The outer blade is fixed on the output end of the outer blade drive shaft by a platen screw; the inner blade is axially positioned by a wear ring or a wear-resistant boss on the friction surface of the inner blade and the outer blade.
  • the wear ring or wear-resistant boss receives the pressing force from the same platen screw and is pressed against the flange surface of the output end of the inner blade drive shaft; and the drive boss on the flange face of the inner blade is driven by the inner blade
  • the matching hole on the inner saw blade drives the inner saw blade to rotate; thus, the wear ring or the wear-resistant boss not only transmits pressure to the fixed outer blade and the inner blade; but also frictionally rotates between the two. This kind of structural design violates the mechanical design and avoids the reliable matching of the two faces in the same direction at the same time. Principles.
  • the inner saw blade is always not reliably positioned; the relative rotation of the outer saw blade and the inner saw blade causes the wear ring or the wear-resistant boss to wear, the positioning is further deteriorated, and the inner saw blade is loosened, so that the inner side The saw blade and the outer saw blade are not reliably positioned and pressed, and manufacturing errors are caused.
  • the concentric outer blade drive shaft and the inner blade drive shaft rotate in opposite directions, and the outer blade and the inner blade are driven to rotate.
  • the object of the present invention is to provide a reliable positioning and tight fit of the outer saw blade and the inner saw blade, no friction between the outer saw blade and the inner saw blade, flexible rotation, and cutting power consumption.
  • the design of the rotary-cut composite saw blade provided by the present invention is: the package is provided with mounting holes, and the face-to-face is arranged in parallel; the outer blade is opposite to the cutting direction of the inner blade; the core design is: A bearing and a thrust ring are introduced between the outer blade and the inner blade, and the outer blade and the inner blade are reliably positioned and integrated by the bearing; the outer blade is positioned by the inner ring of the bearing; the outer ring of the bearing Positioning and coupling the inner saw blade; controlling the work between the outer saw blade and the inner saw blade by the thrust ring Cooperating, connected by the connecting piece, the supporting sleeve and the inner ring of the bearing are concentrically coupled to realize the positioning of the inner ring of the bearing to the outer saw blade; the inner saw blade and the flange sleeve are concentrically matched, and are connected and fixed by the connecting member, the flange The sleeve is concentrically coupled with the outer
  • a thrust ring is arranged between the outer blade and the inner ring of the bearing to adjust the working gap between the outer blade and the inner blade.
  • the outer blade and the inner blade are coupled by bearing positioning and cooperation to form an integrated rotary-to-cut composite saw blade; the outer blade and the inner blade respectively follow the inner and outer rings of the bearing for free rotation.
  • a keyway hole is arranged in the center of the support sleeve to realize driving coupling connection with the outer blade driving shaft; a driving coupling interface is arranged on one end surface of the flange sleeve to realize the inner side concentric with the outer blade driving shaft and oppositely rotating Drive coupling coupling of the blade drive shaft.
  • the structural design of the rotary-cut composite saw blade that realizes the above design is: rotating to the saw blade, the support sleeve and the connecting member; the inner saw blade assembly consists of the inner saw blade, the flange sleeve, the connecting piece and the shaft
  • the welding cutter teeth are formed; the welding cutter teeth are evenly welded in the tooth holders on the outer side of the outer saw blade body and the inner saw blade body; the outer saw blade body side is the working surface A1, and the other side is the cutting surface A2, the inner saw One side of the sheet body is a working surface B1, and the other side is a cutting surface B2; the center of rotation of the outer saw blade and the inner saw blade are coaxial, and the center position is respectively provided with a mounting hole, and the working surface A1 and the working surface B1 are arranged in parallel and preset Working clearance; the outer saw blade is opposite to the cutting direction of the inner saw blade.
  • a cylindrical surface and an axial positioning surface perpendicular to the support sleeve are disposed on the support sleeve;
  • the mounting hole of the outer saw blade is concentrically engaged with the cylindrical surface of the support sleeve, and the cutting surface A2 of the outer saw blade and the axial positioning disposed on the support sleeve
  • the surface is parallelly fitted, and the axial positioning surface on the outer saw blade body and the support sleeve is fixed by the connecting member;
  • the cylindrical surface on the support sleeve is concentrically coupled with the inner ring of the bearing, and the inner ring of the bearing is positioned on the outer saw blade;
  • the center of the blue sleeve is provided with a matching hole and an axial positioning surface, and the side of the flange sleeve and the axial positioning surface in the same direction is a flange surface;
  • the bearing is accommodated in the flange sleeve The inside of the hole;
  • the outer ring side of the bearing is parallelly fitted to the axial positioning surface disposed on the flange sleeve, one side is parallel to the cutting surface B2 of the inner saw blade, and the outer ring of the bearing is positioned inside the saw blade; the inner ring and the outer side saw of the bearing A thrust ring is disposed between the sheets; one side of the thrust ring is in parallel with the working surface A1 of the outer saw blade, and the other side is parallel to one side adjacent to the inner ring of the bearing; the outer saw blade and the inner saw blade
  • the inner and outer rings of the bearing are respectively positioned and coupled to form an integrated rotary-to-cut composite saw blade; the outer blade and the inner blade respectively follow the inner and outer rings of the bearing to rotate freely.
  • a further improvement of the present invention is that, on the working surface A1 side of the outer saw blade, the welding teeth are flush with the working surface A1 or lower than the working surface A1, and the tooth protrusion is not allowed, and the cutting surface of the outer saw blade On the A2 side, the welding cutter teeth form a minor cutting edge higher than the cutting surface A2; on the working surface B1 side of the inner saw blade, the welding cutter teeth are flush with the working surface B1 or lower than the working surface B1, and the tooth protrusion is not allowed; On the cutting face B2 side of the inner saw blade, the welding teeth form a minor cutting edge higher than the cutting face B2.
  • the welding teeth are flush with the working surface A1, B1 or lower than the working surface A1, and the difference of B1 is 0 to -0.2. 2 ⁇ m; the welding teeth are higher than the cutting surface A2, and the height of the secondary cutting edge formed by B2 is greater than 0. Less than 1 mil. This ensures that there is no interference interference between the outer saw blade and the inner saw blade working surface; on the side of the cut side of the outer saw blade and the inner saw blade
  • a further improvement of the present invention is that one side of the thrust ring abuts the outer blade and the other side abuts the inner ring of the bearing; the working gap between the outer blade and the inner blade is determined by the width of the thrust ring 5 ⁇ The thickness of the inner blade is limited to 0. 0 ⁇ . This not only ensures a rotating working gap between them.
  • a further improvement of the present invention is that the mounting hole diameter of the inner saw blade is smaller than the outer diameter of the bearing Therefore, after the inner saw blade and the flange assembly are matched, a positioning step is formed; so that the inner saw blade body can axially position the bearing outer ring; this can ensure that the inner saw does not occur during the sawing process.
  • the working surface A1 - the periphery of the side mounting hole at least three countersunk holes circumferentially distributed around the rotation axis are disposed; on the inner blade body, the working surface B1 - the periphery of the side mounting hole, at least Three counterbores that are circumferentially distributed about the axis of rotation.
  • the outer saw blade is fixedly connected with the support sleeve and the inner saw blade is fixedly connected with the flange sleeve.
  • a further improvement of the present invention is that at least three fastener connection holes circumferentially distributed around the rotation axis are provided on the axial positioning surface of the support sleeve, the distribution of the connection holes and the hole position and the outer blade body The distribution of the counterbore holes is consistent with the hole position; a drive keyway is provided on the inner hole of the support sleeve.
  • the head hole, the fixed outer saw blade body and the axial positioning surface on the support sleeve are integrated, the cylindrical surface on the support sleeve is concentrically coupled with the inner ring of the bearing, and the inner ring of the bearing is positioned on the outer saw blade to form the outer saw blade assembly That is, the outer saw blade and the support sleeve are rotated together with the inner ring of the bearing.
  • the inner hole of the support sleeve is provided with a drive keyway to form a drive coupling connection with the outer blade saw blade drive shaft and to drive the rotation thereof.
  • the keyway can be a spline, a flat key, a semi-circular keyway or at least one planar flat square hole.
  • a further improvement of the present invention is that at least three fastener connection holes circumferentially distributed around the rotation axis are provided on the flange surface of the flange sleeve, the distribution of the connection holes and the hole position and the inner blade body The distribution of the counterbore holes is consistent with the hole position; thus, the fastener passes through the counterbore hole on the inner saw blade, and the inner saw blade and the flange sleeve are fixedly connected together; the bearing is received in the matching hole of the flange sleeve And the concentric joint connection; the outer ring of the bearing locates the inner saw blade to form the inner saw blade assembly; that is, the inner saw blade and the flange sleeve rotate together with the inner ring of the bearing.
