WO2013054758A1 - イオン交換器及びイオン交換器を備える冷却装置 - Google Patents

イオン交換器及びイオン交換器を備える冷却装置 Download PDF

Info

Publication number
WO2013054758A1
WO2013054758A1 PCT/JP2012/075964 JP2012075964W WO2013054758A1 WO 2013054758 A1 WO2013054758 A1 WO 2013054758A1 JP 2012075964 W JP2012075964 W JP 2012075964W WO 2013054758 A1 WO2013054758 A1 WO 2013054758A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
cooling water
ion exchanger
mesh
hole
Prior art date
Application number
PCT/JP2012/075964
Other languages
English (en)
French (fr)
Inventor
真一郎 竹本
聡 白柳
Original Assignee
日産自動車株式会社
株式会社Roki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 株式会社Roki filed Critical 日産自動車株式会社
Priority to US14/351,288 priority Critical patent/US9620801B2/en
Priority to CN201280050564.5A priority patent/CN103857628B/zh
Priority to EP12840056.1A priority patent/EP2767514B1/en
Priority to JP2013538528A priority patent/JP5860472B2/ja
Publication of WO2013054758A1 publication Critical patent/WO2013054758A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/022Column or bed processes characterised by the construction of the column or container
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/028Tortuous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an ion exchanger that removes impurity ions in a fluid and a cooling device including the ion exchanger.
  • the fuel cell includes an anode electrode, a cathode electrode, and an electrolyte membrane sandwiched between these electrodes.
  • the fuel cell generates electric power using an anode gas containing hydrogen supplied to the anode electrode and a cathode gas containing oxygen supplied to the cathode electrode.
  • the electrochemical reaction that proceeds in both the anode and cathode electrodes is as follows.
  • Anode electrode 2H 2 ⁇ 4H + + 4e ⁇ (1)
  • Cathode electrode 4H + + 4e ⁇ + O 2 ⁇ 2H 2 O (2)
  • a fuel cell stack in which several hundred fuel cells are stacked is used. Then, a fuel cell system for supplying anode gas and cathode gas to the fuel cell stack is configured, and electric power for driving the vehicle is taken out.
  • a cooling water circulation passage is provided to cool the fuel cell stack.
  • impurity ions such as Na + and SO 4 2 ⁇ are eluted from the piping in the circulation passage into the cooling water, increasing the electrical conductivity of the cooling water, and the power generation performance of the fuel cell stack Will get worse. Therefore, an ion exchanger for removing impurity ions in the cooling water is installed in the cooling water circulation passage. It is preferable that the ion exchanger has a large ion exchange rate related to the removal performance of impurity ions and a small pressure loss, which is a pressure difference between the inlet side and the outlet side.
  • JP 2009-219954A discloses an ion exchanger having a double tube structure including an inner tube and an outer tube.
  • this ion exchanger one of the passage formed inside the inner tube and the passage formed between the inner tube and the outer tube is configured as an ion exchange passage filled with an ion exchange resin, and the other passage is bypassed. Configured as a passage.
  • the ion exchanger described above is configured so that the cross-sectional area of the flow path at the center position of the bypass passage is small, and the pressure loss in the bypass passage tends to increase, improving both the ion exchange rate and the pressure loss. I can't.
  • An object of the present invention is to provide an ion exchanger capable of increasing the ion exchange rate while suppressing an increase in pressure loss.
  • an ion exchanger that removes impurity ions of cooling water that cools a fuel cell, and includes an inflow portion having an inflow passage through which cooling water flows and a discharge passage through which cooling water is discharged.
  • the outer cylinder in which the inflow section is installed at the upstream end Formed between the inner cylinder and the outer cylinder, the outer cylinder in which the inflow section is installed at the upstream end, the outer cylinder in which the discharge section is installed at the downstream end, the inner cylinder housed inside the outer cylinder, An outer passage that communicates the inflow passage and the discharge passage, and an inner passage that is formed inside the inner cylinder and that communicates the inflow passage and the discharge passage and is filled with an ion exchange resin capable of removing impurity ions of cooling water And an inner tube is provided with an ion exchanger in which a through hole communicating with the inner passage and the outer passage is formed.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system including an ion exchanger according to a first embodiment of the present invention.
  • FIG. 2A is an exploded perspective view of an ion exchanger provided in the cooling device of the fuel cell system.
  • FIG. 2B is a longitudinal sectional view of the ion exchanger.
  • FIG. 2C is a side view of the upstream end side of the ion exchanger.
  • FIG. 3 is a diagram schematically showing a longitudinal section of the ion exchanger.
  • FIG. 4A is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the ion exchange rate of cations.
  • FIG. 4A is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the ion exchange rate of cations.
  • FIG. 4B is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the ion exchange rate of anions.
  • FIG. 5 is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the pressure loss.
  • FIG. 6 is a longitudinal sectional view of an ion exchanger according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the amount of cooling water passing through the ion exchanger and the ion exchange rate.
  • FIG. 8 is a view schematically showing a longitudinal section of an ion exchanger according to a third embodiment of the present invention.
  • FIG. 9 is a diagram schematically showing a longitudinal section of an ion exchanger according to a modification of the third embodiment.
  • FIG. 10 is a longitudinal sectional view of an ion exchanger according to a fourth embodiment of the present invention.
  • FIG. 11 is a perspective view of an ion exchanger according to a fifth embodiment of the present invention.
  • FIG. 12 is a view schematically showing a longitudinal section of the ion exchanger according to the fifth embodiment.
  • FIG. 13 is a schematic configuration diagram showing a modification of the fuel cell system.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system 1 including an ion exchanger 100 according to a first embodiment of the present invention.
  • the fuel cell system 1 includes a fuel cell stack 10, a cooling device 20 that cools the fuel cell stack 10, and a controller 30 that executes system control.
  • the fuel cell stack 10 is configured by stacking a predetermined number of fuel cells.
  • the fuel cell stack 10 generates power using the anode gas supplied from the anode gas supply device and the cathode gas supplied from the cathode gas supply device.
  • the electric power generated by the fuel cell stack 10 is supplied to various electric devices such as a drive motor that drives the vehicle.
  • the cooling device 20 is a device that cools the fuel cell stack 10 with cooling water.
  • the cooling water pure water or glycol antifreeze is used.
  • the cooling device 20 includes a cooling water circulation passage 21, a radiator 22, a bypass passage 23, a three-way valve 24, a reservoir tank 25, a circulation pump 26, and an ion exchanger 100.
  • the cooling water circulation passage 21 is a passage through which cooling water for cooling the fuel cell stack 10 flows. One end of the coolant circulation passage 21 is connected to the coolant inlet portion of the fuel cell stack 10, and the other end is connected to the coolant outlet portion of the fuel cell stack 10.
  • the radiator 22 is a radiator that can cool the cooling water discharged from the fuel cell stack 10, and is installed in the cooling water circulation passage 21.
  • the bypass passage 23 is connected to the cooling water circulation passage 21 so as to bypass the radiator 22.
  • the three-way valve 24 is provided at a connection portion between the cooling water circulation passage 21 upstream of the radiator 22 and the bypass passage 23.
  • the three-way valve 24 is a flow rate adjusting member that adjusts the flow rate of the cooling water flowing into the radiator 22 and the flow rate of the cooling water flowing into the bypass passage 23.
  • the opening degree of the three-way valve 24 is controlled by the controller 30 according to the cooling load state and the like.
  • the reservoir tank 25 is installed in the cooling water circulation passage 21 between the radiator 22 and the downstream end connection portion of the bypass passage 23.
  • the reservoir tank 25 has a cap 25 ⁇ / b> A that opens and closes according to the pressure of the cooling water in the cooling water circulation passage 21.
  • the pressure in the cooling water circulation passage 21 is high, a part of the cooling water flowing through the cooling water circulation passage 21 is supplied to the reservoir tank 25 through the cap 25A, and when the pressure in the cooling water circulation passage 21 is low, the reservoir tank 25 cooling water is supplied to the cooling water circulation passage 21 through the cap 25A. Thereby, the pressure of the cooling water in the cooling water circulation passage 21 is maintained within a predetermined pressure range.
  • the circulation pump 26 is a pressure feeding device that circulates cooling water.
  • the circulation pump 26 is provided in the coolant circulation passage 21 between the downstream end connection portion of the bypass passage 23 and the fuel cell stack 10.
  • the discharge flow rate of the circulation pump 26 is controlled by the controller 30.
