WO2013047832A1 - Composite oxyde métallique et nanotubes de carbone, son procédé de fabrication et électrode et élément électrochimique l'utilisant - Google Patents
Composite oxyde métallique et nanotubes de carbone, son procédé de fabrication et électrode et élément électrochimique l'utilisant Download PDFInfo
- Publication number
- WO2013047832A1 WO2013047832A1 PCT/JP2012/075233 JP2012075233W WO2013047832A1 WO 2013047832 A1 WO2013047832 A1 WO 2013047832A1 JP 2012075233 W JP2012075233 W JP 2012075233W WO 2013047832 A1 WO2013047832 A1 WO 2013047832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal oxide
- carbon nanotubes
- composite
- dispersed
- dispersed carbon
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 52
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 39
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 30
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000008569 process Effects 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 239000000376 reactant Substances 0.000 claims abstract description 18
- 239000002105 nanoparticle Substances 0.000 claims abstract description 15
- 150000004703 alkoxides Chemical class 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000007858 starting material Substances 0.000 claims abstract 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 32
- 229910052744 lithium Inorganic materials 0.000 claims description 32
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 26
- 239000006185 dispersion Substances 0.000 claims description 13
- 239000002683 reaction inhibitor Substances 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- -1 titanium alkoxide Chemical class 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 239000007772 electrode material Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 238000010008 shearing Methods 0.000 abstract 2
- 238000009987 spinning Methods 0.000 abstract 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 15
- 239000012046 mixed solvent Substances 0.000 description 14
- 239000002109 single walled nanotube Substances 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000002048 multi walled nanotube Substances 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 150000002642 lithium compounds Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010303 mechanochemical reaction Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- GOKIPOOTKLLKDI-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O.CC(O)=O GOKIPOOTKLLKDI-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a composite of a metal oxide active material and a carbon nanotube, a manufacturing method thereof, an electrode and an electrochemical device using the composite.
- lithium titanate whose oxidation-reduction potential is higher than the reduction potential of the electrolytic solution, has been studied.
- lithium titanate has a problem of low output characteristics.
- it is a composite of lithium titanate nanoparticles and a carbon material it is difficult to reduce the carbon content, and it is difficult to improve the capacity characteristics.
- the present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its object is to provide an electrode or an electrochemical element that achieves output characteristics and high energy density.
- An object of the present invention is to provide a composite of an oxide active material and a carbon nanotube, and a method for producing the same.
- Another object of the present invention is to provide an electrode and an electrochemical device using the composite.
- the composite of the metal oxide and the carbon nanotube of the present invention is produced by applying shear stress and centrifugal force to the carbon nanotube and the reaction product containing the reaction inhibitor in the rotating reactor. And a metal oxide nanoparticle supported in a highly dispersed manner on the dispersed carbon nanotube, and the bundle is at least partially dissociated by colliding jets of a solution containing the carbon nanotube with the carbon nanotube. It is characterized by being dispersed.
- An electrode formed by molding a composite of the metal oxide and the carbon nanotube using a binder is also an embodiment of the present invention.
- An electrochemical element using the electrode is also an embodiment of the present invention.
- a method for producing a composite of a metal oxide and a carbon nanotube is also an embodiment of the present invention.
- a large-capacity charge / discharge characteristic can be exhibited by performing a pretreatment step on the carbon nanotubes.
- the composite of the metal oxide active material and the carbon nanotube according to the present embodiment is (1) As a pretreatment step, carbon nanotubes (hereinafter referred to as CNT) are dispersed by “ultra-high pressure dispersion treatment”. (2) As a UC treatment process, metal oxide nanoparticles are added to CNTs (dispersed carbon nanotubes) dispersed by “ultracentrifugal treatment”, and ultracentrifugal treatment (Ultra-) is one of the mechanochemical reactions. Centrifugal force processing method (hereinafter referred to as UC processing) (1) The product obtained in the processing step (2) is vacuum dried and then fired.
- CNT carbon nanotubes
- ultra- ultracentrifugal treatment
- the pre-treatment step for dispersing CNTs by “ultra-high pressure dispersion treatment” includes (a) mixing step, (b) stirring step, and (c) ultra-high pressure dispersion treatment. And (d) a concentration and drying step.
