WO2013047656A1 - 画像投影装置および光軸ずれ補正方法 - Google Patents

画像投影装置および光軸ずれ補正方法 Download PDF

Info

Publication number
WO2013047656A1
WO2013047656A1 PCT/JP2012/074881 JP2012074881W WO2013047656A1 WO 2013047656 A1 WO2013047656 A1 WO 2013047656A1 JP 2012074881 W JP2012074881 W JP 2012074881W WO 2013047656 A1 WO2013047656 A1 WO 2013047656A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
optical axis
axis deviation
horizontal
image
Prior art date
Application number
PCT/JP2012/074881
Other languages
English (en)
French (fr)
Inventor
太田 雅彦
石橋 修
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013047656A1 publication Critical patent/WO2013047656A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • G09G3/025Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions

Definitions

  • the present invention relates to an image projection apparatus that scans light beams from a plurality of light sources having different emission colors and projects an image on a screen.
  • An image projection apparatus including a scanning system for scanning is known (for example, see Patent Document 1).
  • a color image is projected on a screen by a light beam of each color from the scanning system.
  • Patent Document 1 describes a color image display device that can correct a horizontal positional deviation of a projected image.
  • a color image display device described in Patent Document 1 includes a light source of each color of red, green, and blue, a deflection mirror that scans a light beam of each color from each light source in a horizontal direction and a vertical direction, and each light source and deflection mirror. And a control unit for controlling each of the operations.
  • Red light source, green light source, and blue light source are arranged in a line on the same plane.
  • a lens system for condensing the light beam from each light source on the screen is disposed between each light source and the deflecting mirror.
  • each light source is aligned in a row in the horizontal direction. For this reason, as shown in FIG. 1, when video signals R, G, and B are supplied to each light source at the same timing, a red projection image based on the video signal R and a green projection image based on the video signal G , A horizontal displacement occurs between the blue projection image based on the video signal B and the blue projection image.
  • the eyelid controller corrects the horizontal position shift between the projected images by adjusting the input timing of the video signal to each light source.
  • the control unit delays the input timing of the video signal G to the green light source with respect to the input timing of the video signal B to the blue light source, so that the blue projection image is displayed. And the misalignment between the green projected image is corrected. Further, the control unit delays the input timing of the video signal R to the red light source with respect to the input timing of the video signal B to the blue light source, thereby causing a positional shift between the blue projection image and the red projection image. Correct.
  • the reciprocating drawing type image projection apparatus includes a frame memory for each color, and a video signal indicating an image of each color is stored in the frame memory for each color.
  • the image data for the forward path and the image data for the backward path are alternately read for each horizontal line, the forward path is drawn based on the image data for the forward path, and the return path data is determined based on the image data for the backward path.
  • the pixel data D1_1 to D1_x corresponding to the first horizontal line and pixel data D2_1 to D2_x corresponding to the second horizontal line are respectively stored in the frame memory in the same writing order
  • the pixel data D1_1 to D1_x Is read in order from the D1_1 side
  • the pixel data D2_1 to D2_x are read in order from the D2_x side.
  • the pixel data D1_1 to D1_x are drawn in order from D1_1.
  • the pixel data D2_1 to D2_x are drawn in order from D2_x.
  • the optical axis deviation in the horizontal direction can be corrected, but the optical axis deviation in the vertical direction, in particular, the optical axis deviation in the vertical direction in the above-described reciprocating image projection apparatus. Is difficult to correct.
  • the input timing of the video signal R to the red light source is delayed by the time corresponding to the width of one horizontal line with respect to the input timing of the video signal G to the green light source.
  • the upper end of the image can coincide with the upper end of the red projected image.
  • the forward path is drawn with the image data for the backward path
  • the backward path is drawn with the image data for the forward path.
  • the image order for the forward path and the image data for the backward path are opposite to each other. For this reason, when the forward path is drawn with the image data for the backward path and the backward path is rendered with the image data for the forward path, the drawing image of each horizontal line becomes an inverted image, and the red image is correctly projected. I can't.
  • An object of the present invention is to provide an image projection apparatus and an optical axis deviation correction method capable of correcting an optical axis deviation in the vertical direction.
  • an image projection apparatus of the present invention includes: A plurality of light sources for outputting light beams; A video signal control unit that receives a different video signal for each light source and controls a lighting state of a corresponding light source according to the video signal; Scanning means for scanning each light beam output from the plurality of light sources in a reciprocating scan in a first direction and / or in a second direction intersecting the first direction;
  • the video signal controller is Any one of the plurality of light sources is a first reference light source, and the other is an optical axis adjustment light source, and the second optical axis of the optical axis adjustment light source is relative to the optical axis of the first reference light source.
  • An optical axis deviation amount setting unit that sets a direction deviation amount as a first delay amount indicated by the number of scanning lines in the first direction;
  • the forward path And an optical axis deviation correcting means for controlling the output of the optical axis adjusting light source so as to invert the image drawn on the scanning line with the second direction as an axis in each of the return paths.
  • the optical axis deviation correcting method of the present invention is A device comprising a plurality of light sources for outputting light beams, and reciprocatingly scanning each light beam output from each light source in a first direction and / or scanning in a second direction intersecting with the first direction
  • the optical axis deviation correction method performed in One of the plurality of light sources is used as a reference light source, and the other is used as an optical axis adjustment light source, and the amount of deviation in the second direction of the optical axis of the optical axis adjustment light source with respect to the optical axis of the reference light source, Set as a delay amount indicated by the number of scan lines in the first direction;
  • the display timing of the image by the optical axis adjustment light source with respect to the display timing of the image by the reference light source is delayed by the delay amount, and when the delay amount is an odd number, the forward line and the backward path are respectively connected to the scanning line. Controlling the output of the optical axis adjustment light source so as to invert the image drawn in the second
  • FIG. 10 is a diagram for explaining a shift in projection video of each color of the image display device described in Patent Document 1.
  • FIG. 10 is a diagram for explaining a method for correcting a shift in projection video of each color of the image display device described in Patent Literature 1.
  • 1 is a block diagram illustrating a configuration of an image projection apparatus according to a first embodiment of the present invention. It is a block diagram which shows the main structures of the video signal control part of the image projector shown in FIG. It is a figure which shows the relationship between the amount of optical axis offsets, and the amount of vertical delay. It is a figure for demonstrating the light source drive signal of each light source at the time of correcting the perpendicular
  • FIG. 1 It is a figure for demonstrating the phase shift correction of the image projector shown in FIG. It is a block diagram which shows the structure of the image projector which is the 4th Embodiment of this invention. It is a block diagram which shows the structure of the video signal control part of the image projector shown in FIG. It is a schematic diagram which shows an example of arrangement
  • FIG. 3 is a block diagram showing the configuration of the image projection apparatus according to the first embodiment of the present invention.
  • the image projection apparatus includes light sources 1B, 1G, and 1R, light source drive circuits 2B, 2G, and 2R, collimator lenses 3a, 3b, and 3c, a mirror 4, dichroic mirrors 5a and 5b, a scanning mirror control unit 6, A scanning mirror driving unit 7, a vertical scanning mirror 8a, a horizontal scanning mirror 8b, and a video signal control unit 10 are provided.
  • the light sources 1B, 1G, and 1R are solid light sources such as a laser diode (LD) and an LED (Light Emitting Diode).
  • the light source 1B has a peak wavelength in the blue wavelength band.
  • the light source 1G has a peak wavelength in the green wavelength band.
  • the light source 1R has a peak wavelength in the red wavelength band.
  • a collimator lens 3c and a mirror 4 are sequentially arranged in the traveling direction of the red light beam emitted from the light source 1R.
  • the collimator lens 3c converts the light beam from the light source 1R into a parallel beam.
  • the mirror 4 reflects the collimated light beam from the collimator lens 3c.
  • a collimator lens 3b is arranged in the traveling direction of the green light beam emitted from the light source 1G.
  • the collimator lens 3b converts the light beam from the light source 1G into a parallel beam.
  • the dichroic mirror 5b has a spectral transmission (reflection) characteristic that reflects green light and transmits red light.
  • the red light beam from the mirror 4 and the parallel light from the collimator lens 3b are converted into green light. It is arranged at the intersection with the beam.
  • the dichroic mirror 5b transmits the red light beam from the mirror 4 as it is, and reflects the green light beam from the collimator lens 3b toward the traveling direction of the transmitted red light beam.
  • a collimator lens 3a is arranged in the traveling direction of the blue light beam emitted from the light source 1B.
  • the collimator lens 3a converts the light beam from the light source 1B into a parallel beam.
  • the dichroic mirror 5a has a spectral transmission (reflection) characteristic that reflects blue light and transmits green and red light.
  • the dichroic mirror 5a transmits the light beam (red, green) from the dichroic mirror 5b as it is, and reflects the blue light beam from the collimator lens 3a toward the traveling direction of the transmitted light beam (red, green). .
  • a scanning means comprising a vertical scanning mirror 8a and a horizontal scanning mirror 8b is arranged in the traveling direction of the light beam (red, green, blue) from the dichroic mirror 5a.
  • the horizontal scanning mirror 8b scans the light beam (red, green, blue) from the dichroic mirror 5a in the horizontal direction.
  • the vertical scanning mirror 8a scans the light beam scanned in the horizontal direction by the horizontal scanning mirror 8b in the vertical direction.
  • An image is projected on the screen 20 by scanning the light beam with the horizontal scanning mirror 8b and the vertical scanning mirror 8a.
  • a resonant scanning mirror represented by a micromechanical mirror (MEMS), a galvanometer mirror, or the like can be used.
  • MEMS micromechanical mirror
  • galvanometer mirror a resonant scanning mirror capable of two-dimensional scanning.
  • the saddle scanning mirror drive unit 7 drives the vertical scanning mirror 8a and the horizontal scanning mirror 8b.
  • the scanning mirror control unit 6 receives a synchronization signal (horizontal synchronization signal and vertical synchronization signal) from the video signal control unit 10 and controls the scanning mirror drive unit 7 based on the synchronization signal.
  • the video signals R, G, and B are supplied from the external device to the video signal control unit 10.
  • the external device is, for example, a video supply device such as a personal computer.
  • the video signal control unit 10 supplies the scanning mirror control unit 6 with synchronization signals (vertical synchronization signal and horizontal synchronization signal) indicating vertical synchronization and horizontal synchronization for displaying images based on the video signals R, G, and B, respectively. .
  • the video signal control unit 10 supplies the light source drive signal S_R to the light source drive circuit 2R, supplies the light source drive signal S_G to the light source drive circuit 2G, and supplies the light source drive signal S_B to the light source drive circuit 2B.
  • the light source drive circuit 2R drives the light source 1R according to the light source drive signal S_R.
  • the light source drive circuit 2G drives the light source 1G according to the light source drive signal S_G.
  • the light source drive circuit 2B drives the light source 1B according to the light source drive signal S_B.
  • the image forming apparatus is of a reciprocating drawing type, and corrects for optical axis misalignment in the horizontal direction and the vertical direction. Since the reciprocating drawing is a well-known technique (see also the description of the above-described reciprocating drawing type image projection apparatus), detailed description thereof is omitted here, and the optical axis deviation in the horizontal direction and the vertical direction is prevented. The correction operation will be mainly described.
  • FIG. 4 shows a main configuration of the video signal control unit 10.
  • the video signal control unit 10 includes frame memories 10B, 10G, and 10R, an optical axis deviation amount setting unit 13, and memory control units 14B, 14G, and 14R.
  • a video signal B indicating a blue video is stored in the frame memory 10B in units of frames
  • a video signal G indicating a green video is stored in the frame memory 10G in units of frames
  • a video signal R indicating a red video is stored in the frame memory 10R in units of frames.
  • the memory control unit 14B performs image data writing control to the frame memory 10B and image data reading control from the frame memory 10B.
  • the memory control unit 14B includes a vertical optical axis deviation correction unit 11B and a horizontal optical axis deviation correction unit 12B. Have.
  • the memory control unit 14G controls the writing of image data to the frame memory 10G and the reading of image data from the frame memory 10G.
  • the memory control unit 14G includes a vertical optical axis deviation correction unit 11G and a horizontal optical axis deviation correction unit 12G. Have.
  • the memory control unit 14R performs image data writing control to the frame memory 10R and image data reading control from the frame memory 10R.
  • the memory control unit 14R includes the vertical optical axis deviation correction unit 11R and the horizontal optical axis deviation correction unit 12R. Have.
  • the optical axis deviation amount setting unit 13 outputs optical axis deviation amounts D_B, D_G, and D_R indicating the horizontal and vertical optical axis deviation amounts of the light sources 1B, 1G, and 1R, respectively.
  • the optical axis misalignment amounts D_B, D_G, and D_R are the delay amounts of other projection images with the dot clock being set to 1 with respect to the projection image with the latest drawing start timing among the blue, green, and red projection images. This is expressed using the dot amount shown as a unit time.
  • the optical axis deviation amount D_R is 0, and the optical axis deviation amounts D_B and D_G are respectively the horizontal and vertical directions of the blue and green projection images with respect to the red projection image.
  • the fluorescence axis deviation amounts D_B, D_G, and D_R may be values designated by the operator through an input operation unit (not shown).
  • the optical axis deviation amount setting unit 13 receives the optical axis deviation amounts of the light sources 1B, 1G, and 1R designated by the operator through an input operation unit (not shown).
  • the optical axis deviation amounts D_B, D_G, and D_R may be given in advance.
  • the optical axis deviation amounts in the horizontal and vertical directions of the light sources 1B, 1G, and 1R are measured, and the optical axis deviation amounts D_B, D_G, and D_R are determined based on the measurement results.
  • the optical axis deviation amounts D_B, D_G, and D_R determined in this way are stored in advance in the storage unit in the video signal control unit 10, and the optical axis deviation amount setting unit 13 stores the optical axis deviation amount in the storage unit at the execution timing of the optical axis deviation correction.
  • the held optical axis deviation amounts D_B, D_G, and D_R are output.
  • the execution timing of the optical axis deviation correction is an arbitrary timing specified when the apparatus is started up or by the operator.
  • the optical axis deviation amount setting unit 13 supplies the optical axis deviation amount D_B to the memory control unit 14B, supplies the optical axis deviation amount D_G to the memory control unit 14G, and supplies the optical axis deviation amount D_R to the memory control unit 14R. .
  • the vertical optical axis deviation correction unit 11B calculates an integer part (0 and a positive integer) of the value obtained by dividing the optical axis deviation amount D_B by the delay amount for one line as a vertical delay amount. Then, it is determined whether or not the calculated vertical delay amount is an odd number.
  • D be the number of dots in one horizontal period including the drawing period (effective video period) and the blanking period (the number of dot clocks in one line).
  • the vertical delay amount is 0 line, that is, 0. If the optical axis deviation amount D_B is in the range of D + 1 to 2D, the vertical delay amount is 1 (a delay amount for one line). If the optical axis deviation amount D_B is in the range of 2D + 1 to 3D, the vertical delay amount is 2 (a delay amount for two lines). In this way, the vertical optical axis deviation correction unit 11B calculates the vertical delay amount from the optical axis deviation amount D_B.
  • the horizontal optical axis deviation correction unit 12B determines the forward path and the backward path, and the remainder of the value obtained by dividing the optical axis deviation amount D_B by the number of dots D per line is the horizontal delay amount. Calculate as The determination of the forward path and the return path is based on the order of the line from which data is read from the frame memory 10B. If it is an odd-numbered line, it is a forward path, and if it is an even-numbered line, it is a return path.
  • the memory controller 14B controls the reading of data from the frame memory 10B based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward path return determination result.
  • the vertical optical axis deviation correction unit 11B delays the read start timing of the image data from the frame memory 10B by the vertical delay amount.
  • the horizontal optical axis deviation correction unit 12B delays or accelerates the data read timing for each line by the horizontal delay amount. For example, the forward data read is delayed by the horizontal delay amount, and the backward data read is advanced by the horizontal delay amount.
  • the vertical optical axis deviation correction unit 11B when the vertical delay amount is an odd number, the vertical optical axis deviation correction unit 11B reverses the reading order of each data of the horizontal line in the forward path and the backward path. When the vertical delay amount is not an odd number, the vertical optical axis deviation correcting unit 11B does not perform such a reading order inversion.
  • the vertical optical axis deviation correction unit 11G calculates the vertical delay amount from the optical axis deviation amount D_G, and determines whether the calculated vertical delay amount is an odd number. judge.
  • the horizontal optical axis deviation correction unit 12G determines the forward path and the backward path for each scan, and calculates the remainder of the value obtained by dividing the optical axis deviation amount D_G by the number of dots D per line as the horizontal delay amount. Then, the memory control unit 14G controls reading of data from the frame memory 10G based on the vertical delay amount, the horizontal delay amount, the odd determination result, and the forward return determination result.
  • the data read control is basically the same as that of the memory control unit 14B.
  • the vertical optical axis deviation correction unit 11R calculates the vertical delay amount from the optical axis deviation amount D_R, and whether or not the calculated vertical delay amount is an odd number. judge. Further, the horizontal optical axis deviation correction unit 12R determines the forward path and the backward path for each scan, and calculates the remainder of the value obtained by dividing the optical axis deviation amount D_R by the number of dots D per line as the horizontal delay amount. Then, the memory control unit 14R controls reading of data from the frame memory 10R based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward path return determination result.
