JP2020021668A - イオン交換器 - Google Patents

イオン交換器 Download PDF

Info

Publication number
JP2020021668A
JP2020021668A JP2018145602A JP2018145602A JP2020021668A JP 2020021668 A JP2020021668 A JP 2020021668A JP 2018145602 A JP2018145602 A JP 2018145602A JP 2018145602 A JP2018145602 A JP 2018145602A JP 2020021668 A JP2020021668 A JP 2020021668A
Authority
JP
Japan
Prior art keywords
ion exchanger
flow path
coolant
cylindrical portion
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018145602A
Other languages
English (en)
Inventor
義則 大浦
Yoshinori Oura
義則 大浦
金子 健一郎
Kenichiro Kaneko
健一郎 金子
小塩 達也
Tatsuya Koshio
達也 小塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2018145602A priority Critical patent/JP2020021668A/ja
Publication of JP2020021668A publication Critical patent/JP2020021668A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】燃料電池システムの冷却系において、冷却液の流れの均一化を図ることのできるイオン交換器を提供する。【解決手段】イオン交換器モジュール1は、イオン交換器2と、気液分離器3と、リザーブタンク4とが一体形成されている。イオン交換器2は、外筒部11と、その内部に組付けられた内筒部12とを備え、両者が組付けられた状態において内筒部12の周壁部12bの外周面と、外筒部11の大径筒部11bの内周面との間に外周流路21が形成される。かかる構成の下、気液分離器3からイオン交換器2の外周流路21へ流入した冷却液が、該外周流路21を通って内筒部12の天壁部12aまで導かれ、該天壁部12aに形成された流入口41から、内筒部12内の冷却液流入室19へ流入する。そして、冷却液流入室19へ流入した冷却液は、内部流路を中心軸線C3方向に沿って真っ直ぐに流れ、イオン交換樹脂収容室16へ流入し真っ直ぐに通過していく。【選択図】 図2