  • the ion exchanger 100 is installed in the cooling water circulation passage 21 between the downstream end connection portion of the bypass passage 23 and the circulation pump 26, for example, the cooling water circulation passage 21 on the downstream side of the radiator 22. Inside the ion exchanger 100, a granular ion exchange resin capable of removing impurity ions is enclosed. The ion exchanger 100 removes impurity ions contained in the cooling water and reduces the electrical conductivity of the cooling water.
  • the controller 30 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). Signals from various sensors that detect the operating state of the fuel cell stack 10 are input to the controller 30. Based on these input signals, the controller 30 controls the three-way valve 24, the circulation pump 26, and the like.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • FIG. 2A is an exploded perspective view of the ion exchanger 100.
  • 2B is a longitudinal sectional view of the ion exchanger 100, and
  • FIG. 2C is a left side view of the ion exchanger 100.
  • the ion exchanger 100 includes an outer cylinder 110, an inner cylinder 120 disposed coaxially within the outer cylinder 110, and lid members 130 and 140 attached to both ends of the outer cylinder 110. And comprising.
  • the outer cylinder 110 is a cylindrical frame.
  • the upstream end 111 and the downstream end 112 of the outer cylinder 110 are each formed as an open end.
  • a lid member 130 is attached to the upstream end 111 of the outer cylinder 110, and a lid member 140 is attached to the downstream end 112 of the outer cylinder 110.
  • the lid member 130 is configured as an inflow portion having an inflow passage 131 through which cooling water flows into the ion exchanger 100 from the cooling water circulation passage 21.
  • the inflow passage 131 is formed such that the passage diameter gradually increases along the flow direction of the cooling water, that is, from the upstream side toward the downstream side in the axial direction of the ion exchanger 100.
  • the lid member 140 is configured as a discharge unit having a discharge passage 141 that discharges cooling water from the ion exchanger 100 to the cooling water circulation passage 21.
  • the discharge passage 141 is formed such that the passage diameter gradually decreases along the flow direction of the cooling water, that is, from the upstream side toward the downstream side in the axial direction of the ion exchanger 100.
  • the inner cylinder 120 is a cylindrical frame.
  • the inner cylinder 120 is coaxially disposed inside the outer cylinder 110.
  • the inside of the inner cylinder 120 serves as the inner passage 150
  • the space between the outer cylinder 110 and the inner cylinder 120 serves as the outer passage 160.
  • the inner cylinder 120 includes a cylinder part 121 whose upstream end is open and a lid part 122 installed at the opening end of the cylinder part 121.
  • a plurality of rectangular through-holes 121 ⁇ / b> A that connect the inner passage 150 and the outer passage 160 are formed on the outer peripheral surface (side surface) of the cylindrical portion 121.
  • These through-holes 121 ⁇ / b> A are arranged in parallel in the axial direction of the cylinder part 121 with a predetermined interval, and are arranged in parallel in the outer peripheral direction of the cylinder part 121.
  • the downstream end 121B of the cylinder part 121 is formed in a disk shape.
  • a plurality of communicating portions 121C and 121D through which cooling water can pass are formed at the downstream end 121B.
  • the plurality of communication portions 121C are arranged in parallel around the center of the downstream end 121B with a predetermined interval.
  • the communication portion 121C is formed at a position near the center of the downstream end 121B so as to communicate the inner passage 150 and the discharge passage 141.
  • the plurality of communication portions 121D are arranged in parallel around the center of the downstream end 121B with a predetermined interval.
  • the communication portion 121D is formed at a position near the outer edge of the downstream end 121B that is radially outward from the communication portion 121C so as to communicate the outer passage 160 and the discharge passage 141.
  • the lid portion 122 is a disc-like member that is detachably attached to the open end of the cylindrical portion 121.
  • the lid part 122 constitutes the upstream end of the cylinder part 121.
  • the lid portion 122 is formed with a plurality of communication portions 122A and 122B through which cooling water can pass.
  • the plurality of communication portions 122A are arranged in parallel around the center of the lid portion 122 at a predetermined interval.
  • the communicating portion 122A is formed at a position near the center of the lid portion 122 so as to communicate the inflow passage 131 and the inner passage 150.
  • the plurality of communicating portions 122B are arranged in parallel around the center of the lid portion 122 with a predetermined interval.
  • the communicating portion 122B is formed at a position near the outer edge of the lid portion 122 that is radially outward from the communicating portion 122A so as to communicate the inflow passage 131 and the outer passage 160.
  • the mesh M has an opening of about 200 microns.
  • the mesh M is described only in some of the through holes 121A and the communication portions 121C and 122A, but in reality, the mesh M is provided in all of the through holes 121A and the communication portions 121C and 122A. Yes.
  • FIG. 3 is a diagram schematically showing a longitudinal section of the ion exchanger 100.
  • the cooling water flowing through the cooling water circulation passage 21 flows into the ion exchanger 100 through the inflow passage 131 of the lid member 130.
  • the cooling water in the inflow passage 131 flows into the inner passage 150 through the communication portion 122A of the lid portion 122 of the inner cylinder 120 and flows into the outer passage 160 through the communication portion 122B of the lid portion 122 of the inner cylinder 120. To do.
  • the cooling water flowing through the inner passage 150 and the outer passage 160 flows toward the downstream side while coming and going through the through hole 121A of the cylindrical portion 121 as shown by the arrows in FIG. That is, a part of the cooling water flowing through the outer passage 160 flows into the inner passage 150 through the through hole 121A, and a part of the cooling water flowing through the inner passage 150 flows into the outer passage 160 through the through hole 121A. Impurity ions in the cooling water are removed by the ion exchange resin when passing through the inner passage 150. Thereby, the electrical conductivity of cooling water falls.
  • the cooling water that has reached the downstream of the inner passage 150 flows out to the discharge passage 141 through the communication portion 121C of the downstream end 121B of the inner cylinder 120, and the cooling water that has reached the downstream of the outer passage 160 is downstream of the inner cylinder 120. It flows out to the discharge passage 141 through the communication part 121D of the end 121B.
  • the cooling water flowing out from the inner passage 150 and the outer passage 160 is discharged to the cooling water circulation passage 21 through the discharge passage 141 and supplied to the fuel cell stack 10.
  • FIG. 4A is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the ion exchange rate of cations.
  • FIG. 4B is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the ion exchange rate of anions.
  • FIG. 5 is a diagram showing the relationship between the flow rate of cooling water passing through the ion exchanger and the pressure loss.
  • the solid line indicates data corresponding to the on-exchanger 100 according to the first embodiment
  • the broken line indicates an ion exchanger as a comparative example that does not have a through hole in the inner cylinder. Data corresponding to is shown.
  • the ion exchanger according to the comparative example is configured so that the cooling water does not pass between the outer passage and the inner passage.
  • the ion exchanger 100 In the ion exchanger 100 according to the first embodiment, not only the cooling water flowing through the inflow passage 131 flows into the inner passage 150 but also the cooling water flowing through the outer passage 160 flows into the inner passage 150 through the through hole 121A. Therefore, from the initial use stage of the ion exchanger 100, impurity ions can be removed by using an ion exchange resin not only near the front side of the inner passage 150 but also near the outer peripheral surface, and the ion exchange rate in the ion exchanger 100 is increased. Is possible. Therefore, as shown in FIG. 4A and FIG.
  • the ion exchange rate of the cation and the anion of the ion exchanger 100 in the range of the flow rate of the cooling water assumed in the fuel cell stack 10 is that of the ion exchanger according to the comparative example. It becomes large compared with the ion exchange rate of a cation and an anion.
  • the pressure loss in the ion exchanger 100 is smaller than the pressure loss in the ion exchanger according to the comparative example in the flow rate range of the cooling water assumed in the fuel cell stack 10.
  • the ion exchanger 100 has a double tube structure with an outer cylinder 110 and an inner cylinder 120 filled with ion exchange resin.
  • the inner passage 150 and the outer passage 160 are communicated with the outer peripheral surface of the cylindrical portion 121 of the inner cylinder 120.
  • a through-hole 121A is formed. Since the cooling water flowing through the inner passage 150 and the outer passage 160 flows downstream through the through-hole 121A and flows downstream, the impurity ions are removed from the initial stage using an ion exchange resin near the outer peripheral surface of the inner cylinder 120. Therefore, the ion exchange rate in the ion exchanger 100 can be increased. In addition, since a part of the cooling water in the inner passage 150 flows into the outer passage 160 through the through hole 121A, an increase in pressure loss in the ion exchanger 100 can be suppressed.