- each step (a) to (e) will be described in detail.
- (a) Mixing step In the mixing step, CNT and a solvent are mixed to produce a mixed solvent.
- the existing method can be used for the mixing method of CNT and a solvent.
- a homogenizer described later can be used.
- the ratio of CNT to solvent is preferably 0.5 to 1 g of CNT per 1 l of solvent.
- CNT used in this example is a material in which a six-membered ring network (graphene sheet) made of carbon is formed into a single-layer or multilayer coaxial tube.
- CNT includes single-wall single-wall nanotubes (hereinafter referred to as SWCNT) and multi-wall multi-wall nanotubes (hereinafter referred to as MWCNT).
- SWCNT single-wall single-wall nanotubes
- MWCNT multi-wall multi-wall nanotubes
- the bundle diameter is 0.05 ⁇ m or less, there is an inconvenience that the interaction between the CNTs increases and reaggregation occurs.
- the bundle diameter is more than 1 ⁇ m, there is a problem that the rate characteristics of the obtained composite electrode deteriorate.
- solvent mixed with CNTs alcohols, water, and mixed solvents thereof can be used.
- a mixed solvent in which acetic acid and lithium acetate are dissolved in a mixture of isopropanol and water can be used.
- ammonium persulfate can be used as a solvent.
- the stirring step is a step of stirring the mixed solvent that has passed through the mixing step to uniformly disperse the CNTs in the solvent and pulverizing the CNTs.
- a homogenizer is used and stirred under the conditions of 2000 rpm and 30 minutes.
- Homogenizer is a kind of generator. This homogenizer is composed of a drive unit, a fixed outer blade, and a rotating inner blade, and performs a series of homogenization from high speed dispersion to fine crushing to homogenization.
- (c) Ultra-high pressure dispersion treatment process In the ultra-high pressure dispersion treatment process, a known method generally called jet mixing is used. That is, a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber, and the mixed solvent pressurized by the high-pressure pump is ejected from each nozzle to cause a frontal collision in the chamber. Thereby, the bundle of CNT can be pulverized and dispersed and homogenized. As an example, the treatment is performed at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l.
- FIG. 2 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 ⁇ m SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 1 ⁇ m (50 nm).
- FIG. 3 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 ⁇ m SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 0.05 ⁇ m (25 nm).
- concentration and drying step the highly dispersed solution obtained by the ultra-high pressure treatment is concentrated and dried.
- concentration a known method can be used.
- the metal alkoxide used in this example is preferably a titanium alkoxide, and a metal alkoxide having a reaction rate constant of 10 ⁇ 5 mol ⁇ 1 sec ⁇ 1 or more is preferred.
- metals include tin, zirconia, and cesium.
- lithium compound As the lithium compound, lithium acetate (CH3COOLi, manufactured by Wako Pure Chemical Industries, Ltd., special grade) can be used. As a lithium source other than lithium acetate, lithium hydroxide, lithium sulfate, or the like can be used.
- the lithium compound solution was prepared by dissolving lithium acetate in a mixed solution of distilled water, acetic acid and isopropyl alcohol.
- reaction inhibitor When, for example, titanium alkoxide is used as the metal alkoxide, there is a problem that the reaction is too fast and titanium oxide is formed when producing lithium titanate, so that lithium titanate cannot be produced.
- a predetermined compound that forms a complex with the metal alkoxide as a reaction inhibitor, it is possible to suppress the chemical reaction from being accelerated too much.
- substances that can form a complex with a metal alkoxide include acetic acid, carboxylic acids such as citric acid, succinic acid, formic acid, lactic acid, tartaric acid, fumaric acid, succinic acid, propionic acid, and repuric acid, and aminopolyesters such as EDTA.
- Examples include complexing agents represented by amino alcohols such as carboxylic acid and triethanolamine.
- the UC process used in the present invention is a process using a mechanochemical reaction.
- This mechanochemical reaction is a process of a chemical reaction, and a chemical reaction is promoted by applying a shear stress and a centrifugal force to the reactants in a rotating reactor in the process of a rotating reaction.
