WO2013056582A1 - 一种红外探测器及其制备方法 - Google Patents
一种红外探测器及其制备方法 Download PDFInfo
- Publication number
- WO2013056582A1 WO2013056582A1 PCT/CN2012/079126 CN2012079126W WO2013056582A1 WO 2013056582 A1 WO2013056582 A1 WO 2013056582A1 CN 2012079126 W CN2012079126 W CN 2012079126W WO 2013056582 A1 WO2013056582 A1 WO 2013056582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- layer
- hole
- detecting element
- infrared
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 38
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- 239000010703 silicon Substances 0.000 claims abstract description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000004020 conductor Substances 0.000 claims abstract description 22
- 239000010410 layer Substances 0.000 claims description 69
- 238000005530 etching Methods 0.000 claims description 8
- 239000011241 protective layer Substances 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 24
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000010354 integration Effects 0.000 abstract description 3
- 238000007517 polishing process Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical group [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910001935 vanadium oxide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000708 deep reactive-ion etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/115—Via connections; Lands around holes or via connections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
- G01J5/22—Electrical features thereof
- G01J5/24—Use of specially adapted circuits, e.g. bridge circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/1443—Devices controlled by radiation with at least one potential jump or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02002—Arrangements for conducting electric current to or from the device in operations
- H01L31/02005—Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68327—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6834—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/11001—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
- H01L2224/11002—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0329—Intrinsically conductive polymer [ICP]; Semiconductive polymer
Definitions
- the invention relates to the field of infrared detection, in particular to an infrared detector and a preparation method thereof. Background technique
- An infrared detector is a device that is sensitive to infrared radiation and converts invisible infrared radiation into a visible or measurable signal.
- Infrared detectors can be classified into a cooling type infrared detector and an uncooled type infrared detector according to the cooling method. Because the uncooled infrared detector has the advantages of room temperature operation, no refrigeration, spectral response and wavelength independence, relatively simple preparation process, low cost, small size, easy to use, good maintenance and reliability, it is a very rich infrared detector. The direction of development of the future.
- the most mainstream uncooled infrared detector is a vanadium oxide microbridge infrared detector, which realizes thermal detection by fabricating a vanadium oxide thermal film with a high temperature coefficient of resistance (TCR) on the microbridge deck.
- the preparation process of this type of infrared detector includes four parts (as shown in Figure 1): (1) preparing a readout circuit (ROIC) of the infrared radiation detector on the silicon wafer; (2) depositing a sacrifice Layer film, photolithography, etching pattern; (3) depositing a low-stress silicon nitride support layer, a vanadium oxide film on the patterned sacrificial layer, and fabricating a metal wiring layer for interconnection, and finally on the surface of the film Depositing a thin layer of silicon nitride protective layer; (4) etching the sacrificial layer on the silicon wafer to release the microbridge structure of the infrared radiation detector.
- ROIC readout circuit
- the present invention is directed to the above-described drawbacks in the prior art in the preparation of an infrared detector, and provides an infrared detector capable of overcoming the above-mentioned drawbacks and a method of fabricating the same.
- the present invention provides an infrared detector comprising an infrared detecting element and a readout circuit, the infrared detecting element is formed on one side of the first substrate, and the edge of the infrared detecting element has an electrode hole, wherein the readout circuit is formed On one side of the second substrate, and the readout circuit has an electrode formed on the first substrate with a through-silicon via hole penetrating the first substrate and filled with a conductive material, the electrode hole of the infrared detecting element and the The electrodes of the readout circuit are electrically connected to each other through a conductive material filled in the through silicon vias.
- the invention also provides a method of preparing an infrared detector, the method comprising:
- An infrared detecting element is prepared on a side of the first substrate on which the hole is formed, the infrared detecting element having an electrode hole, and the electrode hole is in electrical contact with the hole;
- the infrared detecting element and the readout circuit are interconnected through the through silicon vias in the infrared detector according to the present invention, it is not necessary to perform a strict chemical mechanical polishing process after completion of fabrication of the readout circuit as in the prior art. To ensure a high degree of uniformity of the surface of the silicon wafer with readout circuitry. In addition, due to the through-silicon via technology, there is no need for the edge of the infrared detector element. A sufficient space is reserved for extracting the electrical signal of the infrared detecting element, so that the size of the infrared detector can be reduced.
- Figure 2 is a cross-sectional view of an infrared detector provided in accordance with the present invention.
- FIG. 3 is a flow chart showing the preparation of an infrared detector provided in accordance with the present invention.
- Figure 4 - Figure 17 is a flow chart of the preparation process of the microbridge structure uncooled infrared detector according to the present invention.
- the infrared detector according to the present invention includes an infrared detecting element 1 formed on one side of a first substrate 100 and a readout circuit 2 having an electrode hole at an edge thereof.