  • the ion exchanger 100 is installed in the cooling water circulation passage 21 on the downstream side of the radiator 22, low-temperature cooling water can be supplied to the ion exchanger 100, and the inner cylinder It becomes possible to suppress the thermal deterioration of the ion exchange resin filled in 120.
  • the ion exchanger 100 by 2nd Embodiment of this invention is demonstrated.
  • the second embodiment is different from the first embodiment in the configuration of the through hole 121 ⁇ / b> A of the cylindrical portion 121 of the inner cylinder 120.
  • the same reference numerals are used for the components that perform the same functions as those in the first embodiment, and repeated descriptions are omitted as appropriate.
  • FIG. 6 is a longitudinal sectional view of the ion exchanger 100 according to the second embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of cooling water passing through the ion exchanger and the ion exchange rate.
  • a solid line indicates data corresponding to the ion exchanger 100 according to the second embodiment, and a broken line indicates data corresponding to the ion exchanger 100 according to the first embodiment.
  • the through hole 121 ⁇ / b> A is formed on the outer peripheral surface near the downstream end 121 ⁇ / b> B of the cylindrical portion 121 of the inner cylinder 120. That is, the through-hole 121A is not formed on the upstream side of the cylindrical portion 121, and is arranged in parallel at a predetermined interval in the outer peripheral direction on the downstream side of the cylindrical portion 121.
  • the ion exchange resin on the upstream side is easily used locally.
  • the cooling water flowing through the inflow passage 131 flows into the upstream side of the inner passage 150, and the cooling water flowing through the outer passage 160 flows into the downstream side of the inner passage 150. From the initial use stage of the ion exchanger 100, the entire ion exchange resin can be used relatively uniformly.
  • the water flow amount L2 until the ion exchange rate of the ion exchanger 100 according to the second embodiment reaches the lower limit value is such that the ion exchange rate of the ion exchanger 100 according to the first embodiment is lower limit value. It becomes larger than the water flow amount L1 until it reaches.
  • the ion exchanger 100 includes a through hole 121A on the outer peripheral surface of the inner cylinder 120 near the downstream side of the cylinder portion 121, and is configured so that cooling water flowing through the outer passage 160 flows into the downstream side of the inner passage 150. Therefore, the entire ion exchange resin can be used relatively uniformly. Thereby, the period until the ion exchange rate of the ion exchanger 100 reaches the lower limit value can be lengthened, and the impurity ions in the cooling water can be stably removed for a long time. In addition, since a part of the cooling water in the inner passage 150 flows into the outer passage 160 through the through hole 121A, an increase in pressure loss in the ion exchanger 100 can be suppressed.
  • the third embodiment is different from the first and second embodiments in the configuration of the mesh M provided in the through hole 121A of the inner cylinder 120 and the like.
  • FIG. 8 is a view schematically showing a longitudinal section of the ion exchanger 100 according to the third embodiment.
  • a mesh M1 as a first mesh is provided in the through hole 121A of the cylindrical portion 121 and the communication portion 121C of the downstream end 121B, and the communication portions 122A and 122B of the lid portion 122 are provided.
  • a mesh M2 as a second mesh is provided.
  • the mesh M1 provided in the through hole 121A and the communication part 121C is a mesh having an opening smaller than the particle size of the ion exchange resin.
  • the mesh M1 has an opening of about 200 microns. The mesh M1 prevents the ion exchange resin filled in the inner cylinder 120 from flowing out.
  • the mesh M2 provided in the communication portions 122A and 122B is a mesh having a smaller opening than the mesh M1 and capable of removing foreign matters contained in the cooling water.
  • the mesh M2 has an opening of about 100 microns.
  • the mesh M2 not only prevents the ion exchange resin filled in the inner cylinder 120 from flowing out to the outside, but also functions as a filter that removes foreign matters when the cooling water passes.
  • the mesh M1 is provided in the through-hole 121A of the cylindrical portion 121 of the inner cylinder 120 and the communication portion 121C of the downstream end 121B, and the communication portions 122A and 122B of the lid portion 122 are more than the mesh M1. Since the mesh M2 having a small mesh opening is provided, it is possible to prevent the ion exchange resin from flowing out of the inner cylinder 120, and it is possible to remove foreign substances contained in the cooling water. As a result, it is possible to supply the fuel cell stack 10 with cooling water having low electrical conductivity and containing no foreign matter.
  • the mesh M2 is provided in the communication portions 122A and 122B of the lid portion 122 of the inner cylinder 120.
  • the mesh M ⁇ b> 1 is provided in the through hole 121 ⁇ / b> A of the cylinder part 121 and the communication part 122 ⁇ / b> A of the lid part 122.
  • the ion exchange resin can be prevented from flowing out of the inner cylinder 120, and foreign matters contained in the cooling water can be removed. As a result, it is possible to supply the fuel cell stack 10 with cooling water having low electrical conductivity and containing no foreign matter.
  • the fourth embodiment is different from the first to third embodiments in that a guide wall 113 for guiding the flow of cooling water is installed in the outer passage 160.
  • FIG. 10 is a longitudinal sectional view of the ion exchanger 100 according to the fourth embodiment.
  • a guide wall 113 is provided on the inner peripheral surface of the outer cylinder 110 as a wall part for guiding the flow of cooling water.
  • the guide wall 113 is formed so as to protrude inward from the inner peripheral surface of the outer cylinder 110.
  • the guide wall 113 is provided for each through-hole 121A of the inner cylinder 120, and is arranged to face the through-hole 121A.
  • the guide wall 113 is formed so that the protruding amount from the inner peripheral surface of the outer cylinder 110 increases from the upstream end 111 to the downstream end 112 of the outer cylinder 110.
  • the cooling water flowing through the outer passage 160 is guided to the inner cylinder 120 side by the guide wall 113 provided in the outer passage 160, the cooling water passes through the through hole 121A. It becomes easy to flow into the inner passage 150, and the ion exchange rate can be increased.
  • the guide wall 113 is disposed so as to face the through-hole 121A, and is formed so that the protruding amount increases from the upstream end 111 to the downstream end 112 of the outer cylinder 110. Flows into the inner passage 150 from the position downstream of each through hole 121A (closer to the rear), so that the use of the ion exchange resin on the upstream side can be avoided locally, and the entire ion exchange resin It can be used uniformly. Thereby, it is possible to stably remove impurity ions in the cooling water for a long period of time.
  • the fifth embodiment is different from the first embodiment in that a partition wall 170 is provided in the outer passage 160.
  • FIG. 11 is a perspective view of the ion exchanger 100 according to the fifth embodiment.
  • FIG. 12 is a view schematically showing a longitudinal section of the ion exchanger 100 according to the fifth embodiment.
  • a ring-shaped partition wall 170 is fitted on the outer peripheral surface of the cylindrical portion 121 of the inner cylinder 120.
  • the partition wall 170 may be fixed to the inner peripheral surface of the outer cylinder 110 instead of being fixed to the outer peripheral surface of the cylindrical portion 121.
  • the partition wall 170 is provided in the outer passage 160 so as to be positioned between the upstream through hole 121A and the downstream through hole 121A of the cylindrical portion 121, and partitions the outer passage 160 into an upstream portion and a downstream portion.
  • the partition wall 170 includes a plurality of communication holes 171 that connect the upstream portion and the downstream portion of the outer passage 160. These communication holes 171 are arranged in parallel along the circumferential direction of the partition wall 170.
  • the cooling water that has flowed into the outer passage 160 flows from the upstream portion to the downstream portion through the communication hole 171 of the partition wall 170. Since the partition wall 170 exists between the upstream portion and the downstream portion of the outer passage 160, the cooling water in the upstream portion of the outer passage 160 passes through the inner passage through the upstream through hole 121A as shown by the arrow in FIG. It becomes easy to flow into 150.
  • a mesh M ⁇ b> 1 as a first mesh is provided in the communication part 122 ⁇ / b> A of the lid part 122 and the through hole 121 ⁇ / b> A on the upstream side of the cylinder part 121.
  • a mesh M2 as a second mesh is provided in the through hole 121A, the communication portion 121C of the downstream end 121B, and the communication hole 171 of the partition wall 170.
  • Mesh M1 is a mesh with openings smaller than the particle size of the ion exchange resin.