Description

本発明は、燃料電池システムの冷却系に用いられるイオン交換器に関するものである。
燃料電池システムでは、燃料電池において水素と酸素が化学反応して発電が行われると、燃料電池が発熱する。このため、燃料電池システムには、冷却液を循環させて燃料電池を発電に最適な温度に維持する冷却系が設けられている。
冷却系においては、冷却液の熱劣化による酸生成や配管部品等からのイオンの溶出により、冷却液中のイオン濃度が高くなると、冷却液の導電率が上昇する。その結果、冷却液を通じて燃料電池から外部へ漏電するおそれがある。ひいては燃料電池の発電効率が低下するおそれもある。
そのため、従来、燃料電池システムの冷却系には、冷却液中のイオン濃度の上昇を抑制するべく、イオン交換器が設けられている。かかるイオン交換器は、イオン交換樹脂を収容したケース内に冷却液を通すことで、冷却液に含まれるイオンを除去する構成となっている(例えば、特許文献1参照)。
特開2011−83744号公報
しかしながら、特許文献1に記載のイオン交換器のように、例えばイオン交換樹脂を収容したケース内の内部流路(イオン交換樹脂収容室)が全体としてU字状に屈曲している場合など、内部流路自身の形状や、そこへ冷却液を導く導入流路との接続形態などによっては、位置によって冷却液の流速や圧力などにばらつきが生じ、内部流路内を冷却液が均一に流れないおそれがある。
例えばU字状に屈曲した内部流路のコーナー部外周側においては、冷却液の流速が速く、そこを通過する流量も多くなる。一方、コーナー部内周側においては、冷却液の流速が遅く、そこを通過する流量も少なくなる。また、内部流路に隅角部等が存在する場合には、該隅角部等をほとんど冷却液が流れないおそれもある。
結果として、イオン交換効率やイオン交換樹脂の劣化の進行、ひいては冷却系における圧力損失や冷却液の循環流量などにも大きな影響を及ぼすおそれがある。
本発明は、上記事情等に鑑みてなされたものであり、燃料電池システムの冷却系において、冷却液の流れの均一化を図ることのできるイオン交換器を提供することを主たる目的の一つとしている。
以下、上記課題を解決するのに適した各手段につき、項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果を付記する。
手段1.燃料電池システムの冷却系に用いられるイオン交換器であって、
冷却液に含まれるイオンをイオン交換樹脂に吸着させて除去するイオン交換器本体部と、冷却液に含まれる気体を分離可能に構成され、気液分離後の冷却液を前記イオン交換器本体部へ導く気液分離器とが一体に形成され、
前記イオン交換器本体部は、
冷却液が流れる略直線状の内部流路を有する本体筒部と、
前記本体筒部の外周側に設けられた外周壁部と、
前記本体筒部と前記外周壁部との間に設けられ、前記内部流路の軸線方向と交差する方向に沿って前記気液分離器から導かれる冷却液が流入する導入流路と、
前記内部流路の軸線方向一端側に設けられ、前記イオン交換樹脂を収容したイオン交換樹脂収容室と、
前記内部流路の軸線方向他端側に設けられ、前記導入流路を介して導かれる冷却液が流入する冷却液流入室とを備えたことを特徴とするイオン交換器。
従来、気体(気泡)が混入した冷却液がイオン交換器を通過する場合には、該気体が押し流されず、イオン交換器内に滞留してしまうおそれがあった。特に上から下へ、気体の浮力と反対方向に冷却液が流れる流路区間にイオン交換樹脂(イオン交換樹脂収容室)が存在する場合には、気体の浮力が冷却液の流れに勝り、冷却液の流れに乗せて気体を排出することが困難となるおそれがある。結果として、イオン交換樹脂の機能低下や冷却液の劣化など種々の不具合が発生するおそれがある。
より具体的には、例えば気体の圧力によって冷却液の流れが遮られ、イオン交換樹脂の一部に冷却液が流れないおそれがある。これにより、イオン交換効率の低下、冷却液中のイオン濃度の上昇、イオン交換樹脂の劣化度合いの偏りなどの不具合が発生するおそれがある。
また、気体が介在することで冷却液が適切に流れず、冷却系のポンプの動作が不安定となったり、イオン交換器内に蒸気が発生し、樹脂材料等により構成される部品の劣化が早くなるなどの不具合が発生するおそれがある。
これに対し、上記手段1によれば、イオン交換器本体部に対し気液分離器を一体化し、気液分離後の冷却液をイオン交換器本体部へ導く構成とすることにより、かかる不具合の発生を抑制することができる。
但し、イオン交換器本体部と気液分離器を一体化するにあたり、両者を直列的に、すなわちイオン交換器本体部の内部流路の軸線方向に沿って単純に接続するだけでは、イオン交換器が大型化するおそれがある。
これに対し、例えばイオン交換器本体部と気液分離器を両者の流路軸線方向が並行するように配置し、本手段1のように、イオン交換器本体部の流路軸線方向と交差する方向に沿って、気液分離器からイオン交換器本体部へ冷却液を導入する構成とすることで、イオン交換器のコンパクト化を図ることができる。
しかしながら、かかる構成の下、気液分離器から本体筒部の内部流路へ、直接的に内部流路の軸線方向と交差する方向に沿って冷却液を流入させる接続形態となっている場合には、冷却液の流れが強い状態のまま内部流路の軸線方向に強制的に曲げられる構成となるため、上記「発明が解決しようとする課題」で述べたとおり、冷却液の流速や圧力などにばらつきが生じやすく、内部流路内を冷却液が均一に流れないおそれがある。
これに対し、本手段1では、本体筒部の外周側に導入流路を形成し、気液分離器からイオン交換器本体部へ導かれる冷却液を、該導入流路を通して本体筒部内(内部流路)へ導入する構成となっている。
つまり、本手段1に係るイオン交換器によれば、気液分離器からイオン交換器本体部へ導かれる冷却液を、導入流路を通して、その流れを安定させつつ本体筒部内(内部流路)の冷却液流入室へ流入させることができる。
そして、冷却液流入室へ流入した冷却液は、内部流路の軸線方向に沿って流れ、真っ直ぐにイオン交換樹脂収容室へ流入し、そのまま該イオン交換樹脂収容室内を真っ直ぐに通過し流出していくこととなる。
これにより、イオン交換樹脂収容室へ流入し通過していく冷却液の流速を緩和すると共に、その流れを均一化し、各イオン交換樹脂に均一にイオン交換を行わせることができる。
結果として、イオン交換効率やイオン交換樹脂の劣化の進行、ひいては冷却系における圧力損失や冷却液の循環流量などに与える影響を低減することができる。
尚、仮に上記冷却液流入室が形成されず、内部流路全域にイオン交換樹脂が収容されている場合には、導入流路を通して流入する冷却液がイオン交換樹脂収容室の流入面全域に対し均一に流入しないおそれがある。
これに対し、本手段1によれば、イオン交換樹脂収容室の上流側に冷却液流入室(イオン交換樹脂を収容しない非収容空間)が形成されることで、イオン交換樹脂収容室へ流入する冷却液の流速を緩和させると共に、冷却液の流れを均一にすることができる。結果として、上記作用効果をより高めることができる。
また、上記「略直線状の内部流路」とは、U字状やL字状に大きく屈曲等した内部流路を含まない趣旨であり、完全な直線状の内部流路に限定されず、冷却液を円滑かつ略均一に流すことができる程度に緩やかに湾曲した内部流路等を含む。
但し、上記「略直線状の内部流路」には、軸線方向と直交する流路断面形状が軸線方向全区間において同一となる内部流路のみならず、例えば軸線方向上流側区間と下流側区間において流路断面形状や流路断面積が異なる内部流路なども含まれる。
勿論、内部流路の断面形状は、円形状に限らず、楕円形状や多角形状など、その他の形状であってもよい。
手段2.前記本体筒部における前記軸線方向他端側の端壁部又は該端壁部近傍の周壁部において、前記導入流路を介して導かれる冷却液を前記冷却液流入室へ流入させるための流入口を備えたことを特徴とする手段1に記載のイオン交換器。
上記手段2によれば、限られたスペースの中で、導入流路や冷却液流入室の形成区間を内部流路の軸線方向に対し比較的長く設定することができると共に、内部流路の比較的長い区間において冷却液を真っ直ぐに流すことができる。結果として、冷却液の流速をより緩和させると共に、冷却液の流れをより安定させ均一にすることができ、上記手段1の作用効果をさらに高めることができる。
又は、限られたスペースの中で、導入流路や冷却液流入室の形成区間を一定量確保した上で、イオン交換樹脂収容室を比較的長い区間に設けることができ、イオン交換効率を高めることができる。
尚、仮に本体筒部(内部流路)内にパイプ(導入流路)を形成し、該パイプを介して気液分離器から本体筒部の軸線方向他端部まで冷却液を導く構成とした場合には、該パイプが内部流路内を流れる冷却液の流れに乱れを生じさせるおそれがある。
これに対し、本手段においては、本体筒部の外周側に導入流路を形成することにより、このような不具合の発生を抑制することができる。結果として、イオン交換樹脂収容室へ流入する冷却液の流れをより安定させ均一化することができる。
手段3.前記本体筒部における前記軸線方向他端側の端壁部に形成された前記流入口を介して前記冷却液流入室へ流入する冷却液を、前記軸線方向と直交する前記内部流路の径方向へ分散させる分散手段を備えたことを特徴とする手段2に記載のイオン交換器。
上記手段3によれば、冷却液流入室へ流入する冷却液の流速をより緩和させると共に、冷却液の流れをより安定させ均一にすることができる。