- the readout circuit 2 is formed on one side of the second substrate 200, and the readout circuit 2 has electrodes on which the through silicon vias 8 penetrating the first substrate 100 and filled with a conductive material are formed,
- the electrode holes of the infrared detecting element 1 and the electrodes of the readout circuit 2 are electrically connected to each other through a conductive material filled in the through silicon vias 8.
- the infrared detecting element 1 and the readout circuit 2 of the infrared detector according to the present invention are fabricated on different substrates, the height of the infrared detecting element 1 (e.g., the height of the microbridge) and the readout circuit The surface is not related to each other, which reduces the requirements for process integration and process control, and reduces the requirement for surface flattening of the readout circuit 2; moreover, since the infrared detecting element 1 and the readout circuit 2 pass through the through silicon via 8 Interconnection is performed so that there is no need to reserve a space at the edge of the infrared detecting element 1 for extracting the electrical signal of the infrared detecting element 1, so that the circuit area of the infrared detector is also reduced.
- the through silicon vias 8 may utilize metal micro bumps, A microcolumn or a pad structure or the like is electrically connected to the electrodes of the readout circuit 2.
- the through silicon vias 8 may be filled with various types of conductive materials such as one or more of copper, tungsten, polysilicon, conductive polymers, metal-polymer composites, and the like.
- the through silicon via 8 is a through hole having a relatively large depth and a wide width.
- the diameter of the through silicon via 8 can be in the range of 1-20 microns, and the depth of the through silicon via 8 can be in the range of 20-200 microns.
- Fig. 2 also shows an exemplary microbridge structure of the infrared detecting element 1.
- the infrared detecting element 1 in the infrared detector of the present invention may be not only a microbridge structure but also other structures such as a microcantilever structure.
- the connecting layer 6 and the protective layer 7 are sequentially stacked, and a cavity is formed between the reflective layer 3 and the supporting layer 4, and the cavity constitutes a resonant cavity, and is also interconnected with the through silicon via 8 at the edge of the infrared detecting element 1.
- the electrode hole 9, the interconnect layer 6 is electrically connected to the electrode hole 9.
- the method for preparing an infrared detector according to the present invention includes:
- the first substrate 100 can be a silicon substrate, a silicon-on-insulator (SOI) substrate, or other substrate well known to those skilled in the art.
- the hole is a high aspect ratio hole.
- the diameter of the hole may be in the range of 1 micrometer to 20 micrometers depending on the size of the infrared detector unit, and the depth of the hole may be in the range of 20 micrometers to 200 micrometers.
- the hole can be formed using a deep reactive ion etching (DRIE) process or other etching process.
- DRIE deep reactive ion etching
- an insulating layer 10 is formed on the bottom and side walls of the formed holes.
- the insulating layer 10 may be formed by a process such as thermal oxidation or chemical vapor deposition (CVD).
- a diffusion barrier layer 20 is formed on the bottom and side walls of the holes forming the insulating layer 10.
- the diffusion barrier layer 20 may be formed by a process such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) or atomic layer deposition (ALD), and the material used for the deposition may be Ti. Ta, TiN, TaN, etc.
- a seed layer 30 is formed on the bottom and sidewalls of the hole forming the diffusion barrier layer 20, and then the hole is filled with a conductive material 40 (such as copper, tungsten, polysilicon, conductive). Polymers, metal-polymer composites, etc.).
- the seed layer 30 may be formed by chemical vapor deposition, chemical plating or electrical bonding techniques, and the conductive material 40 may be filled by a process such as electroplating, physical vapor deposition, or chemical vapor deposition.
- the flow of Figure 4-7 shows the pre-production of through-silicon vias.
- a reflective layer 3 is formed on the first substrate 100 and patterned.
- the reflective layer 3 can be formed by processes such as photolithography, chemical vapor deposition, or physical vapor deposition.
- the reflective layer 3 may be made of a metal material such as NiCr alloy or Au.
- the function of the reflective layer 3 is to increase the infrared absorption of the infrared detector, thereby increasing the responsiveness of the infrared detector.
- a sacrificial layer 50 is formed on the reflective layer 3 and patterned.
- the sacrificial layer 50 may be made of an amorphous silicon material, and the sacrificial layer 50 may be formed by a plasma enhanced chemical vapor deposition or physical vapor deposition process.
- a support layer 4 is formed on the sacrificial layer 50.
- the material of the support layer 4 may be selected from materials such as silicon nitride, and the support layer 4 may be formed by a process such as chemical vapor deposition or physical vapor deposition.
- thermosensitive element layer 5 is formed on the support layer 4 and patterned.
- the temperature sensitive element layer 5 can be formed by a process such as chemical vapor deposition or physical vapor deposition.
- the material forming the heat-sensitive element layer 5 may be a film material having a high temperature coefficient of resistance (e.g., vanadium oxide or the like).
- an interconnection layer 6 having an electrode hole 9 for electrically connecting with the formed through silicon via is formed and patterned on the thermosensitive element layer 5.