  • the vertical distance to the flange face is the same as the width of the bearing.
  • a further improvement of the present invention is that a drive coupling interface is provided on the end face of the flange sleeve opposite to the flange face, and the drive coupling interface is a drive coupling boss, a drive coupling groove or a drive coupling hole.
  • the outer saw blade and the fixed supporting sleeve are positioned and coupled with the inner ring of the bearing, and the outer blade driving shaft is coupled with the supporting sleeve key; the pressing plate screw is screwed into the screw hole disposed at the output end of the outer blade driving shaft, and the outer saw blade is inserted
  • the assembly and the outer blade drive shaft are locked and fixed; the outer blade can follow the drive rotation of the outer blade drive shaft.
  • the inner blade and the flange sleeve fixedly connected thereto are positioned and coupled with the outer ring of the bearing, and the driving coupling interface disposed on the opposite end surface of the flange sleeve and the flange surface is driven by the driving surface of the inner blade driving shaft output end flange surface
  • the coupling interface is matched to realize the driving coupling of the inner blade and the inner blade drive shaft, and the coupling is coupled by the axial unconstrained meshing drive; when the outer blade drive shaft and the inner blade drive shaft rotate in opposite directions That is, the outer saw blade and the inner saw blade are respectively driven to perform a rotary cutting motion.
  • the positive effect of the present invention is that the outer saw blade and the inner saw blade of the rotary-cut composite saw blade of the present invention are respectively coupled and integrated by the positioning of the inner ring of the bearing and the outer ring of the bearing, so that the outer saw blade and the inner side
  • the free rotation of the saw blade around the center of rotation of the bearing greatly improves the positioning accuracy and rotation accuracy of the outer blade and the inner blade; the introduction of the thrust ring precisely controls the work between the outer blade and the inner blade
  • the gap ensures the reliable rotational positioning of the outer saw blade and the inner saw blade, thereby ensuring stable rotation and cutting conditions; avoiding the friction between the saw blade and the inner saw blade when facing the opposite direction, Interference collision; At the same time, it avoids the failure of the saw blade splitting caused by the material being cut between the outer saw blade and the inner saw blade; the sawing operation is stable, the cutting is efficient, the service life is long, the performance is stable and safe.
  • DRAWINGS 1 is a schematic structural view of a rotary-to-
  • FIG. 2 is a schematic structural view of a support sleeve according to a first embodiment of the present invention.
  • FIG 3 is a schematic structural view of a flange sleeve according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a rotary-to-cut composite saw blade according to a second embodiment of the present invention.
  • the outer saw blade and the inner saw blade are respectively passed through the support sleeve and the flange sleeve, and the reliable positioning connection between the outer saw blade and the inner ring of the bearing and the inner saw blade and the outer bearing are realized.
  • the ring is reliably positioned and coupled to form an integrated composite saw blade; the outer saw blade follows the bearing inner ring for free rotation, and the inner saw blade follows the bearing outer ring for free rotation.
  • the rotary counter-cutting saw blade is composed of the outer saw blade assembly 1 and the inner saw blade assembly 2
  • the welding teeth 112 are formed; the welding teeth 12 are evenly welded in the teeth on the circumference of the outer blade body 111 and the inner blade body 211; the side of the outer blade body 11 1 is the working surface A1, and the other side
  • the cutting surface A2, the inner saw blade body 211 is the working surface B1 on the side and the cutting surface B2 on the other side; the rotation center of the outer saw blade 11 and the inner saw blade 21 are coaxial, and the center position is respectively provided with a mounting hole, the working surface A1
  • the work surface B1 is arranged in parallel with the face and is preset with a working gap; the outer saw blade 11 is disposed opposite to the cutting direction of the inner saw blade 21.
  • a cylindrical surface 121 and an axial positioning surface 122 perpendicular thereto are disposed on the support sleeve 12; the mounting hole of the outer saw blade 11 is concentrically engaged with the cylindrical surface 121 of the support sleeve 12, and the cutting surface A2 of the outer saw blade 11 is disposed at The axial positioning surface 122 on the support sleeve 12 is parallelly attached, and the outer saw blade body 111 and the axial positioning surface 122 on the support sleeve 12 are connected by the connecting member 4; the cylindrical surface 121 on the support sleeve 12 and the inner portion of the bearing 5
  • the ring is concentrically coupled, the inner ring of the bearing 5 is positioned with the outer saw blade 11; the matching hole 221 and the axial positioning surface 222 are disposed at the center of the flange sleeve 22, and the side of the flange sleeve 22 and the axial positioning surface are flanged
  • the bearing 5 is received in the fitting hole 221 of the f
  • the outer ring of the bearing 5 is positioned inside the inner saw blade 21;
  • a thrust ring 3 is disposed between the ring and the outer saw blade 11; one side of the thrust ring 3 is in parallel with the working surface A1 of the outer saw blade 11, and the other side is parallel to one side adjacent to the inner ring of the bearing 5.
  • the outer saw blade 1 1 and the inner saw blade 21 are respectively positioned and coupled by the inner ring and the outer ring of the bearing 5 to form an integrated rotary counter-cut composite saw blade; the outer saw blade 1 1 and the inner saw blade 21 respectively follow the bearing 5
  • the inner and outer rings are free to rotate.
  • the welding tooth 112 On the working surface A1 side of the outer saw blade 11, the welding tooth 112 is flush with the working surface A1 or lower than the working surface A1, and the tooth protrusion is not allowed, on the cutting surface A2 side of the outer saw blade 11, The welding cutter 112 forms a minor cutting edge higher than the cutting surface A2; on the working surface B1 side of the inner saw blade 21, the welding cutter teeth 112 is flush with the working surface Bl or lower than the working surface Bl, and does not allow the tooth protrusion; on the cutting surface B2 side of the inner saw blade 21, the welding blade 112 forms a minor cutting edge higher than the cutting surface B2.
  • the welding cutter 112 is flush with the working surface A1, B1 or lower than the working surface A1, and the difference of B1 is 0 to -0.2 m; the welding tooth 112 is higher than the cutting surface A2, and the height of the sub-cutting edge formed by B2 is More than 0 is less than 1 mm. This can ensure that there is no interference interference between the outer saw blade 11 and the inner saw blade 21 working face; in the outer saw blade 11 and
  • One side of the thrust collar 3 abuts the outer saw blade 11 and the other side abuts the inner bearing ring; the working gap between the outer saw blade 11 and the inner saw blade 21 is determined by the width of the thrust collar 3 and the inner saw 5 ⁇
  • the thickness of the sheet body 211 is limited; the working gap is set to 0 to 0. 5 ⁇ meters. This not only ensures a reliable rotational positioning of the outer blade 11 and the inner blade 21; it also precisely ensures a rotational working gap between the outer blade 11 and the inner blade 21.
  • the mounting hole diameter of the inner saw blade 21 is smaller than the outer diameter of the bearing 5; thus, after the inner saw blade 21 and the flange sleeve 22 are assembled, a positioning step is formed; so that the inner saw blade body 211 functions as a bearing outer ring.
  • the axial positioning action ensures that the axial sway of the inner saw blade 21 does not occur during the sawing process, thereby facilitating the stabilization of the working gap between the outer saw blade 11 and the inner saw blade 21.
  • outer blade body 111 On the outer blade body 111, at the periphery of the working surface A1 - the side mounting hole, at least three countersunk holes circumferentially distributed around the rotation axis are disposed; on the inner blade body 211, the working surface B1 - the periphery of the side mounting hole , at least three counterbores circumferentially distributed around the axis of rotation are provided.
  • the outer saw blade 11 is fixedly connected to the support sleeve 12 and the inner saw blade 21 is fixedly connected to the flange sleeve 22.
  • connection holes circumferentially distributed around the rotation axis are disposed on the axial positioning surface 121 of the support sleeve 12, the distribution of the connection holes and the hole position and the counterbore on the outer blade body in The distribution is consistent with the hole position; a drive keyway is provided on the inner hole of the support sleeve 12.
  • the mounting hole of the outer saw blade 11 is concentrically engaged with the cylindrical surface 121 on the support sleeve 12, and the cutting surface A2 of the outer saw blade 11 is set.
  • the axial positioning surface 122 on the support sleeve 12 is parallelly fitted, and the fastener passes through the counterbore hole on the outer saw blade 11, and the outer saw blade body 111 is fixedly connected to the axial positioning surface 122 on the support sleeve 12 to be integrated.
  • the cylindrical surface 121 on the support sleeve 12 is concentrically coupled with the inner ring of the bearing 5, and the inner ring of the bearing 5 positions the outer saw blade 11 to form the outer saw blade assembly 1; that is, the outer saw blade 11 and the support sleeve 12 follow the bearing inner ring Rotate together.
