WO2013054568A1 - セメント混和材及びその製造方法 - Google Patents

セメント混和材及びその製造方法 Download PDF

Info

Publication number
WO2013054568A1
WO2013054568A1 PCT/JP2012/065423 JP2012065423W WO2013054568A1 WO 2013054568 A1 WO2013054568 A1 WO 2013054568A1 JP 2012065423 W JP2012065423 W JP 2012065423W WO 2013054568 A1 WO2013054568 A1 WO 2013054568A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement admixture
component
sio
cement
anhydrous gypsum
Prior art date
Application number
PCT/JP2012/065423
Other languages
English (en)
French (fr)
Inventor
茂 富岡
盛岡 実
山本 賢司
樋口 隆行
邦幸 田中
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2013538456A priority Critical patent/JP6003900B2/ja
Publication of WO2013054568A1 publication Critical patent/WO2013054568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/041Aluminium silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention mainly relates to a cement admixture used in the civil engineering and construction industry and a method for producing the same.
  • Non-Patent Document 1 JIS has also been established as a concrete admixture (Non-Patent Document 2).
  • Non-Patent Document 2 JIS has also been established as a concrete admixture
  • deterioration factors of concrete structures include salt damage, neutralization, and alkali-silica reaction. Proposal of a material that is resistant to these degradation factors is beneficial for extending the life of concrete structures, and also reduces the environmental burden.
  • silica fume generated is limited and the cost is rising. Furthermore, although it contributes to the strength development from the middle to long-term ages, it does not contribute much to the initial strength development. For this reason, development of a high-strength admixture that replaces silica fume is awaited, and in particular, development of a cement admixture that contributes to strength development from the initial age is desired.
  • a cement admixture that is effective in increasing the strength and durability of cement concrete and a method for producing the same, as well as providing an effective method of using catalyst residues generated during petroleum refining, for which no effective method of use has yet been found. I will provide a.
  • the gist of the present invention is as follows. (1) A cement admixture containing a SiO 2 —Al 2 O 3 -based material obtained by heat-treating a petroleum refining catalyst residue in an oxidizing atmosphere at 350 ° C. or more and 950 ° C. or less. (2) The SiO 2 —Al 2 O 3 -based material has an SiO 2 component of 40 to 55%, an Al 2 O 3 component of 40 to 55%, an R 2 O component (R 2 O is Na 2 O + 0.658K). 2 ).) The cement admixture according to the above (1), which contains 1% or less and an ignition loss component of 1% or less.
  • cement admixture A cement composition comprising the cement admixture according to any one of (1) to (7) and cement.
  • the SiO 2 —Al 2 O 3 -based material obtained by heat-treating the petroleum refining catalyst residue at 350 ° C. or more and 950 ° C. or less in an oxidizing atmosphere and pulverized and mixed separately, or The method for producing a cement admixture according to any one of (4) to (7), wherein the cement admixture is pulverized and mixed simultaneously.
  • the cement admixture of the present invention is effective for increasing the strength and durability of cement concrete, and is particularly excellent in strength development from the initial age as compared with silica fume. Furthermore, when combined with anhydrous gypsum having a specific particle size in a specific composition, it is possible to further increase the strength and durability. Moreover, the cement admixture of the present invention is extremely advantageous because it can effectively utilize the catalyst residue generated during petroleum refining.
  • cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.
  • the petroleum refining catalyst residue referred to in the present invention contains a SiO 2 component and an Al 2 O 3 component as main components and contains moisture and organic matter.
  • This catalyst residue of petroleum refining is, for example, a used catalyst used in a hydrodesulfurization step, a heavy oil desulfurization step, a continuous catalyst regeneration type step, etc. in an oil refining plant. It has been found that a SiO 2 —Al 2 O 3 -based material obtained by heat-treating this petroleum refining catalyst residue in an oxidizing atmosphere at 350 ° C. or more and 950 ° C. or less is useful as a cement admixture. Even if the heat treatment temperature is in the range of 350 ° C. or more and 950 ° C.
  • the heat treatment in a reducing atmosphere is not useful as a cement admixture. Even if the heat treatment is performed in an oxidizing atmosphere, a substance useful as a cement admixture cannot be obtained if the heat treatment is performed at a temperature lower than 350 ° C. or higher than 950 ° C.
  • the petroleum refining catalyst residue is heat-treated in an oxidizing atmosphere, but the heat-treatment method is not particularly limited. Specific examples thereof include a method using a shaft kiln, rotary kiln, wall furnace, tunnel furnace, electric furnace, muffle furnace, and the like. In particular, heat treatment in a rotary kiln is preferable.
  • the heat treatment temperature must be 350 ° C. or higher and 950 ° C. or lower, and is preferably 500 ° C. or higher and 900 ° C. or lower.
  • the heat treatment time is usually 5 minutes to 5 hours, preferably 10 to 2 hours.
  • the oxidizing atmosphere for example, nitrogen gas containing 19 to 22% by volume of oxygen is preferable, and air is particularly preferable.