  • the data read control is basically the same as that of the memory control unit 14B.
  • a vertical optical axis shift correction is performed, and a horizontal optical axis shift occurs.
  • the horizontal optical axis deviation correction is performed.
  • both the vertical optical axis deviation correction and the horizontal optical axis deviation correction are performed.
  • the optical axis deviation amount setting unit 13 supplies the optical axis deviation amount D_G indicating the vertical optical axis deviation for two lines to the memory control unit 14G, and the optical axis deviation amounts D_B and D_R indicating 0 as the memory control unit 14B. 14R.
  • the vertical optical axis deviation correction units 11B and 11R calculate the vertical delay amount (0 line) from the optical axis deviation amounts D_B and D_R, and the calculated vertical delay amount is not an odd number. judge. Then, the memory control units 14B and 14R read data from the frame memories 10B and 10R for each line. Data read from the frame memory 10B is supplied to the light source drive circuit 2B as the light source drive signal S_B, and data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the vertical optical axis deviation correction unit 11G calculates the vertical delay amount (2 lines) from the optical axis deviation amount D_G, and determines that the calculated vertical delay amount is not an odd number. Then, the memory control unit 14G delays the read start timing of the image data from the frame memory 10G by two lines with respect to the read start timing of the image data from the frame memories 10B and 10R by the memory control units 14B and 14R. To control. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • FIG. 6 shows the light source drive signals S_B, S_G, and S_R together with the drive signal for the horizontal scanning mirror 8b when the vertical optical axis deviation correction for the two lines is performed.
  • the data of the first horizontal line is read sequentially from the leftmost data from the frame memories 10B and 10R, and the read data is the light source drive signal S_B.
  • S_R are supplied to the light source drive circuits 2B and 2R.
  • the data of the second horizontal line is read from the frame memories 10B and 10R in order from the data on the right end, and the read data is the light source drive circuit 2B as the light source drive signals S_B and S_R. 2R.
  • the data of the third horizontal line is read sequentially from the leftmost data from the frame memories 10B and 10R, and the read data is the light source driving circuit 2B as the light source driving signals S_B and S_R. 2R. Further, the data of the first horizontal line is read sequentially from the left end data from the frame memory 10G, and the read data is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • the data of the fourth horizontal line is sequentially read from the frame memories 10B and 10R from the right end data, and the read data is the light source drive circuit 2B as the light source drive signals S_B and S_R. 2R. Further, the data of the second horizontal line is read from the frame memory 10G in order from the rightmost data, and the read data is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • red, green and blue images can be displayed on the screen 20 without color shift.
  • the optical axis deviation amount setting unit 13 supplies an optical axis deviation amount D_G indicating a delay amount corresponding to the vertical optical axis deviation for one line to the memory control unit 14G, and sets optical axis deviation amounts D_B and D_R indicating zero.
  • the data is supplied to the memory control units 14B and 14R.
  • the vertical optical axis deviation correction units 11B and 11R calculate the vertical delay amount (0 line) from the optical axis deviation amounts D_B and D_R, and the calculated vertical delay amount is not an odd number. judge.
  • a vertical delay amount of 0 lines means that normal reading is performed without delay.
  • the memory control units 14B and 14R read data from the frame memories 10B and 10R for each line. Data read from the frame memory 10B is supplied to the light source drive circuit 2B as the light source drive signal S_B, and data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the vertical optical axis deviation correction unit 11G calculates the vertical delay amount (one line) from the optical axis deviation amount D_G, and determines that the calculated vertical delay amount is an odd number. Then, the memory control unit 14G delays the read start timing of the image data from the frame memory 10G by one line with respect to the read start timing of the image data from the frame memories 10B and 10R by the memory control units 14B and 14R. The reading order of each data on the horizontal line is reversed left and right in each of the forward path and the backward path. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • FIG. 7 shows the light source drive signals S_B, S_G, and S_R together with the drive signal for the horizontal scanning mirror 8b when the vertical optical axis shift for one line is corrected.
  • the display image is an image with gradation in the horizontal direction.
  • the non-inverted readout light source drive signal S_G is shown at the bottom of the drawing.
  • the non-inverted read light source drive signal S_G is a light source drive signal when data is read from the frame memory 10G without reversing the read order of each data on the horizontal line.
  • the data of the first horizontal line is read sequentially from the leftmost data from the frame memories 10B and 10R, and the read data is the light source drive signal S_B.
  • S_R are supplied to the light source drive circuits 2B and 2R.
  • the data of the second horizontal line is read from the frame memories 10B and 10R in order from the data on the right end, and the read data is the light source drive circuit 2B as the light source drive signals S_B and S_R. 2R. Further, the data of the first horizontal line is read from the frame memory 10G in order from the rightmost data, and the read data is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • This light source drive signal S_G is obtained by inverting the left and right of the data of the non-inverted readout light source drive signal S_G.
  • the data of the third horizontal line is read sequentially from the leftmost data from the frame memories 10B and 10R, and the read data is the light source driving circuit 2B as the light source driving signals S_B and S_R. 2R. Further, the data of the second horizontal line is read from the frame memory 10G in order from the leftmost data, and the read data is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • the data of the fourth horizontal line is sequentially read from the frame memories 10B and 10R from the right end data, and the read data is the light source drive circuit 2B as the light source drive signals S_B and S_R. 2R. Further, the data of the third horizontal line is read from the frame memory 10G in order from the rightmost data, and the read data is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • red, green and blue images can be displayed on the screen 20 without color shift.
  • the optical axis deviation amount setting unit 13 supplies an optical axis deviation amount D_B indicating a delay amount corresponding to a horizontal optical axis deviation of several dots to the memory control unit 14B, and optical axis deviation amounts D_G and D_R indicating 0.
  • the data is supplied to the memory control units 14G and 14R.
  • the horizontal optical axis deviation correction units 12G and 12R calculate the horizontal delay amount (several dots) from the optical axis deviation amounts D_G and D_R, and determine the forward path and the backward path. Then, the memory control units 14G and 14R read data from the frame memories 10G and 10R for each line. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G, and data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the horizontal optical axis deviation correction unit 12B calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_B and determines the forward path and the backward path. Then, when reading the forward data from the frame memory 10B, the memory control unit 14B delays the read timing by the horizontal delay amount with respect to the read timing of the data from the frame memories 10G and 10R. In addition, when reading the return path data from the frame memory 10B, the memory control unit 14B advances the read timing by a horizontal delay amount with respect to the data read timing from the frame memories 10G and 10R. The data read from the frame memory 10B in this way is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • FIG. 8 shows the light source drive signals S_B, S_G, and S_R together with the drive signal for the horizontal scanning mirror 8b when the horizontal optical axis deviation is corrected.
  • the data of the first horizontal line is read sequentially from the leftmost data from the frame memories 10G and 10R, and the read data is the light source drive signal S_G. , S_R are supplied to the light source drive circuits 2G and 2R.
  • the first horizontal line data is read from the frame memory 10B in order from the leftmost data. Then, the read data is supplied to the light source driving circuit 2B as the light source driving signal S_B.
  • the data of the second horizontal line is read from the frame memories 10G and 10R in order from the rightmost data, and the read data is used as the light source drive signals S_G and S_R. 2R.
  • the second horizontal line data is read from the frame memory 10B in order from the rightmost data at a time earlier by the time corresponding to the horizontal delay amount than the reading start time of the second horizontal line data from the frame memories 10G and 10R.
  • the read data is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • each of the red, green and blue images can be displayed on the screen 20 without any color deviation.
  • the light source 1G has an optical axis shift of two lines in the vertical direction with respect to the light sources 1B and 1R, and the light source 1B has several dots in the horizontal direction with respect to the light sources 1G and 1R ( ⁇ 1 line). It is assumed that the optical axis shift of the number of dots D) occurs.
  • the optical axis deviation amount setting unit 13 supplies an optical axis deviation amount D_G indicating a delay amount corresponding to the vertical optical axis deviation for two lines to the memory control unit 14G, and a delay corresponding to the horizontal optical axis deviation for several dots.
  • the optical axis deviation amount D_B indicating the amount is supplied to the memory control unit 14B, and the optical axis deviation amount D_R indicating 0 is supplied to the memory control unit 14R.
  • the vertical optical axis deviation correction unit 11R calculates the vertical delay amount (0 lines) from the optical axis deviation amount D_R and determines that the calculated vertical delay amount is not an odd number. Further, the horizontal optical axis deviation correction unit 12R calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_R and determines the forward path and the backward path. Then, the memory control unit 14R reads data for each line from the frame memory 10R based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the vertical optical axis deviation correction unit 11G calculates the vertical delay amount (2 lines) from the optical axis deviation amount D_G, and determines that the calculated vertical delay amount is not an odd number. Further, the horizontal optical axis deviation correction unit 12G calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_G, and determines the forward path and the backward path. Then, the memory control unit 14G reads data from the frame memory 10G for each line based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • the vertical optical axis deviation correction unit 11B calculates the vertical delay amount (0 lines) from the optical axis deviation amount D_B, and determines that the calculated vertical delay amount is not an odd number. Further, the horizontal optical axis deviation correction unit 12B calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_B and determines the forward path and the backward path. Then, the memory control unit 14B reads data for each line from the frame memory 10B based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10B is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the data reading operation from the frame memories 10B, 10G, and 10R is a combination of the vertical optical axis deviation correction operation shown in FIG. 6 and the horizontal optical axis deviation correction operation shown in FIG.
  • the start of reading data for each horizontal line related to the light source drive signal S_B is delayed by the horizontal delay amount in the forward path as shown in FIG. On the return path, the horizontal delay amount is advanced.
  • the light source 1G has an optical axis shift of one line in the vertical direction with respect to the light sources 1B and 1R, and the light source 1B has several dots in the horizontal direction with respect to the light sources 1G and 1R ( ⁇ 1 line). It is assumed that the optical axis shift of the number of dots D) occurs.
  • the optical axis deviation amount setting unit 13 supplies an optical axis deviation amount D_G indicating a delay amount corresponding to the vertical optical axis deviation for one line to the memory control unit 14G, and a delay corresponding to the horizontal optical axis deviation for several dots.
  • the optical axis deviation amount D_B indicating the amount is supplied to the memory control unit 14B, and the optical axis deviation amount D_R indicating 0 is supplied to the memory control unit 14R.
  • the vertical optical axis deviation correction unit 11R calculates the vertical delay amount (0 lines) from the optical axis deviation amount D_R and determines that the calculated vertical delay amount is not an odd number. Further, the horizontal optical axis deviation correction unit 12R calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_R and determines the forward path and the backward path. Then, the memory control unit 14R reads data for each line from the frame memory 10R based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the vertical optical axis deviation correction unit 11G calculates the vertical delay amount (one line) from the optical axis deviation amount D_G, and determines that the calculated vertical delay amount is an odd number. Further, the horizontal optical axis deviation correction unit 12G calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_G, and determines the forward path and the backward path. Then, the memory control unit 14G reads data from the frame memory 10G for each line based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G.
  • the vertical optical axis deviation correction unit 11B calculates the vertical delay amount (0 lines) from the optical axis deviation amount D_B, and determines that the calculated vertical delay amount is not an odd number. Further, the horizontal optical axis deviation correction unit 12B calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_B and determines the forward path and the backward path. Then, the memory control unit 14B reads data for each line from the frame memory 10B based on the vertical delay amount, the horizontal delay amount, the odd number determination result, and the forward / return determination result. Data read from the frame memory 10B is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the data read operation from the frame memories 10B, 10G, and 10R is a combination of the vertical optical axis deviation correction operation shown in FIG. 7 and the horizontal optical axis deviation correction operation shown in FIG.
  • the start of reading data for each horizontal line related to the light source drive signal S_B is delayed by the horizontal delay amount in the forward path as shown in FIG. On the return path, the horizontal delay amount is advanced.
  • the data for each horizontal line regarding the light source drive signal S_R is displayed.
  • the start of reading may be delayed by the horizontal delay amount on the forward path and advanced by the horizontal delay amount on the return path.
  • the vertical axis optical axis deviation can be corrected and the image can be displayed correctly in the reciprocating drawing method, so that deterioration in image quality can be suppressed.
  • optical axis shift in the horizontal direction can also be corrected, it is possible to further suppress image quality degradation.
  • the vertical and horizontal optical axis misalignment can be electrically corrected, which can alleviate the requirement of very high assembly accuracy during manufacturing and, as a result, keep the yield low.
  • the manufacturing cost can be reduced.
  • the memory control units 14B, 14G, and 14R include the vertical optical axis deviation correction unit and the horizontal optical axis deviation correction unit, but may include only the vertical optical axis deviation correction unit. In this case, the memory control units 14B, 14G, and 14R execute only vertical optical axis deviation correction.
  • the present invention is not limited to this.
  • the light source a plurality of light sources that emit light beams of different colors can be used.
  • the video signal control unit 10 is provided with a frame memory and a memory control unit for each color of the light source.
  • the image projection apparatus has the same configuration as that of the first embodiment shown in FIGS. 3 and 4, but the operation for correcting the horizontal optical axis deviation is different from that of the first embodiment.
  • Other than the horizontal optical axis deviation correction is the same as that described in the first embodiment, and here, the configuration and operation related to the horizontal optical axis deviation correction will be mainly described.
  • the scanning speed of the light beam from the horizontal scanning mirror 8b in the horizontal direction on the screen 20 is the fastest in the vicinity of the center and becomes slower toward the end side.
  • the interval between the dots formed on the horizontal line when the light source is caused to emit light at a constant time interval is the largest near the center and becomes smaller toward the end.
  • the horizontal delay amount is set for one entire horizontal line, so the horizontal delay amount for each dot is fixed.
  • the drawing position of each dot on the horizontal line on the screen 20 when the data reading is delayed or accelerated by the horizontal delay amount is delayed or accelerated.
  • the drawing position of each dot on the horizontal line on the screen 20 when the data is read without reading is different.
  • FIG. 9 shows the drawing position of each dot in the first forward path (1H) on the screen 20 when the light sources 1G and 1R are driven based on the light source drive signals S_G and S_R in the horizontal optical axis deviation correction shown in FIG. And the positional relationship between the drawing position of each dot on the first forward path (1H) on the screen 20 when the light source 1B is driven based on the light source drive signal S_B.
  • each dot of the light source 1B and each dot of the light sources 1G, 1R are described separately, but in reality, each dot of the light sources 1B, 1G, 1R is drawn along the same horizontal line.
  • the horizontal optical axis misalignment correction units 12B, 12G, and 12R each include first characteristic data for delayed readout and And a table storing the second characteristic data for fast reading.
  • the first characteristic data is such that the position of the dot on the horizontal line when the delayed reading is performed matches the position of the corresponding dot on the horizontal line when the normal reading (read without delay) is performed. This defines the horizontal delay amount with respect to the horizontal scanning position.
  • the position of the dot on the horizontal line for the light source 1B that has performed delayed readout is the position of the corresponding dot on the horizontal line for the light sources 1G and 1R.
  • First characteristic data is created for a predetermined amount of horizontal optical axis deviation, and the horizontal delay amount with respect to the horizontal scanning position when delay reading is performed based on an arbitrary amount of horizontal optical axis deviation is determined from the first characteristic data. It can be determined using an approximate expression (function).
  • the horizontal optical axis deviation correction units 12B, 12G, and 12R calculate horizontal delay amounts based on the optical axis deviation amounts D_B, D_G, and D_R supplied from the horizontal optical axis deviation amount setting unit 13, respectively, and the calculated horizontal delays.
  • the amount of horizontal delay with respect to the horizontal scanning position when delay reading based on the amount is performed is determined from the first characteristic data by a predetermined approximate expression.
  • the second characteristic data is that the horizontal position relative to the horizontal scanning position is such that the position of the dot on the horizontal line when the early reading is performed matches the position of the corresponding dot on the horizontal line when the normal reading is performed. This defines the amount of delay.
  • Second characteristic data is created for a predetermined amount of horizontal optical axis deviation, and the horizontal delay amount with respect to the horizontal scanning position when quick reading is performed based on an arbitrary amount of horizontal optical axis deviation is determined from the second characteristic data. It can be determined using an approximate expression (function).
  • the horizontal optical axis deviation correction units 12B, 12G, and 12R calculate horizontal delay amounts based on the optical axis deviation amounts D_B, D_G, and D_R supplied from the horizontal optical axis deviation amount setting unit 13, respectively, and the calculated horizontal delays.
  • the amount of horizontal delay with respect to the horizontal scanning position when fast reading based on the amount is performed is determined from the second characteristic data by a predetermined approximate expression.
  • the optical axis deviation amount setting unit 13 supplies an optical axis deviation amount D_B indicating a delay amount corresponding to a horizontal optical axis deviation of several dots to the memory control unit 14B, and optical axis deviation amounts D_G and D_R indicating 0.
  • the data is supplied to the memory control units 14G and 14R.