  • the inner hole of the support sleeve 12 is provided with a drive keyway to form a drive coupling connection with the outer blade drive shaft and to drive its rotation.
  • the keyway can be a spline, a flat key, a semi-circular keyway or at least one planar flat square hole.
  • At least three fastener connection holes circumferentially distributed around the rotation axis are provided on the flange face 223 of the flange sleeve 22, the distribution of the connection holes and the hole position and the counterbore on the inner blade body 211 The distribution is consistent with the hole position; thus, the fastener passes through the counterbore hole on the inner saw blade 21, and the inner saw blade 21 and the flange sleeve 22 are fixedly connected integrally; the bearing 5 is received in the fitting hole 221 of the flange sleeve 22. The inner concentric piece 21 and the flange sleeve 22 are rotated together with the inner ring of the bearing.
  • the axial depth of the fitting hole 221 provided in the flange sleeve 22, that is, the vertical distance from the axial positioning surface 222 to the flange surface 223, is the same basic dimension as the width of the bearing 5. In this way, the axial positioning surface of the flange sleeve 22 and the inner saw blade 21 can be axially positioned to face the bearing, so that the inner saw blade 21 does not generate axial sway during operation.
  • the connecting member 4 can be used with a countersunk rivet or a countersunk screw.
  • the connecting member 4 is provided with a countersunk rivet for connecting and fixing the outer saw blade 11 and the support sleeve 12 and the inner saw blade 21 and the flange. Set of 22.
  • a drive coupling interface 6 is disposed on an end surface of the flange sleeve 22 opposite to the flange surface 223.
  • the drive coupling interface 6 is a drive coupling boss, a drive coupling groove or a drive coupling hole.
  • the outer saw blade 11 and the fixed support sleeve 12 are fixedly coupled with the inner ring of the bearing, and the outer blade drive shaft is coupled with the support sleeve 12; the platen screw is screwed into the screw hole of the output end of the outer blade drive shaft, Outer blade assembly 1
  • the inner inner side saw blade 2211 and the flange flange 2222 which is connected with the fixed connection with the fixed bearing are connected with the outer bearing outer ring of the shaft bearing, and are arranged and arranged.
  • the flange drive sleeve 2222 and the drive end coupling end interface 66 on the end face surface opposite to the French flange face 222233 and the inner inner side saw blade drive drive shaft The drive-driving and driving coupling coupling interface of the end flange method is matched with the coupling connection, and the inner inner side saw blade 2211 and the inner inner side saw are realized.
  • the driving drive shaft coupling of the driving drive shaft is driven, and the coupling shaft of the coupling shaft is axially coupled to the non-constrained beam meshing driving drive coupling;
  • the first embodiment implements the design of the rotary-cut composite saw blade of the present invention with a standard bearing, which is convenient, quick, and easy to implement.
  • the structure of the rotary-to-cut composite saw blade in this embodiment is different from that of the first embodiment in that a special bearing for a rotary-to-cut composite saw blade is manufactured, and the inner ring of the bearing and the support sleeve are integrated, and the outer ring of the bearing and The flange sleeve is made in one piece and the thrust ring is omitted; the gap between the outer blade and the inner blade is controlled by the vertical distance of the positioning step provided on the inner ring of the bearing and the outer ring of the bearing.
  • the specific structure is: composed of the outer saw blade 11, the inner saw blade 21, the bearing 5 and the connecting member 4; the outer saw blade 1 1 and the inner saw blade 21 have a center of rotation coaxially, face-to-face parallel arrangement; the outer saw blade 11
  • the first mounting hole 110 and the second mounting hole 210 are respectively disposed at a central position of the inner saw blade 21; the outer saw blade 11 is disposed opposite to the cutting direction of the inner saw blade 21; the first mounting hole 11 of the outer saw blade 11 is disposed at The inner ring step surface 51 1 of the bearing inner ring 51 is positioned and fixedly connected; the connection of the outer saw blade 11 and the bearing inner ring 51 can be realized by means of interference fit, welding, riveting or screw locking.
  • the second mounting hole 210 of the inner saw blade 21 is positioned with the outer ring stepped surface 521 provided on the bearing outer ring 52 and fixedly connected by the connecting member 4.
  • the connecting member 4 can be used with a countersunk rivet or a countersunk screw.
  • the connecting member 4 ⁇ fixes the inner saw blade 21 and the bearing outer ring 52 with countersunk rivets.
  • At least two holes are arranged which are evenly distributed around the bearing axis, and the axial section is stepped; the stepped holes are close to the inner saw blade 21 - the end is the smaller diameter end, facing away
  • the inner saw blade 21 has a larger diameter end;
  • the inner saw blade 21 is provided with a rivet counterbore having a diameter matching the size of the rivet, and the number and distribution are riveted with the split saw blade 21 and the bearing outer ring 52 of the stepped hole; the riveted joint portion is left at the larger end of the stepped hole diameter;
  • the large end is of sufficient diameter to accommodate the lower rivet head and the remaining length of the remaining portion is of sufficient depth to be used as the drive coupling interface 6.
  • the working clearance is provided by the axial positioning surface of the inner ring step surface 511 provided on the bearing inner ring 51 to The distance between the axial positioning faces of the outer ring step faces 521 provided on the bearing outer ring 52 is determined. 5 ⁇ ; ⁇ The inner ring step surface 51 1 of the inner ring 51 of the bearing ring 51 1 The distance between the axial direction of the bearing and the outer ring surface of the outer ring 52 The size of the working gap is appropriately adjusted according to the specific diameter of the saw blade.
  • the outer saw blade 11 and the inner saw blade 21, which are opposite in rotational cutting direction, are reliably positioned by the bearing 5 to form an integrated rotary-to-cut composite saw blade; the outer saw blade 11 follows The inner bearing ring 51 is free to rotate; the inner saw blade 21 is free to rotate following the bearing outer ring 52. It reliably follows the rotation of the bearing inner ring 51, and a drive key groove is provided in the inner hole of the bearing inner ring 51.
  • the outer saw blade 11 and the bearing inner ring 51 fixedly coupled thereto are coupled with the outer blade drive shaft by a snap fit; the pressure plate is fixedly locked; the outer blade 11 can follow the drive rotation of the outer blade drive shaft.
  • a bearing coupling interface 6 is disposed on the flange surface of the bearing outer ring 52 in the same direction; the inner blade drive shaft A matching drive coupling interface is provided on the flange face of the output.
  • the paired drive coupling interface does not have positioning restrictions in the axial and radial directions, avoiding over-constraint, and only acts to transmit torque; the drive coupling interface 6 is a drive coupling boss, a drive coupling groove or a drive coupling hole.
  • a preferred solution for driving the coupling interface 6 in the present invention is to: provide at least two stepped through holes in the flange of the bearing outer ring 52, the number and distribution of the stepped holes and the connection provided on the inner saw blade 21
  • the number of through holes is the same as the distribution, and the diameter of the small end of the stepped hole is the same as the diameter of the connecting through hole provided on the inner saw blade 21; the diameter of the large end of the stepped hole is sufficient to accommodate the riveted joint of the sinking hole rivet and to withstand the cutting torque of the saw blade.
  • the preferred embodiment of the connecting member 4 in this embodiment is a countersunk rivet, the countersunk rivet passing through the connecting counterbore provided on the inner saw blade 21 and the smaller diameter end of the stepped through hole provided on the flange of the bearing outer ring 52 And riveting to integrate the inner saw blade 21 and the bearing outer ring 52 into one body. After riveting, the large end of the stepped hole still has enough depth to drive the coupling interface 6.
  • a drive pin distributed along the stepped hole is disposed on the flange of the inner blade drive shaft output end, and the cooperation of the drive pin and the drive coupling interface 6 is a clearance fit or an over fit.
  • the drive pin provided on the flange of the inner blade drive shaft output slides into the drive coupling interface 6 disposed at the large end of the stepped hole after riveting; the outer saw blade 1 1 and the bearing inner ring fixedly connected thereto 51 is positioned with the outer blade drive shaft by a fit; the platen screw is screwed into the outer blade drive shaft output
  • the kinetic coupling interface is axially coupled by an unconstrained meshing drive; when the outer blade drive shaft and the inner blade drive shaft are rotated in opposite directions, the outer blade 1 1 and the inner blade 21 are respectively driven to perform a reverse rotation pairing motion. . Due to the high positioning accuracy of the bearing 5, the outer saw blade 1 1 and the inner saw blade 21 can freely rotate around the bearing 5.
  • the second embodiment implements the design of the rotary-cut composite saw blade of the present invention with a customized bearing, has a simple structure, high positioning accuracy, and is more suitable for mass production operations.
  • the above embodiments are merely illustrative of the technical concept and the features of the present invention.
  • the purpose of the present invention is to understand the contents of the present invention and to implement the present invention, and the scope of the present invention is not limited thereto. Equivalent variations or modifications made by the spirit of the invention are intended to be included within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Sawing (AREA)
  • Nonmetal Cutting Devices (AREA)