  • the mesh M1 has an opening of about 200 microns. The mesh M1 prevents the ion exchange resin filled in the inner cylinder 120 from flowing out.
  • Mesh M2 is a mesh having a smaller opening than mesh M1 and capable of removing foreign substances contained in the cooling water.
  • the mesh M2 has an opening of about 100 microns.
  • the mesh M2 not only prevents the ion exchange resin filled in the inner cylinder 120 from flowing out to the outside, but also functions as a filter that removes foreign matters when the cooling water passes.
  • the partition wall 170 having the communication hole 171 is installed in the outer passage 160 between the upstream through hole 121A and the downstream through hole 121A. Cooling water in the upstream portion of the passage 160 easily flows into the inner passage 150 through the upstream through hole 121A. Thereby, the ion exchange rate in the ion exchanger 100 can be increased.
  • the partition wall 170 Since the partition wall 170 is disposed behind the upstream through hole 121A, the cooling water in the upstream portion of the outer passage 160 flows from the position (downstream position) near the partition wall 170 of the upstream through hole 121A to the inner passage. Flows into 150. Therefore, it is possible to avoid the use of the ion exchange resin on the upstream side locally, and the entire ion exchange resin can be used relatively uniformly. Thereby, it is possible to stably remove impurity ions in the cooling water for a long period of time.
  • the mesh M1 is provided in the communication part 122A of the lid part 122 and the upstream through hole 121A of the cylindrical part 121, and the downstream through hole 121A and the downstream end of the cylindrical part 121 are provided. Since the mesh M2 having a mesh opening smaller than the mesh M1 is provided in the communication portion 121C of 121B and the communication hole 171 of the partition wall 170, it is possible to prevent the ion exchange resin from flowing out of the inner cylinder 120, and to the cooling water. The contained foreign matter can be removed. As a result, it is possible to supply the fuel cell stack 10 with cooling water having low electrical conductivity and containing no foreign matter.
  • the ion exchanger 100 is installed in the cooling water circulation passage 21 between the downstream end connection portion of the bypass passage 23 and the circulation pump 26 as shown in FIG. As shown, the cooling water circulation passage 21 between the circulation pump 26 and the fuel cell stack 10 may be installed. As described above, according to the cooling device 20 in which the ion exchanger 100 is arranged immediately before the fuel cell stack 10, the electrical conductivity of the cooling water flowing into the fuel cell stack 10 and the foreign matter in the cooling water can be reduced as much as possible. It becomes possible.
  • the ion exchanger 100 is provided between the circulation pump 26 and the fuel cell stack 10 and close to the circulation pump 26, the high-pressure cooling water immediately after being discharged from the circulation pump 26 is the ion exchanger 100. To be supplied.
  • the gap between the ion exchange resins becomes large and the ion exchange rate decreases.
  • the ion exchange resin is pushed toward the downstream end 121B side of the inner cylinder 120 by the water pressure, so there is a gap between the ion exchange resins. It can suppress becoming large. Therefore, according to the cooling device 20 in which the ion exchanger 100 is disposed at a position near the circulation pump 26, it is possible to suppress a decrease in the ion exchange rate in the ion exchanger 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Fuel Cell (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 燃料電池を冷却する冷却水の不純物イオンを除去するイオン交換器であって、冷却水が流入する流入通路を有する流入部と、冷却水を排出する排出通路を有する排出部と、上流端に流入部が設置され下流端に排出部が設置される外筒と、外筒の内側に収容される内筒と、内筒と外筒との間に形成され流入通路と排出通路とを連通する外側通路と、内筒の内側に形成され流入通路と排出通路とを連通するとともに冷却水の不純物イオンを除去可能なイオン交換樹脂が封入される内側通路と、を備え、内筒には内側通路及び外側通路を連通する貫通孔が形成される。

Description

イオン交換器及びイオン交換器を備える冷却装置
 本発明は、流体中の不純物イオンを除去するイオン交換器及びイオン交換器を備える冷却装置に関する。
 燃料電池は、アノード電極と、カソード電極と、これら電極に挟まれる電解質膜と、を備える。燃料電池は、アノード電極に供給される水素を含有するアノードガス及びカソード電極に供給される酸素を含有するカソードガスを用いて発電する。アノード電極及びカソード電極の両電極において進行する電気化学反応は、以下の通りである。
   アノード電極: 2H2 → 4H+4e        ・・・(1)
   カソード電極: 4H+4e+O2 → 2HO       ・・・(2)
 これら(1)(2)の電気化学反応によって、燃料電池は1ボルト程度の起電力を発生させる。
 燃料電池を自動車用動力源として使用する場合には、数百枚の燃料電池を積層した燃料電池スタックが用いられる。そして、燃料電池スタックにアノードガス及びカソードガスを供給する燃料電池システムを構成して、車両を駆動させるための電力を取り出す。