- the interconnect layer 6 can be formed by a process such as chemical vapor deposition or physical vapor deposition.
- a protective layer 7 is formed on the thermosensitive element layer 5 and the interconnect layer 6, and patterned.
- the protective layer 7 can be formed by a process such as chemical vapor deposition or physical vapor deposition.
- the infrared detecting element 1 of the microbridge structure is formed by Figs.
- the infrared detecting element 1 includes a reflective layer 3, a support layer 4, a heat sensitive element layer 5, an interconnect layer 6, and a protective layer 7.
- the sacrificial layer 50 will be removed in a subsequent process flow to form a resonant cavity between the reflective layer 3 and the support layer 4.
- the first substrate 100 on which the microbridge structure is formed is bonded to the temporary bonding wafer 60, for example, by the bonding adhesive 80.
- the temporary bonding wafer 60 is equivalent to a protective film and is capable of protecting the microbridge structure in a subsequent process. It should be understood that in addition to the temporary bonding wafer 60, other protection structures known to those skilled in the art may be utilized to effect protection of the microbridge structure in subsequent flows.
- the back surface of the first substrate 100 having the microbridge structure is thinned to expose the holes formed in FIGS. Then, metallizing the exposed holes to make A metal microbump, micropillar or pad structure 70 for bonding in a subsequent process.
- the readout circuit 2 of the infrared detector is prepared on the second substrate 200, and the first substrate 100 of the infrared detecting element 1 having the microbridge structure is fabricated by a flip-chip bonding process. Bonding is performed with the second substrate 200 with the readout circuit 2 to effect electrical connection of the infrared detecting element 1 and the readout circuit 2.
- the readout circuit 2 of the infrared detector according to the present invention can be fabricated in a standard CMOS process.
- the temporary bonding wafer 60 and the bonding paste 80 are removed, and the sacrificial layer 50 is etched to obtain a final infrared detector.
- Figures 4 to 17 illustrate the preparation process of the infrared detector according to the present invention by taking an infrared detector of a microbridge structure as an example, but it does not constitute a limitation of the present invention.