Abstract

一种旋转对切复合锯片的设计方案和实现该设计方案的旋转对切复合锯片,包括外侧锯片(11)和内侧锯片(21),外侧锯片(11)和内侧锯片(21)的旋转中心同轴,相互平行,切割方向相反;在外侧锯片(11)和内侧锯片(21)之间设有轴承(5),通过轴承内圈定位外侧锯片(11),通过轴承外圈定位内侧锯片(21);外侧锯片(11)和内侧锯片(21)分别跟随轴承内圈和外圈自由旋转。该旋转对切复合锯片的锯片之间不产生摩擦、干涉、碰撞,运行高效、平稳、可靠,适于切断金属、石材、木材、玻璃等材质。

Description

旋转对切复合锯片
技术领域
[0001] 本发明属于旋转锯切工具领域, 涉及一种旋转对切复合锯片的设计方 案和实现该设计方案的旋转对切复合锯片。 特别适合于安装在旋转对切电圆锯、 斜断锯、 汽油动力切断锯上, 用于金属、 石材、 木材、 塑料等材质型材及板材 的切割和抢险救灾现场各种材质的锯切破断。 背景技术
[0002] 旋转对切锯也称为双锯片切割机, 它是通过驱动传动装置的同心输出
反, 外侧锯片和内侧锯片可以相互平衡切割时, 被切物料的反作用力, 实现平 稳快速切断。
[0003] 在现有技术条件下, 国内外所制造的旋转对切锯片, 均釆用内侧锯片 和外侧锯片分离设置, 分别安装, 安装后外侧锯片和内侧锯片互相挤压、 相互 干涉摩擦的不合理方式。 外侧锯片通过压板螺钉固定在外侧锯片驱动轴输出端 上; 内侧锯片靠在内侧锯片和外侧锯片的摩擦面上设置耐磨环或耐磨凸台的方 式做轴向定位。 耐磨环或耐磨凸台接受来自同一个压板螺钉的压紧力, 压紧在 内侧锯片驱动轴输出端的法兰面上; 并通过内侧锯片驱动轴的法兰面上的驱动 凸台驱动内侧锯片上的配合孔, 带动内侧锯片旋转;这样, 耐磨环或耐磨凸台既 要为固定外侧锯片和内侧锯片传递压力; 又要在二者之间摩擦旋转。 这种结构 设计, 违背了机械设计中, 避免在同一方向上的两个面同时得到可靠配合的设 计原则。
[0004] 致使, 内侧锯片总是得不到可靠定位; 外侧锯片和内侧锯片的相对转 动会使耐磨环或耐磨凸台磨损, 定位进一步恶化, 使内侧锯片松动, 这样内侧 锯片和外侧锯片更得不到可靠的定位和压紧, 加之制造误差; 运转过程中, 同 心的外侧锯片驱动轴和内侧锯片驱动轴相向旋转, 带动外侧锯片和内侧锯片做 相向的对切旋转运动时; 由于内侧锯片没有可靠的定位和固定, 产生旋转跳动 和摆动不可避免, 锯片之间的工作间隙无法保障, 其后果是导致外侧锯片和内 侧锯片间摩擦生热、 干涉碰撞, 而最主要的失效模式是被切物料在外侧锯片和 内侧锯片之间堆堵; 造成外侧锯片和内侧锯片开叉, 无法切割, 机器失效, 以 及造成人身安全危险等不良后果。 发明内容
[0005] 为了克服现有技术存在的不足, 本发明的目的在于提供一种外侧锯片 和内侧锯片定位可靠、 配合紧密、 外侧锯片和内侧锯片间无摩擦、 转动灵活、 切割功耗低、 使用寿命长、 安装方便、 可以实现稳定旋转对切工况的一体化旋 转对切复合锯片。
[0006] 为达到以上目的, 本发明提供的旋转对切复合锯片的设计方案是: 包 设置安装孔, 面对面平行布置; 外侧锯片与内侧锯片的切割方向相反设置; 其 核心设计在于: 在外侧锯片和内侧锯片之间引入轴承和止推环, 把外侧锯片和 内侧锯片通过轴承可靠定位并做成一体; 由轴承的内圈定位联接外侧锯片; 由 轴承的外圈定位和联接内侧锯片; 由止推环控制外侧锯片和内侧锯片之间的工 配合,由连接件连接固定, 支撑套与轴承的内圈同心配合联接, 实现由轴承的内 圈对外侧锯片的定位; 内侧锯片与法兰套同心配合,由连接件连接固定, 法兰套 与轴承的外圈同心配合联接, 实现由轴承的外圈对内侧锯片的定位。 在外侧锯 片和轴承内圈之间设置止推环, 实现调节外侧锯片和内侧锯片之间的工作间隙。 外侧锯片和内侧锯片通过轴承的定位和配合联接, 构成一体化的旋转对切复合 锯片; 外侧锯片和内侧锯片分别跟随轴承的内圈和外圈自由旋转。 在支撑套中 心位置设置键槽孔, 实现与外侧锯片驱动轴的驱动耦合联接; 在法兰套的一个 端面上设置驱动耦合接口, 实现与外侧锯片驱动轴同心且与之反向旋转的内侧 锯片驱动轴的驱动耦合联接。
[ 0007] 实现上述设计方案的旋转对切复合锯片的结构设计方案是: 旋转对切 锯片、 支撑套和连接件构成; 内侧锯片组件由内侧锯片、 法兰套、 连接件和轴 焊接刀齿构成; 焊接刀齿被均匀的焊接在外侧锯片本体和内侧锯片本体圆周上 的齿座内; 外侧锯片本体一侧为工作面 A1 , 另一侧为切割面 A2 , 内侧锯片本体 一侧为工作面 B1 , 另一侧为切割面 B2 ; 外侧锯片和内侧锯片的旋转中心同轴, 中心位置分别设置安装孔, 工作面 A1和工作面 B1面对面平行布置并预置工作 间隙; 外侧锯片与内侧锯片的切割方向相反设置。 在支撑套上设置圆柱面和与 之垂直的轴向定位面; 外侧锯片的安装孔与支撑套上的圆柱面同心配合, 外侧 锯片的切割面 A2与设置在支撑套上的轴向定位面平行贴合, 由连接件连接固定 外侧锯片本体和支撑套上的轴向定位面; 支撑套上的圆柱面与轴承的内圈同心 配合联接, 轴承的内圈定位外侧锯片; 在法兰套中心位置设置配合孔和轴向定 位面, 法兰套与轴向定位面同方向的侧面为法兰面; 轴承容置在法兰套的配合 孔内; 内侧锯片的安装孔与法兰套同心设置; 内侧锯片的切割面 B2与法兰面平 行贴合, 并由连接件连接固定内侧锯片本体和法兰套的法兰面, 轴承的外圈一 侧平行贴合设置在法兰套上的轴向定位面,一侧平行贴合内侧锯片的切割面 B2 , 轴承的外圈定位内侧锯片; 轴承的内圈与外侧锯片之间设置止推环; 止推环的 一个侧面与外侧锯片的工作面 A1平行贴合, 另一侧面与轴承的内圈相邻的一个 侧面平行贴合; 外侧锯片和内侧锯片分别由轴承的内圈和外圈定位并联接构成 一体化的旋转对切复合锯片; 外侧锯片和内侧锯片分别跟随轴承的内圈和外圈 自由旋转。
[ 0008] 本发明的进一步改进在于, 在外侧锯片的工作面 A1—侧, 焊接刀齿 与工作面 A1平齐或低于工作面 A1 , 不允许刀齿突起, 在外侧锯片的切割面 A2 一侧, 焊接刀齿高于切割面 A2形成副切削刃; 在内侧锯片的工作面 B1—侧, 焊接刀齿与工作面 B1平齐或低于工作面 B1 , 不允许刀齿突起; 在内侧锯片的切 割面 B2—侧, 焊接刀齿高于切割面 B2形成副切削刃。 焊接刀齿与工作面 A1 , B1平齐或低于工作面 Al , B1的落差为 0到 -0. 2亳米; 焊接刀齿高于切割面 A2 , B2形成副切削刃的高度为大于 0小于 1亳米。 这样可以保证外侧锯片和内侧锯 片工作面之间不产生锯齿的干涉碰撞; 在外侧锯片和内侧锯片的切割面一侧分
[ 0009] 本发明的进一步改进还在于, 止推环的一个侧面靠紧外侧锯片, 另一 个侧面靠紧轴承内圈; 外侧锯片和内侧锯片之间的工作间隙由止推环的宽度和 内侧锯片本体的厚度所限制; 工作间隙设定为 0到 0. 5亳米。 这样不仅保证了 之间的旋转工作间隙。
[ 001 0] 本发明的进一步改进还在于, 内侧锯片的安装孔直径小于轴承的外 径; 从而在内侧锯片与法兰套装配后, 形成定位台阶; 以便于内侧锯片本体起 到对轴承外圈的轴向定位作用; 这样可以保证在锯切过程中, 不会发生内侧锯 侧锯片本体上, 工作面 A1—侧安装孔的外围, 设置至少三个围绕旋转轴线呈圆 周分布的沉头孔; 在内侧锯片本体上, 工作面 B1—侧安装孔的外围, 设置至少 三个围绕旋转轴线呈圆周分布的沉头孔。 以方便外侧锯片与支撑套固定连接及 内侧锯片与法兰套固定连接。
[0011 ] 本发明的进一步改进还在于, 在支撑套的轴向定位面上设置至少三个 围绕旋转轴线呈圆周分布的紧固件连接孔, 连接孔的分布和孔位与外侧锯片本 体上的沉头孔的分布和孔位一致; 在支撑套的内孔上设置驱动键槽。 这样, 外 侧锯片的安装孔与支撑套上的圆柱面同心配合, 外侧锯片的切割面 A2与设置在 支撑套上的轴向定位面平行贴合, 紧固件穿越外侧锯片上的沉头孔, 连接固定 外侧锯片本体和支撑套上的轴向定位面成为一体,支撑套上的圆柱面与轴承的 内圈同心配合联接, 轴承的内圈定位外侧锯片, 构成外侧锯片组件; 即实现外 侧锯片和支撑套跟随轴承内圈一起旋转。 支撑套内孔设置驱动键槽, 以便与外 侧锯片外侧锯片驱动轴构成驱动耦合联接, 并驱动其旋转。 键槽可以为花键、 平键、 半圆键槽或至少一个平面的扁方孔。