  • the Blaine specific surface area value (hereinafter, referred to as Blaine value) is preferably 3000 ⁇ 9000cm 2 / g, the more preferably 4,000 ⁇ 8,000cm 2 / g, 5000 ⁇ 7000cm 2 / g and most preferable. If it is less than 3000 cm 2 / g, the effect of increasing the strength and durability is not sufficient, and even if fine powder exceeds 9000 cm 2 / g, further enhancement of the effect cannot be expected, and fluidity may tend to deteriorate.
  • the SiO 2 —Al 2 O 3 -based material obtained by heat-treating the catalyst residue of petroleum refining in an oxidizing atmosphere at 350 ° C. or higher and 950 ° C. or lower has a SiO 2 component of 40 to 55% and an Al 2 O 3 component of 40 It is preferable that it is ⁇ 55%, R 2 O is 1% or less, and the ignition loss is 1% or less.
  • the loss on ignition is that when a sample is ignited in air at 950 ⁇ 25 ° C., carbon dioxide and moisture are desorbed, and an oxidizable element is oxidized.
  • the weight loss when this is ignited until it reaches a constant weight is measured and determined by the following formula.
  • m mass (g) of the sample
  • m ′ mass (g) of the sample after ignition.
  • Loss on ignition ((m ⁇ m ′) / m) ⁇ 100
  • the SiO 2 —Al 2 O 3 -based material is more preferably 42 to 50% of the SiO 2 component and 42 to 46% of the Al 2 O 3 component.
  • the SiO 2 —Al 2 O 3 based material may further contain other components in the range of 2% or less in addition to the SiO 2 component, Al 2 O 3 component, and R 2 O. Examples of other components include Fe 2 O 3 component, CaO component, MgO component and the like.
  • R 2 O means the total amount of Na 2 O and K 2 O, and is calculated by the following formula.
  • R 2 O Na 2 O + 0.658K 2 O
  • R 2 O is preferably 1% or less.
  • R 2 O is more preferably 0.7% or less, and most preferably 0.5% or less. If R 2 O exceeds 1%, sufficient strength development and durability improvement effects may not be obtained.
  • the loss on ignition of the SiO 2 —Al 2 O 3 -based material obtained by heat-treating the catalyst residue of petroleum refining in an oxidizing atmosphere at 350 ° C. or more and 950 ° C. or less is preferably 1% or less, 0.7% The following is more preferable, and 0.5% or less is most preferable.
  • the ignition loss exceeds 1% not only a sufficient strength development and durability improvement effect can be obtained, but also the fluidity tends to be deteriorated.
  • anhydrous gypsum together with a SiO 2 —Al 2 O 3 -based material obtained by heat treating a petroleum refining catalyst residue at 350 ° C. or more and 950 ° C. or less in an oxidizing atmosphere.
  • the anhydrous gypsum is preferably type II anhydrous gypsum. In addition, it is more preferable to select an acidic one from the viewpoint of improving the strength and fluidity.
  • the anhydrous anhydrous gypsum means that the pH of the supernatant liquid when the anhydrous gypsum is kneaded with pure water is acidic, and the pH is preferably in the range of 2.0 to 4.5.
  • the particle size of the anhydrous gypsum is preferably from 3000 ⁇ 9000cm 2 / g in Blaine value, more preferably 4000 ⁇ 8000cm 2 / g, and most preferably 5000 ⁇ 7000cm 2 / g. If it is less than 3000 cm 2 / g, the effects of increasing strength and durability are not sufficient, and if the powder exceeds 9000 cm 2 / g, further enhancement of the effect cannot be expected.
  • anhydrous gypsum it is a blending ratio when anhydrous gypsum is used in combination with a SiO 2 —Al 2 O 3 based material obtained by heat treating a catalyst residue of petroleum refining in an oxidizing atmosphere at 350 ° C. or more and 950 ° C. or less.
  • 20 to 80 parts of anhydrous gypsum are preferable in a total of 100 parts of SiO 2 —Al 2 O 3 -based material obtained by heat-treating a petroleum refining catalyst residue at 350 ° C. or more and 950 ° C. or less in an oxidizing atmosphere, More preferred is 70 parts.
  • the cement admixture of the present invention comprises a SiO 2 —Al 2 O 3 -based material obtained by heat-treating a petroleum refining catalyst residue in an oxidizing atmosphere at 350 ° C. or more and 950 ° C. or less and anhydrous gypsum
  • they may be pulverized and mixed. It is preferable to grind and mix at the same time from the viewpoint of uniform quality.
  • various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, and various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, Portland cement such as filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, as well as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash, etc. 1 type or 2 types or more can be used.
  • the amount of the cement admixture used is not particularly limited, but is usually preferably 3 to 20 parts, more preferably 5 to 15 parts, in 100 parts of the cement composition composed of cement and the cement admixture. If the amount of cement admixture used is small, sufficient strength enhancement and durability improvement effects may not be obtained. If excessively used, fluidity tends to deteriorate, and dimensional stability and strength development are poor. There is a case.
