WO2013054834A1 - アルキル変性ビニルアルコール系重合体溶液 - Google Patents

アルキル変性ビニルアルコール系重合体溶液 Download PDF

Info

Publication number
WO2013054834A1
WO2013054834A1 PCT/JP2012/076290 JP2012076290W WO2013054834A1 WO 2013054834 A1 WO2013054834 A1 WO 2013054834A1 JP 2012076290 W JP2012076290 W JP 2012076290W WO 2013054834 A1 WO2013054834 A1 WO 2013054834A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
vinyl alcohol
modified vinyl
solution
Prior art date
Application number
PCT/JP2012/076290
Other languages
English (en)
French (fr)
Inventor
悠太 田岡
真輔 新居
仲前 昌人
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201280050166.3A priority Critical patent/CN103906807B/zh
Priority to EP12840066.0A priority patent/EP2767560A4/en
Priority to JP2013538564A priority patent/JP5525110B2/ja
Priority to US14/351,734 priority patent/US9303146B2/en
Publication of WO2013054834A1 publication Critical patent/WO2013054834A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to an alkyl-modified vinyl alcohol polymer solution.
  • a vinyl alcohol polymer (hereinafter sometimes abbreviated as “PVA”) has excellent film forming properties, interface properties and strength properties as a few crystalline water-soluble polymers. For this reason, PVA is widely used as a raw material for thickeners, paper coating agents, adhesives, fiber processing agents, binders, emulsion stabilizers, films, fibers, and the like. Moreover, in order to improve the specific performance of PVA, development of modified PVA by controlling crystallinity, introducing functional groups, and the like has been performed.
  • the PVA-boric acid cross-linking solution in which boric acid or the like is added to PVA to cause a cross-linking reaction has a property of gelling at a low temperature, thereby controlling shape retention performance and improving the strength of the PVA matrix. It is used for the purpose.
  • the amount of boric acid and the like has begun to be regulated, and a new PVA or PVA solution capable of controlling the viscosity by temperature is used instead of the PVA-boric acid crosslinking solution. It has been demanded.
  • alkyl-modified PVA As a method for increasing the viscosity of a PVA aqueous solution, it is known to use alkyl-modified PVA into which an alkyl group has been introduced. This alkyl-modified PVA exhibits an alkyl group (hydrophobic group) interaction in an aqueous solvent and gives a high-viscosity solution. Therefore, this alkyl-modified PVA is useful as a thickener for paints and adhesives and contains various monomer units. Alkyl-modified PVA has also been developed (see JP 2008-291120 A and JP 10-338714 A).
  • aqueous solutions of alkyl-modified PVA have a high viscosity at room temperature, but the viscosity is high even at high temperatures and the handleability is poor, so that it is difficult to obtain a uniform concentration, and it is particularly difficult to prepare a high-concentration aqueous solution. Inconvenience has been pointed out.
  • JP 2008-291120 A Japanese Patent Laid-Open No. 10-338714
  • the present invention has been made based on the above-mentioned circumstances. Even when the concentration of the alkyl-modified PVA in the solution is increased, the viscosity is low and the handling property is excellent at a high temperature, and the viscosity rapidly increases when the temperature decreases.
  • An object is to provide a modified PVA solution. That is, an object of the present invention is to provide an alkyl-modified PVA solution that exhibits the same behavior as a PVA-boric acid crosslinking solution and whose viscosity can be controlled by temperature.
  • the present invention made to achieve the above object An alkyl-modified PVA, a surfactant and water, wherein the alkyl-modified PVA contains a monomer unit having an alkyl group having 5 to 29 carbon atoms, and the content of the monomer unit is 0.05 mol%.
  • the alkyl-modified PVA is 5 mol% or less and the saponification degree of the alkyl-modified PVA is 20 mol% or more and 99.99 mol% or less, and the surfactant is a compound represented by the following formula (I). It is a PVA solution.
  • R 1 is an alkylene group having 3 to 5 carbon atoms.
  • R 2 is a single bond or an alkylene group having 1 to 5 carbon atoms.
  • X 1 is a hydrogen atom or an organic group.
  • X 2 is a hydrophilic group.
  • m is an integer of 1 to 100. when m is 2 or more, R 1 existing in plural, each independently satisfy the above definition.
  • the alkyl-modified PVA solution contains a surfactant having the above specific structure.
  • This surfactant has good compatibility with the above-mentioned alkyl-modified PVA and water, and further the hydrophobicity changes depending on the temperature. Therefore, at high temperatures, the surfactant inhibits the hydrophobic interaction between the alkyl groups of the above-mentioned alkyl-modified PVA. Then, the interaction can be promoted.
  • the alkyl-modified PVA solution has a low viscosity at a high temperature and excellent handleability, and a viscosity rapidly increases at a low temperature to show a low-temperature gelation behavior.
  • X 2 is preferably a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, or a group represented by the following formula (II).
  • n1 is an integer of 1 or more and 200 or less.
  • the alkyl-modified PVA solution is excellent in handling property at high temperature and gelation performance at low temperature.
  • the organic group of X 1 is preferably an alkyl group having 1 to 29 carbon atoms or a hydrophilic group. It said X 1 is, When in the above-mentioned specific group, the alkyl-modified PVA solution is excellent in gelation performance in handling and low at high temperatures.
  • the hydrophilic group of X 1 is more preferably a group represented by the following formula (III).
  • n2 is an integer of 1 or more and 200 or less.
  • the monomer unit is preferably represented by the following formula (IV).
  • R 3 is an alkyl group having 5 to 29 carbon atoms.
  • R 4 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl-modified PVA solution can further improve viscosity controllability.
  • the alkyl-modified PVA containing a monomer unit represented by the formula (IV) saponifies a copolymer of an unsaturated monomer and a vinyl ester monomer represented by the following formula (V). It is preferable that it is obtained by doing.
  • the alkyl-modified PVA contained in the alkyl-modified PVA solution is obtained by saponifying the copolymer of the specific monomer, adjustment of the saponification degree of the alkyl-modified PVA becomes easy and the viscosity is increased. Controllability etc. can be further improved. Moreover, the compatibility with water is further improved, and a solution having excellent practicality can be produced.
  • the viscosity average polymerization degree of the alkyl-modified PVA is preferably 200 or more and 5,000 or less. By setting the viscosity average polymerization degree of the alkyl-modified PVA in the above range, the alkyl-modified PVA solution can further improve the gelation performance at low temperatures.
  • the mass ratio of the surfactant to the water is preferably 1/99 or more and 40/60 or less.
  • the concentration of the alkyl-modified PVA is preferably 0.5% by mass or more and 50% by mass or less.
  • alkyl-modified PVA solution in a gel state is also included in the range of the alkyl-modified PVA solution.
  • the alkyl-modified PVA solution of the present invention has a low viscosity at a high temperature and excellent handleability even when the concentration of the alkyl-modified PVA is high, and has the ability to rapidly thicken and gel when the temperature decreases. Therefore, the alkyl-modified PVA solution can be suitably used as a highly safe low-temperature gelling solution that replaces the PVA-boric acid crosslinking solution.
  • low temperature gelation includes not only that the alkyl-modified PVA solution becomes a gel when the temperature is lowered, but also the phenomenon that the viscosity of the alkyl-modified PVA solution is increased as the temperature is lowered. To do.
  • the alkyl-modified PVA solution of the present invention contains an alkyl-modified PVA, a surfactant and water.
  • the alkyl-modified PVA solution may contain an optional component as long as the gist of the present invention is not impaired.
  • the alkyl-modified PVA contained in the alkyl-modified PVA solution of the present invention contains monomer units having an alkyl group having 5 to 29 carbon atoms. That is, the alkyl-modified PVA is a copolymer containing the monomer unit having an alkyl group having 5 to 29 carbon atoms and a vinyl alcohol monomer unit, and further contains other monomer units. You may contain. When the number of carbon atoms of the alkyl group is less than 5, the hydrophobic interaction between the alkyl groups is not sufficiently exhibited, so that the gelation performance at a low temperature is lowered.
  • the carbon number of the alkyl group exceeds 29, the water solubility and handling property at high temperature of the alkyl-modified PVA are lowered.
  • an alkyl group having 8 to 29 carbon atoms is preferable, an alkyl group having 12 to 27 carbon atoms is more preferable, and an alkyl group having 15 to 26 carbon atoms is preferable. More preferred is an alkyl group having 17 to 24 carbon atoms.
  • R 3 is an alkyl group having 5 to 29 carbon atoms.
  • R 4 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • Examples of the alkyl group having 5 to 29 carbon atoms represented by R 3 include a pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, pentadecyl group, and nonadecyl group. .
  • an alkyl group having 8 to 29 carbon atoms is preferable, an alkyl group having 12 to 27 carbon atoms is more preferable, and an alkyl group having 15 to 26 carbon atoms is preferable. More preferred is an alkyl group having 17 to 24 carbon atoms.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Of these, a methyl group is preferred.
  • R 4 is preferably a hydrogen atom or a methyl group from the viewpoint of ease of synthesis and the like.
  • the alkyl group represented by R 3 and R 4 may have a substituent such as a halogen atom as long as the gist of the present invention is not impaired. Preferably not.
  • the content of the monomer unit having an alkyl group having 5 to 29 carbon atoms in the alkyl-modified PVA is 0.05 mol% or more and 5 mol% or less, and 0.1 mol% or more and 2 mol% or less. % Or less is preferable, and 0.2 mol% or more and 1 mol% or less is more preferable.
  • the content of the monomer unit having an alkyl group having 5 to 29 carbon atoms means having an alkyl group having 5 to 29 carbon atoms in the number of moles of all the structural units constituting the alkyl-modified PVA. It is the ratio of the number of moles of monomer units.
  • the content of the monomer unit having an alkyl group having 5 to 29 carbon atoms exceeds 5 mol%, the proportion of the hydrophobic group contained in one molecule of the alkyl-modified PVA is increased, and the water-solubility of the alkyl-modified PVA is increased. Decreases.
  • the content of the monomer unit having an alkyl group having 5 to 29 carbon atoms is less than 0.05 mol%, the water content of the alkyl-modified PVA is excellent, but it is contained in the alkyl-modified PVA.
  • the number of alkyl groups is small, and physical properties such as high viscosity based on alkyl modification do not appear.
  • the content of the monomer unit having an alkyl group having 5 to 29 carbon atoms can be determined from proton NMR of the alkyl-modified vinyl ester polymer that is a precursor of the alkyl-modified PVA. Specifically, after reprecipitation purification of the alkyl-modified vinyl ester polymer with n-hexane / acetone three or more times, it is dried under reduced pressure at 50 ° C. for 2 days to prepare a sample for analysis. To do. This sample is dissolved in CDCl 3 and measured at room temperature using 500 MHz proton NMR (JEOL GX-500).
  • the alkyl-modified vinyl ester polymer does not contain an alkyl-modified monomer unit other than the monomer unit represented by the formula (IV), and R 3 is linear.