 このような燃料電池システムには、燃料電池スタックを冷却するため、冷却水の循環通路が設けられる。燃料電池システムを長期間使用すると、循環通路内の配管等からNaやSO 2-等の不純物イオンが冷却水中に溶出して、冷却水の電気伝導度が上がり、燃料電池スタックの発電性能が悪化してしまう。そのため、冷却水循環通路には、冷却水中の不純物イオンを除去するためのイオン交換器が設置される。イオン交換器は、不純物イオンの除去性能に関するイオン交換率が大きく、かつ流入口側と排出口側の圧力差である圧力損失が小さいものが好ましい。
 JP2009-219954Aには、内管及び外管からなる二重管構造のイオン交換器が開示されている。このイオン交換器では、内管の内側に形成される通路及び内管と外管の間に形成される通路の一方はイオン交換樹脂が充填されるイオン交換通路として構成され、他方の通路はバイパス通路として構成される。
 上記したイオン交換器では、バイパス通路の中央位置における流路断面積が小さくなるように構成されており、バイパス通路での圧力損失が大きくなりやすく、イオン交換率と圧力損失の両方を改善することはできない。
 本発明の目的は、圧力損失の増大を抑制しつつ、イオン交換率を大きくすることが可能なイオン交換器を提供することである。
 本発明のある態様によれば、燃料電池を冷却する冷却水の不純物イオンを除去するイオン交換器であって、冷却水が流入する流入通路を有する流入部と、冷却水を排出する排出通路を有する排出部と、上流端に流入部が設置され、下流端に排出部が設置される外筒と、外筒の内側に収容される内筒と、内筒と外筒との間に形成され、流入通路と排出通路とを連通する外側通路と、内筒の内側に形成され、流入通路と排出通路とを連通するとともに冷却水の不純物イオンを除去可能なイオン交換樹脂が封入される内側通路と、を備え、内筒には、内側通路及び外側通路を連通する貫通孔が形成されるイオン交換器が提供される。
 本発明の実施形態及び利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の第1実施形態によるイオン交換器を備える燃料電池システムの概略構成図である。 図2Aは、燃料電池システムの冷却装置に設けられるイオン交換器の分解斜視図である。 図2Bは、イオン交換器の縦断面図である。 図2Cは、イオン交換器の上流端側の側面図である。 図3は、イオン交換器の縦断面を模式的に示した図である。 図4Aは、イオン交換器を通過する冷却水の流量と陽イオンのイオン交換率の関係を示す図である。 図4Bは、イオン交換器を通過する冷却水の流量と陰イオンのイオン交換率の関係を示す図である。 図5は、イオン交換器を通過する冷却水の流量と圧力損失の関係を示す図である。 図6は、本発明の第2実施形態によるイオン交換器の縦断面図である。 図7は、イオン交換器を通過する冷却水の通水量とイオン交換率の関係を示す図である。 図8は、本発明の第3実施形態によるイオン交換器の縦断面を模式的に示した図である。 図9は、第3実施形態の変形例によるイオン交換器の縦断面を模式的に示した図である。 図10は、本発明の第4実施形態によるイオン交換器の縦断面図である。 図11は、本発明の第5実施形態によるイオン交換器の斜視図である。 図12は、第5実施形態によるイオン交換器の縦断面を模式的に示した図である。 図13は燃料電池システムの変形例を示す概略構成図である。
 (第1実施形態)
 図1は、本発明の第1実施形態によるイオン交換器100を備える燃料電池システム1の概略構成図である。
 図1に示すように、燃料電池システム1は、燃料電池スタック10と、燃料電池スタック10を冷却する冷却装置20と、システム制御を実行するコントローラ30と、を備える。
 燃料電池スタック10は、所定枚数の燃料電池を積層して構成されている。燃料電池スタック10は、アノードガス供給装置により供給されるアノードガスと、カソードガス供給装置により供給されるカソードガスとを用いて発電する。燃料電池スタック10が発電した電力は、車両を駆動する駆動モータ等の各種電気機器に供給される。
 冷却装置20は、冷却水によって燃料電池スタック10を冷却する装置である。冷却水には、純水又はグリコール系の不凍液が用いられる。冷却装置20は、冷却水循環通路21と、ラジエータ22と、バイパス通路23と、三方弁24と、リザーバタンク25と、循環ポンプ26と、イオン交換器100と、を備える。
 冷却水循環通路21は、燃料電池スタック10を冷却する冷却水が流れる通路である。冷却水循環通路21の一端は燃料電池スタック10の冷却水入口部に接続され、他端は燃料電池スタック10の冷却水出口部に接続される。
 ラジエータ22は、燃料電池スタック10から排出された冷却水を冷却可能な放熱器であって、冷却水循環通路21に設置される。
 バイパス通路23は、ラジエータ22をバイパスするように冷却水循環通路21に接続される。
 三方弁24は、ラジエータ22よりも上流側の冷却水循環通路21と、バイパス通路23との接続部に設けられる。三方弁24は、ラジエータ22に流入する冷却水の流量とバイパス通路23に流入する冷却水の流量を調整する流量調整部材である。三方弁24の開度は、冷却負荷状態等に応じてコントローラ30によって制御される。
 リザーバタンク25は、ラジエータ22とバイパス通路23の下流端接続部との間の冷却水循環通路21に設置される。リザーバタンク25は、冷却水循環通路21内の冷却水の圧力に応じて開閉するキャップ25Aを有している。冷却水循環通路21内の圧力が高い場合には、冷却水循環通路21を流れる冷却水の一部がキャップ25Aを通じてリザーバタンク25に供給され、冷却水循環通路21内の圧力が低い場合には、リザーバタンク25の冷却水がキャップ25Aを通じて冷却水循環通路21に供給される。これにより、冷却水循環通路21内の冷却水の圧力が所定圧力範囲内に保たれる。
 循環ポンプ26は、冷却水を循環させる圧送装置である。循環ポンプ26は、バイパス通路23の下流端接続部と燃料電池スタック10との間の冷却水循環通路21に設けられる。循環ポンプ26の吐出流量は、コントローラ30によって制御される。
 イオン交換器100は、ラジエータ22よりも下流側の冷却水循環通路21、例えばバイパス通路23の下流端接続部と循環ポンプ26との間の冷却水循環通路21に設置される。イオン交換器100の内部には、不純物イオンを除去可能な粒状のイオン交換樹脂が封入されている。イオン交換器100は、冷却水に含まれる不純物イオンを除去して、冷却水の電気伝導度を低減させる。
 コントローラ30は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ30には燃料電池スタック10の運転状態を検出する各種センサからの信号が入力しており、これら入力信号に基づいてコントローラ30は三方弁24や循環ポンプ26等を制御する。
 図2A~図2Cを参照して、イオン交換器100の構成ついて説明する。図2Aは、イオン交換器100の分解斜視図である。図2Bはイオン交換器100の縦断面図であり、図2Cはイオン交換器100の左側面図である。
 図2A~図2Cに示すように、イオン交換器100は、外筒110と、外筒110の内部に同軸に配置される内筒120と、外筒110の両端に取り付けられる蓋部材130,140と、を備える。
 外筒110は、円筒形状の枠体である。外筒110の上流端111及び下流端112は、それぞれ開口端として形成されている。外筒110の上流端111には蓋部材130が取り付けられ、外筒110の下流端112には蓋部材140が取り付けられる。
 蓋部材130は、冷却水循環通路21からイオン交換器100に冷却水を流入させる流入通路131を有する流入部として構成されている。流入通路131は、冷却水の流れ方向に沿って、つまりイオン交換器100の軸方向上流側から下流側に向かって、通路径が徐々に拡径するように形成されている。
 蓋部材140は、イオン交換器100から冷却水循環通路21に冷却水を排出させる排出通路141を有する排出部として構成されている。排出通路141は、冷却水の流れ方向に沿って、つまりイオン交換器100の軸方向上流側から下流側に向かって、通路径が徐々に縮径するように形成されている。
 内筒120は、円筒形状の枠体である。内筒120は、外筒110の内側に同軸で配置される。外筒110内に内筒120が設置された状態では、内筒120の内側が内側通路150となり、外筒110と内筒120の間が外側通路160となる。
 内筒120は、上流端が開口する筒部121と、筒部121の開口端に設置される蓋部122と、を備える。
 筒部121の外周面(側面)には、内側通路150と外側通路160とを連通する矩形状の貫通孔121Aが複数形成されている。これら貫通孔121Aは、筒部121の軸方向に所定間隔をあけて並設されるとともに、筒部121の外周方向に所定間隔をあけて並設されている。
 筒部121の下流端121Bは、円板状に形成されている。下流端121Bには、冷却水が通過可能な複数の連通部121C,121Dが形成されている。複数の連通部121Cは、下流端121Bの中心周りに所定間隔をあけて並設されている。連通部121Cは、内側通路150と排出通路141とを連通するように下流端121Bの中心寄りの位置に形成されている。複数の連通部121Dは、下流端121Bの中心周りに所定間隔をあけて並設されている。連通部121Dは、外側通路160と排出通路141とを連通するように、連通部121Cよりも径方向外側となる下流端121Bの外縁寄りの位置に形成されている。
 蓋部122は、筒部121の開口端に着脱可能に取り付けられる円板状部材である。蓋部122は、筒部121の上流端を構成する。蓋部122には、冷却水が通過可能な複数の連通部122A,122Bが形成されている。複数の連通部122Aは、蓋部122の中心周りに所定間隔あけて並設されている。連通部122Aは、流入通路131と内側通路150とを連通するように蓋部122の中心寄りの位置に形成されている。複数の連通部122Bは、蓋部122の中心周りに所定間隔あけて並設されている。連通部122Bは、流入通路131と外側通路160とを連通するように、連通部122Aよりも径方向外側となる蓋部122の外縁寄りの位置に形成されている。
 筒部121と蓋部122によって構成される内筒120の内部には、つまり内側通路150内には、冷却水中の不純物イオンを除去するためのイオン交換樹脂が充填される。イオン交換樹脂は粒状体であるため、内筒120からイオン交換樹脂が流出しないように、内筒120の貫通孔121A及び連通部121C,122Aにはイオン交換樹脂の粒径よりも小さい目開き(網目)のメッシュMが設けられている。メッシュMの目開きは、約200ミクロンに設定されている。図2A~図2Cにおいては、一部の貫通孔121A、連通部121C,122AのみにメッシュMを記載したが、実際には全ての貫通孔121A、連通部121C,122AにメッシュMが設けられている。