  • the horizontal optical axis deviation correction units 12G and 12R calculate the horizontal delay amount (several dots) from the optical axis deviation amounts D_G and D_R, and determine the forward path and the backward path. Then, the memory control units 14G and 14R read data from the frame memories 10G and 10R for each line. Data read from the frame memory 10G is supplied to the light source drive circuit 2G as the light source drive signal S_G, and data read from the frame memory 10R is supplied to the light source drive circuit 2R as the light source drive signal S_R.
  • the horizontal optical axis deviation correction unit 12B calculates the horizontal delay amount (several dots) from the optical axis deviation amount D_B and determines the forward path and the backward path. Further, the horizontal optical axis deviation correction unit 12B determines a horizontal delay amount with respect to the horizontal scanning position when the delayed reading is performed based on the first characteristic data, and at the same time the horizontal scanning position with respect to the horizontal scanning position when the early reading is performed. The delay amount is determined based on the second characteristic data.
  • the memory control unit 14B When reading the forward data from the frame memory 10B, the memory control unit 14B has a horizontal delay amount with respect to the horizontal scanning position determined from the first characteristic data with respect to the read timing of each data from the frame memories 10G and 10R. The reading of each data from the frame memory 10B is delayed. The forward data read from the frame memory 10B in this way is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the memory control unit 14B has a horizontal delay amount for the horizontal scanning position determined from the second characteristic data with respect to the read timing of each data from the frame memories 10G and 10R. The reading of each data from the frame memory 10B is accelerated. The return path data read from the frame memory 10B in this way is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • FIG. 10 shows the light source drive signals S_B, S_G, and S_R together with the drive signal for the horizontal scanning mirror 8b when the horizontal optical axis deviation is corrected based on the horizontal delay amount corresponding to the horizontal scanning position.
  • the data of the first horizontal line is read sequentially from the leftmost data from the frame memories 10G and 10R, and the read data is the light source drive signal S_G. , S_R are supplied to the light source drive circuits 2G and 2R.
  • the frame memory 10B is delayed by the horizontal delay amount corresponding to the horizontal scanning position with respect to the read timing of each data from the frame memories 10G and 10R.
  • Data of the first horizontal line is read sequentially from the leftmost data, and the read data is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the data of the second horizontal line is read from the frame memories 10G and 10R in order from the rightmost data, and the read data is used as the light source drive signals S_G and S_R. 2R.
  • the frame memory 10B has a timing that is earlier than the timing of reading each data from the frame memories 10G and 10R by a horizontal delay amount corresponding to the horizontal scanning position.
  • the data of the two horizontal lines are read in order from the data at the right end, and the read data is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the horizontal positional deviation between the projected images of the respective colors caused by the change in the horizontal scanning speed is also obtained. The problem can be solved.
  • Each light source may have a light emission delay peculiar to the light source between the light source drive signals S_B, S_G, and S_R and the light emission of each light source because of different driving methods and different driving circuit configurations of the light sources.
  • This light emission delay is called a phase shift because the light emission timing (phase) appears to be shifted between the light sources.
  • the phase shift causes a positional shift in the horizontal direction between the projected images of the respective colors, thereby causing a reduction in image quality.
  • FIG. 11 is a block diagram showing a configuration of an image projection apparatus according to the third embodiment of the present invention.
  • the image projection apparatus of this embodiment is different from that of the first or second embodiment in that it includes a phase shift amount setting unit 15 and phase shift correction units 16B, 16G, and 16R. . Since the other points are the same as those in the first or second embodiment, the configuration and operation related to phase shift correction will be mainly described here.
  • the memory control unit 14B includes a phase shift correction unit 16B
  • the memory control unit 14G includes a phase shift correction unit 16G
  • the memory control unit 14R includes a phase shift correction unit 16R.
  • the phase shift amount setting unit 15 outputs phase shift amounts P_B, P_G, and P_R indicating the phase shift amounts of the light source drive signals S_B, S_G, and S_R.
  • the phase shift amounts P_B, P_G, and P_R represent the phase delay of the other light source drive signals in terms of the dot amount with the light source drive signal having the earliest phase as a reference.
  • the phase shift amount P_R is set to 0
  • the phase shift amounts P_B and P_G are the phase delays of the blue and green light source drive signals with respect to the red light source drive signal, respectively.
  • the value is represented by a delay amount in dot units.
  • phase shift amounts P_B, P_G, and P_R may be values designated by the operator through an input operation unit (not shown).
  • the phase shift amount setting unit 15 receives the phase shift amount designated by the operator through an input operation unit (not shown).
  • phase shift amounts P_B, P_G, and P_R may be given in advance.
  • the phase shift amount between the light source drive signals S_B, S_G, and S_R is measured at the time of factory shipment, and the phase shift amounts P_B, P_G, and P_R are determined based on the measurement result.
  • the phase shift amounts P_B, P_G, and P_R determined in this way are stored in advance in the storage unit in the video signal control unit 10, and the phase shift amount setting unit 15 stores the phase stored in the storage unit at the timing of phase shift correction execution.
  • Deviation amounts P_B, P_G, and P_R are output.
  • the phase shift correction execution timing is an arbitrary timing specified by the operator when the apparatus is activated.
  • the phase shift amount setting unit 15 supplies the phase shift amount P_B to the phase shift correction unit 16B, supplies the phase shift amount P_G to the phase shift correction unit 16G, and supplies the phase shift amount P_R to the phase shift correction unit 16R.
  • the read timing of the line data for each of the forward path and the return path is as follows.
  • a phase delay amount based on the phase shift amount P_B is generated.
  • phase shift correction unit 16G reads the data by the vertical optical axis shift correction unit 11G and the horizontal optical axis shift correction unit 12G, A phase delay amount based on the phase shift amount P_G is generated.
  • phase shift correction unit 16R reads data by the vertical optical axis shift correction unit 11R and the horizontal optical axis shift correction unit 12R, the read timing of the line data in each of the forward path and the return path is determined. A phase delay amount based on the phase shift amount P_R is generated.
  • the phase shift amount setting unit 15 supplies a phase shift amount P_B indicating a delay amount corresponding to a phase shift of several dots to the memory control unit 14B, and outputs phase shift amounts P_G and P_R indicating 0 to the memory control unit 14G, 14R.
  • phase shift correction unit 16B reads data by the vertical optical axis shift correction unit 11B and the horizontal optical axis shift correction unit 12B, the read timing of the line data for each of the forward path and the return path Thus, a phase delay amount based on the phase shift amount P_B is generated.
  • FIG. 12 shows the light source drive signals S_B, S_G, and S_R together with the drive signal for the horizontal scanning mirror 8b when the above-described phase shift correction is performed.
  • vertical optical axis deviation correction and horizontal optical axis deviation correction are not performed.
  • the data of the first horizontal line is read sequentially from the leftmost data from the frame memories 10G and 10R, and the read data is the light source drive signal.
  • S_G and S_R are supplied to the light source drive circuits 2G and 2R.
  • the frame memory 10B is delayed by the phase delay amount based on the phase shift amount P_B with respect to the data read timing of the first horizontal line from the frame memories 10G and 10R.
  • the data of the first horizontal line is read sequentially from the leftmost data, and the read data is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the data of the second horizontal line is read from the frame memories 10G and 10R in order from the rightmost data, and the read data is used as the light source drive signals S_G and S_R. Supplied to 2G and 2R.
  • the frame memory 10B is delayed by the phase delay amount based on the phase shift amount P_B with respect to the data read timing of the second horizontal line from the frame memories 10G and 10R.
  • the data of the second horizontal line is read sequentially from the rightmost data, and the read data is supplied to the light source drive circuit 2B as the light source drive signal S_B.
  • the phase shift correction is performed in the same procedure as the first forward path and the first backward path.
  • phase shift correction in addition to the same effects as those of the first or second embodiment, the problem of the horizontal position shift between the projected images of the respective colors caused by the phase shift is solved. can do.
  • FIG. 13 is a block diagram showing a configuration of an image projection apparatus according to the fourth embodiment of the present invention.
  • the image projection apparatus includes light sources 1B, 1G, 1R, light source drive circuits 2B, 2G, 2R, collimator lenses 3a, 3b, 3c, mirror 4, dichroic mirrors 5a, 5b, scanning mirror control unit 6, A scanning mirror driving unit 7, a vertical scanning mirror 8a, a horizontal scanning mirror 8b, a light detection unit 9, and a video signal control unit 10 are provided.
  • the present embodiment is the same as the first embodiment except that a function for automatically detecting the horizontal and vertical optical axis deviation amounts is configured by the fluorescent light detection unit 9 and a part of the functions of the video signal control unit 10. Since the configuration other than the automatic detection function is as described in the first embodiment, a detailed description thereof is omitted here.
  • the fluorescent light detection unit 9 is composed of, for example, one photodiode (PD), and is disposed at a predetermined position in the space between the vertical scanning mirror 8 a and the screen 20.
  • the light detection unit 9 detects a light beam (red, green, blue) that is two-dimensionally scanned by the vertical scanning mirror 8a and the horizontal scanning mirror 8b, and outputs a detection signal S1.
  • the detection signal S1 is supplied to the video signal control unit 10.
  • FIG. 14 shows the configuration of the video signal control unit 10.
  • the video signal control unit 10 shown in FIG. 14 is configured such that the optical axis deviation amount setting unit 13 determines the optical axis deviation amounts D_B, D_G, and D_R based on the detection signal S1 from the light detection unit 9. Except for this point, the configuration is the same as that shown in FIG.
  • FIG. 15 schematically shows an example of the arrangement of the light detection units 9.
  • a quadrangular frame 9 a is provided between the scanning unit composed of the vertical scanning mirror 8 a and the horizontal scanning mirror 8 b and the screen 20.
  • the light detection unit 9 is provided near the center of the upper frame portion of the frame body 9a.
  • a video signal includes an effective video period and a blanking period.
  • the blanking period includes a horizontal blanking period for horizontal synchronization and a vertical blanking period for vertical synchronization. Normally, video is displayed in the effective video period, and video is not displayed in the horizontal and vertical blanking periods.
  • the frame body 9a When viewed from the screen 20 side, the frame body 9a surrounds a range in which the light beam for displaying the effective video period passes after the range in which the vertical scanning mirror 8a and the horizontal scanning mirror 8b can scan the light beam. Is formed. In this case, the projected image during the effective video period is not blocked by the frame body 9a or the light detection unit 9.
  • the fluorescent light detection unit 9 can detect a part of the light beams from the light sources 1B, 1G, and 1R when the horizontal scanning is performed by turning on the light sources 1B, 1G, and 1R in the vertical blanking period.
  • the optical axis deviation amount setting unit 13 adjusts the amplitude of the drive signal of the vertical scanning mirror 8a via the scanning mirror control unit 6, and based on the detection signal S1 from the light detection unit 9, the light sources 1B, 1G, 1R. Among them, a light source serving as a reference in detecting the optical axis deviation amount is determined, and the optical axis deviation amounts of the other two light sources with respect to the reference light source are detected.
  • the vertical blanking period includes a vertical blanking period for drawing the screen from the top to the bottom in the effective video period and then returning to the top for drawing the next screen. From the start of drawing to the next screen includes a non-display period in which several tens of horizontal scans are possible.
  • the optical axis deviation amount setting unit 13 uses the non-display period of the vertical blanking period to turn on the light sources 1B, 1G, and 1R separately at a predetermined timing, and based on the detection signal S1 of the light detection unit 9 The amount of optical axis deviation between the light sources 1B, 1G, and 1R in the horizontal direction and the vertical direction is detected. In order to detect the optical axis deviation amount, the optical axis deviation amount setting unit 13 performs amplitude adjustment (vertical amplitude adjustment) of the drive signal of the vertical scanning mirror 8a.
  • the optical axis deviation amount based on the detection signal S ⁇ b> 1 of the light detection unit 9 is exemplified by taking a state where the optical axes coincide, a state where a vertical optical axis deviation occurs, and a state where a horizontal optical axis deviation occurs as examples.
  • the principle of detection will be briefly described.
  • FIG. 16 schematically shows a state in which the green and red light beams pass on the light receiving surface of the light detection unit 9 when the optical axes of the light sources 1G and 1R coincide.
  • the vertical and horizontal amplitude adjustments are made so that the light-receiving surface of the light detection unit 9 is located exactly in the middle of two adjacent lines. .
  • the trajectory of the light beam from the light source 1G coincides with the trajectory of the light beam from the light source 1R.
  • the light beams from each of the light sources 1G and 1R pass through the upper end of the light receiving surface of the light detection unit 9 in the forward path and pass through the lower end of the light receiving surface in the return path when making one round trip.
  • FIG. 17 shows an output signal of the light detection unit 9 when the light sources 1G and 1R are separately turned on at a predetermined timing in the state shown in FIG.
  • the light detection unit 9 outputs a detection signal S1 having two pulses at a predetermined interval when each of the light sources 1G and 1R is turned on.
  • the detection signal S1 when the light source 1G is turned on is the same as the detection signal S1 when the light source 1R is turned on.
  • the optical axis deviation amount setting unit 13 turns on a predetermined light source (reference light source) of the light sources 1B, 1G, and 1R, and adjusts vertical and horizontal amplitudes so that a detection signal S1 having a predetermined pulse interval is obtained. After performing the above, for each of the remaining two light sources, the light sources are turned on to obtain the detection signal S1.
  • a predetermined light source reference light source
  • the optical axis deviation amount setting unit 13 includes the time from the lighting start timing to the rise of the first pulse of the detection signal S1 related to the predetermined light source and the first pulse from the lighting start timing of the detection signals S1 related to the remaining two light sources. Are compared with each other, and the difference (time) is calculated as the amount of optical axis deviation.
  • the optical axis deviation amount setting unit 13 sets the optical axis deviation amounts D_B, D_G, and D_R to 0.
  • FIG. 18 schematically shows a state in which the green and red light beams pass on the light receiving surface of the light detection unit 9 when the optical axis of the light source 1G is shifted in the direction perpendicular to the optical axis of the light source 1R. .
  • the light receiving surface of the light detection unit 9 is exactly two adjacent lines in the scanning locus of the light beam of the light source 1R. Vertical and horizontal amplitude adjustments are made so as to be located in the middle.
  • the locus of the light beam from the light source 1G is indicated by a one-dot chain line
  • the locus of the light beam from the light source 1R is indicated by a dotted line.
  • the locus of the light beam from the light source 1G is from the light source 1R. Does not match the locus of the light beam.
  • the light beam from the light source 1R reciprocates once, the light beam passes through the upper end of the light receiving surface of the light detection unit 9 in the forward path and passes through the lower end of the light receiving surface in the return path.
  • the light beam from the light source 1G reciprocates once, it does not pass through the light receiving surface of the light detection unit 9 in the forward path, but passes through the center of the light receiving surface of the light detection unit 9 in the return path.
  • FIG. 19 shows an output signal of the light detection unit 9 when the light sources 1G and 1R are separately turned on at a predetermined timing in the state shown in FIG.
  • the light detection unit 9 outputs a detection signal S1 having two pulses at a predetermined interval when the light source 1R is turned on, but a detection signal having one pulse when the light source 1G is turned on. S1 is output.
  • the time from the lighting start timing to the rise of the first pulse of the detection signal S1 when the light source 1G is turned on is longer than that when the light source 1R is turned on.
  • the optical axis deviation amount setting unit 13 turns on a predetermined light source (reference light source) of the light sources 1B, 1G, and 1R, and adjusts vertical and horizontal amplitudes so that a detection signal S1 having a predetermined pulse interval is obtained. After performing the above, for each of the remaining two light sources, the light sources are turned on to obtain the detection signal S1.
  • a predetermined light source reference light source
  • the optical axis deviation amount setting unit 13 includes the time from the lighting start timing to the rise of the first pulse of the detection signal S1 related to the predetermined light source and the first pulse from the lighting start timing of the detection signals S1 related to the remaining two light sources. Are compared, and based on the difference (time), the optical axis deviation amounts D_B, D_G, and D_R are determined.
  • FIG. 20 schematically shows a state in which the green and red light beams pass on the light receiving surface of the light detection unit 9 when the optical axis of the light source 1G is shifted in the horizontal direction with respect to the optical axis of the light source 1R.
  • the light receiving surface of the light detection unit 9 is exactly the two adjacent lines of the scanning trajectory of the light beam of the light source 1R when viewed from a direction perpendicular to the surface of the screen 20 with the light source 1R as a reference. Vertical and horizontal amplitude adjustments are made so as to be located in the middle.
  • the locus of the light beam from the light source 1G is indicated by a one-dot chain line
  • the locus of the light beam from the light source 1R is indicated by a dotted line.
  • the locus of the light beam from the light source 1G is from the light source 1R. Does not match the locus of the light beam.
  • the light beam from the light source 1R reciprocates once, the light beam passes through the upper end of the light receiving surface of the light detection unit 9 in the forward path and passes through the lower end of the light receiving surface in the return path.
  • the light beam from the light source 1G reciprocates once, the light beam passes through the upper end of the light receiving surface of the light detection unit 9 in the forward path and passes through the lower end of the light receiving surface in the return path. The time until it passes through the section is shorter than in the case of the light source 1R.