  • R 4 is a hydrogen atom, it can be calculated by the following method. That is, the peak ⁇ (4.7 to 5.2 ppm) derived from the main chain methine of the alkyl-modified vinyl ester polymer and the peak ⁇ (0.8 to 1.0 ppm derived from the terminal methyl group of the alkyl group R 3 ). ),
  • the content S of the monomer unit represented by the above formula (IV) is calculated using the following formula.
  • S (mol%) ⁇ (Number of protons of ⁇ / 3) / (number of protons of ⁇ + (number of protons of ⁇ / 3)) ⁇ ⁇ 100
  • the viscosity average polymerization degree of the alkyl-modified PVA contained in the alkyl-modified PVA solution is preferably 200 or more and 5,000 or less, more preferably 500 or more and 4,000 or less, and further preferably 1,000 or more and 3,000 or less. preferable.
  • the viscosity average degree of polymerization may be simply referred to as the degree of polymerization.
  • the degree of polymerization exceeds 5,000, the productivity of the alkyl-modified PVA may be reduced.
  • the degree of polymerization is less than 200, the gelation performance of the alkyl-modified PVA solution at a low temperature may be lowered, and sufficient gelation performance may not be exhibited.
  • the saponification degree of the alkyl-modified PVA contained in the alkyl-modified PVA solution is 20 mol% to 99.99 mol%, preferably 40 mol% to 99.95 mol%, preferably 50 mol% to 99.9 mol. % Or less is more preferable.
  • this saponification degree is less than 20 mol%, water solubility and low-temperature gelling performance will fall. On the contrary, if the degree of saponification exceeds 99.99 mol%, production of alkyl-modified PVA becomes difficult, which is not practical.
  • the saponification degree of the alkyl-modified PVA is measured according to JIS-K6726: 1994.
  • the concentration of the alkyl-modified PVA in the alkyl-modified PVA solution is not particularly limited, but is preferably 0.5% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and 2% by mass or more and 20% by mass or less. Is more preferable.
  • concentration of alkyl modified PVA even if it raises the density
  • the method for producing the alkyl-modified PVA is not particularly limited, but an alkyl-modified vinyl ester-based polymer obtained by copolymerizing an unsaturated monomer represented by the following formula (V) with a vinyl ester-based monomer.
  • a method of saponifying the polymer (copolymer) is preferred. Since the alkyl-modified PVA contained in the alkyl-modified PVA solution is obtained by saponifying the copolymer of the specific monomer, adjustment of the saponification degree of the alkyl-modified PVA becomes easy and the viscosity is increased. Controllability etc. can be further improved. Moreover, the compatibility with water is further improved, and a solution having excellent practicality can be produced.
  • the copolymerization is preferably performed in an alcohol solvent or without a solvent.
  • Examples of the unsaturated monomer represented by the above formula (V) include N-octylacrylamide, N-decylacrylamide, N-dodecylacrylamide, N-octadecylacrylamide, N-hexacosylacrylamide, and N-octylmethacrylamide.
  • N-octadecyl acrylamide, N-octyl methacrylamide, N-decyl methacrylamide, N-dodecyl methacrylamide, N-octadecyl methacrylamide, N-hexacosyl methacrylamide are preferred, and N-octadecyl acrylamide, N- Dodecyl methacrylamide and N-octadecyl methacrylamide are more preferable, and N-octadecyl acrylamide and N-octadecyl methacrylamide are more preferable.
  • vinyl ester monomers examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, vinyl caprylate, vinyl laurate, and palmitic acid.
  • the purpose of the present invention is to adjust the degree of polymerization of the copolymer obtained.
  • the chain transfer agent include aldehydes such as acetaldehyde and propionaldehyde; Ketones such as acetone and methyl ethyl ketone; Mercaptans such as 2-hydroxyethanethiol; Halogenated hydrocarbons such as trichlorethylene and perchlorethylene; And phosphinic acid salts such as sodium phosphinate monohydrate.
  • aldehydes and ketones are preferable.
  • the addition amount of the chain transfer agent can be determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target alkyl-modified vinyl ester polymer, and thus the degree of polymerization of the alkyl-modified PVA.
  • the content is preferably 0.1% by mass or more and 10% by mass or less based on the vinyl ester monomer.
  • the temperature employed when copolymerizing the unsaturated monomer represented by the above formula (V) and the vinyl ester monomer is preferably 0 ° C. to 200 ° C., preferably 30 ° C. to 140 ° C. Is more preferable.
  • the copolymerization temperature is lower than 0 ° C., it is difficult to obtain a sufficient polymerization rate.
  • polymerizes is higher than 200 degreeC, it is difficult to obtain the alkyl modified PVA which satisfies the content rate of the monomer unit which has an alkyl group prescribed
  • the method of controlling by an external jacket using an appropriate heat medium is preferable from the viewpoint of safety.
  • Examples of the polymerization method used for the copolymerization of the unsaturated monomer represented by the formula (V) and the vinyl ester monomer include batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous. Polymerization etc. are mentioned.
  • As the polymerization method known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
  • a bulk polymerization method in which polymerization is performed in a solvent-free or alcohol-based solvent or a solution polymerization method is preferably employed, and an emulsion polymerization method is employed for the purpose of producing a copolymer having a high degree of polymerization.
  • alcohol solvent for example, methanol, ethanol, n-propanol or the like can be used, but is not limited thereto. These solvents can be used as a mixture of two or more.
  • an initiator used for copolymerization of the unsaturated monomer represented by the above formula (V) and the vinyl ester monomer a conventionally known azo initiator or peroxidation may be used depending on the polymerization method.
  • a physical initiator, a redox initiator, or the like can be used.
  • azo initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2, 4-dimethylvaleronitrile) and the like.
  • peroxide initiator examples include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; Perester compounds such as t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate, t-butyl peroxynedecanate; Examples include acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and the like. Furthermore, the initiator can be combined with potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like to form an initiator.
  • percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate
  • Perester compounds such as
  • redox initiator examples include a combination of the above peroxide and a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, Rongalite, and the like.
  • a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, Rongalite, and the like.
  • an antioxidant such as tartaric acid is preferably added to the polymerization system in an amount of about 1 to 100 ppm with respect to the vinyl ester monomer for the purpose of preventing coloring.
  • a known basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxide or an acidic catalyst such as p-toluenesulfonic acid is used.
  • the alcoholysis reaction or hydrolysis reaction used can be applied.
  • Examples of the solvent that can be used in the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. It is done. In addition, these solvents can be used individually or in combination of 2 or more types.
  • the surfactant contained in the alkyl-modified PVA solution is a compound represented by the following formula (I).
  • R 1 is an alkylene group having 3 to 5 carbon atoms.
  • R 2 is a single bond or an alkylene group having 1 to 5 carbon atoms.
  • X 1 is a hydrogen atom or an organic group.
  • X 2 is a hydrophilic group.
  • m is an integer of 1 to 100. when m is 2 or more, R 1 existing in plural, each independently satisfy the above definition.
  • the surfactant has good compatibility with the specific alkyl-modified PVA and water, and can produce a high-concentration solution without phase separation. Further, the surfactant can inhibit the hydrophobic interaction between the alkyl groups of the specific alkyl-modified PVA at a high temperature, and can promote the interaction at a low temperature. The reason why such an effect is manifested is not fully understood. For example, an alkyleneoxy group having 3 to 5 carbon atoms exhibits hydrophobicity when the temperature of the aqueous solution is high, and exhibits hydrophilicity when the temperature is low. It is guessed that it is from.
  • the alkyl-modified PVA solution has low viscosity at a high temperature and excellent handleability, and rapidly increases in viscosity at a low temperature and exhibits a low-temperature gelation behavior. That is, the alkyl-modified PVA solution can exhibit the same behavior as the PVA-boric acid crosslinking solution.
  • the hydrophilic group of X 2 is preferably a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, or a group represented by the following formula (II).
  • the counter cation in the carboxyl group salt or the sulfonic acid group salt include alkali metal cations such as sodium and potassium; alkaline earth metal cations such as calcium and barium; ammonium ions and the like.
  • X 2 is such a specific hydrophilic group, the handling property at high temperature and the gelation behavior at low temperature of the alkyl-modified PVA solution are further improved.
  • X 2 is more preferably a sulfonic acid group or a salt thereof, or a group represented by the following formula (II), and even more preferably a group represented by the following formula (II).
  • n1 is an integer of 1 or more and 200 or less.
  • the group represented by the above formula (II) may contain other monomer units such as a propyleneoxy group in a small amount within a range not impairing the gist of the present invention.
  • N1 is preferably an integer of 2 or more, 100 or less, more preferably an integer of 2 or more and 40 or less, and further preferably an integer of 3 or more and 20 or less.
  • the organic group of X 1 is preferably an alkyl group having 1 to 29 carbon atoms or a hydrophilic group.
  • X 1 is such a specific group, the solution state of the alkyl-modified PVA solution and the gelation behavior at a low temperature are further improved.
  • X 1 is more preferably a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or a hydrophilic group, and further preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a hydrophilic group. Particularly preferred is a hydrophilic group.
  • the hydrophilic group for X 1 is preferably a group represented by the following formula (III).
  • X 1 is such a specific hydrophilic group, the handling property at high temperature and the gelation behavior at low temperature are further improved.
  • a group represented by the following formula (III) is more preferable.
  • n2 is an integer of 1 or more and 200 or less.
  • the group represented by the above formula (III) may contain other monomer units such as a propyleneoxy group in a small amount within a range not impairing the gist of the present invention.
  • N2 is preferably an integer of 2 or more, 100 or less, more preferably an integer of 2 or more and 40 or less, and further preferably an integer of 3 or more and 20 or less.
  • Examples of the alkylene group having 3 to 5 carbon atoms represented by R 1 include a propanediyl group, a butanediyl group, and a pentanediyl group. Among these, a propanediyl group and a butanediyl group are preferable, and a propanediyl group is more preferable from the viewpoint that the surfactant has appropriate hydrophobicity.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by R 2 include a methylene group, an ethanediyl group, and a propanediyl group. Note The above R 2, preferably a single bond.
  • M is preferably an integer of 2 to 60, more preferably an integer of 2 to 50, and still more preferably an integer of 3 to 30.