手段4.前記導入流路を介して導かれる冷却液を前記冷却液流入室へ流入させるための流入口を、前記軸線方向の所定位置における前記本体筒部の周壁部の周方向複数箇所に設けたことを特徴とする手段1乃至3のいずれかに記載のイオン交換器。
上記手段4によれば、複数の流入口から冷却液流入室へ流入する冷却液が互いにその流れを打ち消し合うように作用するため、冷却液流入室へ流入する冷却液の流速をより緩和させると共に、冷却液の流れをより安定させ均一にすることができる。
ここで、前記作用効果を高めるためには、複数の流入口が本体筒部の周方向に対し均等に配置されることが好ましい。さらには、本体筒部の周壁部の相対向する位置に流入口が形成されることが好ましい。
手段5.前記イオン交換器本体部の導入流路と前記気液分離器とを連通させる連通路を備え、
前記連通路における前記イオン交換器本体部側の開口面積が前記気液分離器側の開口面積よりも大きく形成されていることを特徴とする手段1乃至4のいずれかに記載のイオン交換器。
上記手段5によれば、イオン交換器本体部の導入流路、ひいては内部流路へ流入する冷却液の流速を緩和することができる。
燃料電池システムの冷却系を示す概略構成図である。 第1実施形態に係るイオン交換器モジュールを上下方向に沿って切断した部分断面図である。 (a),(b),(c)は、それぞれ図2のA−A線,B−B線,C−C線の位置においてイオン交換器モジュールを水平方向に沿って切断した部分断面図である。 第2実施形態に係るイオン交換器モジュールを上下方向に沿って切断した部分断面図である。 (a),(b),(c)は、それぞれ図4のA−A線,B−B線,C−C線の位置においてイオン交換器モジュールを水平方向に沿って切断した部分断面図である。 別の実施形態に係る隔壁部を示す内筒部の部分拡大断面図である。 別の実施形態に係るイオン交換器モジュールを図2のA−A線の位置において水平方向に沿って切断した部分断面図である。 別の実施形態に係るイオン交換器モジュールを図2のB−B線の位置において水平方向に沿って切断した部分断面図である。 別の実施形態に係るイオン交換器モジュールを図4のC−C線の位置において水平方向に沿って切断した部分断面図である。 別の実施形態に係るイオン交換器モジュールを図4のC−C線の位置において水平方向に沿って切断した部分断面図である。
〔第1実施形態〕
以下、本発明の一実施形態について図面を参照して説明する。本発明に係るイオン交換器モジュールは、例えば燃料電池自動車における燃料電池システムの冷却系に用いられるものである。図1は、後述するイオン交換器モジュール1が取付けられる燃料電池システムの冷却系50を示す概略構成図である。
同図に示すように、冷却系50においては、冷却液を循環させる流路が、主に燃料電池51の流入口51aとラジエータ52の流出口52bとを接続する上流側配管53と、燃料電池51の流出口51bとラジエータ52の流入口52aとを接続する下流側配管54と、ラジエータ52と並列に上流側配管53と下流側配管54とに接続されたバイパス配管55とからなる。
バイパス配管55にはイオン交換器モジュール1が設置され、バイパス配管55と上流側配管53との接続部位には三方弁(三方電磁弁)60が設置されている。また、三方弁60と燃料電池51の間の上流側配管53には、冷却液を循環させるためのポンプ61が設置されている。尚、三方弁60の切換制御やポンプ61の駆動制御など、冷却系50に係る各種制御は図示しない制御ユニットにより行われる。
ここで、まず燃料電池51の構成について説明する。一般的な燃料電池(固体高分子型燃料電池)は、複数の発電セルを積層した燃料電池スタックを有する。発電セルは、電解質膜の両側に、それぞれ触媒層とガス拡散層とからなるアノード(燃料極)及びカソード(空気極)を配設した膜電極複合体(MEA)が一対のセパレータにより挟持されてなる。
各発電セルのアノードには燃料ガス(例えば水素ガス)が供給され、カソードには酸化ガス(例えば空気)が供給される。アノードに燃料ガスが供給されることで、燃料ガスに含まれる水素がアノードを構成する触媒層の触媒と反応し、これによって水素イオンが発生する。発生した水素イオンは電解質膜を通過して、カソードで酸素と化学反応を起こす。この化学反応によって発電が行われる。
各発電セルは発電に伴って発熱する。燃料電池51(燃料電池スタック)には、各発電セルに対し冷却液を流通させるための流路(図示略)が形成されており、上記流入口51aから内部に流入した冷却液によって発電セルが冷却される。そして、熱交換を終えた冷却液は上記流出口51bから排出される。
尚、本実施形態では、冷却液として水にエチレングリコール(不凍液)を含有させたLLC(ロングライフクーラント)が用いられている。このため、冷却液により燃料電池51の発電セルが冷却されるとき、冷却液の中に含まれるエチレングリコールが加熱分解されて、酸(例えばギ酸等)が生成され、この酸によりマイナスのイオンが生成される。また、酸により冷却液の循環流路(配管53,54,55等)の内面が腐蝕されると、プラスのイオンも生成される。このようにして、冷却液はマイナスのイオンとプラスのイオンが混在した不純物イオンを含有する。このイオンは電荷をもっているので、冷却液に含まれる不純物イオンの濃度が高くなるほど、冷却液の導電率が上昇する。その結果、冷却液を通じて燃料電池51から外部へ漏電するおそれがある。
一方、ラジエータ52は、図示しない送風ファンによって空気を吹き付けて、燃料電池51によって温められた冷却液を冷却するためのものである。冷却液はラジエータ52内を通過する際に放熱され、冷却される。本実施形態では、燃料電池51の温度が最適温度(例えば65℃)となるように冷却液の流れが制御されている。
三方弁60は、冷却液が流れる流路を切換えるためのものである。より詳しくは、燃料電池51の温度が最適温度を下回っている場合には、三方弁60の第1入口(ラジエータ52側)が閉じられ、第2入口(バイパス配管55側)及び出口(ポンプ61側)が開かれる。これにより、冷却液はポンプ61の駆動により燃料電池51とバイパス配管55との間を循環する。これに対し、燃料電池51の温度が最適温度を上回ると、三方弁60の第1入口及び出口が開かれ、第2入口が閉じられる。これにより、冷却液はポンプ61の駆動により燃料電池51とラジエータ52との間を循環し、燃料電池51の冷却が図られる。
従って、燃料電池51の温度が最適温度を下回っている場合には、常に冷却系50内のすべての冷却液がバイパス配管55を通って循環することとなる。この際、冷却液がイオン交換器モジュール1を通過することにより、冷却液に含まれる不純物イオンが一部除去される。これにより、冷却液の導電率の上昇を抑制している。
以下、イオン交換器モジュール1の構成について図2,3を参照して詳しく説明する。図2は、冷却液が流れている状態のイオン交換器モジュール1を上下方向に沿って切断した部分断面図である。尚、図2中の点線部は、冷却液の液面Hを指す。図3(a),(b),(c)は、それぞれ図2のA−A線,B−B線,C−C線の位置においてイオン交換器モジュール1を水平方向に沿って切断した部分断面図である。
本実施形態に係るイオン交換器モジュール1は、イオン交換器2と、気液分離器3と、リザーブタンク4とが一体に形成されたものである。つまり、イオン交換器モジュール1は、イオン交換器本体部2に対し、気液分離器3及びリザーブタンク4が一体に形成されたイオン交換器と換言することができる。
イオン交換器モジュール1は、その外側ケース部分が主に上ケース体1A及び下ケース体1Bを組付けることにより構成されている。
詳しくは、イオン交換器2の外側ケース部分の下側部分及び気液分離器3の外側ケース部分が下ケース体1Bにより一体に形成され、両者は下ケース体1Bに設けられた下連通管部5内の下連通路5aを介して冷却液が流通可能に連通している。
また、イオン交換器2の外側ケース部分の上側部分及びリザーブタンク4が、上ケース体1Aにより一体に形成され、両者は上ケース体1Aに設けられた上連通管部6内の上連通路6aを介して冷却液が流通可能に連通している。
以下、イオン交換器2、気液分離器3及びリザーブタンク4について個別に説明していく。
まずイオン交換器2の構成について詳しく説明する。イオン交換器2は、上記両ケース体1A,1Bを上下に組付けることにより構成された自身の外側ケース部分となる外筒部11と、該外筒部11の内部に着脱可能に組付けられた内筒部12とを備えている。
本実施形態の内筒部12は、後述するイオン交換樹脂18を内部に収容した1つのカートリッジとして取り扱われるものであり、外筒部11に対し交換可能に構成されている。
外筒部11は、全体として上面が開口した有底円筒状をなし、イオン交換器モジュール1が冷却系50に取付けられた状態において、その中心軸線C1が略上下方向に沿うように配設される。
外筒部11は、その下部に位置する小径筒部11aと、該小径筒部11aの上部に位置しかつその内径が小径筒部11aの内径よりも大きく設定された大径筒部11bとを備えている。
外筒部11の小径筒部11aには、その下端部近傍の側面において、その内部と外部とを連通する流出側継手部11cが設けられている。流出側継手部11cは、円筒状をなし、その中心軸線C2が略水平方向に沿うように配設された状態で下流側のバイパス配管55bに対し接続される。