  • FIG. 21 shows an output signal of the light detection unit 9 when the light sources 1G and 1R are separately turned on at a predetermined timing in the state shown in FIG.
  • the light detector 9 outputs a detection signal S1 having two pulses at a predetermined interval when the light source 1R is turned on. Even when the light source 1G is turned on, the light detection unit 9 outputs the detection signal S1 having two pulses, but the pulse interval is shorter than that when the light source 1R is turned on. The time from the lighting start timing to the rise of the first pulse of the detection signal S1 when the light source 1G is turned on is longer than that when the light source 1R is turned on.
  • the optical axis deviation amount setting unit 13 turns on a predetermined light source (reference light source) of the light sources 1B, 1G, and 1R, and adjusts vertical and horizontal amplitudes so that a detection signal S1 having a predetermined pulse interval is obtained. After performing the above, for each of the remaining two light sources, the light sources are turned on to obtain the detection signal S1.
  • a predetermined light source reference light source
  • the optical axis deviation amount setting unit 13 includes the time from the lighting start timing to the rise of the first pulse of the detection signal S1 related to the predetermined light source and the first pulse from the lighting start timing of the detection signals S1 related to the remaining two light sources. Are compared, and based on the difference (time), the optical axis deviation amounts D_B, D_G, and D_R are determined.
  • FIG. 22 is a flowchart showing the procedure of the optical axis deviation detection process.
  • the optical axis deviation amount setting unit 13 first determines a reference light source from among the light sources 1B, 1G, and 1R (step S10). Next, the optical axis deviation amount setting unit 13 performs vertical and horizontal amplitude adjustments so that the pulse interval of the detection signal S1 of the reference light source becomes a predetermined value (step S11). Finally, the optical axis deviation amount setting unit 13 sets the time from the lighting start timing to the rise of the first pulse of the detection signal S1 of the reference light source and the first pulse from the lighting start timing of the detection signal S1 of the other light source. And the amount of optical axis deviation of the other light source with respect to the reference light source is determined (step S12).
  • steps S10, S11, and S12 will be described in detail.
  • FIG. 23 shows a specific procedure of the reference light source determination process in step S10 of FIG.
  • the optical axis deviation amount setting unit 13 drives the vertical scanning mirror 8a and the horizontal scanning mirror 8b to have an amplitude of 50% of the amplitude value held in advance (step S20).
  • the optical axis deviation amount setting unit 13 includes two intermediate lines in the non-display period (adjustment period) from the end of the vertical blanking period to the start of drawing the next screen in the vertical blanking period. Only one of the light sources 1B, 1G, and 1R is turned on for a period corresponding to (step S21).
  • the optical axis deviation amount setting unit 13 determines whether or not the detection signal S1 including two pulses is received from the light detection unit 9 (step S22).
  • step S22 If the determination result in step S22 is “No”, the optical axis deviation amount setting unit 13 increases the amplitude of the vertical scanning mirror 8a (step S23). Thereafter, the determination in step S22 is performed.
  • step S22 If the determination result in step S22 is “Yes”, the optical axis deviation amount setting unit 13 lights the light sources 1B, 1G, and 1R separately during the adjustment period, and acquires the detection signal S1 from the light detection unit 9. Then, the optical axis deviation amount setting unit 13 acquires the time from the adjustment period start timing to the rising timing of the first pulse of the detection signal S1 acquired for each of the light sources 1B, 1G, and 1R (step S24).
  • the optical axis deviation amount setting unit 13 compares the times of the light sources 1B, 1G, and 1R acquired in step S24, and determines the longest time as the reference light source (step S25).
  • FIG. 24 shows a specific procedure of the amplitude adjustment process in step S11 of FIG.
  • the optical axis deviation amount setting unit 13 turns on the reference light source for the period corresponding to the intermediate two lines in the adjustment period (step S30).
  • the optical axis deviation amount setting unit 13 determines whether or not the detection signal S1 including two pulses is received from the light detection unit 9 (step S31).
  • step S31 If the determination result in step S31 is “No”, the optical axis deviation amount setting unit 13 increases the amplitude of the vertical scanning mirror 8a (step S32).
  • step S31 determines whether or not the pulse interval of the detection signal S1 matches a predetermined value (step S33).
  • step S34 determines whether or not the pulse interval of the detection signal S1 is greater than a predetermined value (step S34).
  • step S34 If the determination result in step S34 is “Yes”, the optical axis deviation amount setting unit 13 increases the amplitude of the horizontal scanning mirror 8b (step S35). Thereafter, the determination in step S33 is performed.
  • step S34 determines whether the optical axis deviation amount setting unit 13 decreases the amplitude of the horizontal scanning mirror 8b (step S36). Thereafter, the determination in step S33 is performed.
  • step S33 When the determination result in step S33 is “Yes”, the amplitude adjustment process by the optical axis deviation amount setting unit 13 ends.
  • FIG. 25 shows a specific procedure for the optical axis misalignment detection process in step S12 of FIG.
  • the optical axis deviation amount setting unit 13 turns on the reference light source for the period corresponding to the middle two lines in the adjustment period, and the first pulse from the adjustment period start timing of the detection signal S1 received from the light detection unit 9. The time T0 until the rising timing is acquired (step S40).
  • the optical axis deviation amount setting unit 13 turns on the light source to be optical axis corrected for the period corresponding to the middle two lines in the adjustment period, and starts the adjustment period of the detection signal S1 received from the light detection unit 9.
  • a time T1 from the timing to the rising timing of the first pulse is acquired (step S41).
  • the optical axis deviation amount setting unit 13 substitutes a value obtained by dividing the difference value obtained by subtracting the time T1 from the time T0 by the pixel clock into the variable X (step S42).
  • the pixel clock is 65 MHz in the case of XGA, for example.
  • the initial value of the variable X is 0.
  • the optical axis deviation amount setting unit 13 determines whether or not the variable X is smaller than the threshold “H Total” (step S43).
  • the threshold value “H Total” is a value obtained by dividing a time required for scanning one horizontal line (one horizontal period including an effective video period and a horizontal blanking period) by a pixel clock, for example, This is a value obtained by adding the number of pixels corresponding to the horizontal synchronization period to the number of horizontal display pixels. More specifically, in the case of XGA, if the effective video period is 84% of the entire horizontal period and the number of display pixels in the effective video period is 1024, the threshold “H Total” is 1222.
  • step S43 When the determination result in step S43 is “No”, the optical axis deviation amount setting unit 13 substitutes the value “V Delay Line” +1 for the variable “V Delay Line” and X ⁇ “H Total” for the variable X. Is substituted (step S44). The initial value of the variable “V Delay Line” is zero. Thereafter, the determination in step S43 is performed.
  • step S43 determines whether the value obtained by subtracting the value “(H Total) / 2” which is half the first threshold value from the variable X is greater than zero. It is determined whether or not (step S45).
  • step S45 determines whether or not the variable X is smaller than 1 (step S46).
  • step S46 When the determination result in step S46 is “No”, the optical axis deviation amount setting unit 13 substitutes the value of “H Delay Pixel” +1 for the variable “H Delay Pixel” and sets the value of X ⁇ 1 to the variable X. Substitute (step S47). The initial value of the variable “H Delay Pixel” is zero. Thereafter, the determination in step S46 is performed.
  • step S45 If the determination result in step S45 is “No”, the optical axis deviation amount setting unit 13 substitutes the value “H Total” ⁇ X for the variable X (step S48).
  • step S48 the optical axis deviation amount setting unit 13 determines whether or not the variable X is smaller than 1 (step S49).
  • step S49 When the determination result in step S49 is “No”, the optical axis deviation amount setting unit 13 substitutes the value of “H Delay Pixel” ⁇ 1 for the variable “H Delay Pixel”, and sets X ⁇ 1 to the variable X. A value is substituted (step S50). Thereafter, the determination in step S49 is performed.
  • the optical axis deviation amount setting unit 13 determines that the light source to be optical axis corrected with respect to the reference light source is the variable “V ⁇ Delay Line ”in the vertical direction. It is determined that the value is shifted by a value, and the value of the variable “H Delay Pixel” is shifted in the horizontal direction. Thereafter, the detection process of the optical axis deviation amount ends.
  • the optical axis deviation amount setting unit 13 determines a reference light source from the light sources 1B, 1G, and 1R according to the procedure shown in FIG. 23, and outputs 0 as the optical axis deviation amount of the reference light source.
  • optical axis deviation amount setting unit 13 determines vertical and horizontal optical axis deviations for the remaining light sources by the procedures of FIGS. 24 and 25, and outputs the values as optical axis deviation amounts. To do.
  • the difference between the time from the adjustment start timing to the rise timing of the first pulse of the reference light source and the time from the adjustment start timing to the rise timing of the first pulse of another light source is about 37082.3 ns.
  • a value obtained by dividing the difference by the pixel clock is about 2447.
  • the vertical optical axis deviation occurs for two lines, and the horizontal optical axis deviation occurs for three pixels.
  • the optical axis deviation amount setting unit 13 outputs 2 as the vertical optical axis deviation and 3 as the horizontal optical axis deviation amount for the other light sources.
  • the arrangement of the light detection units 9 is not limited to the arrangement shown in FIG.
  • the light detection unit 9 may be provided at any position on the frame body 9a.
  • the light detection unit 9 may be provided in the vicinity of the center of the lower frame portion of the frame body 9a. Also in this case, the optical axis deviation amount can be detected by the procedure described with reference to FIGS.
  • the light detection unit 9 may be provided at the left end or the right end of the upper or lower frame portion of the frame body 9a. Also in this case, the optical axis deviation amount can be detected by the procedure described with reference to FIGS.
  • the scanning speed in the horizontal direction is the fastest in the vicinity of the center and becomes slower as it approaches the end.
  • the pulse shape (rising slope) of the detection signal S1 when the light detection unit 9 is provided near the end is the same as the pulse shape of the detection signal S1 when the light detection unit 9 is provided near the center ( Compared to the slope of the rise), and as a result, the detection accuracy is lowered.
  • horizontal optical axis deviation correction units 11B, 11G, and 11R may have the same configuration as that described in the second embodiment.
  • the light detection unit 9 has a light shielding plate having an opening for limiting the range of incident light on the light receiving surface at a position facing the light receiving surface.
  • the scanning interval of the light beam from the light source (1B, 1G, 1R) on the plane including the light receiving surface of the light detection unit 9 is T, and the beam diameter in the vertical direction is
  • R it is desirable that the vertical size W of the opening satisfies the condition of (TR) ⁇ W ⁇ (2T ⁇ R).
  • the light beam from the reference light source can be detected twice by the light detection unit 9 within the adjustment period. .
  • the vertical optical axis shift of another light source with respect to the reference light source can be corrected within 0.5 lines.
  • the size W of the opening in the vertical direction may be set so as to satisfy the condition of (2T ⁇ R) ⁇ W ⁇ (3T ⁇ R).
  • the condition of (2T ⁇ R) ⁇ W ⁇ (3T ⁇ R) when any one of the light sources 1B, 1G, and 1R is used as the reference light source, the light beam from the reference light source can be detected three times by the light detection unit 9 within the adjustment period. . Also in this case, it is possible to correct the vertical optical axis shift of another light source with respect to the reference light source within 0.5 lines.
  • the vertical size W of the opening is set to 1.5T-R, 2.5T-R,. . . , (M + 0.5) T ⁇ R, the vertical light of other light sources with respect to the reference light source is set so as to satisfy the condition indicated by the relationship between the vertical beam scanning interval T and the vertical beam diameter R. Axial deviation can be corrected within 0.5 lines.
  • the vertical size W of the aperture may be set so as to satisfy the condition of (2T ⁇ R) ⁇ W ⁇ (4T ⁇ R). desirable.
  • the vertical optical axis shift of another light source with respect to the reference light source can be corrected within one line.
  • the light detection unit satisfies the condition of R0 ⁇ W0 ⁇ 2R0.
  • the detection accuracy of the light beam by 9 is improved. For example, when the horizontal size W0 of the opening is about 1.5R0, the shift amount can be detected and corrected in units of 0.5 pixels.
  • the image projection apparatus has the configuration shown in FIG. 13, and has a function of automatically detecting the phase shift amount by the functions of the light detection unit 9 and the video signal control unit 10. Is configured.
  • FIG. 26 is a block diagram illustrating a configuration of the video signal control unit 10 of the image projection apparatus according to the present embodiment.
  • the video signal control unit 10 illustrated in FIG. 26 is the third embodiment except that the phase shift amount setting unit 15 determines the phase shift amounts P_B, P_G, and P_R based on the detection signal S1 from the light detection unit 9. This is the same as described in.
  • the fluorescence detection unit 9 is made of a photodiode (PD), and is arranged at a predetermined position in the space between the vertical scanning mirror 8a and the screen 20, for example, as shown in FIG.
  • the light detection unit 9 detects a part of the light beam from the light sources 1B, 1G, and 1R when the light sources 1B, 1G, and 1R are turned on and performs horizontal scanning, and detects the detection signal S1. Is output.
  • the detection signal S ⁇ b> 1 is supplied to the phase shift amount setting unit 15 of the video signal control unit 10.
  • the phase shift amount setting unit 15 adjusts the amplitude of the drive signal of the vertical scanning mirror 8a via the scanning mirror control unit 6, and uses the non-display period of the vertical blanking period to turn on the light sources 1B, 1G, and 1R. Separately at a predetermined timing, based on the detection signal S1 from the light detection unit 9, a light source serving as a reference for detecting a phase shift amount is determined from the light sources 1B, 1G, and 1R, The amount of phase shift between the other two light sources with respect to the reference light source is detected.
  • the phase deviation amount setting unit 15 A process for detecting the amount of phase shift is executed.
  • FIG. 27 is a flowchart showing a procedure of calculation processing of the phase shift amount by the phase shift amount setting unit 15.
  • the phase shift amount setting unit 15 determines a reference light source from among the light sources 1B, 1G, and 1R and performs amplitude adjustment (step S50).
  • the determination of the reference light source is performed according to the procedure shown in FIG.
  • the amplitude adjustment is performed according to the procedure shown in FIG.
  • the phase shift amount setting unit 15 turns on the reference light source for the period corresponding to the middle two lines in the adjustment period, and the first pulse from the adjustment period start timing of the detection signal S1 received from the light detection unit 9 The time T10 until the rising timing is acquired (step S51).
  • the phase shift amount setting unit 15 turns on the light source to be phase-corrected for the period corresponding to the intermediate two lines in the adjustment period, and starts from the adjustment period start timing of the detection signal S1 received from the light detection unit 9. A time T11 until the rising timing of the first pulse is acquired (step S52).
  • the phase shift amount setting unit 15 substitutes a value obtained by dividing the difference value obtained by subtracting the time T11 from the time T10 by the pixel clock into the variable Y (step S53).
  • the pixel clock is 65 MHz in the case of XGA, for example.
  • the initial value of the variable Y is 0.
  • phase shift amount setting unit 15 determines whether or not the variable Y is greater than 0 (step S54).
  • step S54 determines that the light source to be optical axis corrected is advanced by the value of the variable Y with respect to the reference light source (step S55).
  • step S54 If the determination result in step S54 is “No”, the phase shift amount setting unit 15 substitutes a value of ⁇ Y for the variable Y (step S56). Then, the phase shift amount setting unit 15 determines that the light source to be optical axis corrected is delayed by the value of the variable Y with respect to the reference light source (step S57).
  • step S55 or step S57 the phase shift amount calculation process ends.
  • the phase shift amount setting unit 15 outputs 0 as the phase shift amount of the reference light source, and for the remaining light sources, calculates the phase shift amount for each light source by the procedure of FIG. 27, and uses the value as the phase shift amount. Output as.
  • the phase shift amount setting unit 15 supplies 0 as the phase shift amount to the phase shift correction unit 16R. Further, the phase shift amount setting unit 15 calculates the phase shift amount for each of the light sources 1B and 1G by the procedure of FIG. 27, and supplies the calculated value to the phase shift correction units 16B and 16G.
  • Phase shift correction by the eyelid correction units 16B, 16G, and 16R is as described in the third embodiment.
  • the phase shift caused by the change over time can be accurately corrected, and high image quality can be maintained. Can do.
  • the phase shift amount can be accurately detected by using two or more PDs as the light detection unit.
  • FIG. 28 shows a configuration using two PDs.
  • a light detection unit 91 is arranged at the right end of the upper frame portion of the frame body 9a.
  • the detection signal S 1 from the light detection unit 9 and the detection signal S 2 from the light detection unit 91 are supplied to the phase shift amount setting unit 15.
  • the phase shift amount setting unit 15 calculates the phase shift amount of another light source with respect to the reference light source based on the detection signals S1 and S2.
  • FIG. 29 shows the relationship between the scanning path of the reference light source and the light detection units 9 and 91
  • FIG. 30 shows the waveforms of the detection signals S1 and S2 of the light detection units 9 and 91.
  • the pulse a of the eyelid detection signal S1 indicates the timing at which the light beam has passed through the light detection unit 9 in the forward path.
  • the pulse b of the detection signal S1 indicates the timing at which the light beam has passed through the light detection unit 9 in the return path.