  • the surfactant is not particularly limited as long as it is a compound represented by the above formula (I).
  • Diblock copolymers such as polyethylene glycol-polypropylene glycol, polyethylene glycol-polytetramethylene glycol, polyethylene glycol-polybutylene glycol, polyethylene glycol-polypentylene glycol; Triblock copolymers such as polyethylene glycol-polypropylene glycol-polyethylene glycol, polyethylene glycol-polytetramethylene glycol-polyethylene glycol, polyethylene glycol-polybutylene glycol-polyethylene glycol, polyethylene glycol-polypentylene glycol-polyethylene glycol; Polypropylene glycol-sulfate sodium salt, polytetramethylene glycol-sulfate sodium salt, polybutylene glycol-sulfate sodium salt, polypentylene glycol-sulfate sodium salt; Examples include polyethylene glycol-polypropylene glycol-alkyl
  • a polyethylene glycol-polypropylene glycol diblock copolymer polyethylene glycol Polypropylene glycol-polyethylene glycol triblock copolymer is preferred, and polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer is more preferred.
  • the mass ratio (surfactant mass / water mass) of the surfactant and water contained in the alkyl-modified PVA solution is preferably 1/99 or more and 40/60 or less, and preferably 3/97 or more. It is more preferably 50/50 or less, further preferably 5/95 or more and 30/70 or less, and particularly preferably 10/90 or more and 20/80 or less.
  • the alkyl-modified PVA solution can further improve the handling property at high temperature and the gelation behavior at low temperature.
  • the mass ratio is less than 1/99, there exists a possibility that the raise of the viscosity at low temperature may become remarkable remarkably.
  • the mass ratio exceeds 40/60 the solubility of the alkyl-modified PVA may be reduced.
  • the alkyl-modified PVA solution contains additives such as various plasticizers, antifoaming agents, ultraviolet absorbers, fillers, pH adjusters, and water resistance agents. You may contain in the range which does not impair the meaning of invention.
  • the alkyl-modified PVA solution is a known various PVA other than the above-mentioned alkyl-modified PVA contained in the alkyl-modified PVA solution, starch, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, within a range that does not impair the spirit of the present invention.
  • Other water-soluble polymers such as hydroxypropylcellulose may be contained.
  • the blending amount of these other water-soluble polymers is preferably 50 parts by mass or less with respect to 100 parts by mass of the alkyl-modified PVA contained in the alkyl-modified PVA solution.
  • the viscosity at 20 ° C. of the alkyl-modified PVA solution is preferably 10,000 (mPa ⁇ s) or more, more preferably 100,000 (mPa ⁇ s) or more, and 250,000 (mPa ⁇ s) or more. Is more preferable, and a gel state is particularly preferable.
  • the viscosity of the alkyl-modified PVA solution at 60 ° C. is preferably less than 15,000 (mPa ⁇ s), and more preferably less than 10,000 (mPa ⁇ s).
  • the viscosity ratio between the viscosity at 20 ° C. and the viscosity at 60 ° C. of the alkyl-modified PVA solution is preferably 25 or more, and more preferably 100 or more.
  • the said alkyl-modified PVA solution is a gel form at 20 degreeC.
  • the alkyl-modified PVA solution can be prepared by mixing an alkyl-modified PVA, a surfactant, water, and optional components as necessary at a predetermined ratio.
  • the method of mixing these components is not particularly limited, and the alkyl-modified PVA may be added to a mixture of a surfactant and water, or the surfactant may be added to an alkyl-modified PVA aqueous solution.
  • the temperature of the solution during the heating for example, 80 ° C. or more and 95 ° C. or less is adopted.
  • the alkyl-modified PVA solution is excellent in handling because it suppresses the increase in viscosity at high temperatures even when the concentration of the alkyl-modified PVA is high, and the viscosity rapidly increases at low temperatures and exhibits excellent low-temperature gelation performance. Therefore, it can be suitably used as a low-temperature gelling solution with high safety instead of the PVA-boric acid crosslinking solution. Therefore, the alkyl-modified PVA solution can be suitably used as a temperature-sensitive binder, a gelling agent, a temperature-sensitive adhesive, a thickener, and the like.
  • paper coating agents for example, paper coating agents; internal sizing agents; fiber processing agents; dyes; glass fiber coating agents; metal and glass surface coating agents; coating agents such as anti-fogging agents; wood, paper, aluminum Adhesives such as foils and plastics; Non-woven fabric binders; Fibrous binders; Binders for building materials such as gypsum boards and fiberboards; Thickeners for various emulsion adhesives; Additives for urea resin adhesives; Additions for cement and mortar Agents; Hot-melt adhesives; Various adhesives such as pressure-sensitive adhesives; Dispersants for emulsion polymerization of various ethylenically unsaturated monomers such as ethylene, vinyl acetate and vinyl chloride; Dispersing pigments in paints, adhesives, etc.
  • Stabilizers for dispersion polymerization of various ethylenically unsaturated monomers such as vinyl chloride, vinylidene chloride, styrene, (meth) acrylic acid, vinyl acetate; fibers, films, Can be used as a component constituting a soil stabilizer and the like; hydrophilic agent to the hydrophobic resin; soil improvement agent over preparative, pipes, tubes, water-soluble fibers, molded products such as interim film.
  • the PVA (alkyl-modified PVA and non-modified PVA) obtained by the following production examples was evaluated according to the following method.
  • Modification rate The modification rate of each PVA (the content of monomer units having an alkyl group in PVA) was determined by the method using proton NMR described above.
  • the temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.25 g of 2,2′-azobisisobutyronitrile (AIBN) was added to initiate polymerization.
  • AIBN 2,2′-azobisisobutyronitrile
  • the total amount (preparation + addition) of the comonomer (N-octadecylmethacrylamide) used was 4.8 g.
  • the solid content concentration when the polymerization was stopped was 29.9%.
  • alkyl-modified vinyl ester polymer (alkyl-modified PVAc). Furthermore, 27.9 g of an alkali solution (10% methanol solution of sodium hydroxide) was added to 771.4 g of an alkyl-modified PVAc methanol solution prepared by adding methanol thereto (200.0 g of alkyl-modified PVAc in the solution). Saponification was performed.
  • the alkyl-modified PVAc concentration in the saponification solution was 25%, and the molar ratio of sodium hydroxide to vinyl acetate units in the alkyl-modified PVAc was 0.03.
  • a gel-like product was formed in about 1 minute after the addition of the alkaline solution. This was pulverized with a pulverizer and allowed to stand at 40 ° C. for 1 hour to proceed with saponification, and then 500 g of methyl acetate was added to leave the remaining alkali. Neutralized. After confirming that the neutralization was completed using a phenolphthalein indicator, a white solid was obtained by filtration, 2,000 g of methanol was added thereto, and the mixture was allowed to stand and washed at room temperature for 3 hours. After the above washing operation was repeated three times, the white solid obtained by centrifugal drainage was left in a dryer at 65 ° C. for 2 days to obtain alkyl-modified PVA (PVA1).
  • alkyl-modified vinyl ester polymer (alkyl-modified PVAc). Furthermore, 7.0 g of an alkali solution (sodium hydroxide in 10% methanol) was added to 792.9 g of an alkyl-modified PVAc methanol solution (200.0 g of alkyl-modified PVAc in the solution) prepared by adding methanol. Saponification was performed.
  • the alkyl-modified PVAc concentration in the saponification solution was 25%, and the molar ratio of sodium hydroxide to vinyl acetate units in the alkyl-modified PVAc was 0.0075.
  • a gel-like material was formed in about 12 minutes after the addition of the alkaline solution. This was pulverized with a pulverizer and allowed to stand at 40 ° C. for 1 hour to proceed with saponification, and then 500 g of methyl acetate was added to leave the remaining alkali. Neutralized.
  • Example 1 Mass ratio of 9 g of polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (compound shown in Table 2 as surfactant A represented by formula (I)) and 81 g of distilled water as a surfactant ( 10 g of PVA1 was added at room temperature to the mixture in which the weight of the surfactant / the weight of water was 10/90, and the mixture was stirred for 30 minutes using a three-one motor. Next, this solution was heated to 90 ° C. while stirring, and stirred as it was for 1 hour, and then cooled to room temperature to obtain a PVA solution containing PVA1 at a concentration of 10% by mass.
  • surfactant A represented by formula (I)
  • Viscosity is 10,000 mPa ⁇ s or more and less than 15,000 mPa ⁇ s C: 60 ° C. viscosity is 15,000 mPa ⁇ s or more and 20,000 mPa ⁇ s Less than s D: 60 ° C. viscosity is 20,000 mPa ⁇ s or more E: Undissolved
  • Examples 2 to 23 and Comparative Examples 1 to 11 By operating in the same manner as in Example 1 except that the types of PVA and surfactant used, and the mass ratio of the surfactant and water were changed as shown in Table 3, the concentration of each PVA was 10% by mass. A PVA solution was prepared. About each obtained PVA solution, solubility evaluation and solution evaluation were performed by the method similar to Example 1. FIG. Table 2 shows the types of surfactants used, and Table 3 shows the results.
  • surfactants A to E are surfactants represented by the formula (I). “-” In Table 3 indicates that the 4% aqueous solution viscosity, 20 ° C. viscosity, and 60 ° C. viscosity were undissolved and could not be evaluated. The modification rate, the type of surfactant, the surface activity About an agent / water (mass ratio), it shows that the applicable component is not added.
  • the solutions of Examples 1 to 23 are PVA solutions having an alkyl group with low water solubility, a PVA solution having a high PVA concentration of 10% is prepared. It can be seen that the solution is excellent in handleability at 60 ° C., and when the temperature reaches 20 ° C., the viscosity increases rapidly, and the solution has excellent gelation performance at low temperatures. Further, the solutions of Examples 1, 2, 6 to 8, 15 and 22 in which the polymerization degree of PVA, the structure of monomer units, the type of surfactant and the mass ratio of surfactant to water were specified, A solution that was particularly excellent in handleability at 60 ° C. and gelation performance at a low temperature, and further excellent in solubility evaluation was obtained.
  • Example 12 using PVA14 the gelation performance at a low temperature is lowered, but this is considered to be caused by the short alkyl group length of the alkyl-modified PVA having 5 carbon atoms. It is done. Moreover, it turns out that the state of a solution is a little worse in Examples 16 and 20. This is considered to be due to the difference in the structure of the monomer having an alkyl group having 5 to 29 carbon atoms and the poor compatibility between the surfactant and PVA. In Examples 18, 19 and 23, the gelation performance at low temperatures is slightly lowered. This is thought to be because the hydrophobic interaction of the alkyl-modified PVA is weakened even at 20 ° C. due to the difference in the structure of the surfactant and the large amount of surfactant added.
  • the alkyl-modified PVA solution of the present invention has a low viscosity at a high temperature and excellent handleability even when the concentration of the alkyl-modified PVA is high, and has the ability to rapidly thicken and gel when the temperature decreases. Therefore, the alkyl-modified PVA solution is suitably used as a temperature-sensitive binder, a gelling agent, a temperature-sensitive adhesive, a thickener, etc. as a highly safe low-temperature gelling solution to replace the PVA-boric acid crosslinking solution. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paper (AREA)