- the temporary bonding wafer 60 and the bonding paste 80 may be removed first, and then the first substrate 100 of the infrared detecting element 1 having the microbridge structure and the second substrate 200 with the readout circuit 2 are performed. Bonding; It is also possible to prepare the infrared detecting element 1 first, then to prepare through-silicon vias, and the like.
- the structure of the infrared detecting element in the infrared detector according to the present invention is not limited to the microbridge structure, and it is also possible to adopt a microcantilever structure. Since the microcantilever structure is well known to those skilled in the art, it will not be described again here.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
一种红外探测器及其制备方法,红外探测器包括红外探测元件(1)和读出电路(2),红外探测元件(1)形成在第一衬底(100)的一侧,红外探测元件(1)的边缘具有电极孔(9),其中,读出电路(2)形成在第二衬底(200)的一侧,并且读出电路(2)具有电极,第一衬底(100)上形成有贯穿第一衬底(100)的并且填充有导电材料的硅通孔(8),所述红外探测元件(1)的电极孔(9)与所述读出电路(2)的电极通过硅通孔(8)中填充的导电材料彼此电连接。克服了现有技术中的红外探测器在其读出电路制作完成后需要合适的化学机械抛光工艺来实现硅片表面的平坦化,电路面积大,以及系统集成工艺要求高的缺陷。
Description
一种红外探测器及其制备方法
技术领域
本发明涉及红外探测领域, 尤其涉及一种红外探测器及其制备方法。 背景技术
红外探测器是一种对红外辐射敏感的器件, 其可以把不可见的红外辐 射转换为可见或者可测量的信号。 红外探测器按制冷方式可以分为制冷型 红外探测器和非制冷型红外探测器。 由于非制冷型红外探测器具有室温工 作、 无需制冷、 光谱响应与波长无关、 制备工艺相对简单、 成本低、 体积 小、 易于使用、 维护和可靠性好等优点, 成为红外探测器的一个极富前景 的发展方向。
目前最主流的非制冷型红外探测器是氧化钒微桥红外探测器, 其通过 在微桥桥面上制作电阻温度系数 (TCR) 较高的氧化钒热敏薄膜实现热探 测。 这种类型的红外探测器的制备工艺流程包括 4个部分 (具体如图 1所 示): ( 1 ) 在硅片上制备红外辐射探测器的读出电路 (ROIC); (2) 淀积牺 牲层薄膜、 光刻、 刻蚀图形; (3 ) 在图形化的牺牲层上依次淀积低应力氮 化硅支撑层、 氧化钒薄膜, 并制作用于互连的金属布线层, 最后在薄膜表 面淀积一层很薄的氮化硅保护层; (4) 刻蚀硅片上的牺牲层, 释放红外辐 射探测器的微桥结构。
在图 1 所示的工艺流程中, 读出电路制作完成后, 需要合适的化学机 械抛光 (CMP) 工艺来实现硅片表面的平整化, 以控制之后微桥结构的桥 面高度均匀性。 所以, 这种工艺流程需要使用较为严格的读出电路平坦化 技术。 另外, 上述结构在微桥结构的边缘需要预留足够的空间用于电信号 的引出, 因此不利于整个探测单元的尺寸减小。 并且这种结构在同一衬底
上制作, 对工艺集成和工艺控制具有严格的要求。 发明内容
本发明针对现有技术中在制备红外探测器时的上述缺陷, 提供一种能 够克服上述缺陷的红外探测器及其制备方法。
本发明提供一种红外探测器, 该红外探测器包括红外探测元件和读出 电路, 红外探测元件形成在第一衬底的一侧, 红外探测元件的边缘具有电 极孔, 其中, 读出电路形成在第二衬底的一侧, 并且读出电路具有电极, 第一衬底上形成有贯穿第一衬底的并且填充有导电材料的硅通孔, 所述红 外探测元件的电极孔与所述读出电路的电极通过硅通孔中填充的导电材料 彼此电连接。
本发明还提供一种制备红外探测器的方法, 该方法包括:
在第一衬底一侧上刻蚀形成孔并在孔中填充导电材料;
在第一衬底形成了所述孔的一侧上制备红外探测元件, 该红外探测元 件具有电极孔, 电极孔与所述孔电接触;
将所述第一衬底的未制备有所述红外探测元件的一侧减薄直至露出所 述孔以形成硅通孔;
对所述第一衬底的未制备有所述红外探测元件的一侧进行金属化; 在第二衬底上制备读出电路, 所述读出电路具有电极;
将第一衬底的经金属化的一侧与第二衬底的制备有所述读出电路的一 侧进行键合, 从而实现所述红外探测元件的电极孔与所述读出电路的电极 通过硅通孔中填充的导电材料彼此电连接。
由于在根据本发明的红外探测器中, 红外探测元件和读出电路通过硅 通孔进行互连, 所以不需要如同现有技术那样, 在完成读出电路的制作之 后进行严格的化学机械抛光工艺来确保带有读出电路的硅片表面的高度均 匀性。 另外, 由于采用了硅通孔技术, 所以不需要在红外探测元件的边缘
预留足够的空间以用于引出红外探测元件的电学信号, 所以能够降低红外 探测器的尺寸。 附图说明
图 1为现有技术中红外探测器的制备工艺流程;
图 2为根据本发明提供的红外探测器的剖面图;
图 3为根据本发明提供的红外探测器的制备流程图;
图 4-图 17为根据本发明的微桥结构非制冷型红外探测器的制备工艺流
具体实施方式
下面结合附图来对根据本发明的非制冷型红外探测器进行详细描述。 如图 2所示, 根据本发明的红外探测器包括红外探测元件 1和读出电 路 2, 红外探测元件 1形成在第一衬底 100的一侧, 红外探测元件 1的边缘 具有电极孔, 其中, 读出电路 2形成在第二衬底 200的一侧, 并且读出电 路 2具有电极, 第一衬底 100上形成有贯穿第一衬底 100的并且填充有导 电材料的硅通孔 8,所述红外探测元件 1的电极孔与所述读出电路 2的电极 通过硅通孔 8中填充的导电材料彼此电连接。