[0012] 本发明的进一步改进还在于, 在法兰套的法兰面上设置至少三个围绕 旋转轴线呈圆周分布的紧固件连接孔, 连接孔的分布和孔位与内侧锯片本体上 的沉头孔的分布和孔位一致; 这样,紧固件穿越内侧锯片上的沉头孔,把内侧锯 片和法兰套固定连接为一体; 轴承容置在法兰套的配合孔内并与之同心配合联 接; 轴承的外圈定位内侧锯片, 构成内侧锯片组件; 即实现内侧锯片和法兰套 跟随轴承内圈一起旋转。 在法兰套上设置的配合孔的轴向深度, 即轴向定位面 到法兰面的垂直距离, 与轴承的宽度为同一基本尺寸。 这样可以实现法兰套轴 向定位面和内侧锯片切割面对轴承的轴向定位,保证内侧锯片在运转过程中,不 产生轴向串动。
[001 3] 本发明的进一步改进还在于, 在法兰套与法兰面相对的端面上设置驱 动耦合接口, 驱动耦合接口为驱动耦合凸台、 驱动耦合凹槽或驱动耦合孔。 外 侧锯片和与之固定连接支撑套与轴承内圈定位联接,外侧锯片驱动轴与支撑套 键配合联接; 压板螺钉旋入设置在外侧锯片驱动轴输出端的螺孔内, 把外侧锯 片组建和外侧锯片驱动轴锁紧固定; 外侧锯片可以跟随外侧锯片驱动轴的驱动 旋转。 内侧锯片和与之固定连接的法兰套与轴承外圈定位联接, 设置在法兰套 与法兰面相对的端面上的驱动耦合接口与内侧锯片驱动轴输出端法兰面上的驱 动耦合接口匹配联接, 实现内侧锯片与内侧锯片驱动轴的驱动耦合, 这种耦合 釆用轴向非约束啮合驱动联接; 在外侧锯片驱动轴和内侧锯片驱动轴按相反的 方向旋转时, 即分别驱动外侧锯片和内侧锯片做旋转对切运动。
[0014] 本发明的积极效果是:本发明中的旋转对切复合锯片的外侧锯片和内 侧锯片分别通过轴承内圈和轴承外圈的定位联接并成为一体, 使外侧锯片和内 侧锯片绕轴承的旋转中心自由的旋转, 极大地提高了外侧锯片和内侧锯片的定 位精度和转动精度; 止推环的引入,精确的控制了外侧锯片和内侧锯片之间的工 作间隙, 保证了外侧锯片和内侧锯片的可靠旋转定位, 从而保证了形成稳定的 旋转对切工况; 避免了外侧锯片和内侧锯片在相向转动时, 锯片间的摩擦生热、 干涉碰撞; 同时避免了被切物料在外侧锯片和内侧锯片之间堆堵而产生的锯片 开叉失效; 使锯切运转平稳、 高效切断、 使用寿命长、 性能稳定安全。 附图说明 [0015] 附图 1为本发明第一实施例的旋转对切复合锯片的结构示意图。
[0016] 附图 2为本发明第一实施例的支撑套的结构示意图。
[0017] 附图 3为本发明第一实施例的法兰套的结构示意图。
[0018] 附图 4为本发明第二实施例的旋转对切复合锯片的结构示意图。
片; 22、 法兰套; 210、 第二安装孔; 211、 内侧锯片本体; 3、 止推环; 4、 连 接件; 5、 轴承; 51、 轴承内圈; 52、 轴承外圈; 51 1、 内圈台阶面; 521、 外圈 台阶面; 6、 驱动耦合接口。 具体实施方式
[0020] 下面结合附图对本发明较佳的实施例进行详细阐述, 以使本发明的优 点和特征能更易于被本领域的技术人员理解, 从而对本发明的保护范围作出更 为清楚明确的界定。
[0021 ] 下面参照附图 1至 3 , 描述本发明的第一实施例。 本发明中的旋转对 切复合锯片, 是把外侧锯片和内侧锯片分别通过支撑套和法兰套的过度, 实现 外侧锯片与轴承内圈的可靠定位联接和内侧锯片与轴承外圈的可靠定位联接, 并做成一体的复合锯片; 外侧锯片跟随轴承内圈自由旋转, 内侧锯片跟随轴承 外圈自由旋转。
[0022] 具体结构是: 旋转对切复合锯片由外侧锯片组件 1、 内侧锯片组件 2 焊接刀齿 112构成; 焊接刀齿 1 12被均匀的焊接在外侧锯片本体 111和内侧锯 片本体 211圆周上的齿座内; 外侧锯片本体 11 1一侧为工作面 A1 , 另一侧为切 割面 A2 , 内侧锯片本体 211 —侧为工作面 B1 , 另一侧为切割面 B2 ; 外侧锯片 11和内侧锯片 21的旋转中心同轴, 中心位置分别设置安装孔, 工作面 A1和工 作面 B1面对面平行布置并预置工作间隙; 外侧锯片 11与内侧锯片 21的切割方 向相反设置。 在支撑套 12上设置圆柱面 121和与之垂直的轴向定位面 122 ; 外 侧锯片 11的安装孔与支撑套 12上的圆柱面 121同心配合, 外侧锯片 11的切割 面 A2与设置在支撑套 12上的轴向定位面 122平行贴合, 由连接件 4连接固定 外侧锯片本体 111和支撑套 12上的轴向定位面 122 ; 支撑套 12上的圆柱面 121 与轴承 5的内圈同心配合联接, 轴承 5的内圈定位外侧锯片 11 ; 在法兰套 22中 心位置设置配合孔 221和轴向定位面 222 , 法兰套 22与轴向定位面同方向的侧 面为法兰面 223; 轴承 5容置在法兰套 22的配合孔 221内; 内侧锯片 21的安装 孔与法兰套 22同心设置; 内侧锯片 21的切割面 B2与法兰面 223平行贴合, 并 由连接件 4连接固定内侧锯片本体 211和法兰套 22的法兰面 223 , 轴承 5的外 圈一侧平行贴合设置在法兰套 22上的轴向定位面 222 , —侧平行贴合内侧锯片 21 的切割面 B2 , 轴承 5的外圈定位内侧锯片 21 ; 的轴承 5 的内圈与外侧锯片 11之间设置止推环 3; 止推环 3的一个侧面与外侧锯片 11的工作面 A1平行贴 合, 另一侧面与轴承 5的内圈相邻的一个侧面平行贴合; 外侧锯片 1 1和内侧锯 片 21分别由轴承 5的内圈和外圈定位并联接构成一体化的旋转对切复合锯片; 外侧锯片 1 1和内侧锯片 21分别跟随轴承 5的内圈和外圈自由旋转。
[0023] 在外侧锯片 11的工作面 A1—侧, 焊接刀齿 112与工作面 A1平齐或 低于工作面 A1 , 不允许刀齿突起, 在外侧锯片 11的切割面 A2—侧, 焊接刀齿 112高于切割面 A2形成副切削刃; 在内侧锯片 21的工作面 B1—侧, 焊接刀齿 112与工作面 Bl平齐或低于工作面 Bl , 不允许刀齿突起; 在内侧锯片 21的切 割面 B2—侧, 焊接刀齿 112高于切割面 B2形成副切削刃。 焊接刀齿 112与工 作面 Al , B1平齐或低于工作面 Al , B1的落差为 0到 -0. 2亳米; 焊接刀齿 112 高于切割面 A2 , B2形成副切削刃的高度为大于 0小于 1亳米。 这样可以保证外 侧锯片 11和内侧锯片 21工作面之间不产生锯齿的干涉碰撞; 在外侧锯片 11和
[0024] 止推环 3的一个侧面靠紧外侧锯片 11 , 另一个侧面靠紧轴承内圈; 外 侧锯片 11和内侧锯片 21之间的工作间隙由止推环 3的宽度和内侧锯片本体 211 的厚度所限制; 工作间隙设定为 0到 0. 5亳米。 这样不仅保证了外侧锯片 11和 内侧锯片 21的可靠旋转定位; 而且精确地保证了外侧锯片 11和内侧锯片 21之 间的旋转工作间隙。
[0025] 内侧锯片 21的安装孔直径小于轴承 5的外径; 从而在内侧锯片 21与 法兰套 22装配后, 形成定位台阶; 以便于内侧锯片本体 211起到对轴承外圈的 轴向定位作用;这样可以保证在锯切过程中,不会发生内侧锯片 21的轴向窜动, 从而有利于外侧锯片 11和内侧锯片 21之间的工作间隙的稳定。 在外侧锯片本 体 111上, 工作面 A1—侧安装孔的外围, 设置至少三个围绕旋转轴线呈圆周分 布的沉头孔; 在内侧锯片本体 211上, 工作面 B1—侧安装孔的外围, 设置至少 三个围绕旋转轴线呈圆周分布的沉头孔。 以方便外侧锯片 11与支撑套 12固定 连接及内侧锯片 21与法兰套 22固定连接。