Abstract

 溶液中のアルキル変性PVAの濃度を高めた場合も、高温では粘度が低く取扱性に優れ、温度が低下すると急激に増粘するアルキル変性PVA溶液を提供することを目的とする。本発明は、アルキル変性ビニルアルコール系重合体、界面活性剤及び水を含有し、上記アルキル変性ビニルアルコール系重合体が、炭素数5~29のアルキル基を有する単量体単位を含有し、この単量体単位の含有率が0.05モル%以上5モル%以下であり、かつ上記アルキル変性ビニルアルコール系重合体のけん化度が20モル%以上99.99モル%以下であり、上記界面活性剤が、下記式(I)で表される親水基X、X及び炭素数3~5のアルキレンオキシ基(-R-O-)を有する化合物であるアルキル変性ビニルアルコール系重合体溶液である。

Description

アルキル変性ビニルアルコール系重合体溶液
 本発明は、アルキル変性ビニルアルコール系重合体溶液に関する。
 ビニルアルコール系重合体(以下、「PVA」と略記することもある)は、数少ない結晶性の水溶性高分子として優れた造膜性、界面特性及び強度特性を有する。このため、PVAは、増粘剤、紙用塗工剤、接着剤、繊維加工剤、バインダー、エマルジョン安定剤、フィルム及び繊維等の原料等として広く利用されている。また、PVAの特定の性能を向上させるために、結晶性の制御、官能基の導入等による変性PVAの開発が行われている。さらに、PVAにホウ酸等を添加して架橋反応を起こさせたPVA-ホウ酸架橋溶液は、低温でゲル化する性質を有するため、形状保持性能をコントロールしたり、PVAマトリックスの強度を向上させる目的で用いられている。しかし、ホウ素の毒性等の理由から、近年ではホウ酸等の使用量が規制され始めており、PVA-ホウ酸架橋溶液に代わる、温度により粘度を制御することが可能な新たなPVA又はPVA溶液が求められている。
 PVA水溶液の粘度を高くする方法として、アルキル基が導入されたアルキル変性PVAを用いることが知られている。このアルキル変性PVAは、水系溶媒中でアルキル基(疎水基)相互作用が発現し、高粘度溶液を与えるため、塗料や接着剤の増粘剤として有用であり、各種単量体単位を含有するアルキル変性PVAも開発されている(特開2008-291120号公報及び特開平10-338714号公報参照)。これらのアルキル変性PVAの水溶液は、常温で高い粘度を有しているが、高温でも粘度が高く取扱性が悪いため、均一な濃度にするのが難しく、特に高濃度水溶液の調製が難しい等の不都合が指摘されている。
特開2008-291120号公報 特開平10-338714号公報
 本発明は、上述の事情に基づいてなされたものであり、溶液中のアルキル変性PVAの濃度を高めた場合も、高温では粘度が低く取扱性に優れ、温度が低下すると急激に増粘するアルキル変性PVA溶液を提供することを目的とする。すなわち、PVA-ホウ酸架橋溶液と同様の挙動を示し、温度により粘度を制御することが可能なアルキル変性PVA溶液を提供することを目的とする。
 上記目的を達成するためになされた本発明は、
 アルキル変性PVA、界面活性剤及び水を含有し、上記アルキル変性PVAが炭素数5~29のアルキル基を有する単量体単位を含有し、この単量体単位の含有率が0.05モル%以上5モル%以下であり、かつ上記アルキル変性PVAのけん化度が20モル%以上99.99モル%以下であり、上記界面活性剤が、下記式(I)で表される化合物であるアルキル変性PVA溶液である。
Figure JPOXMLDOC01-appb-C000006
 式(I)中、Rは、炭素数3~5のアルキレン基である。Rは、単結合又は炭素数1~5のアルキレン基である。Xは、水素原子又は有機基である。Xは、親水基である。mは、1以上100以下の整数である。mが2以上の場合、複数存在するRは、それぞれ独立して上記定義を満たす。
 当該アルキル変性PVA溶液は、上記特定の構造を有する界面活性剤を含有している。この界面活性剤は、上記アルキル変性PVA及び水との相溶性が良く、さらに温度によって疎水性が変化するため、高温では上記アルキル変性PVAが有するアルキル基同士の疎水性相互作用を阻害し、低温ではその相互作用を促進させることができる。その結果、当該アルキル変性PVA溶液は、高温では低粘度で取扱性に優れ、低温では急激に増粘し低温ゲル化挙動を示す溶液となる。
 上記Xは、カルボキシル基若しくはその塩、スルホン酸基若しくはその塩又は下記式(II)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(II)中、n1は、1以上200以下の整数である。
 上記Xが、上記特定の基であると、当該アルキル変性PVA溶液は、高温での取扱性及び低温でのゲル化性能により優れる。
 上記Xの有機基は、炭素数1~29のアルキル基又は親水基であることが好ましい。上記Xが、上記特定の基であると、当該アルキル変性PVA溶液は、高温での取扱性及び低温でのゲル化性能により優れる。
 上記Xの親水基は、下記式(III)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(III)中、n2は、1以上200以下の整数である。
 上記Xが、上記特定の基であると、当該アルキル変性PVA溶液は、高温での取扱性及び低温でのゲル化性能をさらに向上させることができる。
 上記単量体単位は、下記式(IV)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(IV)中、Rは、炭素数5~29のアルキル基である。Rは、水素原子又は炭素数1~8のアルキル基である。
 上記単量体単位が上記特定構造を有することで、当該アルキル変性PVA溶液は、粘度の制御性をより高めることができる。
 上記式(IV)で表される単量体単位を含有する上記アルキル変性PVAは、下記式(V)で表される不飽和単量体とビニルエステル系単量体との共重合体をけん化することにより得られるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(V)中、R及びRの定義は、上記式(IV)と同様である。
 当該アルキル変性PVA溶液が含有するアルキル変性PVAが上記特定の単量体の共重合体をけん化することにより得られるものであることで、上記アルキル変性PVAのけん化度等の調整が容易となり、粘度制御性等をさらに高めることができる。また、水との相溶性もより一層向上し、実用性に優れた溶液を作製することができる。
 上記アルキル変性PVAの粘度平均重合度は、200以上5,000以下であることが好ましい。上記アルキル変性PVAの粘度平均重合度を上記範囲とすることで、当該アルキル変性PVA溶液は、低温での優れたゲル化性能をさらに高めることができる。
 上記界面活性剤と上記水との質量比(界面活性剤の質量/水の質量)は、1/99以上40/60以下であることが好ましい。界面活性剤と水との質量比を上記範囲とすることにより、当該アルキル変性PVA溶液は、高温での優れた取扱性及び低温での優れたゲル化性能をより一層高めることができる。
 上記アルキル変性PVAの濃度は、0.5質量%以上50質量%以下であることが好ましい。上記アルキル変性PVAの濃度を上記範囲とすることで、当該アルキル変性PVA溶液は、高温での優れた取扱性及び低温での優れたゲル化性能をより一層高めることができる。
 なお、当該アルキル変性PVA溶液がゲルの状態のものも、当該アルキル変性PVA溶液の範囲に含まれる。
 本発明のアルキル変性PVA溶液は、アルキル変性PVAを高濃度とした場合においても、高温では粘度が低く取扱性に優れ、温度が低下すると急激に増粘しゲル化する性能を有する。そのため、当該アルキル変性PVA溶液は、PVA-ホウ酸架橋溶液に代わる安全性の高い低温ゲル化溶液として好適に用いることができる。なお、本明細書において、低温ゲル化とは、温度が低下した場合にアルキル変性PVA溶液がゲル状となることだけでなく、温度の低下に伴いアルキル変性PVA溶液の粘度が上昇する現象も包含する。
 以下、本発明のアルキル変性PVA溶液の実施形態について詳説する。
 <アルキル変性PVA溶液>
 本発明のアルキル変性PVA溶液は、アルキル変性PVA、界面活性剤及び水を含有する。また、当該アルキル変性PVA溶液は、本発明の趣旨を損なわない限り、任意成分を含有していてもよい。以下、これらの成分について詳述する。
 (アルキル変性PVA)
 本発明のアルキル変性PVA溶液が含有するアルキル変性PVAは、炭素数5~29のアルキル基を有する単量体単位を含有する。すなわち、上記アルキル変性PVAは、上記炭素数5~29のアルキル基を有する単量体単位と、ビニルアルコール系単量体単位とを含有する共重合体であり、さらに他の単量体単位を含有していてもよい。このアルキル基の炭素数が5未満の場合、アルキル基同士の疎水性相互作用が十分に発現しないため、低温でのゲル化性能が低下する。一方、このアルキル基の炭素数が29を超える場合、上記アルキル変性PVAの水溶性及び高温での取扱性が低下する。これらのうち、低温でのゲル化性能をより一層向上する観点から、炭素数8~29のアルキル基が好ましく、炭素数12~27のアルキル基がより好ましく、炭素数15~26のアルキル基がさらに好ましく、炭素数17~24のアルキル基が特に好ましい。
 上記炭素数5~29のアルキル基を有する単量体単位としては、
 1-オクテン、1-デセン等のα-オレフィン類に由来する単量体単位;
 ペンチルビニルエーテル、オクチルビニルエーテル、ノニルビニルエーテル、ドデシルビニルエーテル、オクタデシルビニルエーテル等のビニルエーテル類に由来する単量体単位;
 下記式(IV)で表される単量体単位が好ましく、下記Rが炭素数8~29のアルキル基である単量体単位がより好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(IV)中、Rは、炭素数5~29のアルキル基である。Rは、水素原子又は炭素数1~8のアルキル基である。
 上記Rで表される炭素数5~29のアルキル基としては、例えばペンチル基、へキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、ノナデシル基等が挙げられる。これらのうち、低温でのゲル化性能がより一層向上する観点から、炭素数8~29のアルキル基が好ましく、炭素数12~27のアルキル基がより好ましく、炭素数15~26のアルキル基がさらに好ましく、炭素数17~24のアルキル基が特に好ましい。
 上記Rで表される炭素数1~8のアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等が挙げられる。これらのうち、メチル基が好ましい。
 上記Rとしては、合成の容易性等の観点から、水素原子、メチル基が好ましい。
 なお、上記R及びRで表されるアルキル基は、本発明の趣旨が損なわれない範囲であれば、ハロゲン原子等の置換基を有していてもよいが、これらの置換基を有していないことが好ましい。
 上記アルキル変性PVAにおける炭素数5~29のアルキル基を有する単量体単位の含有率は、0.05モル%以上5モル%以下であることが重要であり、0.1モル%以上2モル%以下が好ましく、0.2モル%以上1モル%以下がより好ましい。なお、本明細書における炭素数5~29のアルキル基を有する単量体単位の含有率とは、アルキル変性PVAを構成する全構造単位のモル数に占める炭素数5~29のアルキル基を有する単量体単位のモル数の割合である。