  • cement and a cement admixture are blended to form a cement composition.
  • the water / cement composition ratio of the cement composition of the present invention is preferably 15 to 40%, more preferably 20 to 35%. If the amount of water is too small, pumpability and workability may decrease, causing shrinkage, etc. If the amount of water is excessive, sufficient strength development and durability cannot be improved. There is a case.
  • the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
  • any existing device can be used, and for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
  • Example 1 The various petroleum refining catalyst residues shown in Table 1 were heat-treated and pulverized so as to have a Blaine specific surface area of 6000 cm 2 / g, which was used as a cement admixture.
  • the catalyst residues were obtained from the heavy oil desulfurization step, and the properties before the heat treatment were amorphous, so that the activity was low.
  • a cement composition comprising 90 parts of cement and 10 parts of cement admixture was prepared.
  • a mortar having a water / cement composition ratio of 30% and a cement composition / fine aggregate ratio of 1/2 was prepared.
  • 0.3 part of a polycarboxylate-based high-performance water reducing agent was used with respect to 100 parts of the cement composition.
  • the temperature was raised to 75 ° C. in 4 hours and 3 hours in advance, steam-cured at 75 ° C. for 4 hours, and then naturally cooled until the next day.
  • the mortar was tested for consistency, compressive strength and durability. For comparison, the same process was performed for silica fume. The results are shown in Table 1.
  • SiO 2 component 50% SiO 2 component 50%
  • Al 2 O 3 component 46% Fe 2 O 3 component 1%
  • CaO component 1% R 2 O (Na 2 O: 0.36%, 0.658 ⁇ K 2 O: 0. 51%) 0.7%
  • loss on ignition 0.6% other 0.7%.
  • Consistency evaluated by table flow. The flow value was measured according to JIS R 5201. However, the flow was 0 strokes.
  • Compressive strength A rectangular parallelepiped specimen having a length of 4 cm, a width of 4 cm, and a length of 16 cm was prepared and measured according to JIS R 5201. The mold was placed in an environmental test room at 20 ° C. and a relative humidity of 80% for 24 hours, then demolded, and thereafter water curing at 20 ° C. was performed.
  • Pseudo seawater immersion test A rectangular parallelepiped specimen having a length of 4 cm, a width of 4 cm, and a length of 16 cm was prepared, subjected to water curing at 20 ° C.
  • Example 2 Experiment No. 1 except that heat-treated petroleum refining catalyst residue E was used as a cement admixture, and the fineness of the cement admixture was changed as shown in Table 2. Same as 1-6. The results are shown in Table 2.
  • Example 5 A cement admixture was prepared by blending 50 parts of a petroleum refining catalyst residue heat-treated E with a brain value adjusted to 6,000 cm 2 / g and 50 parts of anhydrous gypsum, and the type of anhydrous gypsum ( Except that the pH was changed as shown in Table 5, the experiment No. Performed in the same manner as 4-3. The results are shown in Table 5.
  • Example 6 A cement admixture was prepared by blending 50 parts of oil refined catalyst residue heat-treated E and 50 parts of anhydrous gypsum having a pH of 3.0, and the fineness of anhydrous gypsum changed as shown in Table 6. Except that, Experiment No. Performed in the same manner as 4-3. The results are shown in Table 6.
  • Example 7 Experiment No. except that 50 parts E50 parts of heat-treated petroleum refining catalyst residue and 50 parts anhydrous gypsum having a pH of 3.0 were blended and pulverized to 6000 cm 2 / g as a brain value. Performed in the same manner as 4-3. The results are shown in Table 7.