  • the pulse c of the detection signal S2 indicates the timing when the light beam is turned back at the right end position.
  • the reference light source is the forward horizontal scanning line. It is arranged at an intermediate position with the horizontal scanning line on the return path. Accordingly, by adjusting the vertical amplitude so that the time t1 coincides with the time t2 based on the detection signals S1 and S2 of the light detection units 9 and 91, the reference light source has the forward horizontal scanning line and the backward horizontal scanning line. It can be ensured that it is located in the middle. Then, for each of the reference light source and the other light sources, the phase shift amount of the other light sources with respect to the reference light source is accurately calculated by measuring the time t3 from the start of the adjustment period to the rising timing of the pulse a. Can do.
  • the light detection units 9 and 91 are light shielding plates provided with openings for limiting the range of light incident on the light receiving surface at positions facing the light receiving surface.
  • the size of the opening in the horizontal direction is set so as to satisfy the condition (R0 ⁇ W0 ⁇ 2R0) described in the fourth embodiment, so that the detection accuracy of the light beam by the light detection units 9 and 91 is increased. improves.
  • a plurality of light sources that output a light beam and a video signal that is different for each light source are input, and a video signal control that controls a lighting state of a corresponding light source according to the video signal
  • the video signal control unit uses any one of the plurality of light sources as a first reference light source and the other as an optical axis adjustment light source, the optical axis adjustment light source with respect to the optical axis of the first reference light source.
  • An optical axis deviation amount setting unit that sets the deviation amount of the optical axis in the second direction as a first delay amount indicated by the number of scanning lines in the first direction, and an image by the first reference light source
  • the display timing of the image by the optical axis adjustment light source with respect to the display timing is delayed by the first delay amount, and when the first delay amount is an odd number, the scanning is performed in each of the forward pass and the return pass.
  • an optical axis deviation correcting means for controlling the lighting state of the optical axis adjusting light source so as to invert the right and left sides of the image drawn on the line and delaying it.
  • the video signal control unit may be any of the video signal control units 10 described in the above embodiments.
  • the optical axis deviation amount setting unit is composed of, for example, the optical axis deviation amount setting unit 13 shown in FIGS. 4 and 14, and the optical axis deviation correction unit is a vertical optical axis deviation correction unit shown in FIGS. 11B, 11G, and 11R and frame memories 10B, 10G, and 10R may be included.
  • Each light source may be a light source having a central wavelength in the wavelength band of the same color.
  • Each light source may output light beams of different colors.
  • the scissors scanning unit may include a first direction scanning unit that reciprocally scans the light beam in the first direction and a second direction scanning unit that scans the light beam in the second direction.
  • the image projection apparatus of the present invention described above uses a plurality of light sources that output light beams, and reciprocally scans each light beam from each light source in a first direction (for example, the horizontal direction).
  • the present invention can be applied to all apparatuses that scan in a second direction (for example, a vertical direction) intersecting the direction and perform drawing on each of the forward and backward scanning lines in the first direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

画像投影装置は、光ビームを出力する複数の光源と、光源毎に異なる映像信号が入力され、該映像信号に応じて対応する光源の点灯状態を制御する映像信号制御部10と、各光源からの光ビームを第1の方向に往復走査、および/または、第1の方向と交差する第2の方向に走査する走査手段とを有する。映像信号制御部10は、光源のうちのいずれか一つを基準光源とし、基準光源の光軸に対する他の光源の光軸の第2の方向のずれ量を、走査ラインの数で示される遅延量として設定する光軸ずれ量設定部13と、基準光源による画像の表示タイミングに対する、他の光源による画像の表示タイミングを、遅延量だけ遅延させ、遅延量が奇数である場合には、他の光源について、往路および復路のそれぞれで、走査ラインにて描画される画像を第2の方向を軸として反転させる光軸ずれ補正手段とを有する。

Description

画像投影装置および光軸ずれ補正方法
 本発明は、発光色が異なる複数の光源からの光ビームを走査してスクリーン上に画像を投影する画像投影装置に関する。
 発光色が異なる複数の光源と、これら光源からの各色の光ビームを合成して同一光路にて出射する色合成光学系と、色合成光学系からの各色の光ビームを水平方向および垂直方向に走査する走査系とを備えた画像投影装置が知られている(例えば、特許文献1参照)。この画像投影装置では、走査系からの各色の光ビームによりスクリーン上にカラー画像が投影される。
 上記の画像投影装置においては、製造時の光軸合わせに非常に高い位置あわせ・角度あわせ精度が求められるが、組み立て精度が十分に高くないために、走査系に入射する各光源からの光ビームの光軸が一致しない場合がある。この場合、スクリーン上に投影される各色の投影像の間で、水平方向または垂直方向の位置ずれが生じ、その結果、色ずれ等が生じて画質が低下する。
 上記の位置ずれを補正するための関連技術として、特許文献1には、投影像の水平方向の位置ずれを補正することができるカラー画像表示装置が記載されている。
 特許文献1に記載のカラー画像表示装置は、赤色、緑色および青色の各色の光源と、各光源からの各色の光ビームをそれぞれ水平方向および垂直方向に走査する偏向ミラーと、各光源および偏向ミラーの動作をそれぞれ制御する制御部と、を有する。
 赤色光源、緑色光源、青色光源は、同一平面上に一列に並べて配置されている。各光源と偏向ミラーとの間には、各光源からの光ビームをスクリーン上に集光するためのレンズ系が配置されている。
 スクリーン側から光路に沿って各光源を見た場合、各光源は水平方向に一列に並んでいる。このため、図1に示すように、同じタイミングでビデオ信号R、G、Bを各光源に供給した場合は、ビデオ信号Rに基づく赤色の投射像と、ビデオ信号Gに基づく緑色の投射像と、ビデオ信号Bに基づく青色の投射像との間において、水平方向の位置ずれが生じる。
 制御部は、各光源へのビデオ信号の入力タイミングを調整することで、投射像間の水平方向の位置ずれを補正する。
 具体的には、図2に示すように、制御部は、青色光源へのビデオ信号Bの入力タイミングに対して、緑色光源へのビデオ信号Gの入力タイミングを遅延させることで、青色の投射像と緑色の投射像の間の位置ずれを補正する。また、制御部は、青色光源へのビデオ信号Bの入力タイミングに対して、赤色光源へのビデオ信号Rの入力タイミングを遅延させることで、青色の投射像と赤色の投射像の間の位置ずれを補正する。
 ところで、最近の画像投影装置には、発光色が異なる複数の光源を備え、各光源からの光ビームをそれぞれ水平方向に往復走査しながら垂直方向に走査し、水平走査の往路および復路のそれぞれで描画を行う往復描画方式の画像投影装置もある。
 往復描画方式の画像投影装置は、色毎にフレームメモリを備えており、各色の画像を示す映像信号が色毎にフレームメモリに格納される。各フレームメモリにおいて、水平ライン毎に、往路用の画像データおよび復路用の画像データを交互に読み出し、往路用の画像データに基づいて往路の描画を行い、復路用の画像データに基づいて復路の描画を行う。
 例えば、1番目の水平ラインに対応する画素データD1_1~D1_xと2番目の水平ラインに対応する画素データD2_1~D2_xがそれぞれ同じ書き込み順序でフレームメモリに格納されている場合に、画素データD1_1~D1_xについては、D1_1側から順にデータを読み出し、画素データD2_1~D2_xについては、D2_x側から順にデータを読み出す。これにより、スクリーンの左端から右端に向かう往路では、画素データD1_1~D1_xがD1_1から順番に描画される。一方、スクリーンの右端から左端に向かう復路では、画素データD2_1~D2_xがD2_xから順番に描画される。
特開2006-184770号公報
 特許文献1に記載の補正手法によれば、水平方向の光軸ずれを補正することができるものの、垂直方向の光軸ずれ、特に上述した往復描画方式の画像投影装置における垂直方向の光軸ずれを補正することは困難である。
 以下、スクリーン上において、緑色の投影像が、赤色の投影像に対して、1水平ラインの幅(垂直方向の幅)だけ下側にずれている状態を例に挙げて、上記の問題を具体的に説明する。
 上記の状態において、緑色光源へのビデオ信号Gの入力タイミングに対して、赤色光源へのビデオ信号Rの入力タイミングを、1水平ラインの幅分に相当する時間だけ遅延させることで、緑色の投影像の上端を赤色の投影像の上端と一致させることができる。
 しかし、上記の場合、赤色の投影像については、復路用の画像データで往路を描画し、往路用の画像データで復路を描画することになる。通常、往路用の画像データと復路用の画像データとでは、その描画順序が反対になっている。このため、復路用の画像データで往路を描画し、往路用の画像データで復路を描画すると、各水平ラインの描画画像は左右が反転した画像となってしまい、赤色の画像を正しく投影することができない。
 本発明の目的は、垂直方向の光軸ずれを補正することができる、画像投影装置および光軸ずれ補正方法を提供することにある。
 上記目的を達成するため、本発明の画像投影装置は、
 光ビームを出力する複数の光源と、
 前記光源毎に異なる映像信号が入力され、該映像信号に応じて対応する光源の点灯状態を制御する映像信号制御部と、
 前記複数の光源から出力された各光ビームを、第1の方向に往復走査、および/または、前記第1の方向と交差する第2の方向に走査する走査手段と、を有し、
 前記映像信号制御部は、
 前記複数の光源のうちのいずれか一つを第1の基準光源とし、他を光軸調整光源として、前記第1の基準光源の光軸に対する前記光軸調整光源の光軸の前記第2の方向のずれ量を、前記第1の方向の走査ラインの数で示される第1の遅延量として設定する光軸ずれ量設定部と、
 前記第1の基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記第1の遅延量だけ遅延させ、前記第1の遅延量が奇数である場合には、往路および復路のそれぞれで、前記走査ラインにて描画される画像を前記第2の方向を軸として反転させるように前記光軸調整光源の出力を制御する光軸ずれ補正手段と、を有する。
 本発明の光軸ずれ補正方法は、
 光ビームを出力する複数の光源を備え、各光源から出力された各光ビームを、第1の方向に往復走査、および/または、前記第1の方向と交差する第2の方向に走査する装置において行われる光軸ずれ補正方法であって、
 前記複数の光源のうちのいずれか一つを基準光源とし、他を光軸調整光源として、前記基準光源の光軸に対する前記光軸調整光源の光軸の前記第2の方向のずれ量を、前記第1の方向の走査ラインの数で示される遅延量として設定し、
 前記基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記遅延量だけ遅延させ、前記遅延量が奇数である場合には、往路および復路それぞれで、前記走査ラインにて描画される画像を前記第2の方向を軸として反転させるように前記光軸調整光源の出力を制御することを含む。
特許文献1に記載の画像表示装置の各色の投射映像のずれを説明するための図である。 特許文献1に記載の画像表示装置の各色の投射映像のずれを補正する方法を説明するための図である。 本発明の第1の実施形態である画像投影装置の構成を示すブロック図である。 図3に示す画像投影装置の映像信号制御部の主要な構成を示すブロック図である。 光軸ずれ量と垂直遅延量との関係を示す図である。 2ライン分の垂直光軸ずれの補正を行った場合の各光源の光源駆動信号を説明するための図である。 1ライン分の垂直光軸ずれの補正を行った場合の各光源の光源駆動信号を説明するための図である。 水平光軸ずれの補正を行った場合の各光源の光源駆動信号を説明するための図である。 基準光源に対して他の光源を一定の遅延量だけ遅延させた場合のスクリーン上の各ドットの描画位置を説明する模式図である。 本発明の第2の実施形態である画像投影装置の水平光軸ずれの補正を説明するための図である。 本発明の第3の実施形態である画像投影装置の構成を示すブロック図である。 図11に示す画像投影装置の位相ずれ補正を説明するための図である。 本発明の第4の実施形態である画像投影装置の構成を示すブロック図である。 図13に示す画像投影装置の映像信号制御部の構成を示すブロック図である。 図13に示す画像投影装置の光検出部の配置の一例を示す模式図である。 赤色および緑色の光源の光軸が一致している場合のそれぞれの光源からの光ビームが光検出部の受光面上を通過する状態を示す模式図である。 図16に示す状態における光検出部の出力信号の一例を示す波形図である。 緑色の光源の光軸が赤色の光源の光軸に対して垂直方向にずれている場合のそれぞれの光源からの光ビームが光検出部の受光面上を通過する状態を示す模式図である。 図18に示す状態における光検出部の出力信号の一例を示す波形図である。 緑色の光源の光軸が赤色の光源の光軸に対して水平方向にずれている場合のそれぞれの光源からの光ビームが光検出部の受光面上を通過する状態を示す模式図である。 図20に示す状態における光検出部の出力信号の一例を示す波形図である。 光軸ずれ量検出処理の位置手順を示すフローチャートである。 図22のステップS10の基準光源の決定処理の一手順を示すフローチャートである。 図22のステップS11の振幅調整処理の一手順を示すフローチャートである。 図22のステップS12の光軸ずれ量の検出処理の一手順を示すフローチャートである。 本発明の第5の実施形態である画像投影装置の映像信号制御部の構成を示すブロック図である。 図26に示す画像投影装置の位相ずれ量の算出処理の一手順を示すフローチャートである。 図26に示す画像投影装置の光検出部の他の構成を示す模式図である。 図28に示す各光検出部を用いて位相ずれ量を検出する場合の基準光源の軌跡とそれぞれの光検出部の位置関係を説明するための模式図である。 図29に示す状態における各光検出部の出力信号を示す波形図である。
 1B、1G、1R 光源
 2B、2G、2R 光源駆動回路
 3a、3b、3c コリメータレンズ
 4 ミラー
 5a、5b ダイクロイックミラー
 6 走査ミラー制御部
 7 走査ミラー駆動部
 8a 垂直走査ミラー
 8b 水平走査ミラー
 10 映像信号制御部