 図2A、図2B、及び図3を参照して、イオン交換器100を通過する冷却水の流れについて説明する。図3は、イオン交換器100の縦断面を模式的に示した図である。
 冷却水循環通路21を流れる冷却水は、蓋部材130の流入通路131を通ってイオン交換器100内に流入する。流入通路131内の冷却水は、内筒120の蓋部122の連通部122Aを通って内側通路150に流入するとともに、内筒120の蓋部122の連通部122Bを通って外側通路160に流入する。
 内側通路150及び外側通路160を流れる冷却水は、図3の矢印に示すように筒部121の貫通孔121Aを介して相互に往来しながら、下流側に向かって流れる。つまり、外側通路160を流れる冷却水の一部は貫通孔121Aを通って内側通路150に流れ込み、内側通路150を流れる冷却水の一部は貫通孔121Aを通って外側通路160に流れ込む。冷却水中の不純物イオンは、内側通路150を通過する際にイオン交換樹脂で除去される。これにより、冷却水の電気伝導率が低下する。
 その後、内側通路150の下流に到達した冷却水は内筒120の下流端121Bの連通部121Cを通って排出通路141に流出し、外側通路160の下流に到達した冷却水は内筒120の下流端121Bの連通部121Dを通って排出通路141に流出する。内側通路150及び外側通路160から流出した冷却水は、排出通路141を通って冷却水循環通路21に排出され、燃料電池スタック10に供給される。
 図4A、図4B、及び図5を参照して、イオン交換器100における作用効果について説明する。
 図4Aは、イオン交換器を通過する冷却水の流量と陽イオンのイオン交換率の関係を示す図である。図4Bは、イオン交換器を通過する冷却水の流量と陰イオンのイオン交換率の関係を示す図である。図5は、イオン交換器を通過する冷却水の流量と圧力損失の関係を示す図である。
 なお、図4A、図4B、及び図5において、実線は第1実施形態によるオン交換器100に対応するデータを示し、破線は内筒に貫通孔を有していない比較例としてのイオン交換器に対応するデータを示す。比較例によるイオン交換器は、冷却水が外側通路と内側通路との間で往来することがないように構成されている。
 第1実施形態によるイオン交換器100では、流入通路131を流れる冷却水が内側通路150に流入するだけでなく、外側通路160を流れる冷却水も貫通孔121Aを通じて内側通路150に流入する。そのため、イオン交換器100の使用初期段階から、内側通路150の前側寄りだけでなく外周面寄りのイオン交換樹脂を用いて不純物イオンを除去でき、イオン交換器100でのイオン交換率を大きくすることが可能となる。したがって、図4A及び図4Bに示すように、燃料電池スタック10で想定される冷却水の流量範囲において、イオン交換器100の陽イオン及び陰イオンのイオン交換率は、比較例によるイオン交換器の陽イオン及び陰イオンのイオン交換率と比べて大きくなる。
 また、イオン交換器100では、内側通路150を流れる冷却水の一部が貫通孔121Aを通じて外側通路160に流れ込むため、内側通路150及び外側通路160を通過する際の冷却水の圧力低下が抑制され、イオン交換器100での圧力損失の増大を抑制することが可能となる。したがって、図5に示すように、燃料電池スタック10で想定される冷却水の流量範囲において、イオン交換器100での圧力損失は、比較例によるイオン交換器での圧力損失と比べて小さくなる。
 上記した第1実施形態のイオン交換器100によれば、以下の効果を得ることができる。
 イオン交換器100は外筒110及びイオン交換樹脂が充填される内筒120によって二重管構造となっており、内筒120の筒部121の外周面には内側通路150と外側通路160を連通する貫通孔121Aが形成されている。内側通路150及び外側通路160を流れる冷却水が貫通孔121Aを通じて相互に往来しながら下流側に流れるので、初期段階から内筒120の外周面寄りのイオン交換樹脂を用いて不純物イオンを除去することができ、イオン交換器100でのイオン交換率を大きくすることが可能となる。また、内側通路150の冷却水の一部は貫通孔121Aを通じて外側通路160に流れ込むので、イオン交換器100での圧力損失の増大を抑制することが可能となる。
 なお、図1に示す冷却装置20ではイオン交換器100がラジエータ22よりも下流側の冷却水循環通路21に設置されるので、低温の冷却水をイオン交換器100に供給することができ、内筒120の内部に充填されるイオン交換樹脂の熱劣化を抑制することが可能となる。
 (第2実施形態)
 図6及び図7を参照して、本発明の第2実施形態によるイオン交換器100について説明する。第2実施形態は、内筒120の筒部121の貫通孔121Aの構成において、第1実施形態と相違する。なお、以下の各実施形態では、第1実施形態と同じ機能を果たす構成等には同一の符号を用い、重複する説明を適宜省略する。
 図6は、第2実施形態によるイオン交換器100の縦断面図である。図7は、イオン交換器を通過する冷却水の通水量とイオン交換率の関係を示す図である。図7において、実線は第2実施形態によるイオン交換器100に対応するデータを示し、破線は第1実施形態によるイオン交換器100に対応するデータを示す。
 図6に示すように、第2実施形態によるイオン交換器100では、貫通孔121Aは、内筒120の筒部121の下流端121B寄りの外周面に形成される。つまり、貫通孔121Aは、筒部121の上流側には形成されておらず、筒部121の下流側において外周方向に所定間隔をあけて並設されている。
 第1実施形態によるイオン交換器100では、流入通路131及び外側通路160を流れる冷却水が内側通路150の上流側に流れ込むため、上流側のイオン交換樹脂が局所的に使用されやすかった。これに対して、第2実施形態によるイオン交換器100では、流入通路131を流れる冷却水が内側通路150の上流側に流れ込み、外側通路160を流れる冷却水が内側通路150の下流側に流れ込むため、イオン交換器100の使用初期段階からイオン交換樹脂の全体を比較的均一に使用することができる。
 したがって、図7に示すように、第2実施形態によるイオン交換器100のイオン交換率が下限値に達するまでの通水量L2は、第1実施形態によるイオン交換器100のイオン交換率が下限値に達するまでの通水量L1よりも大きくなる。
 第2施形態によるイオン交換器100は、内筒120の筒部121の下流寄りの外周面に貫通孔121Aを備え、外側通路160を流れる冷却水が内側通路150の下流側に流れ込むように構成したので、イオン交換樹脂の全体を比較的均一に使用することができる。これにより、イオン交換器100のイオン交換率が下限値に達するまでの期間を長くすることができ、冷却水中の不純物イオンを長期間安定して除去することが可能となる。また、内側通路150の冷却水の一部は貫通孔121Aを通じて外側通路160に流れ込むので、イオン交換器100での圧力損失の増大を抑制することが可能となる。
 (第3実施形態)
 図8を参照して、本発明の第3実施形態によるイオン交換器100について説明する。第3実施形態は、内筒120の貫通孔121A等に設けられるメッシュMの構成において、第1及び第2実施形態と相違する。
 図8は、第3実施形態によるイオン交換器100の縦断面を模式的に示した図である。
 図8に示すように、イオン交換器100では、筒部121の貫通孔121A及び下流端121Bの連通部121Cに第1メッシュとしてのメッシュM1が設けられ、蓋部122の連通部122A,122Bに第2メッシュとしてのメッシュM2が設けられる。
 貫通孔121A及び連通部121Cに設けられるメッシュM1は、イオン交換樹脂の粒径よりも小さい目開きのメッシュである。メッシュM1の目開きは、約200ミクロンに設定されている。メッシュM1は、内筒120内に充填されたイオン交換樹脂が外部に流出することを防止する。
 連通部122A,122Bに設けられるメッシュM2は、メッシュM1よりも目開きが小さく、冷却水に含まれる異物を除去可能なメッシュである。メッシュM2の目開きは、約100ミクロンに設定されている。メッシュM2は、内筒120内に充填されたイオン交換樹脂が外部に流出することを防止するだけでなく、冷却水が通過する際に異物を除去するフィルタとして機能する。
 第3実施形態によるイオン交換器100では、内筒120の筒部121の貫通孔121A及び下流端121Bの連通部121CにメッシュM1を設け、蓋部122の連通部122A,122BにメッシュM1よりも目開きの小さいメッシュM2を設けるので、イオン交換樹脂が内筒120から流出することを防止ことができ、さらに冷却水に含まれる異物を除去することができる。これにより、低電気伝導率で異物が含まれていない冷却水を燃料電池スタック10に供給することが可能となる。
 なお、第3実施形態によるイオン交換器100では、メッシュM2を、内筒120の蓋部122の連通部122A,122Bに設けたが、図9に示すように筒部121の下流端121Bの連通部121C,121Dに設けてもよい。この場合には、メッシュM1は、筒部121の貫通孔121A及び蓋部122の連通部122Aに設けられる。図9に示した第3実施形態の変形例によるイオン交換器100では、イオン交換樹脂が内筒120から流出することを防止でき、さらに冷却水に含まれる異物を除去できる。これにより、低電気伝導率で異物が含まれていない冷却水を燃料電池スタック10に供給することが可能となる。
 (第4実施形態)
 図10を参照して、本発明の第4実施形態によるイオン交換器100について説明する。第4実施形態は、外側通路160内に冷却水の流れを誘導する誘導壁113を設置する点において第1から第3実施形態と相違する。
 図10は、第4実施形態によるイオン交換器100の縦断面図である。
 図10に示すように、第4実施形態によるイオン交換器100では、冷却水の流れを誘導する壁部として誘導壁113が外筒110の内周面に設けられる。誘導壁113は、外筒110の内周面から内側に突出するように形成されている。誘導壁113は、内筒120の貫通孔121Aごとに設けられており、貫通孔121Aと対向するように配置されている。誘導壁113は、外筒110の上流端111から下流端112に向かって外筒110の内周面からの突出量が大きくなるように形成されている。