外筒部11の大径筒部11bは、その下端部近傍の側面において、上記下連通管部5(下連通路5a)を介して気液分離器3と連通している。
外筒部11の上開口部には蓋部13が着脱可能に取付けられている。本実施形態では、外筒部11の上端部外周面に形成された雄ネジ部(図示略)に対し、蓋部13の内周面に形成された雌ネジ部(図示略)を螺合することにより、外筒部11に対し蓋部13が固定されている。尚、蓋部13を取り外すことにより、内筒部12(カートリッジ)の交換や、冷却液の補充等を行うことができる。
一方、内筒部12は、下面が開口した有天円筒状をなし、その中心軸線C3が外筒部11の中心軸線C1と重なるように外筒部11内に組付けられている。
内筒部12は、本実施形態における本体筒部に相当するものであり、その内部空間には、中心軸線C3方向に沿って直線状に延びる断面円形状の内部流路が形成されている。特に本実施形態では、中心軸線C3方向の流路全域(後述するイオン交換樹脂収容室16、冷却液流入室19及び流速緩和室20のすべて)において、内部流路の内径が同一となるように構成されている。つまり、中心軸線C3方向の流路全域において、該中心軸線C3と直交する内部流路の断面形状及び断面積が同一となるように構成されている。
内筒部12は、その周壁部12bの外周面が外筒部11の小径筒部11aの内周面と略同一径に設定されている。これにより、外筒部11内に内筒部12が組付けられた状態において、内筒部12の周壁部12bの外周面と外筒部11の小径筒部11aの内周面との間に隙間が生じないように構成されている。
尚、内筒部12は、外筒部11に対し、図示しない係合手段によって上下方向及び周方向への位置ズレが規制された状態で組付けられている。例えば外筒部11の内周面に設けられた凹部又は凸部と、これに対応して内筒部12の周壁部12bの外周面に設けられた係合凸部又は係合凹部とを係合させる構成などが係合手段の一例として挙げられる。勿論、係合手段の構成は、これに限定されるものではなく、他の構成を採用してもよい。
かかる構成により、本実施形態では、外筒部11内に内筒部12が組付けられた状態において、内筒部12の下端部と外筒部11の底壁部11dとの間、及び、内筒部12の天壁部12aと蓋部13との間に、それぞれ冷却液が流通可能な空間部が形成される。
内筒部12には、中心軸線C3方向所定位置において、その内部空間を上下に区画する隔壁部15が形成されている。本実施形態では、内筒部12が外筒部11内に組付けられた状態において、外筒部11の小径筒部11aと大径筒部11bの境界部の高さ位置よりも下方位置、すなわち下連通管部5(下連通路5a)の高さ位置よりも下方位置に、内筒部12の隔壁部15が位置するように設けられている。
隔壁部15は、中心軸線C3と直交する平面に沿って形成された略平板状をなし、内筒部12の周壁部12bと一体に形成されている。隔壁部15は、冷却液の流速を緩和させると共に、冷却液の流れを整流し均一化するためのものであり、中心軸線C3方向に沿って冷却液を通過させる多数の貫通孔15aを有している。
内筒部12の内部空間には、隔壁部15よりも下方に位置する下流側エリアにおいてイオン交換樹脂収容室16が形成されている。イオン交換樹脂収容室16を区画する上流側及び下流側の区画壁として、本実施形態では網目状のメッシュ17が取付けられている。メッシュ17は、冷却液の通過を許容する一方、後述するイオン交換樹脂18の通過を阻止するためのものである。
イオン交換樹脂収容室16には、冷却液に含まれる不純物イオンをイオン交換により除去可能な粒状のイオン交換樹脂18が収容されている。イオン交換樹脂18は公知のものであり、本実施形態ではマイナスのイオンを吸着するアニオン交換樹脂と、プラスのイオンを吸着するカチオン交換樹脂とが混在するように収容されている。
尚、内筒部12の内部空間の下流側エリアのうち、中心軸線C3方向における隔壁部15からイオン交換樹脂収容室16(上流側のメッシュ17)までの区間は、イオン交換樹脂18を収容しない非収容空間となっている。かかる非収容空間は、隔壁部15を通過した冷却液の流速をさらに緩和させると共に、冷却液の流れをさらに安定させるための流速緩和室20として機能する。
一方、内筒部12の内部空間のうち、隔壁部15よりも上方に位置する上流側エリア、すなわち中心軸線C3方向における天壁部12aから隔壁部15までの区間は、上記連通管部5,6(連通路5a,6a)を介して気液分離器3及びリザーブタンク4からそれぞれ導かれる冷却液が流入する冷却液流入室19として機能する。
さらに、本実施形態では、内筒部12が外筒部11に組付けられた状態において、冷却液流入室19の形成区間に対応する内筒部12の周壁部12bの外周面と、外筒部11の大径筒部11bの内周面との間に外周流路21が形成されるように構成されている(図3参照)。従って、「外筒部11」が本実施形態における「外周壁部」を構成し、「外周流路21」が「導入流路」を構成することとなる。
加えて、内筒部12の天壁部12aの中央部には流入口41が形成されている。また、天壁部12aには、流入口41に対応して、中央軸線C3に沿って下方へ突出した有底円筒状の流入筒部42が形成されている。流入筒部42の周壁部には、その周方向に所定間隔をあけて複数の流出口43が開口形成されている。本実施形態では、等間隔に4つの流出口43が形成されている。従って、内筒部12の「天壁部12a」が本実施形態における「軸線方向他端側の端壁部」に相当し、「流入筒部42」が「分散手段」を構成する。
次に気液分離器3の構成について詳しく説明する。本実施形態に係る気液分離器3は、冷却液を旋回させ、その遠心力により気体と液体とに分離するサイクロン式の気液分離器である。
気液分離器3は、上記下ケース体1Bにより構成された自身の外側ケース部分となる外筒部31と、該外筒部31の内部に組付けられた内筒部32とを備えている。
外筒部31は、全体として上面が開口した有底円筒状をなし、イオン交換器モジュール1が冷却系50に取付けられた状態において、その中心軸線C4が略上下方向に沿うように配設される。つまり、気液分離器3の外筒部31は、その中心軸線C4がイオン交換器2の外筒部11の中心軸線C1と平行するように設けられている。
外筒部31には、その下端部近傍の側面において、その内部と外部とを連通する流入側継手部31aが設けられている。流入側継手部31aは、円筒状をなし、その中心軸線C5が略水平方向に沿うように配設された状態で上流側のバイパス配管55aに対し接続される。但し、外筒部31の中心軸線C4と、流入側継手部31aの中心軸線C5は交差しないように設定されており、流入側継手部31aから流入する冷却液が気液分離器3の内部で旋回流を起こすように構成されている。
外筒部31は、その上端部近傍の側面において、上記下連通管部5(下連通路5a)を介してイオン交換器2の外筒部11(大径筒部11b)と連通している。より詳しくは、イオン交換器2の外筒部11(大径筒部11b)と内筒部12との間に形成される外周流路21と連通するように構成されている。尚、本実施形態に係る下連通管部5は、イオン交換器2側の開口部(流出口)5bの開口面積が、気液分離器3側の開口部(流入口)5cの開口面積よりも大きく形成されている。
内筒部32は、上方へ向かうにつれ小径となる略テーパ筒状をなし、その中心軸線C6が外筒部31の中心軸線C4と重なるように外筒部31内に組付けられている。
内筒部32は、その下端部全周が、外筒部31の内周面に形成された段差部31bに対し隙間なく係合されており、上記流入側継手部31aから流入した冷却液が内筒部32内に導かれるように構成されている。
内筒部32の上端部には、自身の上開口部及び外筒部31の上開口部を塞ぐ蓋部33が一体形成されている。蓋部33の中央部には、中心軸線C6に沿って上下方向に貫通した貫通筒部34が形成されている。
内筒部32の上端部近傍の側面には、周方向に所定間隔をあけて複数の流出口35が開口形成されている。本実施形態では、等間隔に4つの流出口35が形成されている。そのうちの1つの流出口35は、下連通管部5(下連通路5a)の開口部5cと相対向する位置に設けられている。
内筒部32が外筒部31に組付けられた状態において、内筒部32の外周面と、外筒部31の内周面との間には、冷却液が流通可能な外周流路36が形成されている。
次にリザーブタンク4の構成について詳しく説明する。リザーブタンク4は、冷却系50において循環する冷却液の一部をその内部に貯留すると共に、その液体溜まりの上方空間に気体溜まりを有し、気液分離器3によって冷却液から分離される気体を貯留可能に構成され、温度変化に伴う冷却液の体積変化を吸収する機能も有する。
リザーブタンク4は、上記上ケース体1Aにおいて、下面の開口した有天円筒状に形成されたタンク本体4aが、上記外筒部31の上開口部を覆うように気液分離器3に対し組付けられてなる。
リザーブタンク4は、その底壁部が気液分離器3の上記蓋部33によって構成されており、その内部に冷却液や気体を貯留可能な貯留室が形成されることとなる。従って、リザーブタンク4の貯留室は、上記貫通筒部34を介して気液分離器3の内筒部32と連通した状態となっている。