这样, 由于根据本发明的红外探测器的红外探测元件 1 与读出电路 2 是制作在不同的衬底上的, 所以在红外探测元件 1 的高度 (例如微桥的高 度) 与读出电路的表面二者并无关联, 降低了对工艺集成和工艺控制的要 求, 并降低了对读出电路 2 的表面平坦化的要求; 而且, 由于红外探测元 件 1与读出电路 2通过硅通孔 8进行互连, 从而不需要在红外探测元件 1 的边缘预留空间以用于引出红外探测元件 1 的电学信号, 所以还降低了红 外探测器的电路面积。
在根据本发明的一个优选实施方式中, 硅通孔 8可以利用金属微凸点、
微柱或焊盘结构等与读出电路 2的电极电连接。 硅通孔 8内可以填充有各 种类型的导电材料, 例如铜、 钨、 多晶硅、 导电聚合物、 金属 -聚合物复合 材料等中的一者或多者。
另外, 硅通孔 8是深宽比较大的通孔。 根据红外探测器单元尺寸的要 求, 硅通孔 8的直径可以位于 1-20微米的范围内, 硅通孔 8的深度可以位 于 20-200微米的范围内。
图 2还示出了红外探测元件 1的示例性微桥结构。但是需要说明的是, 本发明的红外探测器中的红外探测元件 1 不仅可以是微桥结构, 而且还可 以是其他结构, 例如微悬臂结构。 图 2中所示的微桥结构的红外探测元件 1 包括反射层 3、 支撑层 4、 热敏元件层 5、 互连层 6和保护层 7, 并且支撑 层 4、 热敏元件层 5、 互连层 6和保护层 7依次层叠, 反射层 3与支撑层 4 之间则形成有空腔, 该空腔构成了谐振腔, 在红外探测元件 1 的边缘还有 与硅通孔 8互连的电极孔 9, 互连层 6电连接到该电极孔 9。
下面结合图 3对根据本发明的红外探测器的制备方法进行描述。如图 3 所述, 根据本发明的制备红外探测器的方法包括:
531、 在第一衬底一侧上刻蚀形成孔并在孔中填充导电材料;
532、 在第一衬底形成了所述孔的一侧上制备红外探测元件, 该红外探 测元件具有电极孔, 该电极孔与所述孔电接触;
533、将所述第一衬底的未制备有所述红外探测元件的一侧减薄直至露 出所述孔以形成硅通孔;
534、 对所述第一衬底的未制备有所述红外探测元件的一侧进行金属 化;
535、 在第二衬底上制备读出电路, 所述读出电路具有电极;
536、将第一衬底的经金属化的一侧与第二衬底的制备有所述读出电路 的一侧进行键合, 从而实现所述红外探测元件的电极孔与所述读出电路的 电极通过硅通孔中填充的导电材料彼此电连接。
下面以微桥结构的红外探测元件为例,结合图 4-图 17来说明根据本发 明的红外探测器的详细制备流程。
首先, 如图 4所示, 在第一衬底 100上形成孔。 该第一衬底 100可以 是本领域技术人员熟知的硅衬底、 绝缘体上硅 (SOI) 衬底或者其他衬底。 该孔是高深宽比的孔。 根据红外探测器单元尺寸的要求, 该孔的直径可以 位于 1微米到 20微米的范围内, 该孔的深度可以位于 20微米到 200微米 的范围内。 另外, 可以采用深度反应离子刻蚀 (DRIE) 工艺或者其他刻蚀 工艺来形成该孔。
之后, 如图 5所示, 在形成的孔的底部和侧壁上形成绝缘层 10。其中, 可以采用热氧化或化学汽相淀积 (CVD) 等工艺来形成绝缘层 10。
之后, 如图 6所示, 在形成所述绝缘层 10的所述孔的底部和侧壁上形 成扩散阻挡层 20。 其中, 该扩散阻挡层 20可以采用物理汽相淀积 (PVD) 或化学汽相淀积 (CVD) 或原子层淀积 (ALD) 等工艺形成, 并且, 淀积 所采用的材料可以是 Ti、 Ta、 TiN、 TaN等。
之后, 如图 7所示, 在形成所述扩散阻挡层 20的所述孔的底部和侧壁 上形成种子层 30, 并之后在该孔内填充导电材料 40 (诸如铜、钨、 多晶硅、 导电聚合物、 金属-聚合物复合材料等)。 其中, 可以通过化学汽相淀积、 化 学镀或电接技技术等形成种子层 30, 可以通过电镀、 物理汽相淀积、 化学 汽相淀积等工艺来填充导电材料 40。
之后, 可以对填充了导电材料 40的第一衬底 100的表面进行抛光(例 如,采用化学机械抛光等工艺)。图 4-图 7的流程实现了硅通孔的前期制作。
之后, 如图 8所示, 在第一衬底 100上形成反射层 3并进行图形化。 该反射层 3可以通过光刻、 化学汽相淀积或物理汽相淀积等工艺形成。 该 反射层 3可以采用 NiCr合金、 Au等金属材料。 反射层 3的作用是提高红 外探测器的红外吸收, 从而提高红外探测器的响应度。
之后,如图 9所示,在反射层 3上形成牺牲层 50并进行图形化。其中,
牺牲层 50可以选用非晶硅材料, 并且该牺牲层 50可以通过等离子增强化 学汽相淀积或物理汽相淀积等工艺形成。
之后, 如图 10所示, 在牺牲层 50上形成支撑层 4。 该支撑层 4的材料 可以选用氮化硅等材料, 并且该支撑层 4可以通过化学汽相淀积或物理汽 相淀积等工艺形成。
之后, 如图 11所示, 在支撑层 4上形成热敏元件层 5并进行图形化。 其中, 该热敏元件层 5可以通过化学汽相淀积或物理汽相淀积等工艺形成。 形成该热敏元件层 5 的材料可以是具有较高电阻温度系数的薄膜材料 (例 如, 氧化钒等)。
之后, 如图 12所示, 在热敏元件层 5上形成互连层 6并进行图形化, 该互连层 6上具有用于与所形成的硅通孔电连接的电极孔 9。其中, 该互连 层 6可以通过化学汽相淀积或物理汽相淀积等工艺形成。
之后, 如图 13所示, 在热敏元件层 5和互连层 6上形成保护层 7并进 行图形化。 其中, 该保护层 7可以通过化学汽相淀积或物理汽相淀积等工 艺形成。
至此, 通过图 8-图 13就形成了微桥结构的红外探测元件 1。 从图 13 可以看出, 该红外探测元件 1包括反射层 3、 支撑层 4、 热敏元件层 5、 互 连层 6和保护层 7。 其中, 牺牲层 50将在后续的工艺流程中被去除, 以形 成反射层 3与支撑层 4之间的谐振空腔。
之后, 如图 14所示, 将形成了微桥结构的第一衬底 100与临时键合圆 片 60进行键合, 例如, 通过键合胶 80进行键合。 该临时键合圆片 60相当 于保护膜, 能够在后续流程中对微桥结构进行保护。 应当理解的是, 除了 临时键合圆片 60, 还可以采用本领域技术人员公知的其他保护结构实现在 后续流程中对微桥结构的保护。