  • the cement concrete is excellent in strength development and durability, and fluidity is improved, so that it is suitable for a wide range of applications mainly in the civil engineering and construction industries. It also leads to effective utilization of petroleum refining catalyst residues, for which no effective utilization method has been found so far.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-226129 filed on October 13, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Catalysts (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 強度発現性や耐久性の向上効果に優れるセメント混和材及びその製造方法を提供する。 石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質を含有するセメント混和材であり、SiO成分が40~55%、Al成分が40~55%、ROが1%以下、強熱減量は1%以下である前記セメント混和材であり、ブレーン比表面積が3000~9000cm/gである前記セメント混和材であり、さらに、無水セッコウを含有してなる前記セメント混和材であり、無水セッコウ20~80部とSiO-Al系物質20~80部とを含有する前記セメント混和材である。また石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質と無水セッコウとを別々に粉砕して混合するか、又は同時に粉砕混合する前記セメント混和材の製造方法である。

Description

セメント混和材及びその製造方法
 本発明は、主に、土木・建築業界において使用されるセメント混和材及びその製造方法に関する。
 近年、日本だけでなく、ベトナムや中国などでは、経済発展とともに、社会インフラの整備も急速に進んでいる。それに伴い、現地のニーズに見合った建設材料の開発や安定供給が必要になっている。
 例えば、高層建築物を急ピッチで施工する場面が多く見られ、このような場合には、高強度コンクリートが求められる。従来、高強度コンクリートを得る方法としては、シリカフュームの使用が有効であることが知られている(例えば、非特許文献1)。そして、コンクリート用混和材としてJISも制定されている(非特許文献2)。
 しかしながら、シリカフュームは発生量が限られており供給が間に合っていないのが実情である。また、その価格も高騰している。今日では、シリカフュームに替わる高強度混和材の開発が強く求められている。
 また、土木・建築業界はCO排出量の多い産業でもあるため、世界的に環境負荷低減への取り組みについても大きな関心が寄せられている。
 したがって、これまでのように、造っては壊すというスクラップ・アンド・ビルドから、コンクリート構造物の長寿命化を可能にする技術の開発が求められている。
 コンクリート構造物の長寿命化を可能にするためには、コンクリート構造物の劣化要因に対して高い抵抗性を持つ材料技術も重要である。コンクリート構造物の劣化要因としては、例えば、塩害、中性化、アルカリ-シリカ反応などが挙げられる。これらの劣化因子に対して抵抗性を持つ材料の提案が出来れば、コンクリート構造物の長寿命化に有益であり、環境負荷の低減にもつながるのである。
 しかしながら、シリカフュームはその発生量が限られており、また、コストも高騰している。さらに、中期から長期材齢での強度発現性には貢献するものの、初期の強度発現性にはあまり寄与しない。このため、シリカフュームに替わる高強度混和材の開発が待たれ、特に、初期材齢から強度発現性に貢献するセメント混和材の開発が望まれている。
鳴瀬浩康、超高強度コンクリートの材料開発とその応用 超高強度コンクリートとシリカフューム 、セラミックス、Vol.44、No.6、433-438頁 2009年6月1日 JIS A 6207「コンクリート用シリカフューム」
 未だに有効な利用方法が見出されずにいた、石油精製の際に発生する触媒の残渣の有効利用方法を提供するとともに、セメントコンクリートの高強度化や高耐久化に有効なセメント混和材およびその製造方法を提供する。
 本発明者らは、石油精製の触媒残渣の有効利用に鑑み、種々の検討を重ねた結果、特定の温度及び特定の雰囲気で加熱処理して、特定の粉末度に調製することにより、セメントコンクリートを高強度化・高耐久化するセメント混和材として有効であることを見出した。
 また、このセメント混和材は、シリカフュームと比較して、初期材齢から強度発現性に貢献することも明らかにした。さらに、特定粒度の無水セッコウと特定配合で組み合わせることにより、より一層の高強度化や高耐久化が可能となることも見出した。
 これらのセメント混和材は、これまで有用な利用方法が見当たらずにいた石油精製の際の触媒残渣を特定の条件で加熱処理することに得られることを見出し、本発明を完成するに至った。
 本発明は、以下の構成を要旨とするものである。
(1)石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質を含有するセメント混和材。
(2)前記SiO-Al系物質が、SiO成分を40~55%、Al成分を40~55%、RO成分(ROは、NaO+0.658KOで算定される。)を1%以下、強熱減量成分を1%以下含む前記(1)のセメント混和材。
(3)前記SiO-Al系物質のブレーン比表面積が3000~9000cm/gである前記(1)又は(2)のセメント混和材。
(4)さらに、無水セッコウを含有してなる前記(1)~(3)のいずれか1項に記載のセメント混和材。
(5)前記無水セッコウのpHが2.0~4.5である前記(4)に記載のセメント混和材。
(6)前記無水セッコウのブレーン比表面積が3000~9000cm/gである前記(4)又は(5)に記載のセメント混和材。
(7)無水セッコウ20~80部とSiO-Al系物質20~80部とを合計で100部の割合で含有する前記(4)~(6)のいずれか1項に記載のセメント混和材。
(8)前記(1)~(7)のいずれか1項に記載のセメント混和材と、セメントとからなるセメント組成物。