また、リザーブタンク4は、タンク本体4aの側面において、上連通管部6(上連通路6a)を介してイオン交換器2の外筒部11(大径筒部11b)と連通している。これにより、イオン交換器2の大径筒部11bは、リザーブタンク4と同様の機能を果たすことが可能となる。
次に上記のように構成された本実施形態のイオン交換器モジュール1の作用について説明する。
上流側のバイパス配管55aから流入側継手部31aを介して気液分離器3の内部に流入した冷却液は、内筒部32の内壁面に沿って流れ、旋回流を生じさせつつ上昇する。
ここで、気泡(気体)を含んだ冷却液が流入した場合には、旋回流によって発生する遠心力により、密度の大きい冷却液が内筒部32の内壁面側に集まり、密度の小さい気泡が内筒部32の中心(旋回流の渦の中心)に集まるといったように、冷却液中の気泡と冷却液が分離される。
そして、内筒部32の中心に集められつつ上昇する気泡は、これを含む一部の冷却液と共に貫通筒部34を介してリザーブタンク4内の貯留室へ導かれる。
一方、概ね気泡が除去された状態の残りの冷却液は、流出口35から外周流路36へ流出し、下連通管部5(下連通路5a)を介してイオン交換器2の外周流路21へ流入する。
上記のとおり、本実施形態に係る下連通管部5は、イオン交換器2側の開口部(流出口)5bの開口面積が、気液分離器3側の開口部(流入口)5cの開口面積よりも大きく形成されているため、イオン交換器2の外周流路21へ流入する冷却液の流速が緩和される。
イオン交換器2の外周流路21へ流入した冷却液は、内筒部12の周壁部12bにぶつかり、該外周流路21に沿って水平2方向及び上方へ分岐し、内筒部12の反対側へ回り込みつつ上方へ向け流れていき、内筒部12の天壁部12aの中央部に位置する流入口41から流入筒部42内へ流入する。
尚、リザーブタンク4内へ導かれた冷却液は、上連通管部6を介して、外筒部11の大径筒部11bへ流入する。そして、気液分離器3から直接流入した冷却液と同様、内筒部12の天壁部12aの中央部に位置する流入口41から流入筒部42内へ流入する。
流入口41から流入筒部42内へ流入した冷却液は、該流入筒部42の周壁部に形成された流出口43から、中心軸線C3と直交する内部流路の径方向に沿って冷却液流入室19の主室内へ流入する。
冷却液流入室19の主室内へ流入した冷却液は、隔壁部15の多数の貫通孔15aを通って下方の流速緩和室20へ流入する。これにより、冷却液の流速が緩和されると共に、冷却液の流れが整流される。
流速緩和室20へ流入した冷却液は、そのまま中心軸線C3方向に沿って流速緩和室20を真っ直ぐ下方へ通過していき、イオン交換樹脂収容室16へ流入していく。
イオン交換樹脂収容室16へ流入した冷却液は、イオン交換樹脂18の隙間を通り、全体としては、その流れの向きを変えることなく、中心軸線C3方向に沿ってイオン交換樹脂収容室16を真っ直ぐ下方へ流れ、通過していく。この通過の間に、冷却液に含まれる不純物イオンはイオン交換樹脂18によって一部除去される。
そして、イオン交換樹脂収容室16から流出した冷却液は、流出側継手部11cを介して、下流側のバイパス配管55bへ排出される。
以上詳述したように、本実施形態に係るイオン交換器モジュール1によれば、イオン交換器2と気液分離器3とを一体化し、気液分離後の冷却液をイオン交換器2へ導く構成とすることにより、冷却液に気泡が混入した場合に生じ得る種々の不具合を抑制することができる。
この際、気液分離器3からイオン交換器2へ導かれる冷却液は、内筒部12周りに設けられた外周流路21を通って、その流れを安定させつつ内筒部12内の冷却液流入室19へ流入する。
そして、冷却液流入室19へ流入した冷却液は、隔壁部15を介して整流された後、中心軸線C3方向に沿って真っ直ぐにイオン交換樹脂収容室16へ流入し、そのまま該イオン交換樹脂収容室16内を真っ直ぐに通過し流出していくこととなる。
これにより、イオン交換樹脂収容室16へ流入し通過していく冷却液の流速を緩和すると共に、その流れを均一化し、各イオン交換樹脂18に均一にイオン交換を行わせることができる。
結果として、イオン交換効率やイオン交換樹脂の劣化の進行、ひいては冷却系における圧力損失や冷却液の循環流量などに与える影響を低減することができる。
また、本実施形態では、内筒部12の内部流路のうち、中心軸線C3方向における隔壁部15からイオン交換樹脂収容室16(上流側のメッシュ17)までの区間において、イオン交換樹脂18を収容しない流速緩和室20を備えている。これにより、冷却液の流速をより緩和させると共に、イオン交換樹脂収容室16へ流入する冷却液の流れをより安定させ均一化することができる。
さらに、本実施形態では、イオン交換器2とリザーブタンク4とを一体化し、内筒部12の冷却液流入室19とリザーブタンク4との連通を図ることにより、冷却液流入室19の実質的な大容量化を図ることができる。結果として、冷却液流入室19へ流入する冷却液の流量を安定させることができる。
特に本実施形態では、気液分離器3からイオン交換器2の外周流路21へ流入した冷却液が、該外周流路21を通って内筒部12の天壁部12aまで導かれ、該天壁部12aに形成された流入口41から、内筒部12内の冷却液流入室19へ流入する構成となっている。
これにより、内筒部12内の内部流路の比較的長い区間を冷却液が中心軸線C3方向に沿って真っ直ぐに流れるようになるため、冷却液の流速をより緩和させると共に、冷却液の流れをより安定させ均一にすることができる。
〔第2実施形態〕
次に第2実施形態について図4,5を参照して詳しく説明する。但し、上述した第1実施形態と重複する部分については、同一の部材名称、同一の符号を用いる等してその詳細な説明を省略するとともに、以下には第1実施形態と相違する部分を中心として説明することとする。
図4は、冷却液が流れている状態の第2実施形態に係るイオン交換器モジュール1を上下方向に沿って切断した部分断面図である。尚、図4中の点線部は、冷却液の液面Hを指す。図5(a),(b),(c)は、それぞれ図4のA−A線,B−B線,C−C線の位置においてイオン交換器モジュール1を水平方向に沿って切断した部分断面図である。
本実施形態の外周流路21は、外筒部11(大径筒部11b)の内周面に突出形成された区画壁11eによって、上側の外周流路21aと、下側の外周流路21bとに区画されている(図4参照)。
これに対応して、内筒部12の周壁部12bには、下連通路5aと相対向する位置とは中心軸線C3を挟んで反対側となる位置において流入口24が開口形成されている。流入口24は、下連通路5aを介して気液分離器3から下側の外周流路21bへ導かれる冷却液を冷却液流入室19へ流入させるためのものである。
また、内筒部12の周壁部12bには、上連通管部6と相対向する位置において流入口25aが開口形成され、該流入口25aとは中心軸線C3を挟んで反対側となる位置において流入口25bが開口形成されている。流入口25a,25bは、上連通路6aを介してリザーブタンク4から上側の外周流路21aへ導かれる冷却液を冷却液流入室19へ流入させるためのものである。
次に上記のように構成された本実施形態のイオン交換器モジュール1の作用について説明する。
本実施形態において、気液分離器3から下連通管部5(下連通路5a)を介してイオン交換器2の下側の外周流路21bへ流入した冷却液は、内筒部12の周壁部12bにぶつかり、該外周流路21bに沿って2方向へ分岐しつつ内筒部12の反対側へ回り込むように流れていき、内筒部12の反対側に位置する流入口24から冷却液流入室19内へ流入する。
一方、リザーブタンク4内へ導かれた冷却液は、上連通管部6を介して、外筒部11の大径筒部11bへ流入する。このうち、イオン交換器2の上側の外周流路21aへ流入した冷却液は、一部が流入口25aから冷却液流入室19内へ流入すると共に、残りは外周流路21aに沿って流れ又は天壁部12aの上方空間を通り、内筒部12の反対側に位置する流入口25bを介して冷却液流入室19内へ流入する。
冷却液流入室19内へ流入した冷却液は、隔壁部15の多数の貫通孔15aを通って下方の流速緩和室20へ流入する。
流速緩和室20へ流入した冷却液は、そのまま中心軸線C3方向に沿って流速緩和室20を真っ直ぐ下方へ通過していき、イオン交換樹脂収容室16へ流入していく。
イオン交換樹脂収容室16へ流入した冷却液は、中心軸線C3方向に沿ってイオン交換樹脂収容室16を真っ直ぐ下方へ流れ、通過していく。この通過の間に、冷却液に含まれる不純物イオンはイオン交換樹脂18によって一部除去される。
そして、イオン交換樹脂収容室16から流出した冷却液は、流出側継手部11cを介して、下流側のバイパス配管55bへ排出される。
以上詳述したように、本実施形態によれば、上記第1実施形態と同様の作用効果が奏される。
尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。
(a)上記各実施形態では、本発明を燃料電池自動車における燃料電池システムの冷却系に用いられるイオン交換器モジュール1として具体化したが、これに限らず、例えば工場や一般家庭の発電用の燃料電池システムの冷却系に用いられるイオン交換器モジュールとして具体化してもよい。
(b)イオン交換器モジュール1の取付位置など、冷却系50の構成は上記各実施形態に限定されるものではない。例えばラジエータ52やバイパス配管55への冷却液の流量を制御可能な冷却系にイオン交換器モジュール1を取付けた構成としてもよい。また、バイパス配管55から分岐した第2のバイパス配管を設け、該第2のバイパス配管にイオン交換器モジュール1を取付けた構成としてもよい。