- This reaction method can be performed, for example, using a reactor as shown in FIG.
- the reactor includes an outer cylinder 1 having a cough plate 1-2 at an opening and an inner cylinder 2 having a through hole 2-1 and swirling.
- the reactant inside the inner cylinder moves to the inner wall 1-3 of the outer cylinder through the through hole of the inner cylinder by the centrifugal force.
- the reaction product collides with the inner wall of the outer cylinder by the centrifugal force of the inner cylinder, and forms a thin film and slides up to the upper part of the inner wall.
- the thickness of the thin film is 5 mm or less, preferably 2.5 mm or less, more preferably 1.0 mm or less.
- the thickness of the thin film can be set according to the width of the dam plate and the amount of the reaction solution.
- the centrifugal force applied to the reactants in the inner cylinder necessary for the present invention is 1500 N (kgms -2) or more, preferably 60000N (kgms -2) or more, more preferably 270000N (kgms -2) or more.
- lithium titanate be highly dispersed and supported on CNTs by a two-step UC process. That is, as the first UC treatment, CNT, titanium alkoxide, and isopropyl alcohol are charged into the inner cylinder of the reactor, and the inner cylinder is turned to obtain a mixed solution in which CNT and titanium alkoxide are uniformly dispersed.
- the precursor of the lithium titanate is uniformly dispersed and supported on the CNT, and the aggregation of the lithium titanate nanoparticles is caused. Prevented and improved output characteristics.
- CNTs in which a lithium titanate precursor is dispersed and supported can also be generated by a one-step UC treatment.
- CNT, titanium alkoxide, reaction inhibitor, and water are put into the inner cylinder of the reactor, and the inner cylinder is swirled to mix and disperse them and proceed with hydrolysis and condensation reaction, Promote chemical reactions.
- CNTs in which a lithium titanate precursor is dispersed and supported can be obtained.
- the precursor of lithium titanate obtained by UC treatment was highly dispersed and supported on CNTs.
- the CNTs are heated in the range of 300 ° C. to 900 ° C. in a vacuum or nitrogen gas. Thereby, aggregation of lithium titanate particles is prevented, and the capacity and output characteristics of an electrode or an electrochemical element using the electrode material of the present embodiment are improved.
- Electrode The composite powder in which the metal oxide nanoparticles obtained by this embodiment are highly dispersed and supported on carbon nanotubes is dissolved in isopropyl alcohol, and CNT is added and stirred to prepare a slurry. The slurry is filtered to form a sheet. This sheet can be rolled and molded to form an electrode of an electrochemical element, that is, an electrode for storing electrical energy, and the electrode exhibits high output characteristics and high capacity characteristics.
- lithium titanate has been described above, similar effects can be obtained with metal oxides such as lithium iron phosphate.
- a lithium source such as lithium acetate, an iron source such as iron acetate, a phosphorus source such as phosphoric acid and citric acid as a complexing agent are used, and no reaction inhibitor is used.
- Electrochemical element An electrochemical element that can use this electrode is an electrochemical capacitor or a battery that uses an electrolytic solution containing a metal ion such as lithium or magnesium. That is, the electrode of the present invention can occlude and desorb metal ions, and operates as a negative electrode and a positive electrode.
- the electrode of the present invention is laminated by sandwiching a separator between an electrode such as activated carbon as a counter electrode, carbon or metal oxide that occludes and desorbs metal ions, and uses an electrolytic solution containing metal ions.
- Chemical capacitors and batteries can be configured.
- the rate characteristics were compared according to the type of CNT.
- Examples and comparative examples used in the first characteristic comparison are as follows.
- Example 1 In Example 1, as shown in FIG. 5, SWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did. (Example 2) In Example 2, as shown in FIG. 6, MWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did. (Comparative Example 1) In Comparative Example 1, SWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment. (Comparative Example 2) In Comparative Example 2, MWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment.