(9)前記セメント混和材が3~20質量部を含まれる前記(8)に記載のセメント組成物。
(10)石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質と無水セッコウとを別々に粉砕して混合するか、又は同時に粉砕混合する前記(4)~(7)のいずれか1項に記載のセメント混和材の製造方法。
 本発明のセメント混和材は、セメントコンクリートを高強度化・高耐久化に有効であり、シリカフュームと比較して、特に、初期材齢から強度発現性に優れる。さらに、特定粒度の無水セッコウと特定配合で組み合わせることにより、より一層の高強度化や高耐久化が可能となる。
 また、本発明のセメント混和材は、石油精製の際に発生する触媒の残渣を有効利用できるので極めて有利である。
 以下において、本発明における「部」や「%」は、特に規定しない限り質量基準である。
 また、本発明で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
 本発明でいう石油精製の触媒残渣は、SiO成分とAl成分を主成分とし、水分や有機物を含んでいる。この石油精製の触媒残渣は、例えば、石油精製プラントにおける、水素化脱硫工程、重質油脱硫工程、連続触媒再生式工程などで使用された使用済みの触媒である。
 この石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質がセメント混和材として有用であることが見出された。加熱処理温度が350℃以上、950℃以下の範囲であっても、還元雰囲気で加熱処理したものはセメント混和材として有用ではない。酸化雰囲気で加熱処理しても、350℃未満であったり、950℃を超える条件での加熱処理の場合には、セメント混和材として有用な物質は得られない。
 石油精製の触媒残渣を酸化雰囲気で350℃以上で加熱処理すると、次第に結晶性が不明瞭になり非晶質化する。そして、950℃以下の温度領域では非晶質状態を保つが、950℃を超えると結晶化し、安定化する。
 本発明では、石油精製の触媒残渣を酸化雰囲気で加熱処理するが、加熱処理方法は特に限定されるものではない。その具体例としては、シャフトキルン、ロータリーキルン、壁炉、トンネル炉、電気炉、マッフル炉などを用いる方法が挙げられる。特に、ロータリーキルンでの加熱処理が好適である。加熱処理温度は350℃以上、950℃以下で行うことが必要であり、500℃以上、900℃以下で行なうことが好ましい。加熱処理時間は通常、5分~5時間であり、10~2時間が好ましい。酸化雰囲気としては、例えば19~22体積%の酸素を含む窒素ガス中が好ましく、特に空気中が好ましい。
 石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質を特定の粒度に調製することでセメント混和材として利用するのが好ましい。
 この場合の粉末度は、ブレーン比表面積値(以下、ブレーン値という)で3000~9000cm/gが好ましく、4,000~8,000cm/gがより好ましく、5000~7000cm/gが最も好ましい。3000cm/g未満では高強度化や高耐久化の効果が十分ではなく、9000cm/gを超える微粉でもさらなる効果の増進が期待できないばかりか、流動性が改悪傾向になる場合がある。
 石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質は、SiO成分が40~55%、Al成分が40~55%、ROが1%以下、強熱減量は1%以下であることが好ましい。ここで、強熱減量とは、試料を空気中で950±25℃で強熱すると、二酸化炭素と水分とは脱離し、酸化されうる元素は酸化される。これを恒量になるまで強熱したときの減量を量り、次の式により求める。なお、式中、m:試料の質量(g)、m‘:強熱後の試料の質量(g)である。
     強熱減量=((m-m’)/m)×100
 上記SiO-Al系物質は、SiO成分が42~50%、Al成分が42~46%であるのがさらに好ましい。前記SiO-Al系物質は、SiO成分、Al成分、ROの他に、さらに他の成分を2%以下の範囲で含んでもよい。他の成分としては、Fe成分、CaO成分、MgO成分などがあげられる。
 SiO成分が40%未満のものや、Al成分が55%を超えるものは存在しない。これは石油精製で用いられる触媒の組成に依存するためである。SiO成分が55%を超えるものや、Al成分が40%未満のものでは、十分な強度発現性や耐久性の向上効果が得られない場合がある。
 ROとは、NaOとKOの合計量を意味し、次式で算出される。
  RO=NaO+0.658K
 本発明では、ROが1%以下であることが好ましい。ROは0.7%以下がより好ましく、0.5%以下が最も好ましい。ROが1%を超えると、十分な強度発現性や耐久性の向上効果が得られない場合がある。
 石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質の強熱減量は1%以下であることが好ましく、0.7%以下がより好ましく、0.5%以下が最も好ましい。強熱減量が1%を超えると、十分な強度発現性や耐久性の向上効果が得られないばかりか、流動性が改悪傾向となる場合がある。
 本発明では、石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質とともに、無水セッコウを併用することが好ましい。無水セッコウを併用することによって、強度発現性や耐久性の向上効果が助長され、流動性も改善される。
 無水セッコウはII型無水セッコウが好ましい。また、酸性のものを選定することが強度発現性や流動性の改善効果の観点から、より好ましい。ここで、酸性の無水セッコウとは、無水セッコウを純水で練り混ぜた際の上澄み液のpHが酸性を示すものを意味し、pHが2.0~4.5の範囲にあるものが好ましい。
 無水セッコウの粒度は、ブレーン値で3000~9000cm/gが好ましく、4000~8000cm/gがより好ましく、5000~7000cm/gが最も好ましい。3000cm/g未満では高強度化や高耐久化の効果が十分ではなく、9000cm/gを超える微粉ではさらなる効果の増進が期待できない。
 無水セッコウを、石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質とともに併用する場合の配合割合であるが、無水セッコウと、石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質の合計100部中、無水セッコウが20~80部が好ましく、30~70部がより好ましい。無水セッコウを前記範囲で併用することによって、強度発現性や耐久性の向上効果が助長され、流動性も改善される。