(c)イオン交換器の構成は、上記各実施形態に係るイオン交換器2に限定されるものではなく、他の構成を採用してもよい。
例えば外筒部11や内筒部12を円筒形状ではなく、楕円筒状や四角形筒状など異なる形状としてもよい。
また、上記各実施形態に係るイオン交換器2では、内筒部12が外筒部11に対し着脱可能に組付けられ、イオン交換樹脂18の交換時には、内筒部4全体をそのままカートリッジとして交換する構成となっている。
これに限らず、例えばイオン交換樹脂収容室16を有する所定の収容体(カートリッジ)が内筒部12に対し着脱可能に組付けられ、イオン交換樹脂18の交換時には、前記収容体のみを交換する構成としてもよい。尚、このような構成とした場合には、外筒部11と内筒部12とを一体形成してもよい。
(d)上記各実施形態に係るイオン交換器2では、本体筒部として、内部流路が直線状に形成された円筒状の内筒部12を採用しているが、本体筒部の構成は、このような完全な円筒形状に限定されるものではなく、例えば本体筒部として、少なくとも冷却液を円滑かつ略均一に流すことができる程度に緩やかに湾曲又は屈曲した形状のものを採用してもよい。
(e)上記各実施形態に係るイオン交換器2では、外筒部11が、その下流側に位置する小径筒部11aと、上流側に位置する大径筒部11bとから構成されると共に、内筒部12が、その中心軸線C3方向全域において同一内径となるように構成され、両者が組付けられた状態において、内筒部12の周壁部12bの外周面と、外筒部11の大径筒部11bの内周面との間に外周流路21が形成される構成となっている。
これに限らず、例えば外筒部11が、その中心軸線C1方向全域において同一内径となるように構成され、内筒部12が、その下流側に大径筒部を備えると共に、その上流側に小径筒部を備えるよう構成され、両者が組付けられた状態において、内筒部12の小径筒部の周壁部の外周面と、外筒部11の内周面との間に外周流路が形成される構成としてもよい。
(f)上記各実施形態に係るイオン交換器2では、内筒部12の内部流路のうち、中心軸線C3方向における隔壁部15とイオン交換樹脂収容室16と間にイオン交換樹脂18を収容しない流速緩和室20を備えた構成となっているが、これに限らず、流速緩和室20を省略した構成としてもよい。
また、冷却液の流通時に、イオン交換樹脂収容室16内においてイオン交換樹脂18が下流側に押し流され、上流側のメッシュ17の直下流側空間において、イオン交換樹脂18が存在しない空間が形成される構成としてもよい。
(g)隔壁部の構成は上記各実施形態に限定されるものではない。例えば上記各実施形態に係るイオン交換器2では、内筒部12が外筒部11内に組付けられた状態において、外筒部11の小径筒部11aと大径筒部11bの境界部の高さ位置よりも下方位置、すなわち下連通管部5(下連通路5a)の高さ位置よりも下方位置に、内筒部12の隔壁部15が位置するように設けられている。
これに限らず、例えば第2実施形態に係る構成の下、内筒部12が外筒部11内に組付けられた状態において、下連通管部5(下連通路5a)の高さ位置よりも上方位置に隔壁部15が位置する構成など、上記各実施形態とは異なる位置に隔壁部15を設けた構成としてもよい。隔壁部15よりも下流側の直線区間が長くなればなるほど、冷却液の流れを安定させやすくなる。
(h)上記各実施形態では、隔壁部15が内筒部12の周壁部12bと一体形成された構成となっているが、これに限らず、別体で設けた構成としてもよい。また、材質等に関しても特に限定されるものではなく、例えば隔壁部15が金属製又は樹脂製のメッシュにより形成された構成としてもよいし、不織布や多孔質材料などにより形成された構成としてもよい。
(i)隔壁部に形成される孔部は、上記各実施形態に限定されるものではない。例えば上記各実施形態に係る隔壁部15には、冷却液の通過を許容する孔部として、中心軸線C3方向に沿って真っ直ぐに貫通した貫通孔15aが形成されている。
これに限らず、例えば図6に示す隔壁部71のように、内筒部12(内部流路)の下流側に向かうにつれ拡径するように形成された貫通孔71aを備えた構成としてもよい。かかる構成により、貫通孔71aを通過する冷却液の流速を緩和することができる。
(j)隔壁部15を省略した構成としてもよい。例えば上記第1実施形態に係る構成、すなわち気液分離器3からイオン交換器2の外周流路21へ流入した冷却液が、該外周流路21を通って内筒部12の天壁部12aまで導かれ、該天壁部12aに形成された流入口41から、内筒部12内の冷却液流入室19へ流入する構成のように、内筒部12内の内部流路の比較的長い区間を冷却液が中心軸線C3方向に沿って真っ直ぐに流れるように構成されている場合には、隔壁部15を省略したとしても、上記第1実施形態と同様の作用効果が奏されることとなる。
(k)イオン交換器モジュール1に係る各種連通路や流入口などの構成は上記各実施形態に限定されるものではない。例えば上記各実施形態では、下連通管部5(下連通路5a)のイオン交換器2側の開口部(流出口)5bの開口面積が、気液分離器3側の開口部(流入口)5cの開口面積よりも大きく形成されている。これに限らず、例えばイオン交換器2側の開口部5bの開口面積と、気液分離器3側の開口部5cの開口面積とが略同一となるようにしてもよい。
また、各種連通路や流入口に網目状のメッシュなどが取付けられた構成としてもよい。かかる構成とすることにより、冷却液の流速を緩和させると共に、冷却液の流れを安定させることが可能となる。
(l)気液分離器及びリザーブタンクの構成は、上記各実施形態に係る気液分離器3及びリザーブタンク4に限定されるものではない。例えば上記各実施形態では、サイクロン式の気液分離器3を採用しているが、これに限らず、他の方式の気液分離器を採用してもよい。
(m)外周流路21を介して導かれる冷却液を冷却液流入室19へ流入させるための流入口の形成位置や個数、形状、大きさなど、該流入口に係る構成は、上記各実施形態に限定されるものではない。
例えば上記第1実施形態(図2,3参照)に係る流入口41及び流入筒部42等を備えた構成に代えて又は加えて、図7に示すように内筒部12の天壁部12aにおいて、中心軸線C3方向に沿って冷却液を通過させる多数の貫通孔81を形成した構成としてもよい。尚、図7は、この実施形態に係るイオン交換器モジュールを図2のA−A線の位置において水平方向に沿って切断した部分断面図である。
ここで、多数の貫通孔81に代えて、内筒部12の天壁部12aに網目状のメッシュが取付けられた構成としてもよい。
また、上記第1実施形態(図2,3参照)に係る流入口41及び流入筒部42等を備えた構成に代えて又は加えて、図8に示すように内筒部12の天壁部12a近傍の周壁部12bにおいて、その周方向に等間隔に複数(図8の例では4つ)の流出口82が形成された構成としてもよい。尚、図8は、この実施形態に係るイオン交換器モジュールを図2のB−B線の位置において水平方向に沿って切断した部分断面図である。
ここで、内筒部12の周壁部12bの周方向に対し複数の流出口82が非等間隔に形成された構成としてもよい。
また、上記第2実施形態(図4,5参照)に係る流入口24等を備えた構成に代えて、図9に示すように内筒部12の周壁部12bにおいて、下連通路5aと相対向する位置に開口面積が比較的小さい少なくとも1つ(図9の例では3つ)の小流入口83群が開口形成され、該小流入口83群とは中心軸線C3を挟んで反対側となる位置に開口面積が比較的大きい大流入口84が開口形成された構成としてもよい。
かかる構成によれば、気液分離器3からイオン交換器2の外周流路21へ流入した冷却液が、主として大流入口84を介して内筒部12内の冷却液流入室19へ流入することとなるため、上記第1実施形態と同様の作用効果が奏されることとなる。
(n)導入流路の構成は、上記各実施形態に係る外周流路21に限定されるものではなく、他の構成を採用してもよい。
例えば上記各実施形態においては、外周流路21が内筒部12の全周囲に形成された構成となっているが、内筒部12の周方向全域のうちの一部において導入流路が形成された構成としてもよい。
また、上記第2実施形態(図4,5参照)に係る構成の下、例えば図10に示すように、内筒部12の中心軸線C3と外筒部11の中心軸線C1とがずれた状態で両者が組付けられる構成とすることにより、外周流路21の流路幅が、気液分離器3に近い側ほど狭く、気液分離器3から遠くなる内筒部12の奥側ほどが広くなる構成としてもよい。かかる構成により、冷却液の流速をより緩和させることができる。
1…イオン交換器モジュール、2…イオン交換器(イオン交換器本体部)、3…気液分離器、4…リザーブタンク、5…下連通管部、5a…下連通路、6…上連通管部、6a…上連通路、11…外筒部、11a…小径筒部、11b…大径筒部、12…内筒部、12a…天壁部、12b…周壁部、15…隔壁部、15a…貫通孔、16…イオン交換樹脂収容室、17…メッシュ、18…イオン交換樹脂、19…冷却液流入室、20…流速緩和室、21…外周流路、41…流入口、42…流入筒部、43…流出口、50…冷却系、51…燃料電池、52…ラジエータ、55…バイパス配管。