[0026] 在支撑套 12的轴向定位面 121上设置至少三个围绕旋转轴线呈圆周 分布的紧固件连接孔, 连接孔的分布和孔位与外侧锯片本体 i n上的沉头孔的 分布和孔位一致; 在支撑套 12的内孔上设置驱动键槽。 这样, 外侧锯片 11的 安装孔与支撑套 12上的圆柱面 121同心配合, 外侧锯片 11的切割面 A2与设置 在支撑套 12上的轴向定位面 122平行贴合, 紧固件穿越外侧锯片 11上的沉头 孔, 连接固定外侧锯片本体 111和支撑套 12上的轴向定位面 122成为一体,支 撑套 12上的圆柱面 121与轴承 5的内圈同心配合联接, 轴承 5的内圈定位外侧 锯片 11 , 构成外侧锯片组件 1 ; 即实现外侧锯片 11和支撑套 12跟随轴承内圈 一起旋转。 支撑套 12内孔设置驱动键槽, 以便与外侧锯片驱动轴构成驱动耦合 联接, 并驱动其旋转。 键槽可以为花键、 平键、 半圆键槽或至少一个平面的扁 方孔。
[0027] 在法兰套 22的法兰面 223上设置至少三个围绕旋转轴线呈圆周分布 的紧固件连接孔, 连接孔的分布和孔位与内侧锯片本体 211上的沉头孔的分布 和孔位一致; 这样,紧固件穿越内侧锯片 21上的沉头孔,把内侧锯片 21和法兰 套 22固定连接为一体; 轴承 5容置在法兰套 22的配合孔 221内并与之同心配 片 21和法兰套 22跟随轴承内圈一起旋转。 在法兰套 22上设置的配合孔 221的 轴向深度, 即轴向定位面 222到法兰面 223的垂直距离, 与轴承 5的宽度为同 一基本尺寸。 这样可以实现法兰套 22轴向定位面和内侧锯片 21切割面对轴承 的轴向定位,保证内侧锯片 21在运转过程中,不产生轴向窜动。
[0028] 连接件 4可釆用沉头铆钉或沉头螺钉, 本实施例中连接件 4釆用沉头 铆钉, 用于连接固定外侧锯片 11和支撑套 12以及内侧锯片 21和法兰套 22。
[0029] 在法兰套 22与法兰面 223相对的端面上设置驱动耦合接口 6 ,驱动耦 合接口 6为驱动耦合凸台、 驱动耦合凹槽或驱动耦合孔。 外侧锯片 11和与之固 定连接支撑套 12与轴承内圈定位联接,外侧锯片驱动轴与支撑套 12键配合联 接; 压板螺钉旋入设置在外侧锯片驱动轴输出端的螺孔内, 把外侧锯片组件 1 内内侧侧锯锯片片 2211和和与与之之固固定定连连接接的的法法兰兰套套 2222与与轴轴承承外外圈圈定定位位联联接接,, 设设置置在在法法兰兰套套 2222与与法法兰兰面面 222233相相对对的的端端面面上上的的驱驱动动耦耦合合接接口口 66与与内内侧侧锯锯片片驱驱动动轴轴输输出出端端法法兰兰 面面上上的的驱驱动动耦耦合合接接口口匹匹配配联联接接,,实实现现内内侧侧锯锯片片 2211与与内内侧侧锯锯片片驱驱动动轴轴的的驱驱动动耦耦合合,, 这这种种耦耦合合釆釆用用轴轴向向非非约约束束啮啮合合驱驱动动联联接接;;
Figure imgf000013_0001
按相反的方向旋转时, 即分别驱动外侧锯片 11和内侧锯片 21做旋转对切运动。
[0030] 第一实施例釆用标准的轴承实现本发明的旋转对切复合锯片的设计 方案,方便快捷,容易实现。
[0031 ] 下面参照附图 4 , 描述本发明的第二实施例。 本实施例中的旋转对切 复合锯片的结构与第一实施例不同的地方是,制造一种旋转对切复合锯片专用 轴承, 将轴承内圈和支撑套做成一体, 轴承外圈和法兰套做成一体, 并省去止 推环; 外侧锯片和内侧锯片之间的间隙由设置在轴承内圈和轴承外圈上的定位 台阶面的垂直距离控制。
[0032] 具体结构是: 由外侧锯片 11、 内侧锯片 21、 轴承 5和连接件 4构成; 外侧锯片 1 1和内侧锯片 21的旋转中心同轴, 面对面平行布置; 外侧锯片 11和 内侧锯片 21中心位置分别设置第一安装孔 110和第二安装孔 210; 外侧锯片 11 与内侧锯片 21 的切割方向相反设置; 外侧锯片 11的第一安装孔 11 0与设置在 轴承内圈 51上的内圈台阶面 51 1止口定位并固定连接; 外侧锯片 11和轴承内 圈 51的连接可釆用过盈配合、 焊接、 铆接或螺钉锁紧等方式实现。 内侧锯片 21 的第二安装孔 210与设置在轴承外圈 52上的外圈台阶面 521止口定位并通过连 接件 4 固定连接。 连接件 4可釆用沉头铆钉或沉头螺钉, 本实施例中连接件 4 釆用沉头铆钉固定内侧锯片 21和轴承外圈 52。 在轴承外圈 52的法兰面上, 设 置数量至少两个, 且围绕轴承轴线均匀分布的、 轴向剖面为阶梯的孔; 阶梯孔 靠近内侧锯片 21 —端为直径较小端, 背对内侧锯片 21 —端为直径较大端; 在 内侧锯片 21上设置直径与铆钉尺寸匹配的铆钉沉孔, 数量和分布与阶梯孔的分 锯片 21和轴承外圈 52铆合; 铆接头部留在阶梯孔直径较大端; 阶梯孔较大端 的直径尺寸足以容纳下铆钉头, 而且剩佘部分的长度有足够的深度留作驱动耦 合接口 6之用。
[0033] 为保证外侧锯片 11和内侧锯片 21的可靠旋转定位; 而且精确的保证 预留工作间隙; 工作间隙由设置在轴承内圈 51上的内圈台阶面 511的轴向定位 面至设置在轴承外圈 52上的外圈台阶面 521的轴向定位面之间的距离所决定。 轴承内圈 51上的内圈台阶面 51 1止口轴向定位面与轴承外圈 52上的外圈台阶 面 521止口轴向定位面之间的距离为 0到 0. 5亳米; 可根据锯片的具体直径大 小适当调整工作间隙的大小。
[0034] 这样通过上述的结构设置, 就把旋转切割方向相反的外侧锯片 11 和 内侧锯片 21通过轴承 5的可靠定位, 做成一体化的旋转对切复合锯片; 外侧锯 片 11跟随轴承内圈 51 自由转动; 内侧锯片 21跟随轴承外圈 52自由转动。 其可靠地跟随轴承内圈 51旋转, 在轴承内圈 51 的内孔设置驱动键槽。 外侧锯 片 11和与之固定连接的轴承内圈 51 与外侧锯片驱动轴通过健配合联接; 压板 动轴锁紧固定; 外侧锯片 11可以跟随外侧锯片驱动轴的驱动旋转。
[0036] 为了将内侧锯片驱动轴的输出扭矩传递到内侧锯片 21 上, 使其可靠 地跟随轴承外圈 52旋转, 在内侧锯片 21背对外侧锯片 11的侧面上或与之连接 的轴承外圈 52的同一方向的法兰面上设置有驱动耦合接口 6; 内侧锯片驱动轴 输出端的法兰面上设置有与之匹配的驱动耦合接口。 配对的驱动耦合接口轴向 和径向都不设置定位限制, 避免过约束, 只起到传递扭矩的作用; 驱动耦合接 口 6为驱动耦合凸台、 驱动耦合凹槽或驱动耦合孔。
[ 0037] 驱动耦合接口 6在本发明中釆用的较佳方案是: 在轴承外圈 52法兰 上设置至少 2个阶梯通孔, 阶梯孔的数量和分布与内侧锯片 21上设置的连接通 孔数量和分布一致, 阶梯孔的小端直径与内侧锯片 21上设置的连接通孔直径尺 寸一致; 阶梯孔的大端直径足够容纳下沉孔铆钉的铆接头和承受锯片切割扭矩。 本实施例中连接件 4的较佳方案是釆用沉头铆钉, 沉头铆钉穿过内侧锯片 21上 设置的连接沉孔和轴承外圈 52法兰上设置的阶梯通孔直径较小端, 并铆接使内 侧锯片 21和轴承外圈 52结合成为一体。 铆接后阶梯孔大端仍留有足够的深度 作驱动耦合接口 6 之用。 在内侧锯片驱动轴输出端法兰上设置与阶梯孔一样分 布的驱动销, 驱动销与驱动耦合接口 6的配合为间隙配合或过度配合。
[ 0038] 在使用时, 内侧锯片驱动轴输出端法兰上设置的驱动销滑入设置在铆 接后阶梯孔大端的驱动耦合接口 6 ; 外侧锯片 1 1和与之固定连接的轴承内圈 51 与外侧锯片驱动轴通过健配合定位; 压板螺钉旋入设置在外侧锯片驱动轴输出
动耦合接口轴向釆用非约束啮合驱动联接; 外侧锯片驱动轴和内侧锯片驱动轴 按相反的方向旋转时, 即分别驱动外侧锯片 1 1和内侧锯片 21做逆向旋转对切 运动。 由于轴承 5的定位精度高, 外侧锯片 1 1和内侧锯片 21可以自由的围绕 轴承 5回转。
[ 0039] 第二实施例釆用定制的轴承实现本发明的旋转对切复合锯片的设计 方案, 结构简单,定位精度高,更适合大批量生产作业。 [0040] 以上实施方式只为说明本发明的技术构思及特点 , 其目的在于让熟 悉此项技术的人了解本发明的内容并加以实施, 并不能以此限制本发明的保护 范围, 凡根据本发明精神实质所做的等效变化或修饰均涵盖在本发明的保护范 围内。