 炭素数5~29のアルキル基を有する単量体単位の含有率が5モル%を超えると、上記アルキル変性PVA一分子あたりに含まれる疎水基の割合が高くなり、このアルキル変性PVAの水溶性が低下する。一方、炭素数5~29のアルキル基を有する単量体単位の含有量が0.05モル%未満の場合、上記アルキル変性PVAの水溶性は優れているものの、このアルキル変性PVA中に含まれるアルキル基の数が少なく、アルキル変性に基づく高粘性等の物性が発現しない。
 炭素数5~29のアルキル基を有する単量体単位の含有率は、上記アルキル変性PVAの前駆体であるアルキル変性ビニルエステル系重合体のプロトンNMRから求めることができる。具体的には、n-ヘキサン/アセトンでアルキル変性ビニルエステル系重合体の再沈精製を3回以上十分に行った後、50℃の減圧下で乾燥を2日間行い、分析用のサンプルを作製する。このサンプルをCDClに溶解させ、500MHzのプロトンNMR(JEOL GX-500)を用いて室温で測定する。
 この際、例えば、上記アルキル変性ビニルエステル系重合体が、上記式(IV)で表される単量体単位以外のアルキル変性単量体単位を含まず、かつ、Rが直鎖状であり、さらにRが水素原子である場合、以下の方法にて算出できる。すなわち、アルキル変性ビニルエステル系重合体の主鎖メチンに由来するピークα(4.7~5.2ppm)と、アルキル基Rの末端メチル基に由来するピークβ(0.8~1.0ppm)とから、下記式を用いて、上記式(IV)で表される単量体単位の含有率Sを算出する。
 S(モル%)
={(βのプロトン数/3)/(αのプロトン数+(βのプロトン数/3))}×100
 当該アルキル変性PVA溶液が含有するアルキル変性PVAの粘度平均重合度は、200以上5,000以下であることが好ましく、500以上4,000以下がより好ましく、1,000以上3,000以下がさらに好ましい。なお、粘度平均重合度を単に重合度と呼ぶことがある。この重合度が5,000を超えると、上記アルキル変性PVAの生産性が低下するおそれがある。逆に、この重合度が200未満の場合、当該アルキル変性PVA溶液の低温でのゲル化性能が低下し、十分なゲル化性能が発現しないおそれがある。
 この粘度平均重合度(P)は、JIS-K6726:1994年に準じて測定される。すなわち、アルキル変性PVAを再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:デシリットル/g)から次式により求められる。
 P=([η]×10/8.29)(1/0.62)
 当該アルキル変性PVA溶液が含有するアルキル変性PVAのけん化度は、20モル%以上99.99モル%以下であり、40モル%以上99.95モル%以下が好ましく、50モル%以上99.9モル%以下がより好ましい。このけん化度が20モル%未満の場合には、水溶性や低温ゲル化性能が低下する。逆に、このけん化度が99.99モル%を超えると、アルキル変性PVAの生産が困難になるので実用的でない。なお、上記アルキル変性PVAのけん化度は、JIS-K6726:1994年に準じて測定される。
 当該アルキル変性PVA溶液におけるアルキル変性PVAの濃度は特に限定されないが、0.5質量%以上50質量%以下が好ましく、1質量%以上30質量%以下がより好ましく、2質量%以上20質量%以下がさらに好ましい。また、当該アルキル変性PVA溶液によれば、アルキル変性PVAの濃度を高めても、高温での粘度の上昇を抑えることができ、取扱性に優れる。そのため、アルキル変性PVAの濃度は、例えば、5質量%以上20質量%以下であってもよい。
 (アルキル変性PVAの製造方法)
 上記アルキル変性PVAを製造する方法は特に制限されないが、下記式(V)で表される不飽和単量体とビニルエステル系単量体との共重合を行い、得られるアルキル変性ビニルエステル系重合体(共重合体)をけん化する方法が好ましい。当該アルキル変性PVA溶液が含有するアルキル変性PVAが上記特定の単量体の共重合体をけん化することにより得られるものであることで、上記アルキル変性PVAのけん化度等の調整が容易となり、粘度制御性等をさらに高めることができる。また、水との相溶性もより一層向上し、実用性に優れた溶液を作製することができる。ここで、上記共重合はアルコール系溶媒中又は無溶媒で行うことが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(V)中、R及びRの定義は、上記式(IV)と同様である。
 上記式(V)で表される不飽和単量体としては、例えばN-オクチルアクリルアミド、N-デシルアクリルアミド、N-ドデシルアクリルアミド、N-オクタデシルアクリルアミド、N-ヘキサコシルアクリルアミド、N-オクチルメタクリルアミド、N-デシルメタクリルアミド、N-ドデシルメタクリルアミド、N-オクタデシルメタクリルアミド、N-ヘキサコシルメタクリルアミド等が挙げられる。これらのうち、N-オクタデシルアクリルアミド、N-オクチルメタクリルアミド、N-デシルメタクリルアミド、N-ドデシルメタクリルアミド、N-オクタデシルメタクリルアミド、N-ヘキサコシルメタクリルアミドが好ましく、N-オクタデシルアクリルアミド、N-ドデシルメタクリルアミド、N-オクタデシルメタクリルアミドがより好ましく、N-オクタデシルアクリルアミド、N-オクタデシルメタクリルアミドがさらに好ましい。
 上記ビニルエステル系単量体としては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニル等が挙げられる。これらのうち、酢酸ビニルが好ましい。
 上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合に際して、本発明の趣旨を損なわない範囲で他の単量体を共重合してもよい。使用し得る他の単量体としては、例えば
 エチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィン類;
 メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ノニルビニルエーテル、ドデシルビニルエーテル、オクタデシルビニルエーテル等のビニルエーテル類;
 アクリロニトリル、メタクリロニトリル等のニトリル類;
 塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;
 塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;
 酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物類;
 ビニルトリメトキシシラン等のビニルシリル化合物類;
 酢酸イソプロペニル等が挙げられる。
 また、上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合に際し、得られる共重合体の重合度を調節すること等を目的として、本発明の趣旨を損なわない範囲で連鎖移動剤を添加してもよい。この連鎖移動剤としては、例えば
 アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類;
 アセトン、メチルエチルケトン等のケトン類;
 2-ヒドロキシエタンチオール等のメルカプタン類;
 トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素類;
 ホスフィン酸ナトリウム1水和物等のホスフィン酸塩類等が挙げられる。これらのうち、アルデヒド類、ケトン類が好ましい。
 上記連鎖移動剤の添加量としては、添加する連鎖移動剤の連鎖移動定数及び目的とするアルキル変性ビニルエステル系重合体の重合度、ひいてはアルキル変性PVAの重合度に応じて決定することができるが、一般にビニルエステル系単量体に対して0.1質量%以上10質量%以下が好ましい。
 上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合を行う際に採用される温度としては、0℃~200℃が好ましく、30℃~140℃がより好ましい。共重合を行う温度が0℃より低い場合は、十分な重合速度が得られにくい。また、重合を行う温度が200℃より高い場合、本発明で規定するアルキル基を有する単量体単位の含有率を満足するアルキル変性PVAを得られにくい。共重合を行う際に採用される温度を0℃~200℃に制御する方法としては、例えば、重合速度を制御することで、重合反応による発熱と反応器の表面からの放熱とのバランスをとる方法や、適当な熱媒を用いた外部ジャケットにより制御する方法等が挙げられる。これらの方法のうち、安全性の面からは適当な熱媒を用いた外部ジャケットにより制御する方法が好ましい。
 上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合を行うのに用いられる重合方式としては、例えば回分重合、半回分重合、連続重合、半連続重合等が挙げられる。重合方法としては、例えば塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知の方法を用いることができる。これらのうち、無溶媒又はアルコール系溶媒中で重合を行う塊状重合法、溶液重合法が好適に採用され、高重合度の共重合物の製造を目的とする場合は乳化重合法が採用される。
 上記アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール等を用いることができるが、これらに限定されるものではない。また、これらの溶媒は2種類以上を混合して用いることができる。
 上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合に使用される開始剤としては、重合方法に応じて従来公知のアゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等を用いることができる。
 上記アゾ系開始剤としては、例えば2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
 上記過酸化物系開始剤としては、例えば
 ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;
 t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシデカネート等のパーエステル化合物;
 アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等が挙げられる。さらには、上記開始剤に過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を組み合わせて開始剤とすることもできる。
 上記レドックス系開始剤としては、例えば上記過酸化物と、亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリット等の還元剤とを組み合わせたもの等が挙げられる。
 なお、上記式(V)で表される不飽和単量体と上記ビニルエステル系単量体との共重合を高い温度で行った場合、ビニルエステル系単量体の分解に起因するPVAの着色等が見られることがある。この場合には、着色防止の目的で重合系に酒石酸のような酸化防止剤を、ビニルエステル系単量体に対して1~100ppm程度添加するのがよい。
 上記共重合により得られたアルキル変性ビニルエステル系共重合体のけん化反応には、公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒又はp-トルエンスルホン酸等の酸性触媒を用いた加アルコール分解反応又は加水分解反応を適用することができる。