- CNT of Example 1 (diameter 1 to 2 nm, length 0.01 to 0.1 mm, 400 m 2 / g), CNT of Example 2 (diameter 5 to 10 nm, length 0.01 to 0.02 mm, 250 m 2 / G) was weighed about 1 g and mixed in 2 L of isopropyl alcohol to prepare a mixed solvent. The mixed solvent is stirred using a homogenizer at 2000 rpm for 30 minutes.
- this mixed solvent was sprayed from a pair of nozzles provided in the chamber at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l, and the fluids collided with each other to prepare a CNT / isopropyl alcohol dispersion solution. .
- the resulting dispersion was concentrated and dried.
- a mixed solvent was prepared by dissolving 0.12 g of the CNT dispersion solutions of Examples 1 and 2 and Comparative Examples 1 and 2 and 1.77 g of tetrabutoxytitanium in 18.7 g of isopropyl alcohol. This mixed solvent was put into a swirl reactor, and the inner cylinder was swirled at 40 m / s for 300 seconds to apply high shear dispersion by applying shear stress and centrifugal force to the mixed solvent. A highly dispersed mixture of CNT and titanium as an intermediate product was obtained for each of the two.
- a mixed solvent was prepared by dissolving 0.7 g of acetic acid and 0.34 g of lithium acetate in a mixture of 2.28 g of isopropyl alcohol and 0.93 g of water. This mixed solvent is put into a swirl reactor in which a mixture for each of the above-described Examples 1 and 2 and Comparative Examples 1 and 2 is formed, and the inner cylinder is swung for 300 seconds at 40 m / s. A thin film of the reaction product was formed on the inner wall of the material, and a chemical reaction was promoted by applying shear stress and centrifugal force to the reaction product to obtain a CNT having a highly dispersed precursor of lithium titanate as a final product. .
- Example 1 and 2 and Comparative Examples 1 and 2 in which the precursor of lithium titanate was highly dispersed and supported on the CNTs after two-stage firing processes of 300 ° C. for 1 hour and 900 ° C. for 4 minutes Obtained.
- the amount of titanium alkoxide and CNT charged into the swirl reactor was adjusted so that the weight ratio of lithium titanate and CNT was about 8: 2. did.
- a lithium foil was opposed to the obtained electrode as a counter electrode through a separator, and an electrochemical cell was prepared using 1M LiBF 4 / PC as an electrolytic solution.
- results as shown in FIGS. 7 and 8 were obtained.
- FIG. 7 is a graph showing the rate characteristic evaluation of Example 1 and Comparative Example 1 using SWCNT as CNT.
- FIG. 8 is a diagram showing rate characteristic evaluation of Example 2 and Comparative Example 2 using MWCNT as CNT. 7 and 8, it can be seen that both the SWCNT and the MWCNT have higher rate characteristics in the example in which the pretreatment process is performed than in the comparative example in which the CNT is not subjected to the pretreatment process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