 10B、10G、10R フレームメモリ
 11B、11G、11R 垂直光軸ずれ補正部
 12B、12G、12R 水平光軸ずれ補正部
 13 光軸ずれ量設定部
 14B、14G、14R メモリ制御部
 次に、本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 図3は、本発明の第1の実施形態である画像投影装置の構成を示すブロック図である。
 図3を参照すると、画像投影装置は、光源1B、1G、1R、光源駆動回路2B、2G、2R、コリメータレンズ3a、3b、3c、ミラー4、ダイクロイックミラー5a、5b、走査ミラー制御部6、走査ミラー駆動部7、垂直走査ミラー8a、水平走査ミラー8bおよび映像信号制御部10を有する。
 光源1B、1G、1Rは、例えばレーザダイオード(LD)やLED(Light Emitting Diode)などの固体光源よりなる。光源1Bは、青色の波長帯域にピーク波長を有する。光源1Gは、緑色の波長帯域にピーク波長を有する。光源1Rは、赤色の波長帯域にピーク波長を有する。
 光源1Rから出射された赤色の光ビームの進行方向に、コリメータレンズ3c、ミラー4が順に配置されている。コリメータレンズ3cは、光源1Rからの光ビームを平行光束化する。ミラー4は、コリメータレンズ3cからの平行光束化された光ビームを反射する。
 光源1Gから出射された緑色の光ビームの進行方向に、コリメータレンズ3bが配置されている。コリメータレンズ3bは、光源1Gからの光ビームを平行光束化する。
 ダイクロイックミラー5bは、緑色の光を反射し、赤色の光を透過させる分光透過(反射)特性を有し、ミラー4からの赤色の光ビームとコリメータレンズ3bからの平行光束化された緑色の光ビームとの交点に配置されている。ダイクロイックミラー5bは、ミラー4からの赤色の光ビームをそのまま透過させ、コリメータレンズ3bからの緑色の光ビームを、透過した赤色の光ビームの進行方向に向けて反射する。
 光源1Bから出射された青色の光ビームの進行方向に、コリメータレンズ3aが配置されている。コリメータレンズ3aは、光源1Bからの光ビームを平行光束化する。
 ダイクロイックミラー5aは、青色の光を反射し、緑色および赤色の光を透過させる分光透過(反射)特性を有し、ダイクロイックミラー5bからの光ビーム(赤、緑)とコリメータレンズ3aからの平行光束化された青色の光ビームとの交点に配置されている。ダイクロイックミラー5aは、ダイクロイックミラー5bからの光ビーム(赤、緑)をそのまま透過させ、コリメータレンズ3aからの青色の光ビームを、透過した光ビーム(赤、緑)の進行方向に向けて反射する。
 ダイクロイックミラー5aからの光ビーム(赤、緑、青)の進行方向に、垂直走査ミラー8aおよび水平走査ミラー8bからなる走査手段が配置されている。水平走査ミラー8bは、ダイクロイックミラー5aからの光ビーム(赤、緑、青)を水平方向に走査する。垂直走査ミラー8aは、水平走査ミラー8bにて水平方向に走査された光ビームを垂直方向に走査する。水平走査ミラー8bおよび垂直走査ミラー8aで光ビームを走査することによりスクリーン20上に画像が投影される。
 垂直走査ミラー8aおよび水平走査ミラー8bとして、マイクロメカニカルミラー(MEMS)に代表される共振型走査ミラーや、ガルバノミラー等を用いることができる。図3に示した例では、垂直走査ミラー8aおよび水平走査ミラー8bが別々に設けられているが、これに代えて、2次元走査が可能な共振型走査ミラーを用いることもできる。
 走査ミラー駆動部7は、垂直走査ミラー8aおよび水平走査ミラー8bを駆動する。走査ミラー制御部6は、映像信号制御部10から同期信号(水平同期信号および垂直同期信号)を受け取り、この同期信号に基づいて走査ミラー駆動部7を制御する。
 映像信号R、G、Bは、外部装置から映像信号制御部10に供給される。外部装置は、例えば、パーソナルコンピュータ等の映像供給装置である。
 映像信号制御部10は、映像信号R、G、Bに基づく画像を表示するための垂直同期および水平同期をそれぞれ示す同期信号(垂直同期信号および水平同期信号)を走査ミラー制御部6に供給する。
 また、映像信号制御部10は、光源駆動信号S_Rを光源駆動回路2Rに供給し、光源駆動信号S_Gを光源駆動回路2Gに供給し、光源駆動信号S_Bを光源駆動回路2Bに供給する。
 光源駆動回路2Rは、光源駆動信号S_Rに従って光源1Rを駆動する。光源駆動回路2Gは、光源駆動信号S_Gに従って光源1Gを駆動する。光源駆動回路2Bは、光源駆動信号S_Bに従って光源1Bを駆動する。
 次に、本実施形態の画像形成装置の特徴部である映像信号制御部10の構成および動作について説明する。
 本実施形態の画像形成装置は、往復描画方式のものであって、水平方向および垂直方向の光軸ずれに対する補正が行われる。往復描画は、よく知られている技術(前述の往復描画方式の画像投影装置の説明も参照)であるので、ここでは、その詳細な説明は省略し、水平方向および垂直方向の光軸ずれに対する補正の動作を中心に説明する。
 図4に、映像信号制御部10の主要な構成を示す。図4を参照すると、映像信号制御部10は、フレームメモリ10B、10G、10R、光軸ずれ量設定部13およびメモリ制御部14B、14G、14Rを有する。
 青色映像を示す映像信号Bがフレーム単位にフレームメモリ10Bに格納され、緑色映像を示す映像信号Gがフレーム単位にフレームメモリ10Gに格納され、赤色映像を示す映像信号Rがフレーム単位にフレームメモリ10Rに格納される。
 メモリ制御部14Bは、フレームメモリ10Bへの画像データの書き込み制御およびフレームメモリ10Bからの画像データの読み出し制御を行うものであって、垂直光軸ずれ補正部11Bおよび水平光軸ずれ補正部12Bを有する。
 メモリ制御部14Gは、フレームメモリ10Gへの画像データの書き込み制御およびフレームメモリ10Gからの画像データの読み出し制御を行うものであって、垂直光軸ずれ補正部11Gおよび水平光軸ずれ補正部12Gを有する。
 メモリ制御部14Rは、フレームメモリ10Rへの画像データの書き込み制御およびフレームメモリ10Rからの画像データの読み出し制御を行うものであって、垂直光軸ずれ補正部11Rおよび水平光軸ずれ補正部12Rを有する。
 光軸ずれ量設定部13は、光源1B、1G、1Rそれぞれの水平方向および垂直方向の光軸ずれ量を示す光軸ずれ量D_B、D_G、D_Rを出力する。ここで、光軸ずれ量D_B、D_G、D_Rは、青、緑、赤の投影像のうち、描画開始タイミングが最も遅い投影像を基準として、他の投影像の遅延量を、ドットクロックを1単位時間として示したドット量を用いて表わしたものである。例えば、赤色の投影像を基準とする場合、光軸ずれ量D_Rは0とされ、光軸ずれ量D_B、D_Gはそれぞれ、青色および緑色の投影像の、赤色の投影像に対する水平方向および垂直方向のずれ量を、ドットクロックを1単位とした遅延量で表わした値とされる。
 光軸ずれ量D_B、D_G、D_Rは、操作者が不図示の入力操作部を通じて指定した値であってもよい。この場合は、光軸ずれ量設定部13は、不図示の入力操作部を通じて、操作者によって指定された光源1B、1G、1Rの光軸ずれ量を受け付ける。
 また、光軸ずれ量D_B、D_G、D_Rは、予め与えられてもよい。例えば、工場出荷時に、光源1B、1G、1Rそれぞれの水平方向および垂直方向の光軸ずれ量を測定し、その測定結果に基づいて、光軸ずれ量D_B、D_G、D_Rを決定する。こうして決定した光軸ずれ量D_B、D_G、D_Rを映像信号制御部10内の記憶部に予め保持しておき、光軸ずれ量設定部13が、光軸ずれ補正の実施タイミングで、記憶部に保持した光軸ずれ量D_B、D_G、D_Rを出力する。ここで、光軸ずれ補正の実施タイミングは、装置の起動時や、操作者が指定した任意のタイミングである。
 光軸ずれ量設定部13は、光軸ずれ量D_Bをメモリ制御部14Bに供給し、光軸ずれ量D_Gをメモリ制御部14Gに供給し、光軸ずれ量D_Rをメモリ制御部14Rに供給する。
 メモリ制御部14Bでは、垂直光軸ずれ補正部11Bが、光軸ずれ量D_Bを1ライン分の遅延量で割った値の整数の部分(0および正の整数)を垂直遅延量として算出するとともに、その算出した垂直遅延量が奇数であるか否かを判定する。
 例えば、描画期間(有効映像期間)およびブランキング期間を含めた1水平期間中のドット数(1ラインのドットクロック数)をDとする。図5に示すように、光軸ずれ量D_Bが0からDの範囲であれば、垂直遅延量は0ライン、すなわち0である。光軸ずれ量D_BがD+1から2Dの範囲であれば、垂直遅延量は1(1ライン分の遅延量)とされる。光軸ずれ量D_Bが2D+1から3Dの範囲であれば、垂直遅延量は2(2ライン分の遅延量)とされる。このようにして、垂直光軸ずれ補正部11Bが、光軸ずれ量D_Bから垂直遅延量を算出する。
 また、メモリ制御部14Bでは、水平光軸ずれ補正部12Bが、往路および復路の判定を行うとともに、光軸ずれ量D_Bを1ラインのドット数Dで割った値の余りの部分を水平遅延量として算出する。往路および復路の判定は、フレームメモリ10Bからのデータの読み出しが何番目のラインかで判定する。奇数番目のラインであれば往路であり、偶数番目のラインであれば復路である。
 なお、垂直光軸ずれ補正部11Bにより垂直遅延量が奇数であると判定された場合は、水平光軸ずれ補正部12Bによる往路および復路の判定結果も逆の関係になる。
 メモリ制御部14Bは、垂直遅延量、水平遅延量、奇数の判定結果および往路復路の判定結果に基づいて、フレームメモリ10Bからのデータの読み出しを制御する。
 具体的には、メモリ制御部14Bでは、垂直光軸ずれ補正部11Bが、フレームメモリ10Bからの画像データの読み出し開始タイミングを垂直遅延量だけ遅延させる。さらに、水平光軸ずれ補正部12Bが、ライン毎のデータの読み出しタイミングを水平遅延量だけ遅延させる、もしくは早める。例えば、往路のデータ読み出しは、水平遅延量だけ遅延させ、復路のデータ読み出しは、水平遅延量だけ早める。
 加えて、メモリ制御部14Bでは、垂直遅延量が奇数である場合は、垂直光軸ずれ補正部11Bが、往路および復路のそれぞれで、水平ラインの各データの読み出し順序を左右反転させる。垂直遅延量が奇数でない場合は、垂直光軸ずれ補正部11Bは、そのような読み出し順序の反転は行わない。
 メモリ制御部14Gにおいても、メモリ制御部14Bと同様、垂直光軸ずれ補正部11Gが光軸ずれ量D_Gから垂直遅延量を算出するとともに、その算出した垂直遅延量が奇数であるか否かを判定する。また、水平光軸ずれ補正部12Gが、走査毎に往路および復路の判定を行うとともに、光軸ずれ量D_Gを1ラインのドット数Dで割った値の余り部分を水平遅延量として算出する。そして、メモリ制御部14Gは、垂直遅延量、水平遅延量、奇数の判定結果および往路復路の判定結果に基づいて、フレームメモリ10Gからのデータの読み出しを制御する。このデータの読み出し制御も、基本的には、メモリ制御部14Bと同じである。
 メモリ制御部14Rにおいても、メモリ制御部14Bと同様、垂直光軸ずれ補正部11Rが光軸ずれ量D_Rから垂直遅延量を算出するとともに、その算出した垂直遅延量が奇数であるか否かを判定する。また、水平光軸ずれ補正部12Rが、走査毎に往路および復路の判定を行うとともに、光軸ずれ量D_Rを1ラインのドット数Dで割った値の余り部分を水平遅延量として算出する。そして、メモリ制御部14Rは、垂直遅延量、水平遅延量、奇数の判定結果および往路復路の判定結果に基づいて、フレームメモリ10Rからのデータの読み出しを制御する。このデータの読み出し制御も、基本的には、メモリ制御部14Bと同じである。
 本実施形態の画像投影装置においては、光源1B、1G、1Rの間に垂直方向の光軸ずれを生じた場合は、垂直光軸ずれ補正が行われ、水平方向の光軸ずれが生じた場合は、水平光軸ずれ補正が行われる。また、水平および垂直の両方向に光軸ずれが生じた場合は、垂直光軸ずれ補正および水平光軸ずれ補正がともに行われる。
 以下、垂直光軸ずれ補正および水平光軸ずれ補正について、具体例を挙げて説明する。
(1)偶数ライン分の垂直光軸ずれの補正のみを実行する場合の動作:
 ここでは、光源1Gが光源1B、1Rに対して垂直方向に2ライン分の光軸ずれを生じている状態における垂直光軸ずれの補正を説明する。
 光軸ずれ量設定部13は、2ライン分の垂直光軸ずれを示す光軸ずれ量D_Gをメモリ制御部14Gに供給するとともに、0を示す光軸ずれ量D_B、D_Rをメモリ制御部14B、14Rに供給する。
 メモリ制御部14B、11Rにおいて、垂直光軸ずれ補正部11B、11Rが、光軸ずれ量D_B、D_Rから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。そして、メモリ制御部14B、14Rが、フレームメモリ10B、10Rからライン毎にデータを読み出す。フレームメモリ10Bから読み出したデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給され、フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 一方、メモリ制御部14Gにおいて、垂直光軸ずれ補正部11Gが、光軸ずれ量D_Gから垂直遅延量(2ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。そして、メモリ制御部14Gが、メモリ制御部14B、14Rによるフレームメモリ10B、10Rからの画像データの読み出し開始タイミングに対して、フレームメモリ10Gからの画像データの読み出し開始タイミングを2ライン分だけ遅延させるように制御する。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 図6に、上記の2ライン分の垂直光軸ずれの補正を行った場合の光源駆動信号S_B、S_G、S_Rを水平走査ミラー8bの駆動信号とともに示す。
 図6に示すように、第1往路(1H)の水平走査において、フレームメモリ10B、10Rから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。
 第1復路(2H)の水平走査において、フレームメモリ10B、10Rから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。
 第2往路(3H)の水平走査において、フレームメモリ10B、10Rから第3水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。また、フレームメモリ10Gから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 第2復路(4H)の水平走査において、フレームメモリ10B、10Rから第4水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。また、フレームメモリ10Gから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 第3往路以降は、第2往路および第2復路におけるような、フレームメモリ10B、10Rとフレームメモリ10Gとの間の遅延を保った状態でデータの読み出しが行われる。
 上述の2ライン分の垂直光軸ずれの補正によれば、スクリーン20上で、赤色、緑色および青色の画像を色ずれなく表示することができる。
(2)奇数ライン分の垂直光軸ずれの補正のみを実行する場合の動作:
 ここでは、光源1Gが光源1B、1Rに対して垂直方向に1ライン分の光軸ずれを生じている状態における垂直光軸ずれの補正を説明する。
 光軸ずれ量設定部13は、1ライン分の垂直光軸ずれに対応した遅延量を示す光軸ずれ量D_Gをメモリ制御部14Gに供給するとともに、0を示す光軸ずれ量D_B、D_Rをメモリ制御部14B、14Rに供給する。
 メモリ制御部14B、14Rにおいて、垂直光軸ずれ補正部11B、11Rが、光軸ずれ量D_B、D_Rから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。ここで、垂直遅延量が0ラインであることは遅延なしでの通常の読み出しを行うことを意味する。そして、メモリ制御部14B、14Rが、フレームメモリ10B、10Rからライン毎にデータを読み出す。フレームメモリ10Bから読み出したデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給され、フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 一方、メモリ制御部14Gにおいて、垂直光軸ずれ補正部11Gが、光軸ずれ量D_Gから垂直遅延量(1ライン)を算出するとともに、その算出した垂直遅延量は奇数であると判定する。そして、メモリ制御部14Gが、メモリ制御部14B、14Rによるフレームメモリ10B、10Rからの画像データの読み出し開始タイミングに対して、フレームメモリ10Gからの画像データの読み出し開始タイミングを1ライン分だけ遅延させるように制御するとともに、往路および復路のそれぞれで、水平ラインの各データの読み出し順序を左右反転させる。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 図7に、上記の1ライン分の垂直光軸ずれの補正を行った場合の光源駆動信号S_B、S_G、S_Rを水平走査ミラー8bの駆動信号とともに示す。表示画像は水平方向にグラデーションがかかった画像である。なお、図7において、参考として、非反転読み出し光源駆動信号S_Gを図中の一番下に示した。この非反転読み出し光源駆動信号S_Gは、水平ラインの各データの読み出し順序を左右反転させないでフレームメモリ10Gからデータを読み出した場合の光源駆動信号である。
 図7に示すように、第1往路(1H)の水平走査において、フレームメモリ10B、10Rから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。
 第1復路(2H)の水平走査において、フレームメモリ10B、10Rから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。また、フレームメモリ10Gから第1水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Gとして光源駆動回路2Gに供給される。この光源駆動信号S_Gは、非反転読み出し光源駆動信号S_Gのデータの左右を反転したものとなっている。
 第2往路(3H)の水平走査において、フレームメモリ10B、10Rから第3水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。また、フレームメモリ10Gから第2水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 第2復路(4H)の水平走査において、フレームメモリ10B、10Rから第4水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_B、S_Rとして光源駆動回路2B、2Rに供給される。また、フレームメモリ10Gから第3水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 第3往路以降は、第1復路と第2往路と同様な手順で、フレームメモリ10B、10R、10Gからのデータの読み出しが行われる。
 上述の1ライン分の垂直光軸ずれの補正によれば、スクリーン20上で、赤色、緑色および青色の画像を色ずれなく表示することができる。
 また、非反転読み出し光源駆動信号S_Gにより光源1Gを駆動した場合は、フレームメモリ10Gからのデータの読み出し順序が描画順序と左右反対の関係となるため、緑色の画像の各ラインが左右反対の画像となって画質が低下する。これに対して、左右を反転してデータを読み出した光源駆動信号S_Gにより光源1Gを駆動した場合は、フレームメモリ10Gからのデータの読み出し順序が描画順序に対応することになるので、画質が低下することはない。
(3)水平光軸ずれ補正を実行する場合の動作:
 ここでは、光源1Bが光源1G、1Rに対して水平方向にのみ、数ドット分(<1ラインのドット数D)の光軸ずれを生じている状態における水平光軸ずれの補正を説明する。
 光軸ずれ量設定部13は、数ドット分の水平光軸ずれに対応した遅延量を示す光軸ずれ量D_Bをメモリ制御部14Bに供給するとともに、0を示す光軸ずれ量D_G、D_Rをメモリ制御部14G、14Rに供給する。