 上記けん化反応に使用し得る溶媒としては、例えばメタノール、エタノール等のアルコール類;酢酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。なお、これらの溶媒は単独で、又は2種以上を組み合わせて用いることができる。
 上記けん化反応としては、メタノール、又はメタノール/酢酸メチル混合溶液を溶媒とし、水酸化ナトリウムを触媒として用いて行う方法が簡便であり好ましい。
 (界面活性剤)
 当該アルキル変性PVA溶液が含有する界面活性剤は、下記式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000013
 上記式(I)中、Rは、炭素数3~5のアルキレン基である。Rは、単結合又は炭素数1~5のアルキレン基である。Xは、水素原子又は有機基である。Xは、親水基である。mは、1以上100以下の整数である。mが2以上の場合、複数存在するRは、それぞれ独立して上記定義を満たす。
 上記界面活性剤は、上記特定のアルキル変性PVA及び水との相溶性が良く、相分離することなく高濃度の溶液を作製することができる。さらに、上記界面活性剤は、高温では上記特定のアルキル変性PVAが有するアルキル基同士の疎水性相互作用を阻害し、低温ではその相互作用を促進させることができる。このような効果が発現する理由は十分解明されてはいないが、例えば、炭素数3~5のアルキレンオキシ基が、水溶液の温度が高い状態では疎水性を示し、温度が低くなると親水性を示すからではないかと推測される。そのため、上記界面活性剤を含有することで、当該アルキル変性PVA溶液は、高温では低粘度で取扱性に優れ、低温では急激に増粘し低温ゲル化挙動を示す。すなわち、当該アルキル変性PVA溶液は、PVA-ホウ酸架橋溶液と同様の挙動を発現することができる。
 上記Xの親水基は、カルボキシル基若しくはその塩、スルホン酸基若しくはその塩又は下記式(II)で表される基が好ましい。ここで、カルボキシル基の塩又はスルホン酸基の塩におけるカウンターカチオンとしては、例えばナトリウム、カリウム等のアルカリ金属のカチオン;カルシウム、バリウム等のアルカリ土類金属のカチオン;アンモニウムイオンなどが挙げられる。上記Xが、このような特定の親水基であることにより、当該アルキル変性PVA溶液の高温での取扱性、低温でのゲル化挙動がより一層向上する。これらのうち、上記Xは、スルホン酸基若しくはその塩又は下記式(II)で表される基であることがより好ましく、下記式(II)で表される基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式(II)中、n1は、1以上200以下の整数である。上記式(II)で表される基は、本発明の趣旨を損なわない範囲の少量でプロピレンオキシ基等の他の単量体単位を含んでいてもよい。
 上記n1としては、2以上100以下の整数であることが好ましく、2以上40以下の整数であることがより好ましく、3以上20以下の整数であることがさらに好ましい。
 上記Xの有機基としては、炭素数1~29のアルキル基又は親水基が好ましい。Xが、このような特定の基であることにより、当該アルキル変性PVA溶液の溶液状態や低温でのゲル化挙動がより一層向上する。これらのうち、上記Xは、水素原子、炭素数1~18のアルキル基又は親水基であることがより好ましく、水素原子、炭素数1~10のアルキル基又は親水基であることがさらに好ましく、親水基であることが特に好ましい。
 上記Xの親水基としては下記式(III)で表される基であることが好ましい。Xが、このような特定の親水基であることにより、高温での取扱性、低温でのゲル化挙動がより一層向上する。これらのうち、下記式(III)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(III)中、n2は、1以上200以下の整数である。上記式(III)で表される基は、本発明の趣旨を損なわない範囲の少量でプロピレンオキシ基等の他の単量体単位を含んでいてもよい。
 上記n2としては、2以上100以下の整数であることが好ましく、2以上40以下の整数であることがより好ましく、3以上20以下の整数であることがさらに好ましい。
 上記Rで表される炭素数3~5のアルキレン基としては、プロパンジイル基、ブタンジイル基、ペンタンジイル基が挙げられる。これらのうち、界面活性剤が適度な疎水性を有する観点から、プロパンジイル基、ブタンジイル基が好ましく、プロパンジイル基がより好ましい。
 上記Rで表される炭素数1~5のアルキレン基としては、メチレン基、エタンジイル基、プロパンジイル基等が挙げられる。なお上記Rとしては、単結合が好ましい。
 上記mとしては、2以上60以下の整数が好ましく、2以上50以下の整数がより好ましく、3以上30以下の整数がさらに好ましい。
 上記界面活性剤としては、上記式(I)で表される化合物であれば特に限定されないが、例えば、
 ポリエチレングリコール-ポリプロピレングリコール、ポリエチレングリコール-ポリテトラメチレングリコール、ポリエチレングリコール-ポリブチレングリコール、ポリエチレングリコール-ポリペンチレングリコール等のジブロック共重合体;
 ポリエチレングリコール-ポリプロピレングリコール-ポリエチレングリコール、ポリエチレングリコール-ポリテトラメチレングリコール-ポリエチレングリコール、ポリエチレングリコール-ポリブチレングリコール-ポリエチレングリコール、ポリエチレングリコール-ポリペンチレンレングリコール-ポリエチレングリコール等のトリブロック共重合体;
 ポリプロピレングリコール-硫酸エステルナトリウム塩、ポリテトラメチレングリコール-硫酸エステルナトリウム塩、ポリブチレングリコール-硫酸エステルナトリウム塩、ポリペンチレングリコール-硫酸エステルナトリウム塩;
 ポリエチレングリコール-ポリプロピレングリコール-アルキルエーテル等が挙げられる。これらのうち、当該アルキル変性PVAが上記特定溶液の高温での優れた取扱性及び低温での優れたゲル化性能をより一層高める観点から、ポリエチレングリコール-ポリプロピレングリコールのジブロック共重合体、ポリエチレングリコール-ポリプロピレングリコール-ポリエチレングリコールのトリブロック共重合体が好ましく、ポリエチレングリコール-ポリプロピレングリコール-ポリエチレングリコールのトリブロック共重合体がより好ましい。
 当該アルキル変性PVA溶液が含有する上記界面活性剤と上記水との質量比(界面活性剤の質量/水の質量)は、1/99以上40/60以下であることが好ましく、3/97以上50/50以下であることがより好ましく、5/95以上30/70以下であることがさらに好ましく、10/90以上20/80以下であることが特に好ましい。界面活性剤と水との質量比を上記範囲とすることで、当該アルキル変性PVA溶液は、高温での取扱性及び低温でのゲル化挙動をより一層向上させることができる。上記質量比が1/99未満の場合は、低温での粘度の上昇が著しくなり過ぎるおそれがある。逆に、上記質量比が40/60を超える場合は、アルキル変性PVAの溶解性が低下するおそれがある。
 (任意成分)
 [添加剤]
 当該アルキル変性PVA溶液は、アルキル変性PVA、上記特定の界面活性剤及び水以外に、各種可塑剤、消泡剤、紫外線吸収剤、充填材、pH調整剤、耐水化剤等の添加剤を本発明の趣旨を損なわない範囲で含有していてもよい。
 [他の水溶性高分子]
 当該アルキル変性PVA溶液は、本発明の趣旨を損なわない範囲で、当該アルキル変性PVA溶液が含有する上述のアルキル変性PVA以外の公知の各種PVA、澱粉、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の他の水溶性高分子を含有していてもよい。これらの他の水溶性高分子の配合量は、当該アルキル変性PVA溶液が含有する上記アルキル変性PVA100質量部に対して、50質量部以下であることが好ましい。
 当該アルキル変性PVA溶液の20℃における粘度としては、10,000(mPa・s)以上であることが好ましく、100,000(mPa・s)以上がより好ましく、250,000(mPa・s)以上がさらに好ましく、ゲルの状態であることが特に好ましい。
 当該アルキル変性PVA溶液の60℃における粘度としては、15,000(mPa・s)未満であることが好ましく、10,000(mPa・s)未満であることがより好ましい。
 当該アルキル変性PVA溶液の20℃における粘度と60℃における粘度との粘度比(20℃における粘度/60℃における粘度)としては、25以上であることが好ましく、100以上であることがより好ましい。このように、上記粘度比は大きい方が低温ゲル化の点から好ましいが、当該アルキル変性PVA溶液が20℃でゲル状であることが最も好ましい。
 <アルキル変性PVA溶液の調製方法>
 当該アルキル変性PVA溶液は、アルキル変性PVA、界面活性剤、水、及び必要に応じて任意成分を所定の割合で混合することにより調製することができる。これらの成分を混合する方法としては、特に限定されず、界面活性剤と水とを混合した混合物にアルキル変性PVAを加えてもよいし、アルキル変性PVA水溶液に界面活性剤を加えてもよい。なお、溶解性を高めるために、加熱しながら撹拌してもよい。上記加熱の際の溶液の温度としては、例えば80℃以上95℃以下が採用される。
 <アルキル変性PVA溶液の用途>
 当該アルキル変性PVA溶液は、アルキル変性PVAを高濃度とした場合においても高温での粘度の上昇が抑えられるため取扱性に優れ、低温にすると急激に粘度が上昇し優れた低温ゲル化性能を発現するため、PVA-ホウ酸架橋溶液に代わる、安全性の高い低温ゲル化溶液として好適に用いることができる。従って、当該アルキル変性PVA溶液は、感温性バインダー、ゲル化剤、感温性接着剤、増粘剤等として好適に用いることができる。具体的には、例えば、紙用コーティング剤;内添サイズ剤;繊維加工剤;染料;グラスファイバーのコーティング剤;金属やガラスの表面コート剤;防曇剤等の被覆剤;木材、紙、アルミ箔、プラスチック等の接着剤;不織布バインダー;繊維状バインダー;石膏ボード及び繊維板等の建材用バインダー;各種エマルジョン系接着剤の増粘剤;尿素樹脂系接着剤の添加剤;セメント及びモルタル用添加剤;ホットメルト型接着剤;感圧接着剤等の各種接着剤;エチレン、酢酸ビニル、塩化ビニル等の各種エチレン系不飽和単量体の乳化重合用分散剤;塗料、接着剤等の顔料分散用安定剤;塩化ビニル、塩化ビニリデン、スチレン、(メタ)アクリル酸、酢酸ビニル等の各種エチレン性不飽和単量体の懸濁重合用分散安定剤;繊維、フィルム、シート、パイプ、チューブ、水溶性繊維、暫定皮膜等の成形物;疎水性樹脂への親水性付与剤;土質改良剤;土質安定剤等を構成する成分として用いることができる。
 以下、実施例及び比較例により、本発明を詳細に説明する。なお、以下の実施例及び比較例において「部」及び「%」は、特に断りのない限り質量を基準とする。
 下記製造例により得られたPVA(アルキル変性PVA及び無変性PVA)について、以下の方法に従って評価を行った。
 [変性率]
 各PVAの変性率(PVAにおけるアルキル基を有する単量体単位の含有率)は、上述のプロトンNMRを用いた方法により求めた。
 [重合度]
 各PVAの粘度平均重合度は、JIS-K6726:1994年に記載の方法により求めた。
 [けん化度]