之后, 如图 15所示, 对带有微桥结构的第一衬底 100进行背面减薄, 以露出在图 4-图 7中形成的孔。 然后, 对暴露的孔进行金属化工艺, 以制
备后续流程中键合用的金属微凸点、 微柱或焊盘结构 70。
之后, 如图 16所示,在第二衬底 200上制备红外探测器的读出电路 2, 并利用倒装键合工艺, 将带有微桥结构的红外探测元件 1 的第一衬底 100 与带有读出电路 2的第二衬底 200进行键合以实现红外探测元件 1与读出 电路 2的电连接。 其中, 根据本发明的红外探测器的读出电路 2可以采用 标准 CMOS工艺进行制作。
之后, 如图 17所示, 去掉临时键合圆片 60和键合胶 80, 并刻蚀牺牲 层 50, 得到最终的红外探测器。
本领域技术人员应当理解, 图 4-图 17仅是以微桥结构的红外探测器为 例说明了根据本发明的红外探测器的制备流程, 但并不构成对本发明的限 制。 在不背离本发明精神和范围的情况下, 可进行各种修改和变形。 例如, 可以先去掉临时键合圆片 60和键合胶 80,然后再进行带有微桥结构的红外 探测元件 1的第一衬底 100与带有读出电路 2的第二衬底 200的键合; 也 可以先制备红外探测元件 1, 然后再制备硅通孔, 等等。 而且, 根据本发明 的红外探测器中的红外探测元件的结构并不局限于微桥结构, 其也可以采 用微悬臂结构。 由于微悬臂结构对于本领域技术人员而言是公知的, 所以 此处不再赘述。
Claims
1、 一种红外探测器, 该红外探测器包括红外探测元件和读出电路, 红 外探测元件形成在第一衬底的一侧, 红外探测元件的边缘具有电极孔, 其 中, 读出电路形成在第二衬底的一侧, 并且读出电路具有电极, 第一衬底 上形成有贯穿第一衬底的并且填充有导电材料的硅通孔, 所述红外探测元 件的电极孔与所述读出电路的电极通过硅通孔中填充的导电材料彼此电连 接。
2、 根据权利要求 1所述的红外探测器, 其中, 所述红外探测元件为微 桥结构元件。
3、 根据权利要求 2所述的红外探测器, 其中, 所述红外探测元件包括 反射层、 支撑层、 热敏元件层、 互连层和保护层, 并且所述支撑层、 所述 热敏元件层、 所述互连层和所述保护层依次层叠, 所述反射层与所述支撑 层之间形成有空腔, 所述互连层连接到所述电极孔。
4、 根据权利要求 1所述的红外探测器, 其中, 所述导电材料选自铜、 钨、 多晶硅、 导电聚合物、金属-聚合物复合材料构成的组中的一者或多者。
5、 根据权利要求 1所述的红外探测器, 其中, 所述硅通孔的直径位于 1-20 μ m的范围内, 所述硅通孔的深度位于 20-200 μ m的范围内。
6、 一种制备红外探测器的方法, 该方法包括:
在第一衬底一侧上刻蚀形成孔并在孔中填充导电材料;
在第一衬底形成了所述孔的一侧上制备红外探测元件, 该红外探测元 件具有电极孔, 该电极孔与所述孔电接触;
将所述第一衬底的未制备有所述红外探测元件的一侧减薄直至露出所 述孔以形成硅通孔;
对所述第一衬底的未制备有所述红外探测元件的一侧进行金属化; 在第二衬底上制备读出电路, 所述读出电路具有电极;
将第一衬底的经金属化的一侧与第二衬底的制备有所述读出电路的一 侧进行键合, 从而实现所述红外探测元件的电极孔与所述读出电路的电极 通过硅通孔中填充的导电材料彼此电连接。
7、 根据权利要求 6所述的方法, 其中, 该方法还包括:
在对第一衬底进行减薄之前, 在第一衬底的制备有所述红外探测元件 的一侧上形成保护膜; 以及
在将第一衬底的经金属化的一侧与第二衬底的制备有所述读出电路的 一侧进行键合之后, 去掉所述保护膜。
8、 根据权利要求 6或 7所述的方法, 其中, 所述在第一衬底一侧上刻 蚀形成孔并在孔中填充导电材料的步骤包括:
在第一衬底一侧上刻蚀形成孔;
在所述孔的底部和侧壁上形成绝缘层;
在形成了所述绝缘层的所述孔的底部和侧壁上形成扩散阻挡层; 在形成了所述扩散阻挡层的所述孔的底部和侧壁上形成种子层; 在形成了所述种子层的所述孔内填充导电材料。
9、根据权利要求 6或 7所述的方法,其中,所述硅通孔的直径位于 1-20 μ m的范围内, 所述硅通孔的深度位于 20-200 μ m的范围内。
10、 根据权利要求 6或 7所述的方法, 其中, 导电材料选自铜、 钨、 多晶硅、 导电聚合物、 金属 -聚合物复合材料构成的组中的一者或者多者。
11、 根据权利要求 7所述的方法, 其中, 在第一衬底的制备有所述红 外探测元件的一侧上形成保护膜包括: 在所述第一衬底的制备有所述红外
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/353,020 US9258894B2 (en) | 2011-10-19 | 2012-07-25 | Bolometer and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110319208.6 | 2011-10-19 | ||
CN201110319208.6A CN102798471B (zh) | 2011-10-19 | 2011-10-19 | 一种红外探测器及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013056582A1 true WO2013056582A1 (zh) | 2013-04-25 |
Family
ID=47197658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/079126 WO2013056582A1 (zh) | 2011-10-19 | 2012-07-25 | 一种红外探测器及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9258894B2 (zh) |
CN (1) | CN102798471B (zh) |
WO (1) | WO2013056582A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105060237B (zh) * | 2015-08-26 | 2016-09-14 | 无锡艾立德智能科技有限公司 | 一种焦平面阵列微桥单元桥腿复合结构 |