Claims

权 利 要 求 书
、 本发明涉及一种旋转对切复合锯片的设计方案; 包括外侧锯片和内侧锯片 外侧锯片和内侧锯片的旋转中心同轴, 中心位置分别设置安装孔, 面对面 平行布置; 外侧锯片与内侧锯片的切割方向相反设置; 其特征在于: 在外 侧锯片和内侧锯片之间引入轴承和止推环, 把外侧锯片和内侧锯片通过轴 承可靠定位并做成一体, 由轴承的内圈定位联接外侧锯片; 由轴承的外圈 定位和联接内侧锯片; 由止推环控制外侧锯片和内侧锯片之间的工作间 隙, 实现外侧锯片和内侧锯片的一体化旋转联接; 外侧锯片与支撑套同心 配合,由连接件连接固定, 支撑套与轴承的内圈同心配合联接, 实现由轴 承的内圈对外侧锯片的定位; 内侧锯片与法兰套同心配合,由连接件连接 固定, 法兰套与轴承的外圈同心配合联接, 实现由轴承的外圈对内侧锯片 的定位; 在外侧锯片和轴承内圈之间设置止推环, 实现调节外侧锯片和内 侧锯片之间的工作间隙; 外侧锯片和内侧锯片通过轴承的定位和配合联 接, 构成一体化的旋转对切复合锯片; 外侧锯片和内侧锯片分别跟随轴承 的内圈和外圈自由旋转; 在支撑套中心位置设置键槽孔, 实现与外侧锯片 驱动轴的驱动耦合联接; 在法兰套的一个端面上设置驱动耦合接口, 实现 接。
、 一种实现权利要求 1所述的旋转对切复合锯片的设计方案的旋转对切复合 锯片, 包括外侧锯片 (11 ) 和内侧锯片 (21 ); 所述的外侧锯片 (11 ) 由 外侧锯片本体(111 )、 焊接刀齿 (112 ) 构成; 所述的内侧锯片 (21 ) 由 内侧锯片本体(211 )、 焊接刀齿 (112 )构成; 所述的焊接刀齿 (112 )被 均匀的焊接在外侧锯片本体(111 ) 和内侧锯片本体(211 ) 圆周上的齿座 内;所述的外侧锯片本体(111 )一侧为工作面 1 ),另一侧为切割面(A2 ), 所述的内侧锯片本体(211 ) —侧为工作面 (B1 ), 另一侧为切割面 (B2); 所述的外侧锯片 (11 )和内侧锯片 (21 ) 的旋转中心同轴, 中心位置分别 设置安装孔, 所述的工作面 1 )和所述的工作面 (B1 )面对面平行布置 并预置工作间隙; 所述的外侧锯片 (11 ) 与内侧锯片 (21 ) 的切割方向相 反设置; 其特征在于: 所述的旋转对切复合锯片由外侧锯片组件(1 )、 内 侧锯片组件 (2) 和止推环 (3)构成; 所述的外侧锯片组件(1 ) 由所述 的外侧锯片 (11)、 支撑套(12)和连接件(4)构成; 所述的内侧锯片组 件 ( 2 ) 由所述的内侧锯片 ( 21 )、 法兰套 ( 22 )、 连接件( 4 ) 和轴承( 5 ) 构成; 在所述的支撑套(12) 上设置圆柱面 (121 ) 和与之垂直的轴向定 位面 (122); 所述的外侧锯片 (11 ) 的安装孔与所述的支撑套(12) 上的 圆柱面 (121) 同心配合, 所述的外侧锯片 (11 ) 的切割面 (A2) 与设置 在支撑套(12) 上的轴向定位面 (122 ) 平行贴合, 由所述的连接件 (4) 连接固定所述的外侧锯片本体(111 ) 和所述的支撑套(12) 上的轴向定 位面 ( 122 ); 所述的支撑套( 12 ) 上的圆柱面 ( 121 ) 与所述的轴承( 5 ) 的内圈同心配合联接, 所述的轴承(5)的内圈定位所述的外侧锯片(11); 在所述的法兰套(22) 中心位置设置配合孔 (221 )和轴向定位面 ( 222 ), 所述的法兰套(22) 与所述的轴向定位面同方向的侧面为法兰面 ( 223 ); 所述的轴承(5)容置在法兰套(22) 的配合孔 (221 ) 内; 所述的内侧锯 片(21 )的安装孔与所述的法兰套(22)同心设置; 所述的内侧锯片(21 ) 的切割面(B2)与所述的法兰面( 223 )平行贴合, 并由所述的连接件(4) 连接固定所述的内侧锯片本体( 211 )和所述的法兰套( 22 )的法兰面( 223 ), 所述的轴承(5) 的外圈一侧平行贴合设置在法兰套(22) 上的轴向定位 面 ( 222 ), —侧平行贴合所述的内侧锯片 (21 ) 的切割面 (B2), 所述的 轴承(5) 的外圈定位所述的内侧锯片 (21); 在所述的轴承(5) 的内圈 与所述的外侧锯片 (11 ) 之间设置止推环 (3); 所述的止推环 (3) 的一 个侧面与所述的外侧锯片 (11 ) 的工作面 (A1 )平行贴合, 另一侧面与所 述的轴承(5) 的内圈相邻的一个侧面平行贴合; 外侧锯片 (11 ) 和内侧 锯片 (21 ) 分别由所述的轴承 (5) 的内圈和外圈定位并联接构成一体化 的旋转对切复合锯片; 外侧锯片 (11 ) 和内侧锯片 (21 )分别跟随所述的 轴承(5) 的内圈和外圈自由旋转。
、 根据权利要求 2所述的旋转对切复合锯片, 其特征在于: 在所述的外侧锯 片 (11 ) 的工作面 (A1 ) —侧, 所述的焊接刀齿 (112) 与所述的工作面
( A1 )平齐或低于工作面 ( A1 ), 不允许刀齿突起,在所述的外侧锯片 ( 11 ) 的切割面 (A2) —侧, 所述的焊接刀齿 (112) 高于所述的切割面 (A2) 形成副切削刃; 在所述的内侧锯片 (21 ) 的工作面 (B1 ) —侧, 所述的焊 接刀齿 (Π2) 与所述的工作面 (B1)平齐或低于工作面 (Bl), 不允许刀 齿突起; 在所述的内侧锯片 (21 ) 的切割面 (B2) —侧, 所述的焊接刀齿
(112) 高于所述的切割面 (B2)形成副切削刃。
、 根据权利要求 3所述的旋转对切复合锯片, 其特征在于: 所述的焊接刀齿
(112) 与所述的工作面 (Al, B1 ) 平齐或低于工作面 (Al, B1 ) 的落差 为 0到 -0.2亳米; 所述的焊接刀齿 (112) 高于切割面 (A2, B2)形成副 切削刃的高度为大于 0小于 1亳米。
、 根据权利要求 2所述的旋转对切复合锯片, 其特征在于: 所述的工作间隙 由所述的止推环 ( 3 )的宽度和所述的内侧锯片本体( 211 )的厚度所限制; 所述的工作间隙设定为 0到 0.5亳米。
、 根据权利要求 2所述的旋转对切复合锯片, 其特征在于: 所述的内侧锯片 ( 21 ) 的安装孔直径小于所述的轴承(5 ) 的外径; 在所述的外侧锯片本 体(111 ) 上, 所述的工作面 (A1 ) —侧安装孔的外围, 设置至少三个围 绕旋转轴线呈圆周分布的沉头孔; 在所述的内侧锯片本体(211 ) 上, 所 述的工作面 (B1 ) —侧安装孔的外围, 设置至少三个围绕旋转轴线呈圆周 分布的沉头孔。
、 根据权利要求 2所述的旋转对切复合锯片, 其特征在于: 在所述的支撑套
( 12 ) 的轴向定位面 (121 ) 上设置至少三个围绕旋转轴线呈圆周分布的 紧固件连接孔, 连接孔的分布和孔位与外侧锯片本体(in ) 上的沉头孔 的分布和孔位一致; 在所述的支撑套(12 ) 的内孔上设置驱动键槽。 、 根据权利要求 2所述的旋转对切复合锯片, 其特征在于: 在所述的法兰套
( 22 ) 的法兰面 ( 223 ) 上设置至少三个围绕旋转轴线呈圆周分布的紧固 件连接孔, 连接孔的分布和孔位与内侧锯片本体(211 ) 上的沉头孔的分 布和孔位一致; 在所述的法兰套(22 ) 上设置的配合孔 (221 ) 的轴向深 度, 即所述的轴向定位面 ( 222 ) 到所述的法兰面 ( 223 ) 的垂直距离, 与 所述的轴承(5) 的宽度为同一基本尺寸。
、 根据权利要求 8所述的旋转对切复合锯片, 其特征在于: 在所述的法兰套
( 22 ) 与所述的法兰面 ( 223 )相对的端面上设置驱动耦合接口 (6), 驱 动耦合接口 (6) 为驱动耦合凸台、 驱动耦合凹槽或驱动耦合孔。
PCT/CN2012/079994 2011-10-17 2012-08-13 旋转对切复合锯片 WO2013056591A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/232,891 US20140150622A1 (en) 2011-10-17 2012-08-13 Rotary bevelment composite saw blade
JP2014534926A JP6045594B2 (ja) 2011-10-17 2012-08-13 回転切断型複合鋸刃
RU2014117872/02A RU2572906C2 (ru) 2011-10-17 2012-08-13 Конусное композитное полотно дисковой пилы
EP12841754.0A EP2769793A4 (en) 2011-10-17 2012-08-13 ROTATING BENDING ASSEMBLY BLADE
CA 2851159 CA2851159A1 (en) 2011-10-17 2012-08-13 Rotary bevelment composite saw blade
BR112014009464A BR112014009464A2 (pt) 2011-10-17 2012-08-13 lâmina de serra composta de chanfradura rotativa
AU2012325539A AU2012325539A1 (en) 2011-10-17 2012-08-13 Rotary bevelment composite saw blade