 第4実施形態のイオン交換器100によれば、外側通路160を流れる冷却水が外側通路160内に設けられた誘導壁113によって内筒120側に誘導されるため、冷却水が貫通孔121Aを通じて内側通路150に流れ込みやすくなり、イオン交換率を高めることが可能となる。
 また、誘導壁113は、貫通孔121Aと対向するように配置され、外筒110の上流端111から下流端112に向かって突出量が大きくなるように形成されるため、外側通路160の冷却水は各貫通孔121Aの下流側(後方寄り)の位置から内側通路150に流れ込むようになり、上流側のイオン交換樹脂が局所的に使用されることを回避でき、イオン交換樹脂の全体を比較的均一に使用することができる。これにより、冷却水中の不純物イオンを長期間安定して除去することが可能となる。
 (第5実施形態)
 図11及び図12を参照して、本発明の第5実施形態によるイオン交換器100について説明する。第5実施形態は、外側通路160内に仕切壁170を設ける点において第1実施形態と相違する。
 図11は、第5実施形態によるイオン交換器100の斜視図である。図12は、第5実施形態によるイオン交換器100の縦断面を模式的に示す図である。
 図11及び図12に示すように、第5実施形態によるイオン交換器100では、リング状の仕切壁170が内筒120の筒部121の外周面に外嵌されている。仕切壁170は、筒部121の外周面に固定する代わりに、外筒110の内周面に固定してもよい。仕切壁170は、筒部121の上流側の貫通孔121Aと下流側の貫通孔121Aの間に位置するように外側通路160内に設けられ、外側通路160を上流部と下流部とに仕切る。仕切壁170は、外側通路160の上流部と下流部とを連通する連通孔171を複数備える。これら連通孔171は、仕切壁170の周方向に沿って並設される。
 外側通路160内に流入した冷却水は、仕切壁170の連通孔171を通って上流部から下流部へと流れる。外側通路160の上流部と下流部の間には仕切壁170が存在するため、外側通路160の上流部の冷却水は図12の矢印に示すように上流側の貫通孔121Aを介して内側通路150に流れ込みやすくなる。
 図12に示すように、イオン交換器100では、蓋部122の連通部122A及び筒部121の上流側の貫通孔121Aに第1メッシュとしてのメッシュM1が設けられ、筒部121の下流側の貫通孔121A、下流端121Bの連通部121C、及び仕切壁170の連通孔171に第2メッシュとしてのメッシュM2が設けられる。
 メッシュM1は、イオン交換樹脂の粒径よりも小さい目開きのメッシュである。メッシュM1の目開きは、約200ミクロンに設定されている。メッシュM1は、内筒120内に充填されたイオン交換樹脂が外部に流出することを防止する。
 メッシュM2は、メッシュM1よりも目開きが小さく、冷却水に含まれる異物を除去可能なメッシュである。メッシュM2の目開きは、約100ミクロンに設定されている。メッシュM2は、内筒120内に充填されたイオン交換樹脂が外部に流出することを防止するだけでなく、冷却水が通過する際に異物を除去するフィルタとして機能する。
 第5実施形態のイオン交換器100によれば、上流側の貫通孔121Aと下流側の貫通孔121Aとの間の外側通路160内に、連通孔171を有する仕切壁170を設置したので、外側通路160の上流部の冷却水が上流側の貫通孔121Aを介して内側通路150に流れ込みやすくなる。これにより、イオン交換器100におけるイオン交換率を高めることが可能となる。
 仕切壁170は上流側の貫通孔121Aの後方に配置されているため、外側通路160の上流部の冷却水は、上流側の貫通孔121Aの仕切壁170寄りの位置(下流位置)から内側通路150に流れ込む。そのため、上流側のイオン交換樹脂が局所的に使用されることを回避でき、イオン交換樹脂の全体を比較的均一に使用することができる。これにより、冷却水中の不純物イオンを長期間安定して除去することが可能となる。
 また、第5実施形態のイオン交換器100では、蓋部122の連通部122A及び筒部121の上流側の貫通孔121AにメッシュM1を設け、筒部121の下流側の貫通孔121A、下流端121Bの連通部121C、及び仕切壁170の連通孔171にメッシュM1よりも目開きの小さいメッシュM2を設けるので、イオン交換樹脂が内筒120から流出することを防止ことができ、さらに冷却水に含まれる異物を除去することができる。これにより、低電気伝導率で異物が含まれていない冷却水を燃料電池スタック10に供給することが可能となる。
 第1実施形態から第5実施形態では、イオン交換器100を、図1に示すようにバイパス通路23の下流端接続部と循環ポンプ26の間の冷却水循環通路21に設置したが、図13に示すように循環ポンプ26と燃料電池スタック10の間の冷却水循環通路21に設置してもよい。このように燃料電池スタック10の直前にイオン交換器100を配置した冷却装置20によれば、燃料電池スタック10に流入する冷却水の電気伝導率や冷却水中の異物を可能な限り低減することが可能となる。
 また、イオン交換器100を循環ポンプ26と燃料電池スタック10の間であって循環ポンプ26寄りの位置に設けた場合には、循環ポンプ26から吐出された直後の高圧冷却水がイオン交換器100に供給される。
 イオン交換樹脂が劣化等して、内筒120内に占めるイオン交換樹脂の体積が減少すると、イオン交換樹脂間の隙間が大きくなってイオン交換率が低下する。しかしながら、循環ポンプ26から吐出された直後の高圧冷却水をイオン交換器100に供給すれば、イオン交換樹脂が水圧によって内筒120の下流端121B側に押し寄せられるので、イオン交換樹脂間の隙間が大きくなることを抑制できる。したがって、循環ポンプ26寄りの位置にイオン交換器100を配置した冷却装置20によれば、イオン交換器100でのイオン交換率の低下を抑制することが可能となる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年10月14日に日本国特許庁に出願された特願2011-226629に基づく優先権を主張し、これら出願の全ての内容は参照により本明細書に組み込まれる。

Claims (12)

  1.  燃料電池を冷却する冷却水の不純物イオンを除去するイオン交換器であって、
     冷却水が流入する流入通路を有する流入部と、
     冷却水を排出する排出通路を有する排出部と、
     上流端に前記流入部が設置され、下流端に前記排出部が設置される外筒と、
     前記外筒の内側に収容される内筒と、
     前記内筒と前記外筒との間に形成され、前記流入通路と前記排出通路とを連通する外側通路と、
     前記内筒の内側に形成され、前記流入通路と前記排出通路とを連通するとともに冷却水の不純物イオンを除去可能なイオン交換樹脂が封入される内側通路と、を備え、
     前記内筒には、前記内側通路及び前記外側通路を連通する貫通孔が形成されるイオン交換器。
  2.  請求項1に記載のイオン交換器であって、
     前記貫通孔は、前記内筒の外周面に複数形成され、前記内筒の周方向及び軸方向に並設されるイオン交換器。
  3.  請求項1に記載のイオン交換器であって、
     前記貫通孔は、前記内筒の下流側寄りの外周面に複数形成されるイオン交換器。
  4.  請求項1から請求項3のいずれか一つに記載のイオン交換器であって、
     前記内側通路と前記流入通路との連通部、前記内側通路と前記排出通路との連通部、及び前記貫通孔には、前記イオン交換樹脂の粒径よりも小さい目開きのメッシュが設けられるイオン交換器。
  5.  請求項4に記載のイオン交換器であって、
     前記内側通路と前記排出通路との連通部、及び前記貫通孔には、前記イオン交換樹脂の粒径よりも小さい目開きの第1メッシュが設けられ、
     前記内側通路と前記流入通路との連通部、及び前記外側通路と前記流入通路との連通部には、冷却水に含まれる異物を除去可能であって前記第1メッシュよりも目開きの小さい第2メッシュが設けられるイオン交換器。
  6.  請求項4に記載のイオン交換器であって、
     前記内側通路と前記流入通路との連通部、及び前記貫通孔には、前記イオン交換樹脂の粒径よりも小さい目開きの第1メッシュが設けられ、
     前記内側通路と前記排出通路との連通部、及び前記外側通路と前記排出通路との連通部には、冷却水に含まれる異物を除去可能であって前記第1メッシュよりも目開きの小さい第2メッシュが設けられるイオン交換器。
  7.  請求項1から請求項6のいずれか一つに記載のイオン交換器であって、
     前記外側通路内には、前記外側通路を流れる冷却水が前記貫通孔を介して前記内側通路に流入しやすいように冷却水を誘導する壁部が設けられるイオン交換器。
  8.  請求項1又は請求項2に記載のイオン交換器であって、
     前記外側通路を上流部及び下流部に仕切る仕切壁と、
     前記外側通路の上流部と下流部とを連通するように前記仕切壁に形成される連通孔と、をさらに備えるイオン交換器。
  9.  請求項8に記載のイオン交換器であって、
     前記内側通路と前記流入通路との連通部、及び前記仕切壁よりも上流側の前記貫通孔には、前記イオン交換樹脂の粒径よりも小さい目開きの第1メッシュが設けられ、
     前記内側通路と前記排出通路との連通部、前記仕切壁よりも下流側の前記貫通孔、及び前記仕切壁の前記連通孔には、冷却水に含まれる異物を除去可能であって前記第1メッシュよりも目開きの小さい第2メッシュが設けられるイオン交換器。
  10.  請求項1から請求項9のいずれか一つに記載のイオン交換器と、冷却水を冷却可能なラジエータと、冷却水を循環させる循環ポンプと、を冷却水循環通路に備え、前記冷却水循環通路を流れる冷却水によって燃料電池を冷却する冷却装置であって、
     前記イオン交換器は、前記ラジエータよりも下流側の前記冷却水循環通路に設置されることを特徴とする冷却装置。
  11.  請求項10に記載の冷却装置であって、
     前記イオン交換器は、前記ラジエータよりも下流側であって、前記循環ポンプと前記燃料電池との間の前記冷却水循環通路に設置される冷却装置。
  12.  請求項11に記載の冷却装置であって、
     前記イオン交換器は、前記循環ポンプと前記燃料電池との間であって、前記循環ポンプ寄りの前記冷却水循環通路に設置される冷却装置。