CN106124066B (zh) * | 2016-06-13 | 2018-12-07 | 烟台睿创微纳技术股份有限公司 | 一种高填充因子的微测热辐射计及制备方法 |
CN106441595B (zh) * | 2016-09-28 | 2019-07-19 | 杭州大立微电子有限公司 | 红外探测器阵列级封装结构及其制造方法 |
CN109671727B (zh) * | 2017-10-16 | 2021-07-06 | 武汉高德红外股份有限公司 | 红外焦平面阵列 |
CN108358157B (zh) * | 2018-02-28 | 2020-07-17 | 电子科技大学 | 一种超材料微桥结构及其制备方法 |
CN109455664B (zh) * | 2018-09-26 | 2021-01-29 | 上海集成电路研发中心有限公司 | 一种微桥组件、红外探测器及其制造方法 |
CN109824008B (zh) * | 2019-02-20 | 2021-05-11 | 烟台睿创微纳技术股份有限公司 | 一种非制冷红外焦平面探测器及其制备方法 |
CN109911840A (zh) * | 2019-02-28 | 2019-06-21 | 上海集成电路研发中心有限公司 | 一种mems红外探测器结构 |
CN111392683B (zh) * | 2020-02-28 | 2024-03-15 | 上海集成电路研发中心有限公司 | 一种红外探测器结构及制造方法 |
CN111504477B (zh) * | 2020-05-06 | 2021-03-26 | 珠海格力电器股份有限公司 | 红外温度传感器及其制造方法、温度检测设备 |
CN111874860B (zh) * | 2020-06-17 | 2024-05-28 | 上海集成电路研发中心有限公司 | 一种红外探测器及其制作方法 |
CN112038476B (zh) * | 2020-06-30 | 2023-01-06 | 中芯集成电路(宁波)有限公司上海分公司 | 热电堆传感器的制作方法 |
CN117664358B (zh) * | 2024-01-11 | 2024-05-17 | 北京北方高业科技有限公司 | 红外探测器像元和红外探测器 |
CN118431248B (zh) * | 2024-07-05 | 2024-08-30 | 山东云海国创云计算装备产业创新中心有限公司 | 红外探测器阵列及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05343729A (ja) * | 1992-06-12 | 1993-12-24 | Nec Corp | 配列型赤外線検知器 |
JP2007171170A (ja) * | 2005-11-25 | 2007-07-05 | Matsushita Electric Works Ltd | 熱型赤外線検出装置の製造方法 |
CN101038210A (zh) * | 2006-03-17 | 2007-09-19 | 日本电气株式会社 | 红外探测装置和使用其的红外成像装置 |
CN101101918A (zh) * | 2006-07-07 | 2008-01-09 | 三洋电机株式会社 | 半导体装置及其制造方法 |
CN101713688A (zh) * | 2009-12-11 | 2010-05-26 | 中国电子科技集团公司第十三研究所 | 一种mems非制冷双波段红外探测器及其制备方法 |
CN101927976A (zh) * | 2009-09-30 | 2010-12-29 | 浙江大立科技股份有限公司 | 微桥结构红外探测器以及制造方法 |
CN102214662A (zh) * | 2011-04-26 | 2011-10-12 | 北京大学 | 非制冷红外焦平面阵列探测器单片集成结构及制作方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5646067A (en) * | 1995-06-05 | 1997-07-08 | Harris Corporation | Method of bonding wafers having vias including conductive material |
GB9710843D0 (en) * | 1997-05-28 | 1997-07-23 | Secr Defence | A thermal detector array |
US7718965B1 (en) * | 2006-08-03 | 2010-05-18 | L-3 Communications Corporation | Microbolometer infrared detector elements and methods for forming same |
US8293647B2 (en) * | 2008-11-24 | 2012-10-23 | Applied Materials, Inc. | Bottom up plating by organic surface passivation and differential plating retardation |
EP2234387B8 (en) * | 2009-03-24 | 2012-05-23 | Sony Corporation | Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus |
JP5343729B2 (ja) | 2009-06-22 | 2013-11-13 | 株式会社悠心 | 逆止注出ノズルの取付装置 |
US20120092390A1 (en) * | 2010-10-13 | 2012-04-19 | David Ludwig | Low Power Image Intensifier Device Comprising Black Silicon Detector Element |
-
2011