Claims (5)

  1. 燃料電池システムの冷却系に用いられるイオン交換器であって、
    冷却液に含まれるイオンをイオン交換樹脂に吸着させて除去するイオン交換器本体部と、冷却液に含まれる気体を分離可能に構成され、気液分離後の冷却液を前記イオン交換器本体部へ導く気液分離器とが一体に形成され、
    前記イオン交換器本体部は、
    冷却液が流れる略直線状の内部流路を有する本体筒部と、
    前記本体筒部の外周側に設けられた外周壁部と、
    前記本体筒部と前記外周壁部との間に設けられ、前記内部流路の軸線方向と交差する方向に沿って前記気液分離器から導かれる冷却液が流入する導入流路と、
    前記内部流路の軸線方向一端側に設けられ、前記イオン交換樹脂を収容したイオン交換樹脂収容室と、
    前記内部流路の軸線方向他端側に設けられ、前記導入流路を介して導かれる冷却液が流入する冷却液流入室とを備えたことを特徴とするイオン交換器。
  2. 前記本体筒部における前記軸線方向他端側の端壁部又は該端壁部近傍の周壁部において、前記導入流路を介して導かれる冷却液を前記冷却液流入室へ流入させるための流入口を備えたことを特徴とする請求項1に記載のイオン交換器。
  3. 前記本体筒部における前記軸線方向他端側の端壁部に形成された前記流入口を介して前記冷却液流入室へ流入する冷却液を、前記軸線方向と直交する前記内部流路の径方向へ分散させる分散手段を備えたことを特徴とする請求項2に記載のイオン交換器。
  4. 前記導入流路を介して導かれる冷却液を前記冷却液流入室へ流入させるための流入口を、前記軸線方向の所定位置における前記本体筒部の周壁部の周方向複数箇所に設けたことを特徴とする請求項1乃至3のいずれかに記載のイオン交換器。
  5. 前記イオン交換器本体部の導入流路と前記気液分離器とを連通させる連通路を備え、
    前記連通路における前記イオン交換器本体部側の開口面積が前記気液分離器側の開口面積よりも大きく形成されていることを特徴とする請求項1乃至4のいずれかに記載のイオン交換器。
JP2018145602A 2018-08-02 2018-08-02 イオン交換器 Pending JP2020021668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145602A JP2020021668A (ja) 2018-08-02 2018-08-02 イオン交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018145602A JP2020021668A (ja) 2018-08-02 2018-08-02 イオン交換器