 本発明のセメント混和材が石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質と無水セッコウからなる場合、その製造方法としては、石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質と無水セッコウとを別々に粉砕して混合しても良いし、同時に粉砕混合しても良い。同時に粉砕混合することが、品質を均一化する観点から好ましい。
 本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。
 セメント混和材の使用量は、特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、3~20部が好ましく、5~15部がより好ましい。セメント混和材の使用量が少ないと充分な高強度化の効果や耐久性の向上効果が得られない場合があり、過剰に使用すると流動性が改悪傾向となり、寸法安定性や強度発現性が悪くなる場合がある。
 本発明では、セメントとセメント混和材を配合してセメント組成物とする。
 本発明のセメント組成物の水/セメント組成物比は、15~40%が好ましく、20~35%がより好ましい。水の配合量が少ないと、ポンプ圧送性や施工性が低下し、収縮等の原因となる場合があり、水の配合量が過剰では十分な強度発現性や耐久性の向上効果が得られない場合がある。
 本発明のセメント混和材やセメント組成物は、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。
 本発明では、セメント、セメント混和材、及び砂などの細骨材や砂利などの粗骨材の他に、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末などの混和材料からなる群のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。
 混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサ等の使用が可能である。
 以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。
「実験例1」
 表1に示す様々な石油精製の触媒残渣を加熱処理し、ブレーン比表面積が6000cm/gとなるように粉砕したものをセメント混和材とした。なお、上記触媒残渣は、重質油脱硫工程から得られたものであり、加熱処理前の性状は非晶質のため、いずれも活性が低いものであった。
 このセメント混和材を用いて、セメント90部とセメント混和材10部からなるセメント組成物を調製した。水/セメント組成物比が30%、セメント組成物/細骨材比が1/2のモルタルを調製した。この際、ポリカルボン酸塩系の高性能減水剤をセメント組成物100部に対して0.3部使用した。前置き4時間、3時間で75℃まで昇温し、75℃で4時間蒸気養生した後、翌日まで自然冷却した。このモルタルのコンシステンシー、圧縮強度、耐久性試験を実施した。また、比較のために、シリカフュームについても同様に行った。結果を表1に示す。
<使用材料>
 セメント:普通ポルトランドセメント、市販品。
 細骨材:新潟県姫川産、川砂。
 高性能減水剤:ポリカルボン酸塩系の市販品。
(A)石油精製の触媒残渣を300℃、酸化雰囲気で加熱処理したもの:
  SiO成分49%、Al成分45%、Fe成分1%、CaO成分1%、RO(NaO:0.38%、0.658×KO:0.45%)0.7%、強熱減量2.5%、その他0.8%。
(B)石油精製の触媒残渣を350℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.37%、0.658×KO:0.50%)0.7%、強熱減量1.0%、その他0.3%。
(C)石油精製の触媒残渣を500℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.30%、0.658×KO:0.45%)0.6%、強熱減量0.7%、その他0.7%。
(D)石油精製の触媒残渣を700℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.36%、0.658×KO:0.51%)0.7%、強熱減量0.6%、その他0.7%。
(E)石油精製の触媒残渣を900℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.31%、0.658×KO:0.45%)0.6%、強熱減量0.5%、その他0.9%。
(F)石油精製の触媒残渣を950℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.28%、0.658×KO:0.34%)0.5%、強熱減量0.5%、その他1.0%。
(G)石油精製の触媒残渣を1000℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.27%、0.658×KO:0.35%)0.5%、強熱減量0.5%、その他1.0%。
(H)石油精製の触媒残渣を900℃、還元雰囲気で加熱処理したもの:
  SiO成分50%、Al成分46%、Fe成分1%、CaO成分1%、RO(NaO:0.28%、0.658×KO:0.34%)0.5%、強熱減量が1.3%、その他0.2%。
(I)石油精製の触媒残渣を900℃、酸化雰囲気で加熱処理したもの:
  SiO成分50%、Al成分45%、Fe成分1%、CaO成分1%、RO(NaO:1.10%、0.658×KO:1.40%)2%、強熱減量0.5%、その他0.5%。
(J)石油精製の触媒残渣を900℃、酸化雰囲気で加熱処理したもの:
  SiO成分42%、Al成分55%、Fe成分1%、CaO成分1%、RO(NaO:0.15%、0.658×KO:0.38%)0.4%、強熱減量0.5%、その他0.1%。
(K)石油精製の触媒残渣を900℃、酸化雰囲気で加熱処理したもの:
  SiO成分55%、Al成分42%、Fe成分1%、CaO成分1%、RO(NaO:0.14%、0.658×KO:0.39%)0.4%、強熱減量0.5%、その他0.1%。
(L)石油精製の触媒残渣を900℃、酸化雰囲気で加熱処理したもの:
  SiO成分80%、Al成分9%、Fe成分1.5%、CaO成分3.5%、MgO2%、RO(NaO:0.51%、0.658×KO:1.50%)1.5%、SOが1.4%、強熱減量1.0%、その他0.1%。