 メモリ制御部14G、14Rにおいて、水平光軸ずれ補正部12G、12Rが、光軸ずれ量D_G、D_Rから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14G、14Rが、フレームメモリ10G、10Rからライン毎にデータを読み出す。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給され、フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 一方、メモリ制御部14Bにおいて、水平光軸ずれ補正部12Bが、光軸ずれ量D_Bから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Bは、往路のデータをフレームメモリ10Bから読み出す場合は、その読み出しタイミングを、フレームメモリ10G、10Rからのデータの読み出しタイミングに対して水平遅延量だけ遅延させる。また、メモリ制御部14Bは、復路のデータをフレームメモリ10Bから読み出す場合は、その読み出しタイミングを、フレームメモリ10G、10Rからのデータの読み出しタイミングに対して水平遅延量だけ早める。このようにしてフレームメモリ10Bから読み出したデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 図8に、上記の水平光軸ずれの補正を行った場合の光源駆動信号S_B、S_G、S_Rを水平走査ミラー8bの駆動信号とともに示す。
 図8に示すように、第1往路(1H)の水平走査において、フレームメモリ10G、10Rから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。また、フレームメモリ10G、10Rからの第1水平ラインのデータの読み出し開始時点から水平遅延量に対応する時間が経過した後、フレームメモリ10Bから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第1復路(2H)の水平走査において、フレームメモリ10G、10Rから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。また、フレームメモリ10G、10Rからの第2水平ラインのデータの読み出し開始時点よりも水平遅延量に対応する時間だけ早い時点で、フレームメモリ10Bから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第2往路以降は、上記の第1往路及び第1復路と同様の手順でデータ読み出しが行われる。
 上述の水平光軸ずれの補正によれば、スクリーン20上で、赤色、緑色および青色の各画像を色ずれなく表示することができる。
(4)偶数ライン分の垂直光軸ずれの補正および水平光軸ずれ補正を同時に実行する場合の動作:
 ここでは、光源1Gが光源1B、1Rに対して垂直方向に2ライン分の光軸ずれを生じており、かつ、光源1Bが光源1G、1Rに対して水平方向に数ドット分(<1ラインのドット数D)の光軸ずれを生じているものと仮定する。
 光軸ずれ量設定部13は、2ライン分の垂直光軸ずれに対応した遅延量を示す光軸ずれ量D_Gをメモリ制御部14Gに供給し、数ドット分の水平光軸ずれに対応した遅延量を示す光軸ずれ量D_Bをメモリ制御部14Bに供給し、0を示す光軸ずれ量D_Rをメモリ制御部14Rに供給する。
 メモリ制御部14Rにおいて、垂直光軸ずれ補正部11Rが、光軸ずれ量D_Rから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。さらに、水平光軸ずれ補正部12Rが、光軸ずれ量D_Rから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Rが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Rからライン毎にデータを読み出す。フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 メモリ制御部14Gにおいて、垂直光軸ずれ補正部11Gが、光軸ずれ量D_Gから垂直遅延量(2ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。さらに、水平光軸ずれ補正部12Gが、光軸ずれ量D_Gから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Gが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Gからライン毎にデータを読み出す。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 メモリ制御部14Bにおいて、垂直光軸ずれ補正部11Bが、光軸ずれ量D_Bから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。さらに、水平光軸ずれ補正部12Bが、光軸ずれ量D_Bから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Bが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Bからライン毎にデータを読み出す。フレームメモリ10Bから読み出したデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 フレームメモリ10B、10G、10Rからのデータの読み出し動作は、図6に示した垂直光軸ずれ補正の動作に図8に示した水平光軸ずれ補正の動作を組み合わせたものとなる。
 具体的には、図6に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Bに関する水平ライン毎のデータの読み出し開始を、図8に示したように、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早める。
 上述の水平光軸ずれの補正によれば、スクリーン20上に表示される赤色、緑色および青色の各画像間の水平および垂直の各方向における位置ずれを補正することができる。よって、各色の画像間を色ずれなく表示することができる。
 なお、光源1Gが光源1B、1Rに対して水平方向に光軸ずれを生じた場合は、図6に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Gに関する水平ライン毎のデータの読み出し開始を、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早めればよい。また、光源1Rが光源1B、1Gに対して水平方向に光軸ずれを生じている場合は、図6に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Rに関する水平ライン毎のデータの読み出し開始を、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早めればよい。
(5)奇数ライン分の垂直光軸ずれの補正および水平光軸ずれ補正を同時に実行する場合の動作:
 ここでは、光源1Gが光源1B、1Rに対して垂直方向に1ライン分の光軸ずれを生じており、かつ、光源1Bが光源1G、1Rに対して水平方向に数ドット分(<1ラインのドット数D)の光軸ずれを生じているものと仮定する。
 光軸ずれ量設定部13は、1ライン分の垂直光軸ずれに対応した遅延量を示す光軸ずれ量D_Gをメモリ制御部14Gに供給し、数ドット分の水平光軸ずれに対応した遅延量を示す光軸ずれ量D_Bをメモリ制御部14Bに供給し、0を示す光軸ずれ量D_Rをメモリ制御部14Rに供給する。
 メモリ制御部14Rにおいて、垂直光軸ずれ補正部11Rが、光軸ずれ量D_Rから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。さらに、水平光軸ずれ補正部12Rが、光軸ずれ量D_Rから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Rが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Rからライン毎にデータを読み出す。フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 メモリ制御部14Gにおいて、垂直光軸ずれ補正部11Gが、光軸ずれ量D_Gから垂直遅延量(1ライン)を算出するとともに、その算出した垂直遅延量は奇数であると判定する。さらに、水平光軸ずれ補正部12Gが、光軸ずれ量D_Gから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Gが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Gからライン毎にデータを読み出す。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給される。
 メモリ制御部14Bにおいて、垂直光軸ずれ補正部11Bが、光軸ずれ量D_Bから垂直遅延量(0ライン)を算出するとともに、その算出した垂直遅延量は奇数ではないと判定する。さらに、水平光軸ずれ補正部12Bが、光軸ずれ量D_Bから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14Bが、垂直遅延量、水平遅延量、奇数の判定結果および往路/復路の判定結果に基づいて、フレームメモリ10Bからライン毎にデータを読み出す。フレームメモリ10Bから読み出したデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 フレームメモリ10B、10G、10Rからのデータの読み出し動作は、図7に示した垂直光軸ずれ補正の動作に図8に示した水平光軸ずれ補正の動作を組み合わせたものとなる。
 具体的には、図7に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Bに関する水平ライン毎のデータの読み出し開始を、図8に示したように、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早める。
 上述の水平光軸ずれの補正によれば、スクリーン20上に表示される赤色、緑色および青色の各画像間の水平および垂直の各方向における位置ずれを補正することができる。よって、赤色、緑色および青色の画像を色ずれなく表示することができる。
 なお、光源1Gが光源1B、1Rに対して水平方向に光軸ずれを生じた場合は、図7に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Gに関する水平ライン毎のデータの読み出し開始を、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早めればよい。
 また、光源1Rが光源1B、1Gに対して水平方向に光軸ずれを生じている場合は、図7に示した垂直光軸ずれ補正の動作において、光源駆動信号S_Rに関する水平ライン毎のデータの読み出し開始を、往路では水平遅延量だけ遅くし、復路では水平遅延量だけ早めればよい。
 以上説明した本実施形態の画像投影装置によれば、往復描画方式において、垂直方向の光軸ずれを補正することができ、画像を正しく表示することができるので、画質低下を抑制することができる。
 また、水平方向の光軸ずれも補正することができるので、さらに画質低下を抑制することができる。
 加えて、垂直および水平の光軸ずれを電気的に補正することが可能になったことで、非常に高い製造時の組み立て精度要求を緩和することができ、その結果、歩留まりを低く抑えることができるとともに、製造コストも低下することができる。
 なお、本実施形態では、メモリ制御部14B、14G、14Rは、垂直光軸ずれ補正部および水平光軸ずれ補正部を有するが、垂直光軸ずれ補正部のみを有する構成であってもよい。この場合は、メモリ制御部14B、14G、14Rは、垂直光軸ずれ補正のみを実行する。
 また、本実施形態では、光源1B、1G、1Rの3つの色の光源を使用しているが、これに限定されない。光源として、異なる色の光ビームを出射する複数の光源を用いることができる。この場合は、映像信号制御部10において、光源の色毎に、フレームメモリおよびメモリ制御部が設けられる。
 (第2の実施形態)
 本実施形態の画像投影装置は、図3および図4に示した第1の実施形態の構成と同様の構成を有するが、水平光軸ずれ補正の動作が第1の実施形態のものと異なる。水平光軸ずれ補正以外は第1の実施形態で説明したとおりであるので、ここでは、水平光軸ずれ補正に関わる構成および動作を中心に説明する。
 図3に示した構成において、例えば、水平走査ミラー8bからの光ビームの、スクリーン20上での水平方向における走査速度は、中央付近が最も速く、端部側へ行くほど遅くなる。この場合、光源を一定時間間隔で発光させた場合の水平ライン上に形成されるドットの間隔は、中央付近が最も大きく、端部へ行くほど小さくなる。
 第1の実施形態における水平光軸ずれの補正では、水平遅延量は、1水平ライン全体に対して設定されるため、各ドットに対する水平遅延量は固定である。この場合、走査速度が水平方向の位置に応じて変化すると、データ読み出しを水平遅延量だけ遅延させ、または、早めた場合の、スクリーン20上の水平ラインの各ドットの描画位置が、遅延または早読みなしでデータを読み出した場合の、スクリーン20上の水平ラインの各ドットの描画位置と異なる場合がある。
 図9に、図8に示した水平光軸ずれ補正において、光源駆動信号S_G、S_Rに基づいて光源1G、1Rを駆動した場合のスクリーン20上の第1往路(1H)の各ドットの描画位置と、光源駆動信号S_Bに基づいて光源1Bを駆動した場合のスクリーン20上の第1往路(1H)の各ドットの描画位置との位置関係を模式的に示す。図9において、便宜上、光源1Bの各ドットと光源1G、1Rの各ドットとを別々に記載しているが、実際は、光源1B、1G、1Rの各ドットは同一水平ライン上に沿って描画される。
 フレームメモリ10G、10Rからのデータの読み出しタイミングに対して、フレームメモリ10Bからのデータの読み出しを水平遅延量だけ遅延せた場合、図9に示すように、第1往路の両端では、光源1Bからの光ビームにより描画されたドットの位置は、光源1G、1Rからの光ビームにより描画されたドットの位置と略一致する。しかし、端部以外では、走査速度の変化のために、光源1Bからの光ビームにより描画されたドットの位置は、光源1G、1Rからの光ビームにより描画されたドットの位置からずれる。このため、端部以外の領域では、色ずれを生じることがある。
 本実施形態では、水平走査速度の変化のために生じる上記の色ずれの発生を抑制するために、水平光軸ずれ補正部12B、12G、12Rはそれぞれ、遅延読み出し用の第1の特性データと、早読み出し用の第2の特性データをそれぞれ格納したテーブルを備える。
 第1の特性データは、遅延読み出しを行った場合の水平ライン上のドットの位置が、通常読み出し(遅延なし読み出し)を行った場合の水平ライン上の対応するドットの位置と一致するように、水平走査位置に対する水平遅延量を規定したものである。
 例えば、図9に示した水平光軸ずれ量に基づく遅延読み出しの例において、遅延読み出しを行った光源1Bに関する水平ライン上におけるドットの位置が、光源1G、1Rに関する水平ライン上における対応するドットの位置と一致するように、水平走査位置に対する水平遅延量を規定することで、第1の特性データを作成することができる。
 所定の水平光軸ずれ量について第1の特性データを作成し、任意の水平光軸ずれ量に基づく遅延読み出しを行った場合の水平走査位置に対する水平遅延量を、第1の特性データから所定の近似式(関数)を用いて決定することができる。
 水平光軸ずれ補正部12B、12G、12Rはそれぞれ、水平光軸ずれ量設定部13から供給される光軸ずれ量D_B、D_G、D_Rに基づいて水平遅延量を算出し、その算出した水平遅延量に基づく遅延読み出しを行った場合の水平走査位置に対する水平遅延量を第1の特性データから所定の近似式により決定する。
 第2の特性データは、早読み出しを行った場合の水平ライン上のドットの位置が、通常読み出しを行った場合の水平ライン上の対応するドットの位置と一致するように、水平走査位置に対する水平遅延量を規定したものである。
 所定の水平光軸ずれ量について第2の特性データを作成し、任意の水平光軸ずれ量に基づく早読み出しを行った場合の水平走査位置に対する水平遅延量を、第2の特性データから所定の近似式(関数)を用いて決定することができる。
 水平光軸ずれ補正部12B、12G、12Rはそれぞれ、水平光軸ずれ量設定部13から供給される光軸ずれ量D_B、D_G、D_Rに基づいて水平遅延量を算出し、その算出した水平遅延量に基づく早読み出しを行った場合の水平走査位置に対する水平遅延量を第2の特性データから所定の近似式により決定する。
 以下、光源1Bが光源1G、1Rに対して水平方向にのみ、数ドット分(<1ラインのドット数D)の光軸ずれを生じている状態における水平光軸ずれの補正を説明する。
 光軸ずれ量設定部13は、数ドット分の水平光軸ずれに対応した遅延量を示す光軸ずれ量D_Bをメモリ制御部14Bに供給するとともに、0を示す光軸ずれ量D_G、D_Rをメモリ制御部14G、14Rに供給する。
 メモリ制御部14G、14Rにおいて、水平光軸ずれ補正部12G、12Rが、光軸ずれ量D_G、D_Rから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。そして、メモリ制御部14G、14Rが、フレームメモリ10G、10Rからライン毎にデータを読み出す。フレームメモリ10Gから読み出したデータは、光源駆動信号S_Gとして光源駆動回路2Gに供給され、フレームメモリ10Rから読み出したデータは、光源駆動信号S_Rとして光源駆動回路2Rに供給される。
 一方、メモリ制御部14Bにおいて、水平光軸ずれ補正部12Bが、光軸ずれ量D_Bから水平遅延量(数ドット)を算出するとともに、往路および復路の判定を行う。さらに、水平光軸ずれ補正部12Bが、遅延読み出しを行った場合の水平走査位置に対する水平遅延量を第1の特性データに基づいて決定するとともに、早読み出しを行った場合の水平走査位置に対する水平遅延量を第2の特性データに基づいて決定する。
 往路のデータをフレームメモリ10Bから読み出す場合は、メモリ制御部14Bは、フレームメモリ10G、10Rからの各データの読み出しタイミングに対して、第1の特性データより決定した水平走査位置に対する水平遅延量だけ、フレームメモリ10Bからの各データの読み出しを遅延させる。このようにしてフレームメモリ10Bから読み出した往路のデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 復路のデータをフレームメモリ10Bから読み出す場合は、メモリ制御部14Bは、フレームメモリ10G、10Rからの各データの読み出しタイミングに対して、第2の特性データより決定した水平走査位置に対する水平遅延量だけ、フレームメモリ10Bからの各データの読み出しを早める。このようにしてフレームメモリ10Bから読み出した復路のデータは、光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 図10に、上記の水平走査位置に応じた水平遅延量に基づく水平光軸ずれの補正を行った場合の光源駆動信号S_B、S_G、S_Rを水平走査ミラー8bの駆動信号とともに示す。
 図10に示すように、第1往路(1H)の水平走査において、フレームメモリ10G、10Rから第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。
 また、第1往路(1H)の水平走査において、フレームメモリ10Bからは、フレームメモリ10G、10Rからの各データの読み出しタイミングに対して、水平走査位置に応じた水平遅延量だけ遅れたタイミングで、第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第1復路(2H)の水平走査において、フレームメモリ10G、10Rから第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。