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201110312981.X 2011-10-17
CN201110312981 2011-10-17
CN201120393062.5 2011-10-17
CN201120393062 2011-10-17
CN2011204531336U CN202479610U (zh) 2011-10-17 2011-11-04 一种旋转对切复合锯片的结构
CN201110372656.2 2011-11-04
CN201120453133.6 2011-11-04
CN201110372656.2A CN102794506B (zh) 2011-10-17 2011-11-04 一种旋转对切复合锯片的结构
CN201220143863.0 2012-04-06
CN201210100204.3 2012-04-06
CN2012101002043A CN102615351A (zh) 2012-04-06 2012-04-06 一种旋转对切锯片的制造结构
CN2012201438630U CN202517130U (zh) 2012-04-06 2012-04-06 一种旋转对切锯片的制造结构

Publications (1)

Publication Number Publication Date
WO2013056591A1 true WO2013056591A1 (zh) 2013-04-25

Family

ID=48140351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079994 WO2013056591A1 (zh) 2011-10-17 2012-08-13 旋转对切复合锯片

Country Status (8)

Country Link
US (1) US20140150622A1 (zh)
EP (1) EP2769793A4 (zh)
JP (1) JP6045594B2 (zh)
AU (1) AU2012325539A1 (zh)
BR (1) BR112014009464A2 (zh)
CA (1) CA2851159A1 (zh)
RU (1) RU2572906C2 (zh)
WO (1) WO2013056591A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211304A1 (de) * 2014-06-24 2015-12-24 Schaeffler Technologies AG & Co. KG Bauelement
CN105855623B (zh) * 2016-04-29 2018-09-11 浙江亚特电器有限公司 一种非集成式旋转对切锯
IT202100020174A1 (it) * 2021-07-28 2023-01-28 Attilio Cavagna Unità di taglio per settori industriali provvisto di motore torque
US11801904B2 (en) * 2021-11-16 2023-10-31 Textron Systems Corporation Techniques involving a modular vehicle belly armor kit

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118838A (ja) * 1996-10-15 1998-05-12 Rex Ind Co Ltd 両回転切断機
EP1128938A1 (de) * 1999-09-13 2001-09-05 Ant. Panhans GmbH, Werkzeug- u. Maschinenfabrik Ritz-kreissäge
CN2728685Y (zh) * 2004-08-30 2005-09-28 吴健如 双锯片切割机
CN2772701Y (zh) * 2005-03-04 2006-04-19 扬州全世好机电工贸有限公司 一种正反转切割机双锯片装置
US7249619B2 (en) * 2002-05-09 2007-07-31 Dimar Ltd. Sawing device having an adjustable profile
CN201186366Y (zh) * 2007-06-18 2009-01-28 郭一文 双锯片切割机
CN101557911A (zh) * 2006-11-09 2009-10-14 双刃技术控股瑞典股份公司 成对锯片
CN101767224A (zh) * 2009-12-31 2010-07-07 铁鎯电动工具有限公司 双锯片装置及减少双锯片装置摩擦碰撞的方法
CA2650190A1 (en) * 2009-01-19 2010-07-19 Chung-Chi Chen Electric saw device
CN201669469U (zh) * 2010-04-29 2010-12-15 郦月对 正反转切割双锯片装置
US20110162494A1 (en) * 2010-01-06 2011-07-07 Hammer Electric Power Tools Co., Ltd. Device of double saw blades
CN201931158U (zh) * 2010-11-30 2011-08-17 宁波黑松工具有限公司 双锯片切割机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3121130C2 (de) * 1981-05-27 1983-09-29 Gebrüder Linck Maschinenfabrik und Eisengießerei "Gatterlinck", 7602 Oberkirch Kreissägekopf zum Absägen von Seitenbrettern
US4589458A (en) * 1984-10-29 1986-05-20 Vermont American Corporation Multiple saw blade adjustable dado cutter
DE3778709D1 (de) * 1986-12-24 1992-06-04 Linck Masch Gatterlinck Kreissaegekopf.
JP3187641B2 (ja) * 1994-01-24 2001-07-11 株式会社三井ハイテック 金型装置
RU2083356C1 (ru) * 1995-07-03 1997-07-10 Тюменский государственный нефтегазовый университет Дисковая пила
NL1000912C1 (nl) * 1995-08-01 1997-02-04 Haanschoten Josef Gijsbert Snel draaiende handcirkelzaag en zaagschijf daarvoor.
JPH106130A (ja) * 1996-06-21 1998-01-13 Retsukisu Kogyo Kk 両回転切断機
RU2112641C1 (ru) * 1996-07-30 1998-06-10 Владимир Федорович Гордеев Дисковая пила
EP1378495A4 (en) * 2001-03-16 2010-03-03 Mitsuboshi Diamond Ind Co Ltd CASTING, CUTTING WHEEL, CUTTING GEAR WITH CUTTING WHEEL AND CUTTING WHEEL MANUFACTURING DEVICE FOR MANUFACTURING CUTTING WHEEL
SE521638C2 (sv) * 2001-04-23 2003-11-18 Globe Invent Ab Metod för bearbetning av ett objekt, maskin och verktygsenhet för utförande av metoden
FI118725B (fi) * 2004-08-19 2008-02-29 Veisto Oy Pyörösaha, jossa on teräohjain
US20080264231A1 (en) * 2007-04-25 2008-10-30 Andrew Coe Saw blade
US8272134B2 (en) * 2007-07-04 2012-09-25 Black & Decker Inc. Power cutter
JP5284055B2 (ja) * 2007-12-12 2013-09-11 株式会社マキタ 卓上切断機
US8250958B2 (en) * 2009-01-21 2012-08-28 Newstar (Asia) Ltd Electric saw device
CN201702448U (zh) * 2010-06-09 2011-01-12 武义海阔工具有限公司 正反转切割双锯片装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118838A (ja) * 1996-10-15 1998-05-12 Rex Ind Co Ltd 両回転切断機
EP1128938A1 (de) * 1999-09-13 2001-09-05 Ant. Panhans GmbH, Werkzeug- u. Maschinenfabrik Ritz-kreissäge
US7249619B2 (en) * 2002-05-09 2007-07-31 Dimar Ltd. Sawing device having an adjustable profile
CN2728685Y (zh) * 2004-08-30 2005-09-28 吴健如 双锯片切割机
CN2772701Y (zh) * 2005-03-04 2006-04-19 扬州全世好机电工贸有限公司 一种正反转切割机双锯片装置
CN101557911A (zh) * 2006-11-09 2009-10-14 双刃技术控股瑞典股份公司 成对锯片
CN201186366Y (zh) * 2007-06-18 2009-01-28 郭一文 双锯片切割机
CA2650190A1 (en) * 2009-01-19 2010-07-19 Chung-Chi Chen Electric saw device
CN101767224A (zh) * 2009-12-31 2010-07-07 铁鎯电动工具有限公司 双锯片装置及减少双锯片装置摩擦碰撞的方法
US20110162494A1 (en) * 2010-01-06 2011-07-07 Hammer Electric Power Tools Co., Ltd. Device of double saw blades
CN201669469U (zh) * 2010-04-29 2010-12-15 郦月对 正反转切割双锯片装置
CN201931158U (zh) * 2010-11-30 2011-08-17 宁波黑松工具有限公司 双锯片切割机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2769793A4 *

Also Published As

Publication number Publication date
CA2851159A1 (en) 2013-04-25
US20140150622A1 (en) 2014-06-05
EP2769793A4 (en) 2015-07-22
JP6045594B2 (ja) 2016-12-14
JP2014531333A (ja) 2014-11-27
RU2572906C2 (ru) 2016-01-20
RU2014117872A (ru) 2015-11-10
EP2769793A1 (en) 2014-08-27
BR112014009464A2 (pt) 2017-05-09
AU2012325539A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US11034047B2 (en) Hand-held knockout punch driver
WO2013056591A1 (zh) 旋转对切复合锯片
CN101936347B (zh) 带离心脱离结构的单向离合器保持架
CN202360580U (zh) 旋转对切复合锯片用法兰轴承
WO2016059821A1 (ja) クラッチ装置
CN205927212U (zh) 一种电锤
WO2005105352A1 (en) Working tool and machine for sawing or cutting
CN104668066B (zh) 一种切碎刀
CN103357937B (zh) 具有多个铣削单元的铣削刀具
KR101129319B1 (ko) 목재파쇄기 및 톱밥제조기의 구동장치용 클러치
CN210498509U (zh) 一种管材倒角机
CN202317263U (zh) 节能平推式钢管铣切圆锯片
TWI669197B (zh) 氣動工具之氣動馬達
CN213379492U (zh) 一种修端面环槽铣刀
CN211728462U (zh) 一种数控机床超高转速主轴直连驱动马达的固定结构
CN215541525U (zh) 一种干法造粒机的一体式破碎刀
CN219232615U (zh) 一种高效离心刀式转定剪切头
WO2014146376A1 (zh) 同心逆转双锯片安装装置及具有该安装装置的双锯片切割机
CN202212646U (zh) 双向切割装置及用于其中的锯环
CN213288813U (zh) 一种转向器壳体的加工刀具
CN218050374U (zh) 一种用于皮带轮加工用的切槽刀
CN212917918U (zh) 一种气动手持式圆孔倒角工具
CN209866247U (zh) 粉碎刀组件及粉碎装置
CN107139140B (zh) 一种具有对中装置的手持式工具机
CN113117847A (zh) 一种干法造粒机的一体式破碎刀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232891

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012841754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012841754

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012325539

Country of ref document: AU

Date of ref document: 20120813

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2851159

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014534926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014117872

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009464

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014009464

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140417