  シリカフューム:SiO成分98.5%、RO(NaO:0.15%、0.658×KO:0.23%)0.3%、強熱減量0.2、その他0.1%。
<試験方法>
 コンシステンシー:テーブルフローにより評価した。JIS R 5201に準じてフロー値を測定した。ただし、0打フローとした。
 圧縮強度:縦4cm×横4cm×長さ16cmの直方体状の供試体を作製し、JIS R 5201に準じて測定した。24時間まで20℃、相対湿度80%環境試験室で型枠存置した後、脱型し、それ以後は20℃の水中養生を行った。
 疑似海水浸漬試験:縦4cm×横4cm×長さ16cmの直方体状の供試体を作製し、材齢28日まで20℃の水中養生を行い、それ以後は疑似海水に浸漬した。疑似海水に浸漬してから4週間後に供試体を引き上げ、硝酸銀-フルオロセイン法(JIS A1171:2000)にて塩化物イオンの浸透深さを測定した。ここで、疑似海水は、全量が1リットルの水溶液になるように調整したもので、塩化ナトリウム24.5g・塩化マグネシウム6水塩11.1g・硫酸ナトリウム4.1g・塩化カルシウム1.2g・塩化カリウム0.7gの組成を有するものである。
Figure JPOXMLDOC01-appb-T000001
 表1より、石油精製の触媒残渣を350℃以上、950℃以下の温度の酸化雰囲気で加熱処理して得られるSiO-Al系物質がセメント混和材として有効であることが分かる。シリカフュームと比べると、初期材齢の強度発現性に優れることがわかる。また、SiO成分が40~55%、Al成分が40~55%、ROが1%以下、強熱減量が1%以下であるものが、強度発現性や耐久性の向上効果に優れることが分かる。
「実験例2」
 石油精製の触媒残渣を加熱処理したものEをセメント混和材として使用し、セメント混和材の粉末度を表2のように変えたこと以外は実験No.1-6と同様に行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、石油精製の触媒残渣を加熱処理したものの粉末度がブレーン値で3000~9000cm/gの範囲にある場合は、強度発現性や耐久性の向上効果に優れることが分かる。
「実験例3」
 石油精製の触媒残渣を加熱処理したものEをセメント混和材として使用し、セメントとセメント混和材からなるセメント組成物100部中のセメント混和材の配合割合を表3のように変化したこと以外は実験No.1-6と同様に行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、セメント混和材の配合割合が3~20部の範囲にあるセメント組成物が強度発現性や耐久性の向上効果に優れることが分かる。
「実験例4」
 石油精製の触媒残渣を加熱処理したものEと、ブレーン比表面積を6,000cm/gとした無水セッコウ(pH=3)とを合計100部とした時に、無水セッコウを表4に示す割合で配合してセメント混和材を調製したこと以外は実験No.1-6と同様に行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、無水セッコウを併用すると、強度発現性や耐久性の向上効果が助長され、流動性も改善されることが分かる。
「実験例5」
 石油精製の触媒残渣を加熱処理したものEをブレーン値で6,000cm/gに調製したもの50部と、無水セッコウ50部とを配合してセメント混和材を調製し、無水セッコウの種類(pH)を表5に示すように変化したこと以外は実験No.4-3と同様に行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、酸性の無水セッコウを適用した場合に、強度発現性や耐久性の向上効果がより一層優れることが分かる。
「実験例6」
 石油精製の触媒残渣を加熱処理したものEを50部と、pH3.0の無水セッコウ50部とを配合してセメント混和材を調製し、無水セッコウの粉末度を表6に示すように変化したこと以外は実験No.4-3と同様に行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6より、無水セッコウのブレーン値が3000~9000cm/gの範囲にある場合に、強度発現性や耐久性の向上効果がよりいっそう優れることが分かる。
「実験例7」
 石油精製の触媒残渣を加熱処理したものE50部と、pH3.0の無水セッコウ50部とを配合してブレーン値で6000cm/gに粉砕してセメント混和材を調製したこと以外実験No.4-3と同様に行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7より、石油精製の触媒残渣を加熱処理したものと無水セッコウからなるセメント混和材を調製するにあたり、別々に粉砕したものを後から混合しても良いし、同時に粉砕しても良いことがわかる。比較すると、同時に粉砕して調製したセメント混和材の方が良好な結果となっている。
 本発明のセメント混和材を使用することにより、セメントコンクリートの強度発現性や耐久性の向上効果に優れ、流動性も改善されるため、主に、土木・建築業界等において広範な用途に適する。また、これまで有効な活用方法が見出されずにいた石油精製の触媒残渣の有効活用にもつながる。
 なお、2011年10月13日に出願された日本特許出願2011-226129号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質を含有することを特徴とするセメント混和材。
  2.  前記SiO-Al系物質が、SiO成分を40~55%、Al成分を40~55%、RO成分(ROは、NaO+0.658KOで算定される。)を1%以下、強熱減量成分を1%以下含む請求項1に記載のセメント混和材。
  3.  前記SiO-Al系物質のブレーン比表面積が3000~9000cm/gである請求項1又は2に記載のセメント混和材。
  4.  さらに、無水セッコウを含有する請求項1~3のいずれか1項に記載のセメント混和材。
  5.  前記無水セッコウのpHが2.0~4.5である請求項4に記載のセメント混和材。
  6.  前記無水セッコウのブレーン比表面積が3000~9000cm/gである請求項4又は5に記載のセメント混和材。
  7.  無水セッコウ20~80部とSiO-Al系物質20~80部とを合計で100部の割合で含有する請求項4~6のいずれか1項に記載のセメント混和材。
  8.  請求項1~7のいずれか1項に記載のセメント混和材と、セメントとを含むセメント組成物。
  9.  前記セメント混和材が3~20質量部を含まれる請求項8に記載のセメント組成物。