 各PVAのけん化度は、JIS-K6726:1994年に記載の方法により求めた。
 <PVAの製造>
 [製造例1](PVA1の製造)
 撹拌機、還流冷却管、窒素導入管、コモノマー滴下口及び開始剤の添加口を備えた3Lの反応器に、酢酸ビニル750g、メタノール250g及びN-オクタデシルメタクリルアミド1.1gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。また、ディレー溶液としてN-オクタデシルメタクリルアミドをメタノールに溶解して濃度5%としたコモノマー溶液を調製し、窒素ガスのバブリングにより窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)0.25gを添加し重合を開始した。ディレー溶液を滴下により添加し、重合溶液中のモノマー組成(酢酸ビニルとN-オクタデシルメタクリルアミドとの比率)が一定となるようにしながら、60℃で3時間重合した後、冷却して重合を停止した。用いたコモノマー(N-オクタデシルメタクリルアミド)の総量(仕込み+添加)は4.8gであった。また重合停止時の固形分濃度は29.9%であった。続いて30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルモノマーの除去を行い、アルキル変性ビニルエステル系重合体(アルキル変性PVAc)のメタノール溶液(濃度35%)を得た。さらに、これにメタノールを加えて調製したアルキル変性PVAcのメタノール溶液771.4g(溶液中のアルキル変性PVAc200.0g)に、27.9gのアルカリ溶液(水酸化ナトリウムの10%メタノール溶液)を添加してけん化を行った。ここで、けん化溶液におけるアルキル変性PVAc濃度は25%、アルキル変性PVAc中の酢酸ビニル単位に対する水酸化ナトリウムのモル比は0.03であった。アルカリ溶液を添加後約1分でゲル状物が生成したので、これを粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチル500gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得、これにメタノール2,000gを加えて室温で3時間放置洗浄した。上記の洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機中65℃で2日間放置してアルキル変性PVA(PVA1)を得た。
 [製造例2~18](PVA2~18の製造)
 酢酸ビニル及びメタノールの仕込み量、重合時に使用するアルキル基を有する不飽和単量体の種類や添加量等の重合条件、けん化時におけるアルキル変性PVAcの濃度、酢酸ビニル単位に対する水酸化ナトリウムのモル比等のけん化条件を表1に示すように変更したこと以外は、実施例1と同様の方法により各種のアルキル変性PVA(PVA2~18)を製造した。
 [製造例19](PVA19の製造)
 撹拌機、還流冷却管、窒素導入管及び開始剤の添加口を備えた3Lの反応器に、酢酸ビニル750g、メタノール250g、及びオクタデシルビニルエーテル57.3gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)1.0gを添加し重合を開始した。60℃で2時間重合した後、冷却して重合を停止した。重合停止時の固形分濃度は30.4%であった。続いて30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルモノマーの除去を行い、アルキル変性ビニルエステル系重合体(アルキル変性PVAc)のメタノール溶液(濃度35%)を得た。さらに、これにメタノールを加えて調製したアルキル変性PVAcのメタノール溶液792.9g(溶液中のアルキル変性PVAc200.0g)に、7.0gのアルカリ溶液(水酸化ナトリウムの10%メタノール溶液)を添加してけん化を行った。ここで、けん化溶液のアルキル変性PVAc濃度は25%、アルキル変性PVAc中の酢酸ビニル単位に対する水酸化ナトリウムのモル比は0.0075であった。アルカリ溶液を添加後約12分でゲル状物が生成したので、これを粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチル500gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得、これにメタノール2,000gを加えて室温で3時間放置洗浄した。上記の洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機中65℃で2日間放置してアルキル変性PVA(PVA19)を得た。
 [製造例20](PVA20の製造)
 撹拌機、還流冷却管、窒素導入管及び開始剤の添加口を備えた3Lの反応器に、酢酸ビニル900g及びメタノール100gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル(AIBN)0.25gを添加し重合を開始し、60℃で3時間重合した後、冷却して重合を停止した。重合停止時の固形分濃度は31.0%であった。続いて30℃、減圧下でメタノールを時々添加しながら未反応の酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニル(PVAc)のメタノール溶液(濃度30%)を得た。さらに、これにメタノールを加えて調製したPVAcのメタノール溶液971.1g(溶液中のPVAc200.0g)に、27.9gのアルカリ溶液(水酸化ナトリウムの10%メタノール溶液)を添加してけん化を行った。ここで、けん化溶液のPVAc濃度は20%、PVAc中の酢酸ビニル単位に対する水酸化ナトリウムのモル比は0.03であった。アルカリ溶液を添加後約1分でゲル状物が生成したので、これを粉砕器にて粉砕し、40℃で1時間放置してけん化を進行させた後、酢酸メチル500gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和が終了したことを確認した後、濾別して白色固体を得、これにメタノール2,000gを加えて室温で3時間放置洗浄した。上記の洗浄操作を3回繰り返した後、遠心脱液して得られた白色固体を乾燥機中65℃で2日間放置して無変性PVA(PVA20)を得た。
Figure JPOXMLDOC01-appb-T000016
 [実施例1]
 界面活性剤としてポリエチレングリコール-ポリプロピレングリコール-ポリエチレングリコールのトリブロック共重合体(式(I)で表される界面活性剤Aとして表2に示した化合物)9gと、蒸留水81gとの質量比(界面活性剤の質量/水の質量)=10/90である混合物に対して、10gのPVA1を室温で加え、スリーワンモーターを用いて30分間撹拌した。次に、この溶液を撹拌しながら90℃まで昇温し、そのまま1時間撹拌した後、室温まで冷却し、PVA1を10質量%の濃度で含有するPVA溶液を得た。得られたPVA溶液について、下記方法に従って、溶解性評価、溶液評価(20℃における粘度、60℃における粘度及び60℃における取扱性、並びに20℃における粘度と60℃における粘度との粘度比)を行った。結果を表3に示す。
 [溶解性評価]
 PVA溶液の状態を目視で観察し、以下の基準に従って判定した。なお、下記評価がA~Cの場合、実用性に優れると言える。
 A:透明な溶液
 B:若干のにごりあり
 C:白濁溶液
 D:溶け残りあり
 [溶液評価]
(20℃における粘度、60℃における粘度及び60℃における取扱性)
 BH型粘度計を用いて、ロータ回転数2rpm、20℃及び60℃の条件下でPVA溶液の粘度(mPa・s)を測定した。さらに、以下の基準に従って、60℃での取扱性を判定した。なお、下記評価がA又はBの場合、実用性があると言える。
 A:60℃粘度が1mPa・s以上10,000mPa・s未満
 B:60℃粘度が10,000mPa・s以上15,000mPa・s未満
 C:60℃粘度が15,000mPa・s以上20,000mPa・s未満
 D:60℃粘度が20,000mPa・s以上
 E:溶け残りあり
 (20℃における粘度と60℃における粘度の粘度比)
 PVA溶液の20℃における粘度を60℃における粘度で割った値から、以下の基準に従って、低温でのゲル化性能を判定した。なお、下記評価がA~Cの場合、低温でのゲル化性能に優れると言える。
 A:20℃ではゲル(粘度が1,000,000mPa・s以上)である
 B:100≦20℃粘度/60℃粘度
 C:25≦20℃粘度/60℃粘度<100
 D:10≦20℃粘度/60℃粘度<25
 E:20℃粘度/60℃粘度<10
 F:60℃で溶け残りあり
 [実施例2~23及び比較例1~11]
 用いたPVA及び界面活性剤の種類、並びに界面活性剤と水との質量比を表3に示すとおりに変更したこと以外は実施例1と同様に操作して、各PVAを10質量%の濃度で含有するPVA溶液を調製した。得られた各PVA溶液について、実施例1と同様の方法により溶解性評価及び溶液評価を行った。使用した界面活性剤の種類を表2に、結果を表3に示す。なお、表2中の界面活性剤A~Eは、式(I)で表される界面活性剤である。また、表3中の「-」は、4%水溶液粘度、20℃粘度及び60℃粘度については、溶け残りがあり評価不能であったことを示し、変性率、界面活性剤の種類、界面活性剤/水(質量比)については、該当する成分を添加していないことを示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表3に示されるように、実施例1~23の溶液は、水溶性の低いアルキル基を有するPVAの溶液であるにも関わらず、PVA濃度が10%と高濃度のPVA溶液を作製することができ、60℃での取扱性に優れ、20℃になると粘度が急激に増加し、低温でのゲル化性能に優れた溶液であることが分かる。さらに、PVAの重合度、単量体単位の構造、界面活性剤の種類及び界面活性剤と水との質量比を特定した、実施例1、2、6~8、15及び22の溶液は、60℃での取扱性、低温でのゲル化性能に特に優れ、さらに溶解性評価も優れた溶液が得られた。なお、例えばPVA14を用いた実施例12では、低温でのゲル化性能が低下しているが、これはアルキル変性PVAのアルキル基の長さが炭素数5と短いことに起因していると考えられる。また、実施例16及び20は溶液の状態が少し悪くなっていることが分かる。これは、炭素数5~29のアルキル基を有する単量体の構造が異なることや、界面活性剤とPVAとの相溶性が悪いことに起因していると考えられる。また、実施例18、19及び23では低温でのゲル化性能が少し低下している。これは界面活性剤の構造が異なることや界面活性剤の添加量が多いため、20℃でもアルキル変性PVAの疎水性相互作用が弱められているためだと考えられる。
 一方、PVAが規定の要件(アルキル基の炭素数、変性率及びけん化度)を満たさない場合(比較例1~4及び11)や、界面活性剤の構造が規定の要件を満たさない場合(比較例5~9)、界面活性剤を使用しない場合(比較例10及び11)は、高濃度溶液が得られない、溶解性が低下する、低温でのゲル化性能が低下すること等が観察された。
 本発明のアルキル変性PVA溶液は、アルキル変性PVAを高濃度とした場合においても、高温では粘度が低く取扱性に優れ、温度が低下すると急激に増粘しゲル化する性能を有する。そのため、当該アルキル変性PVA溶液は、PVA-ホウ酸架橋溶液に代わる安全性の高い低温ゲル化溶液として、感温性バインダー、ゲル化剤、感温性接着剤、増粘剤等に好適に用いることができる。