- 2011-10-19 CN CN201110319208.6A patent/CN102798471B/zh active Active
-
2012
- 2012-07-25 US US14/353,020 patent/US9258894B2/en active Active
- 2012-07-25 WO PCT/CN2012/079126 patent/WO2013056582A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05343729A (ja) * | 1992-06-12 | 1993-12-24 | Nec Corp | 配列型赤外線検知器 |
JP2007171170A (ja) * | 2005-11-25 | 2007-07-05 | Matsushita Electric Works Ltd | 熱型赤外線検出装置の製造方法 |
CN101038210A (zh) * | 2006-03-17 | 2007-09-19 | 日本电气株式会社 | 红外探测装置和使用其的红外成像装置 |
CN101101918A (zh) * | 2006-07-07 | 2008-01-09 | 三洋电机株式会社 | 半导体装置及其制造方法 |
CN101927976A (zh) * | 2009-09-30 | 2010-12-29 | 浙江大立科技股份有限公司 | 微桥结构红外探测器以及制造方法 |
CN101713688A (zh) * | 2009-12-11 | 2010-05-26 | 中国电子科技集团公司第十三研究所 | 一种mems非制冷双波段红外探测器及其制备方法 |
CN102214662A (zh) * | 2011-04-26 | 2011-10-12 | 北京大学 | 非制冷红外焦平面阵列探测器单片集成结构及制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102798471B (zh) | 2015-08-12 |
CN102798471A (zh) | 2012-11-28 |
US20150021479A1 (en) | 2015-01-22 |
US9258894B2 (en) | 2016-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013056582A1 (zh) | 一种红外探测器及其制备方法 | |
JP4890708B2 (ja) | デュアルウエハー付設法 | |
JP3605487B2 (ja) | 浮遊式微細構造を製造するための方法および浮遊式微細構造処理アセンブリ | |
TWI738677B (zh) | 微機電系統裝置的形成方法 | |
JP5580415B2 (ja) | 短レスポンス時間及び高感度を持つ熱流センサ集積回路 | |
TWI336394B (en) | Infrared ray sensor and manufacturing method for the same therefore | |
US7989248B2 (en) | Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures | |
US10439118B2 (en) | MEMS-based wafer level packaging for thermo-electric IR detectors | |
US8101458B2 (en) | Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures | |
CN102280456B (zh) | 一种红外焦平面阵列探测器集成结构及制作方法 | |
US20030102079A1 (en) | Method of joining components | |
TW201209897A (en) | Composite wafer semiconductor device and method of forming the same | |
TW200910569A (en) | Low resistance through-wafer via | |
TW201534883A (zh) | 微機械壓力感測器裝置及相關製造方法(二) | |
Niklaus et al. | Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays | |
CN102214662A (zh) | 非制冷红外焦平面阵列探测器单片集成结构及制作方法 | |
JP5260890B2 (ja) | センサ装置およびその製造方法 | |
JP2008294229A (ja) | ウェハレベルパッケージ構造体およびセンサ装置 | |
JP5016383B2 (ja) | センサ装置 | |
EP2899760A1 (en) | Semiconductor device for optical applications and method of producing such a semiconductor device | |
WO2007089204A1 (en) | Mems components and method for manufacturing same | |
JP5016382B2 (ja) | センサ装置およびその製造方法 | |
US8387459B2 (en) | MEMS sensor | |
JP2010216910A (ja) | 変位検出装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12842210 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14353020 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12842210 Country of ref document: EP Kind code of ref document: A1 |