  10.  石油精製の触媒残渣を酸化雰囲気で350℃以上、950℃以下で加熱処理して得られるSiO-Al系物質と無水セッコウとを別々に粉砕して混合するか、又は同時に粉砕混合することを特徴とする請求項4~7のいずれか1項に記載のセメント混和材の製造方法。
PCT/JP2012/065423 2011-10-13 2012-06-15 セメント混和材及びその製造方法 WO2013054568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013538456A JP6003900B2 (ja) 2011-10-13 2012-06-15 セメント混和材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-226129 2011-10-13
JP2011226129 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013054568A1 true WO2013054568A1 (ja) 2013-04-18

Family

ID=48081630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065423 WO2013054568A1 (ja) 2011-10-13 2012-06-15 セメント混和材及びその製造方法

Country Status (2)

Country Link
JP (1) JP6003900B2 (ja)
WO (1) WO2013054568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673643A (zh) * 2017-09-30 2018-02-09 徐州金盟新型建材有限公司 一种抗变形水泥材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233955A (ja) * 1998-12-18 2000-08-29 Taiheiyo Cement Corp 高流動吹付けコンクリート用急結剤
JP2001039751A (ja) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk 低環境負荷型セメント混和材及びセメント組成物
JP2009012989A (ja) * 2007-07-02 2009-01-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2009078939A (ja) * 2007-09-26 2009-04-16 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233955A (ja) * 1998-12-18 2000-08-29 Taiheiyo Cement Corp 高流動吹付けコンクリート用急結剤
JP2001039751A (ja) * 1999-07-28 2001-02-13 Denki Kagaku Kogyo Kk 低環境負荷型セメント混和材及びセメント組成物
JP2009012989A (ja) * 2007-07-02 2009-01-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2009078939A (ja) * 2007-09-26 2009-04-16 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107673643A (zh) * 2017-09-30 2018-02-09 徐州金盟新型建材有限公司 一种抗变形水泥材料

Also Published As

Publication number Publication date
JP6003900B2 (ja) 2016-10-05
JPWO2013054568A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5189119B2 (ja) セメント混和材として好適に使用される高炉徐冷スラグ粉末を選択する方法
JP5080714B2 (ja) セメント組成物
JP3816036B2 (ja) セメント混和材、セメント組成物及びそれを用いてなるモルタルまたはコンクリート
WO2011108159A1 (ja) カルシウムフェロアルミネート化合物、セメント混和材及びその製造方法、セメント組成物
JP5818579B2 (ja) 中性化抑制型早強セメント組成物
JP2007261884A (ja) グラウト組成物、モルタル又はコンクリート、及びそれを用いたグラウト材料
JP2013103865A (ja) セメントペーストの製造方法
JP2009114011A (ja) セメント添加材及びセメント組成物
WO2020100925A1 (ja) セメント混和材、膨張材、及びセメント組成物
JP6234739B2 (ja) セメント硬化体の製造方法およびセメント硬化体
JP5068906B2 (ja) セメント混和材、セメント組成物、及びそれを用いてなるセメントコンクリート
JP5345821B2 (ja) セメント混和材及びセメント組成物
JP6238579B2 (ja) 炭酸化建材用の結合材およびその製造方法。
JP6003900B2 (ja) セメント混和材の製造方法
JP2010168256A (ja) セメント添加材及びセメント組成物
JP2010076999A (ja) セメント混和材及びセメント組成物
JP2008290926A (ja) 焼成物、セメント添加材及びセメント組成物
JP3983033B2 (ja) セメント混和材、セメント組成物、及びそれを用いたセメントコンクリート
JP2013227185A (ja) モルタルまたはコンクリート用組成物およびそれを成形してなる成形品
JP2021017379A (ja) セメント混和材、膨張材、及びセメント組成物
JP6479461B2 (ja) セメント添加剤及びセメント組成物
JP2014185042A (ja) セメント組成物
JP6385818B2 (ja) セメント添加剤及びセメント組成物
JP6207992B2 (ja) セメント混和材およびセメント組成物それを用いたセメント硬化体
JP2013087036A (ja) 低水和熱セメントクリンカおよび低水和熱セメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840145

Country of ref document: EP

Kind code of ref document: A1