PCT/JP2012/075964 2011-10-14 2012-10-05 イオン交換器及びイオン交換器を備える冷却装置 WO2013054758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/351,288 US9620801B2 (en) 2011-10-14 2012-10-05 Ion exchanger and cooler having ion exchanger
CN201280050564.5A CN103857628B (zh) 2011-10-14 2012-10-05 离子交换器以及具有离子交换器的冷却装置
EP12840056.1A EP2767514B1 (en) 2011-10-14 2012-10-05 Ion exchanger and cooling device equipped with ion exchanger
JP2013538528A JP5860472B2 (ja) 2011-10-14 2012-10-05 イオン交換器及びイオン交換器を備える冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011226629 2011-10-14
JP2011-226629 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054758A1 true WO2013054758A1 (ja) 2013-04-18

Family

ID=48081813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075964 WO2013054758A1 (ja) 2011-10-14 2012-10-05 イオン交換器及びイオン交換器を備える冷却装置

Country Status (5)

Country Link
US (1) US9620801B2 (ja)
EP (1) EP2767514B1 (ja)
JP (1) JP5860472B2 (ja)
CN (1) CN103857628B (ja)
WO (1) WO2013054758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174982A1 (ja) * 2013-04-26 2014-10-30 日産自動車株式会社 イオン交換器及び冷却装置並びに冷却装置の制御方法
EP2883843A1 (en) * 2013-12-16 2015-06-17 Roki Co., Ltd. Ion-exchangeer for fuel cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724476B1 (ko) * 2015-10-12 2017-04-07 현대자동차 주식회사 연료전지 차량의 이온 필터 관리 방법
JP6604277B2 (ja) * 2016-07-05 2019-11-13 豊田合成株式会社 イオン交換器
CN106684411B (zh) * 2016-12-29 2019-06-18 上海小蓝新能源汽车有限公司 燃料电池汽车动力系统的去离子装置
JP7371449B2 (ja) * 2019-11-12 2023-10-31 トヨタ紡織株式会社 イオン交換器
DE102020214593A1 (de) 2020-11-19 2022-05-19 Mahle International Gmbh Filtereinrichtung, Brennstoffzellensystem und Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657489U (ja) * 1992-12-29 1994-08-09 東邦レーヨン株式会社 浄水用カートリッジ
JP2005071709A (ja) * 2003-08-21 2005-03-17 Toyo Roki Mfg Co Ltd 燃料電池用イオン除去フィルタ
JP2008132403A (ja) * 2006-11-27 2008-06-12 Calsonic Kansei Corp フィルタ装置
JP2009219954A (ja) 2008-03-13 2009-10-01 Honda Motor Co Ltd イオン交換器
JP2010153264A (ja) * 2008-12-25 2010-07-08 Toyota Boshoku Corp 燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291266B2 (en) * 2001-12-20 2007-11-06 Iida Kensetu Co., Ltd. Composite filter and method and apparatus for producing high purity water using the composite filter
CN2625091Y (zh) * 2003-06-09 2004-07-14 邵建军 线切割放电加工装置的冷却水离子交换器
JP4114577B2 (ja) * 2003-09-16 2008-07-09 トヨタ自動車株式会社 燃料電池の冷却装置
JP4102744B2 (ja) * 2003-11-28 2008-06-18 東洋▲ろ▼機製造株式会社 イオン交換フィルタ
EP2465160B1 (de) * 2009-08-13 2016-02-17 Mann + Hummel GmbH Kühlvorrichtung eines funktionssystems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657489U (ja) * 1992-12-29 1994-08-09 東邦レーヨン株式会社 浄水用カートリッジ
JP2005071709A (ja) * 2003-08-21 2005-03-17 Toyo Roki Mfg Co Ltd 燃料電池用イオン除去フィルタ
JP2008132403A (ja) * 2006-11-27 2008-06-12 Calsonic Kansei Corp フィルタ装置
JP2009219954A (ja) 2008-03-13 2009-10-01 Honda Motor Co Ltd イオン交換器
JP2010153264A (ja) * 2008-12-25 2010-07-08 Toyota Boshoku Corp 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174982A1 (ja) * 2013-04-26 2014-10-30 日産自動車株式会社 イオン交換器及び冷却装置並びに冷却装置の制御方法
JP6069718B2 (ja) * 2013-04-26 2017-02-01 日産自動車株式会社 イオン交換器及び冷却装置並びに冷却装置の制御方法
EP2883843A1 (en) * 2013-12-16 2015-06-17 Roki Co., Ltd. Ion-exchangeer for fuel cell
US9614234B2 (en) 2013-12-16 2017-04-04 Roki Co., Ltd. Ion-exchange equipment

Also Published As

Publication number Publication date
CN103857628B (zh) 2016-06-15
CN103857628A (zh) 2014-06-11
US9620801B2 (en) 2017-04-11
EP2767514B1 (en) 2021-03-10
JP5860472B2 (ja) 2016-02-16
EP2767514A4 (en) 2015-05-20
EP2767514A1 (en) 2014-08-20
US20140248550A1 (en) 2014-09-04
JPWO2013054758A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5860472B2 (ja) イオン交換器及びイオン交換器を備える冷却装置
JP4102744B2 (ja) イオン交換フィルタ
US8709251B2 (en) Coolant demineralizer for fuel cell vehicle
JP6069718B2 (ja) イオン交換器及び冷却装置並びに冷却装置の制御方法
US20110129753A1 (en) Coolant demineralizer for a fuel cell vehicle
US20150107453A1 (en) Water recovery device
KR101090709B1 (ko) 연료전지 차량용 냉각수 이온필터
JP2011083744A (ja) 冷却水供給装置のイオン交換器
JP5043724B2 (ja) イオン交換器
JP6025667B2 (ja) 燃料電池車両
KR20120137914A (ko) 연료전지용 대면적 이온필터
JP2020021667A (ja) イオン交換器
JP2005071709A (ja) 燃料電池用イオン除去フィルタ
CN111430849B (zh) 锂空气电池
JP4815105B2 (ja) 燃料電池用イオン除去フィルタ及びその製造方法
JP2012238551A (ja) 燃料電池の冷却システム
JP5350971B2 (ja) 加湿用モジュール
KR101601438B1 (ko) 연료전지 차량용 열관리 시스템
JP4269270B2 (ja) 車両用燃料電池システム
JP2005259636A (ja) 冷却装置
CN217468577U (zh) 一种电池装置及电动车辆
JP5104570B2 (ja) 蓄電装置
JP2021137736A (ja) イオン交換器
JP2020021668A (ja) イオン交換器
JP2005174608A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14351288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013538528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012840056

Country of ref document: EP