La présente invention concerne le procédé de fabrication d'un composite à partir d'un oxyde métallique et de nanotubes de carbone, un composite d'oxyde métallique et de carbone dans lequel un film carbonisé est formé sur la surface de l'oxyde métallique, et un procédé de fabrication de celui-ci. Tout d'abord, une étape de prétraitement est effectuée dans laquelle des courants-jets d'une solution contenant des nanotubes de carbone sont amenés à entrer en collision l'un avec l'autre de façon à au moins partiellement séparer et disperser des faisceaux de nanotubes de carbone. Ensuite, une étape de fabrication d'un premier composite est effectuée, dans laquelle les nanotubes de carbone qui ont subi l'étape de prétraitement et un alcoolate métallique qui est la matière de départ pour des nanoparticules d'oxyde métallique sont dispersés et mélangés par l'application d'une contrainte de cisaillement et d'une force centrifuge dans un récipient de réaction de filage. Ensuite, le composite est fabriqué par réalisation d'une étape dans laquelle une contrainte de cisaillement et une force centrifuge sont appliqués au premier composite et un réactif dans un récipient de réaction de filage pour former des nanoparticules d'oxyde métallique qui sont hautement dispersées et supportées sur les nanotubes de carbone dispersés.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-218128 | 2011-09-30 | ||
JP2011218128A JP2013075809A (ja) | 2011-09-30 | 2011-09-30 | 金属酸化物とカーボンナノチューブとの複合体、その製造方法、この複合体を用いた電極及び電気化学素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013047832A1 true WO2013047832A1 (fr) | 2013-04-04 |
Family
ID=47995855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075233 WO2013047832A1 (fr) | 2011-09-30 | 2012-09-28 | Composite oxyde métallique et nanotubes de carbone, son procédé de fabrication et électrode et élément électrochimique l'utilisant |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013075809A (fr) |
WO (1) | WO2013047832A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105696090A (zh) * | 2016-02-19 | 2016-06-22 | 江苏亿茂滤材有限公司 | 一种空气过滤碳纳米管纤维膜的制备方法 |
JP2019129142A (ja) * | 2018-01-23 | 2019-08-01 | ツィンファ ユニバーシティ | 電池電極の製造方法 |
JP2019186188A (ja) * | 2018-04-03 | 2019-10-24 | ツィンファ ユニバーシティ | 電池電極、電池電極の製造方法およびハイブリッドエネルギー貯蔵装置 |
CN111247095A (zh) * | 2017-10-30 | 2020-06-05 | 霓达株式会社 | 碳纳米管分散液及其制造方法 |
JP7504291B2 (ja) | 2022-03-07 | 2024-06-21 | 寧徳新能源科技有限公司 | 二次電池及び電子装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6271865B2 (ja) * | 2013-05-24 | 2018-01-31 | 日本ケミコン株式会社 | 蓄電デバイスの電極材料の製造方法 |
CN103311528B (zh) * | 2013-06-14 | 2016-01-27 | 天奈(镇江)材料科技有限公司 | 尖晶石型钛酸锂类嵌锂碳纳米管电极材料及制备方法 |
JP2015050170A (ja) * | 2013-09-04 | 2015-03-16 | 日本ケミコン株式会社 | 電極材料、該電極材料を備えた蓄電デバイス及び電極材料の製造方法 |
JP2016072144A (ja) * | 2014-09-30 | 2016-05-09 | 日本ケミコン株式会社 | 電極、電気化学デバイス及び電極の製造方法 |
CN110299516B (zh) * | 2019-06-10 | 2022-05-10 | 天津大学 | 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法 |
CN113785422A (zh) * | 2019-10-04 | 2021-12-10 | 株式会社Lg新能源 | 电极和包括该电极的二次电池 |
JP7457228B1 (ja) | 2023-06-30 | 2024-03-28 | artience株式会社 | 二次電池電極用複合物の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010173884A (ja) * | 2009-01-28 | 2010-08-12 | Jsr Corp | カーボンナノチューブ分散体、それを用いた膜、およびその製造方法 |
WO2010100954A1 (fr) * | 2009-03-06 | 2010-09-10 | 日本ケミコン株式会社 | Matériau d'électrode et électrode contenant le matériau d'électrode |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5477624B2 (ja) * | 2009-09-02 | 2014-04-23 | 学校法人 名城大学 | 二層カーボンナノチューブを主体とする炭素質材料の製造方法 |
-
2011
- 2011-09-30 JP JP2011218128A patent/JP2013075809A/ja active Pending
-
2012
- 2012-09-28 WO PCT/JP2012/075233 patent/WO2013047832A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010173884A (ja) * | 2009-01-28 | 2010-08-12 | Jsr Corp | カーボンナノチューブ分散体、それを用いた膜、およびその製造方法 |
WO2010100954A1 (fr) * | 2009-03-06 | 2010-09-10 | 日本ケミコン株式会社 | Matériau d'électrode et électrode contenant le matériau d'électrode |