Claims (9)

  1.  アルキル変性ビニルアルコール系重合体、界面活性剤及び水を含有し、
     上記アルキル変性ビニルアルコール系重合体が炭素数5~29のアルキル基を有する単量体単位を含有し、この単量体単位の含有率が0.05モル%以上5モル%以下であり、かつ上記アルキル変性ビニルアルコール系重合体のけん化度が20モル%以上99.99モル%以下であり、
     上記界面活性剤が、下記式(I)で表される化合物であるアルキル変性ビニルアルコール系重合体溶液。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Rは、炭素数3~5のアルキレン基である。Rは、単結合又は炭素数1~5のアルキレン基である。Xは、水素原子又は有機基である。Xは、親水基である。mは、1以上100以下の整数である。mが2以上の場合、複数存在するRは、それぞれ独立して上記定義を満たす。)
  2.  上記Xが、カルボキシル基若しくはその塩、スルホン酸基若しくはその塩又は下記式(II)で表される基である請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、n1は、1以上200以下の整数である。)
  3.  上記Xの有機基が、炭素数1~29のアルキル基又は親水基である請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
  4.  上記Xの親水基が、下記式(III)で表される基である請求項3に記載のアルキル変性ビニルアルコール系重合体溶液。
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、n2は、1以上200以下の整数である。)
  5.  上記単量体単位が、下記式(IV)で表される請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
    Figure JPOXMLDOC01-appb-C000004
    (式(IV)中、Rは、炭素数5~29のアルキル基である。Rは、水素原子又は炭素数1~8のアルキル基である。)
  6.  上記アルキル変性ビニルアルコール系重合体が、下記式(V)で表される不飽和単量体とビニルエステル系単量体との共重合体をけん化することにより得られる請求項5に記載のアルキル変性ビニルアルコール系重合体溶液。
    Figure JPOXMLDOC01-appb-C000005
    (式(V)中、R及びRの定義は、上記式(IV)と同様である。)
  7.  上記アルキル変性ビニルアルコール系重合体の粘度平均重合度が、200以上5,000以下である請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
  8.  上記界面活性剤と上記水との質量比(界面活性剤の質量/水の質量)が、1/99以上40/60以下である請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
  9.  上記アルキル変性ビニルアルコール系重合体の濃度が、0.5質量%以上50質量%以下である請求項1に記載のアルキル変性ビニルアルコール系重合体溶液。
PCT/JP2012/076290 2011-10-14 2012-10-11 アルキル変性ビニルアルコール系重合体溶液 WO2013054834A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280050166.3A CN103906807B (zh) 2011-10-14 2012-10-11 烷基改性乙烯醇系聚合物溶液
EP12840066.0A EP2767560A4 (en) 2011-10-14 2012-10-11 ALKYL-MODIFIED VINYL ALCOHOL POLYMER SOLUTION
JP2013538564A JP5525110B2 (ja) 2011-10-14 2012-10-11 アルキル変性ビニルアルコール系重合体溶液
US14/351,734 US9303146B2 (en) 2011-10-14 2012-10-11 Alkyl-modified vinyl alcohol polymer solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-227306 2011-10-14
JP2011227306 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054834A1 true WO2013054834A1 (ja) 2013-04-18

Family

ID=48081887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076290 WO2013054834A1 (ja) 2011-10-14 2012-10-11 アルキル変性ビニルアルコール系重合体溶液

Country Status (5)

Country Link
US (1) US9303146B2 (ja)
EP (1) EP2767560A4 (ja)
JP (1) JP5525110B2 (ja)
CN (1) CN103906807B (ja)
WO (1) WO2013054834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112586A1 (ja) * 2013-01-18 2014-07-24 株式会社クラレ ポリオキシアルキレン変性ビニルアルコール系重合体を含有する組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958954B (zh) * 2010-06-09 2015-09-16 可乐丽股份有限公司 烷基改性乙烯醇系聚合物、以及含有其的组合物、增粘剂、纸用涂布剂、涂布纸、粘接剂和膜
CN113292715B (zh) * 2021-05-25 2023-02-07 德锡化学(山东)有限公司 Po/eo嵌段共聚物表面活性剂、制备方法及高速镀锡添加剂组合物
CN114014969B (zh) * 2021-11-15 2023-08-11 上海华峰新材料研发科技有限公司 一种水溶性聚合物及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942325A (ja) * 1982-09-03 1984-03-08 Dai Ichi Seiyaku Co Ltd コ−テイング用組成物及びコ−テイング製剤
JPH08281092A (ja) * 1995-04-14 1996-10-29 Nippon Synthetic Chem Ind Co Ltd:The 乳化分散安定剤
JPH09316434A (ja) * 1996-06-03 1997-12-09 Nippon Parkerizing Co Ltd 金属材料の親水性化用水性処理剤および処理方法
JPH10265754A (ja) * 1997-03-27 1998-10-06 Kao Corp (メタ)アクリル系エマルジョン型粘着剤組成物及びこれを用いた粘着製品
JPH10265753A (ja) * 1997-03-27 1998-10-06 Kao Corp (メタ)アクリル系エマルジョン型粘着剤組成物及びこれを用いた粘着製品
JPH10338714A (ja) 1997-06-09 1998-12-22 Kao Corp 新規ポリビニルアルコール誘導体
JP2000192003A (ja) * 1998-12-25 2000-07-11 Daicel Chem Ind Ltd たばこチップ用接着剤およびその製造方法
JP2002129031A (ja) * 2000-10-30 2002-05-09 Nitto Denko Corp ポリマー水分散体およびその製造方法
JP2008291120A (ja) 2007-05-25 2008-12-04 Japan Vam & Poval Co Ltd 新規ポリビニルアルコール系樹脂、その製造方法およびそれを主成分とする分散剤
WO2011155546A1 (ja) * 2010-06-09 2011-12-15 株式会社クラレ アルキル変性ビニルアルコール系重合体、並びにこれを含む組成物、増粘剤、紙用塗工剤、塗工紙、接着剤及びフィルム
WO2012124746A1 (ja) * 2011-03-17 2012-09-20 株式会社クラレ 変性ビニルアルコール系重合体溶液及びこの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144388A (en) 1976-12-14 1979-03-13 Mitsui Petrochemical Industries, Ltd. Film-forming and thermocurable vinyl alcohol-substituted acrylamide copolymers and process for production thereof
FR2815250B1 (fr) * 2000-10-16 2003-04-11 Oreal Composition de maquillage de la peau
JP2013119591A (ja) * 2011-12-07 2013-06-17 Kuraray Co Ltd レオロジー調整剤及び水系分散体
JP2013124320A (ja) * 2011-12-15 2013-06-24 Kuraray Co Ltd アルキル変性ビニルアルコール系重合体を含有する組成物及びこれを用いた加水分解性セルロースの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942325A (ja) * 1982-09-03 1984-03-08 Dai Ichi Seiyaku Co Ltd コ−テイング用組成物及びコ−テイング製剤
JPH08281092A (ja) * 1995-04-14 1996-10-29 Nippon Synthetic Chem Ind Co Ltd:The 乳化分散安定剤
JPH09316434A (ja) * 1996-06-03 1997-12-09 Nippon Parkerizing Co Ltd 金属材料の親水性化用水性処理剤および処理方法
JPH10265754A (ja) * 1997-03-27 1998-10-06 Kao Corp (メタ)アクリル系エマルジョン型粘着剤組成物及びこれを用いた粘着製品
JPH10265753A (ja) * 1997-03-27 1998-10-06 Kao Corp (メタ)アクリル系エマルジョン型粘着剤組成物及びこれを用いた粘着製品
JPH10338714A (ja) 1997-06-09 1998-12-22 Kao Corp 新規ポリビニルアルコール誘導体
JP2000192003A (ja) * 1998-12-25 2000-07-11 Daicel Chem Ind Ltd たばこチップ用接着剤およびその製造方法
JP2002129031A (ja) * 2000-10-30 2002-05-09 Nitto Denko Corp ポリマー水分散体およびその製造方法
JP2008291120A (ja) 2007-05-25 2008-12-04 Japan Vam & Poval Co Ltd 新規ポリビニルアルコール系樹脂、その製造方法およびそれを主成分とする分散剤
WO2011155546A1 (ja) * 2010-06-09 2011-12-15 株式会社クラレ アルキル変性ビニルアルコール系重合体、並びにこれを含む組成物、増粘剤、紙用塗工剤、塗工紙、接着剤及びフィルム
WO2012124746A1 (ja) * 2011-03-17 2012-09-20 株式会社クラレ 変性ビニルアルコール系重合体溶液及びこの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112586A1 (ja) * 2013-01-18 2014-07-24 株式会社クラレ ポリオキシアルキレン変性ビニルアルコール系重合体を含有する組成物

Also Published As

Publication number Publication date
CN103906807B (zh) 2016-05-11
JPWO2013054834A1 (ja) 2015-03-30
JP5525110B2 (ja) 2014-06-18
US20140243462A1 (en) 2014-08-28
CN103906807A (zh) 2014-07-02
US9303146B2 (en) 2016-04-05
EP2767560A1 (en) 2014-08-20
EP2767560A4 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6110678B2 (ja) ヒドロキシメチル基含有ビニルアルコール系重合体
JP4514836B2 (ja) ビニルアルコール系重合体及びそれを含有するフィルム
JP5525110B2 (ja) アルキル変性ビニルアルコール系重合体溶液
JP5496215B2 (ja) ビニルアルコール系重合体を含有する増粘剤
JP5788969B2 (ja) 変性ビニルアルコール系重合体溶液及びこの製造方法
JP6170632B2 (ja) ビニルアルコール系共重合体及びそれを含有する組成物並びに乳化重合用分散安定剤
JP6027419B2 (ja) アルケニル変性ビニルアルコール系重合体及びこれを含む増粘剤
JP5501345B2 (ja) 水性接着剤
JPWO2019159757A1 (ja) 変性ビニルアルコール系重合体とその製造方法
JP5566645B2 (ja) 泥水用分散剤
JP6207921B2 (ja) ビニルアセタール系重合体
JP5937497B2 (ja) アルキル変性ビニルアルコール系重合体溶液及びこの製造方法
JP5981527B2 (ja) 増粘剤
JP5937495B2 (ja) アルキル変性ビニルアルコール系重合体溶液及びこの製造方法
JP6073733B2 (ja) 水性エマルジョン型接着剤の製造方法
WO2014112586A1 (ja) ポリオキシアルキレン変性ビニルアルコール系重合体を含有する組成物
JP6184706B2 (ja) アルキル変性ビニルアルコール系重合体組成物
JP2015034263A (ja) 水性エマルジョン組成物及び乳化重合用安定剤
JP2014173067A (ja) 乳化重合用安定剤
JP2013119591A (ja) レオロジー調整剤及び水系分散体
JP2014159534A (ja) 耐水性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280050166.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351734

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012840066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012840066

Country of ref document: EP