Publications (1)

Publication Number Publication Date
JP2020021668A true JP2020021668A (ja) 2020-02-06

Family

ID=69588720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145602A Pending JP2020021668A (ja) 2018-08-02 2018-08-02 イオン交換器

Country Status (1)

Country Link
JP (1) JP2020021668A (ja)

Similar Documents

Publication Publication Date Title
JP6431856B2 (ja) 多相電解質流れ制御用貯蔵器
JP6604277B2 (ja) イオン交換器
JP2020021667A (ja) イオン交換器
JP4613125B2 (ja) イオン交換式フィルタ
EP3806211A1 (en) Membrane humidifier for fuel cell
US20050115884A1 (en) Ion-exchange filter
EP2767514B1 (en) Ion exchanger and cooling device equipped with ion exchanger
JP6617685B2 (ja) イオン交換器
JP2020007592A (ja) 水素製造装置
JP2021185577A (ja) 燃料電池用気液分離器
US20070231657A1 (en) Fuel cell system
US8864962B2 (en) Electrolyser module
JP2020021668A (ja) イオン交換器
JP2010117094A (ja) 加湿器
JP3998200B2 (ja) 燃料電池の冷却装置
JP4283584B2 (ja) 燃料電池の冷却装置
EP4224583A1 (en) Cartridge of humidifier for fuel cell and humidifier for fuel cell
KR20070046991A (ko) 안정한 구조의 직접 메탄올 연료전지용 물 조절기 시스템
JP2011085309A (ja) 加湿用モジュール
JP2005166404A (ja) 燃料電池システム
JP7139927B2 (ja) イオン交換器
WO2021095665A1 (ja) イオン交換器
JP2022133709A (ja) イオン交換器
JP2008098019A (ja) 燃料電池用加湿器
KR20220102428A (ko) 원통형 막가습기