Non-Patent Citations (1)
Title |
---|
MAEDA, Y. ET AL.: "Dispersion of Single-Walled Carbon Nanotube Bundles in Nonaqueous Solution", J. PHYS. CHEM. B, vol. 108, 2004, pages 18395 - 18397, XP003002738 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105696090A (zh) * | 2016-02-19 | 2016-06-22 | 江苏亿茂滤材有限公司 | 一种空气过滤碳纳米管纤维膜的制备方法 |
CN105696090B (zh) * | 2016-02-19 | 2018-04-17 | 江苏亿茂滤材有限公司 | 一种空气过滤碳纳米管纤维膜的制备方法 |
CN111247095A (zh) * | 2017-10-30 | 2020-06-05 | 霓达株式会社 | 碳纳米管分散液及其制造方法 |
CN111247095B (zh) * | 2017-10-30 | 2023-09-05 | 霓达株式会社 | 碳纳米管分散液及其制造方法 |
JP2019129142A (ja) * | 2018-01-23 | 2019-08-01 | ツィンファ ユニバーシティ | 電池電極の製造方法 |
JP2019186188A (ja) * | 2018-04-03 | 2019-10-24 | ツィンファ ユニバーシティ | 電池電極、電池電極の製造方法およびハイブリッドエネルギー貯蔵装置 |
JP7504291B2 (ja) | 2022-03-07 | 2024-06-21 | 寧徳新能源科技有限公司 | 二次電池及び電子装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2013075809A (ja) | 2013-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013047832A1 (fr) | Composite oxyde métallique et nanotubes de carbone, son procédé de fabrication et électrode et élément électrochimique l'utilisant | |
JP6429458B2 (ja) | 電極材料の製造方法 | |
CN102844913B (zh) | 金属氧化物纳米粒子和碳的复合体、其制造方法、使用有该复合体的电极及电化学元件 | |
JP5180643B2 (ja) | 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極並びにこの電極を用いた電気化学素子 | |
WO2010100954A1 (fr) | Matériau d'électrode et électrode contenant le matériau d'électrode | |
WO2011122046A1 (fr) | Nanoparticules de titanate de lithium, composite de carbone et de nanoparticules de titanate de lithium, procédé de production dudit composite, matériau d'électrode comprenant ledit composite, électrode utilisant ledit matériau d'électrode, élément électrochimique, et condensateur électrochimique | |
JP6040489B2 (ja) | シート状複合体、その製造方法、このシート状複合体を用いた電極及び電気化学素子 | |
JP2009146773A (ja) | オリビン型リチウム鉄リン複合酸化物およびその製造方法 | |
KR20140096581A (ko) | 코어쉘 구조의 나노 실리콘과 그래핀이 결합된 복합체, 이의 제조방법, 및 이를 활물질로 포함하는 전기화학소자 | |
JP7208147B2 (ja) | リチウムバナジウム酸化物結晶体、電極材料及び蓄電デバイス | |
US20140287314A1 (en) | Sheet composite, manufacturing method thereof, and electrode and electrochemical element employing said composite | |
JP2016103479A (ja) | リチウム電極の製造方法およびこれを含むリチウム二次電池 | |
JP2011213556A (ja) | チタン酸リチウムナノ粒子、チタン酸リチウムナノ粒子とカーボンの複合体、その製造方法、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ | |
JP6625821B2 (ja) | 金属化合物粒子群、金属化合物粒子群を含む蓄電デバイス用電極および金属化合物粒子群の製造方法 | |
JP5877630B2 (ja) | 電気化学キャパシタ | |
JP2011216748A (ja) | 電気化学キャパシタ | |
EP4203109A1 (fr) | Carbone conducteur, procédé de production de celui-ci, procédé de production d'un mélange de carbones conducteurs contenant ledit carbone conducteur, et procédé de production d'électrode utilisant ledit carbone conducteur ou ledit mélange de carbones conducteurs | |
JP2015227281A (ja) | チタン酸リチウムナノ粒子、その製造方法、チタン酸リチウムナノ粒子とカーボンの複合体、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ | |
JP5965015B2 (ja) | チタン酸リチウム結晶構造体 | |
JP5877629B2 (ja) | 電気化学キャパシタ | |
CN118439663A (zh) | 一种原位塑晶包覆的钠电前驱体及其制备方法与应用 | |
WO2016098371A1 (fr) | Procédé de production de groupe de particules de composé métallique, groupe de particules de composé métallique, et électrode pour dispositif de stockage d'électricité contenant un groupe de particules de composé métallique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12835838 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12835838 Country of ref document: EP Kind code of ref document: A1 |