 また、第1復路(2H)の水平走査において、フレームメモリ10Bからは、フレームメモリ10G、10Rからの各データの読み出しタイミングに対して、水平走査位置に応じた水平遅延量だけ早いタイミングで、第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第2往路以降は、上記の第1往路及び第1復路と同様の手順でデータ読み出しが行われる。
 上述の水平光軸ずれの補正によれば、第1の実施形態と同様の効果を奏することに加えて、水平走査速度の変化のために生じる各色の投影像の間の水平方向の位置ずれの問題を解決することができる。
 (第3の実施形態)
 各光源は、駆動方式が異なることおよび光源の駆動回路構成が異なることが原因で、光源駆動信号S_B、S_G、S_Rと、各光源発光までの間に光源特有の発光遅延が生じる場合がある。この発光遅延は、各光源間で発光するタイミング(位相)がずれているように見えることから、位相ずれと呼んでいる。位相ずれは、各色の投影画像間の水平方向における位置ずれを発生させ、それによる画質低下を招く。
 ここでは、第1または第2の実施形態の画像投影装置において、この遅延を補正した信号を作成するための、位相ずれ補正を行う機能を追加したものを説明する。
 図11は、本発明の第3の実施形態である画像投影装置の構成を示すブロック図である。図11に示すように、本実施形態の画像投影装置は、位相ずれ量設定部15と、位相ずれ補正部16B、16G、16Rを有する点が、第1または第2の実施形態のものと異なる。それ以外の点は、第1または第2の実施形態のものと同じであるので、ここでは、位相ずれ補正に関わる構成および動作を中心に説明する。
 メモリ制御部14Bは位相ずれ補正部16Bを有し、メモリ制御部14Gは位相ずれ補正部16Gを有し、メモリ制御部14Rは位相ずれ補正部16Rを有する。
 位相ずれ量設定部15は、光源駆動信号S_B、S_G、S_Rそれぞれの位相ずれ量を示す位相ずれ量P_B、P_G、P_Rを出力する。ここで、位相ずれ量P_B、P_G、P_Rは、位相が最も早い光源駆動信号を基準として、他の光源駆動信号の位相の遅れをドット量で表わしたものである。例えば、赤色の光源駆動信号を基準とする場合、位相ずれ量P_Rは0とされ、位相ずれ量P_B、P_Gはそれぞれ、青色および緑色の光源駆動信号の、赤色の光源駆動信号に対する位相の遅れをドット単位の遅延量で表わした値とされる。
 位相ずれ量P_B、P_G、P_Rは、操作者が不図示の入力操作部を通じて指定した値であってもよい。この場合は、位相ずれ量設定部15は、不図示の入力操作部を通じて、操作者によって指定された位相ずれ量を受け付ける。
 また、位相ずれ量P_B、P_G、P_Rは、予め与えられてもよい。例えば、工場出荷時に、光源駆動信号S_B、S_G、S_Rの間の位相ずれ量を測定し、その測定結果に基づいて、位相ずれ量P_B、P_G、P_Rを決定する。こうして決定した位相ずれ量P_B、P_G、P_Rを映像信号制御部10内の記憶部に予め保持しておき、位相ずれ量設定部15が、位相ずれ補正の実施タイミングで、記憶部に保持した位相ずれ量P_B、P_G、P_Rを出力する。ここで、位相ずれ補正の実施タイミングは、装置の起動時や、操作者が指定した任意のタイミングである。
 位相ずれ量設定部15は、位相ずれ量P_Bを位相ずれ補正部16Bに供給し、位相ずれ量P_Gを位相ずれ補正部16Gに供給し、位相ずれ量P_Rを位相ずれ補正部16Rに供給する。
 メモリ制御部14Bでは、位相ずれ補正部16Bが、垂直光軸ずれ補正部11Bおよび水平光軸ずれ補正部12Bによるデータの読み出しの際に、往路および復路それぞれのラインデータの読み出しタイミングに対して、位相ずれ量P_Bに基づく位相遅延量を生じさせる。
 メモリ制御部14Gでは、位相ずれ補正部16Gが、垂直光軸ずれ補正部11Gおよび水平光軸ずれ補正部12Gによるデータの読み出しの際に、往路および復路それぞれのラインデータの読み出しタイミングに対して、位相ずれ量P_Gに基づく位相遅延量を生じさせる。
 メモリ制御部14Rでは、位相ずれ補正部16Rが、垂直光軸ずれ補正部11Rおよび水平光軸ずれ補正部12Rによるデータの読み出しの際に、往路および復路それぞれのラインデータの読み出しタイミングに対して、位相ずれ量P_Rに基づく位相遅延量を生じさせる。
 以下、一例として、光源駆動信号S_Bが光源駆動信号S_G、S_Rに対して数ドット分(<1ラインのドット数D)の位相遅れを生じている状態における位相ずれの補正を説明する。
 位相ずれ量設定部15は、数ドット分の位相ずれに対応した遅延量を示す位相ずれ量P_Bをメモリ制御部14Bに供給するとともに、0を示す位相ずれ量P_G、P_Rをメモリ制御部14G、14Rに供給する。
 メモリ制御部14G、14Rにおいて、位相ずれ量P_G、P_Rが0であるため、位相ずれ補正部16G、16Rによる補正は行われない。
 一方、メモリ制御部14Bでは、位相ずれ補正部16Bが、垂直光軸ずれ補正部11Bおよび水平光軸ずれ補正部12Bによるデータの読み出しの際に、往路および復路それぞれのラインデータの読み出しタイミングに対して、位相ずれ量P_Bに基づく位相遅延量を生じさせる。
 図12に、上記の位相ずれ補正を行った場合の光源駆動信号S_B、S_G、S_Rを水平走査ミラー8bの駆動信号とともに示す。ここでは、垂直光軸ずれ補正および水平光軸ずれ補正は行われていないものと仮定する。
 図12に示すように、第1往路(1H)の水平走査において、フレームメモリ10G、10Rから、第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。
 また、第1往路(1H)の水平走査において、フレームメモリ10Bからは、フレームメモリ10G、10Rからの第1水平ラインのデータの読み出しタイミングに対して、位相ずれ量P_Bに基づく位相遅延量だけ遅れたタイミングで、第1水平ラインのデータが左端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第1復路(2H)の水平走査において、フレームメモリ10G、10Rから、第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_G、S_Rとして光源駆動回路2G、2Rに供給される。
 また、第1復路(2H)の水平走査において、フレームメモリ10Bからは、フレームメモリ10G、10Rからの第2水平ラインのデータの読み出しタイミングに対して、位相ずれ量P_Bに基づく位相遅延量だけ遅れたタイミングで、第2水平ラインのデータが右端のデータから順に読み出されて、その読み出したデータが光源駆動信号S_Bとして光源駆動回路2Bに供給される。
 第2往路以降は、上記の第1往路及び第1復路と同様の手順で位相ずれ補正が行われる。
 上述の位相ずれ補正によれば、第1または第2の実施形態と同様の効果を奏することに加えて、位相ずれのために生じる各色の投影像の間の水平方向の位置ずれの問題を解決することができる。
 (第4の実施形態)
 図13は、本発明の第4の実施形態である画像投影装置の構成を示すブロック図である。
 図13を参照すると、画像投影装置は、光源1B、1G、1R、光源駆動回路2B、2G、2R、コリメータレンズ3a、3b、3c、ミラー4、ダイクロイックミラー5a、5b、走査ミラー制御部6、走査ミラー駆動部7、垂直走査ミラー8a、水平走査ミラー8b、光検出部9および映像信号制御部10を有する。
 光検出部9と映像信号制御部10の一部の機能とにより水平および垂直の光軸ずれ量を自動検出する機能を構成した以外は、第1の実施形態と同じものである。自動検出機能以外の構成は、第1の実施形態で説明したとおりであるので、ここではその詳細な説明は省略する。
 光検出部9は、例えば、1つのフォトダイオード(PD)よりなり、垂直走査ミラー8aとスクリーン20との間の空間の所定の位置に配置されている。光検出部9は、垂直走査ミラー8aおよび水平走査ミラー8bによって2次元走査された光ビーム(赤、緑、青)を検出し、検出信号S1を出力する。検出信号S1は、映像信号制御部10に供給されている。
 図14に、映像信号制御部10の構成を示す。図14に示す映像信号制御部10は、光軸ずれ量設定部13が、光検出部9からの検出信号S1に基づいて光軸ずれ量D_B、D_G、D_Rを決定するように構成されており、この点以外は、図4に示した構成と同じである。
 図15に、光検出部9の配置の一例を模式的に示す。図15に示すように、四角形状の枠体9aが、垂直走査ミラー8aおよび水平走査ミラー8bからなる走査手段とスクリーン20との間に設けられている。光検出部9は、枠体9aの上部の枠部の中央付近に設けられている。
 一般に、映像信号は、有効映像期間とブランキング期間を含む。ブランキング期間は、水平同期をとるための水平ブランキング期間と、垂直同期をとるための垂直ブランキング期間とを含む。通常、有効映像期間において、映像が表示され、水平および垂直のブランキング期間においては、映像は表示されない。
 枠体9aは、スクリーン20側から見た場合に、垂直走査ミラー8aおよび水平走査ミラー8bによる光ビームの走査可能な範囲のち、有効映像期間の表示のための光ビームが通過する範囲を囲むように形成されている。この場合、有効映像期間の投影像は、枠体9aや光検出部9によって遮られることはない。
 光検出部9は、垂直ブランキング期間において、光源1B、1G、1Rを点灯させて水平走査を行った場合に、光源1B、1G、1Rからの光ビームの一部を検出することができる。
 光軸ずれ量設定部13は、走査ミラー制御部6を介して垂直走査ミラー8aの駆動信号の振幅を調整するとともに、光検出部9からの検出信号S1に基づいて、光源1B、1G、1Rのうちから、光軸ずれ量を検出する際の基準となる光源を決定し、その基準光源に対する他の2つの光源の光軸ずれ量を検出する。
 一般に、垂直ブランキング期間は、有効映像期間において上部から下部まで画面を描画した後に、次の画面を描画するために上部へ戻るための垂直帰線期間を含み、この垂直帰線期間の終了後から次の画面の描画を開始するまでの間に、数十回の水平走査が可能な非表示期間を含む。
 光軸ずれ量設定部13は、垂直ブランキング期間の非表示期間を利用して、光源1B、1G、1Rを別々に所定のタイミングで点灯させて、光検出部9の検出信号S1に基づいて、光源1B、1G、1R間の水平方向および垂直方向の光軸ずれ量を検出する。光軸ずれ量を検出するために、光軸ずれ量設定部13は、垂直走査ミラー8aの駆動信号の振幅調整(垂直振幅調整)を行う。
 以下に、光軸ずれ量設定部13による光軸ずれ量の検出手順を具体的に説明する。
 まず、光軸が一致している状態、垂直光軸ずれが生じた状態、および水平光軸ずれが生じた状態それぞれを例に挙げて、光検出部9の検出信号S1に基づく光軸ずれ量の検出の原理を簡単に説明する。
 [光軸が一致している状態]
 図16に、光源1G、1Rの光軸が一致している場合の緑および赤の光ビームが光検出部9の受光面上を通過する状態を模式的に示す。図16の例では、スクリーン20の面に垂直な方向から見た場合に、光検出部9の受光面が隣接する2ラインの丁度中間に位置するように垂直および水平の振幅調整がなされている。
 図16に示すように、光源1G、1Rの光軸が一致している場合は、光源1Gからの光ビームの軌跡は、光源1Rからの光ビームの軌跡と一致する。光源1G、1Rそれぞれからの光ビームは、1往復する際に、往路で光検出部9の受光面の上端部を通過し、復路で受光面の下端部を通過する。
 図17に、図16に示した状態で光源1G、1Rを別々に所定のタイミングで点灯させた場合の光検出部9の出力信号を示す。
 図17に示すように、光検出部9は、光源1G、1Rそれぞれの点灯時に、所定間隔の2つのパルスを有する検出信号S1を出力する。光源1Gの点灯時の検出信号S1は、光源1Rの点灯時の検出信号S1と同じである。
 上記のことから、光源1G、1Rの一方の光源の点灯時に、所定のパルス間隔を有する検出信号S1が得られるように垂直および水平の振幅調整を行った後、他方の光源を点灯させると、同じパルス間隔を有する検出信号S1が得られる。
 光源1Bと光源1Gまたは光源1Rとの間についても、光軸が一致している場合は、上記と同様のことが言える。
 光軸ずれ量設定部13は、光源1B、1G、1Rのうちの所定の光源(基準光源)を点灯させて、所定のパルス間隔を有する検出信号S1が得られるように垂直および水平の振幅調整を行った後、残りの2つの光源それぞれについて、光源を点灯して検出信号S1を取得する。
 光軸ずれ量設定部13は、所定の光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間と、残りの2つの光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間を比較し、その差分(時間)を光軸ずれ量として算出する。
 光源1B、1G、1Rの光軸が一致している場合は、光源1B、1G、1Rのそれぞれで取得した検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間は同じである。よって、光軸ずれ量設定部13は、光軸ずれ量D_B、D_G、D_Rそれぞれを0に設定する。
 [垂直光軸ずれが生じた状態]
 図18に、光源1Gの光軸が光源1Rの光軸に対して垂直方向にずれている場合の緑および赤の光ビームが光検出部9の受光面上を通過する状態を模式的に示す。図18の例では、光源1Rを基準とし、スクリーン20の面に垂直な方向から見た場合に、光検出部9の受光面が光源1Rの光ビームの走査軌跡のうち隣接する2ラインの丁度中間に位置するように垂直および水平の振幅調整がなされている。図18では、光源1Gからの光ビームの軌跡が一点鎖線で示され、光源1Rからの光ビームの軌跡が点線で示されている。
 図18に示すように、光源1Gの光軸が光源1Rの光軸に対して垂直方向(ここでは、上方向)にずれているために、光源1Gからの光ビームの軌跡は、光源1Rからの光ビームの軌跡と一致しない。光源1Rからの光ビームは、1往復する際に、往路で光検出部9の受光面の上端部を通過し、復路で受光面の下端部を通過する。一方、光源1Gからの光ビームは、1往復する際に、往路では光検出部9の受光面を通過せず、復路において、光検出部9の受光面の中央部を通過する。
 図19に、図18に示した状態で光源1G、1Rを別々に所定のタイミングで点灯させた場合の光検出部9の出力信号を示す。
 図19に示すように、光検出部9は、光源1Rの点灯時は、所定間隔の2つのパルスを有する検出信号S1を出力するが、光源1Gの点灯時は、1つのパルスを有する検出信号S1を出力する。この光源1Gの点灯時の検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間は、光源1Rの点灯時のそれより長い。
 光源1Bと光源1Gまたは光源1Rとの間についても、光軸が垂直方向にずれている場合は、上記と同様のことが言える。
 光軸ずれ量設定部13は、光源1B、1G、1Rのうちの所定の光源(基準光源)を点灯させて、所定のパルス間隔を有する検出信号S1が得られるように垂直および水平の振幅調整を行った後、残りの2つの光源それぞれについて、光源を点灯して検出信号S1を取得する。
 光軸ずれ量設定部13は、所定の光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間と、残りの2つの光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間を比較し、その差分(時間)に基づいて、光軸ずれ量D_B、D_G、D_Rを決定する。
 [水平光軸ずれが生じた状態]
 図20に、光源1Gの光軸が光源1Rの光軸に対して水平方向にずれている場合の緑および赤の光ビームが光検出部9の受光面上を通過する状態を模式的に示す。図20の例では、光源1Rを基準とし、スクリーン20の面に垂直な方向から見た場合に、光検出部9の受光面が光源1Rの光ビームの走査軌跡のうち隣接する2ラインの丁度中間に位置するように垂直および水平の振幅調整がなされている。図20では、光源1Gからの光ビームの軌跡が一点鎖線で示され、光源1Rからの光ビームの軌跡が点線で示されている。
 図20に示すように、光源1Gの光軸が光源1Rの光軸に対して水平方向(ここでは、右方向)にずれているために、光源1Gからの光ビームの軌跡は、光源1Rからの光ビームの軌跡と一致しない。光源1Rからの光ビームは、1往復する際に、往路で光検出部9の受光面の上端部を通過し、復路で受光面の下端部を通過する。光源1Gからの光ビームも、1往復する際に、往路で光検出部9の受光面の上端部を通過し、復路で受光面の下端部を通過するが、上端部を通過してから下端部を通過するまでの時間が、光源1Rの場合より短い。
 図21に、図20に示した状態で光源1G、1Rを別々に所定のタイミングで点灯させた場合の光検出部9の出力信号を示す。
 図21に示すように、光検出部9は、光源1Rの点灯時は、所定間隔の2つのパルスを有する検出信号S1を出力する。光源1Gの点灯時も、光検出部9は、2つのパルスを有する検出信号S1を出力するが、そのパルス間隔は、光源1Rの点灯時のそれよりも短い。この光源1Gの点灯時の検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間は、光源1Rの点灯時のそれより長い。
 光源1Bと光源1Gまたは光源1Rとの間についても、光軸が水平方向にずれている場合は、上記と同様のことが言える。
 光軸ずれ量設定部13は、光源1B、1G、1Rのうちの所定の光源(基準光源)を点灯させて、所定のパルス間隔を有する検出信号S1が得られるように垂直および水平の振幅調整を行った後、残りの2つの光源それぞれについて、光源を点灯して検出信号S1を取得する。
 光軸ずれ量設定部13は、所定の光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間と、残りの2つの光源に関する検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間を比較し、その差分(時間)に基づいて、光軸ずれ量D_B、D_G、D_Rを決定する。
 次に、光軸ずれ量設定部13による光源1B、1G、1R間の水平方向および垂直方向の光軸ずれ量を検出する方法について説明する。
 図22は、光軸ずれ量検出処理の手順を示すフローチャートである。
 図22に示すように、光軸ずれ量設定部13は、まず、光源1B、1G、1Rのうちから基準光源を決定する(ステップS10)。次いで、光軸ずれ量設定部13は、基準光源の検出信号S1のパルス間隔が所定値となるように垂直および水平の振幅調整を行う(ステップS11)。最後に、光軸ずれ量設定部13は、基準光源の検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間と、他の光源の検出信号S1の、点灯開始タイミングから最初のパルスの立ち上がりまでの時間とを比較し、基準光源に対する他の光源の光軸ずれ量を決定する(ステップS12)。
 以下に、ステップS10、S11、S12の処理を具体的に説明する。
 図23に、図22のステップS10の基準光源の決定処理の具体的な手順を示す。
 まず、光軸ずれ量設定部13は、垂直走査ミラー8aおよび水平走査ミラー8bをそれぞれ予め保持した振幅値の50%の振幅となるように駆動させる(ステップS20)。
 次に、光軸ずれ量設定部13は、垂直ブランキング期間のうち、垂直帰線期間の終了後から次の画面の描画を開始するまでの非表示期間(調整期間)において、中間の2ラインに相当する期間だけ、光源1B、1G、1Rのいずれか1つの光源を点灯させる(ステップS21)。
 次に、光軸ずれ量設定部13は、光検出部9から2つのパルスを含む検出信号S1を受信したか否かを判定する(ステップS22)。
 ステップS22の判定結果が「No」である場合は、光軸ずれ量設定部13は、垂直走査ミラー8aの振幅を増大させる(ステップS23)。その後、ステップS22の判定が行われる。
 ステップS22の判定結果が「Yes」である場合は、光軸ずれ量設定部13は、調整期間において光源1B、1G、1Rを別々に点灯させ、光検出部9から検出信号S1を取得する。そして、光軸ずれ量設定部13は、光源1B、1G、1Rそれぞれについて取得した検出信号S1の、調整期間開始タイミングから最初のパルスの立ち上がりタイミングまでの時間を取得する(ステップS24)。
 最後に、光軸ずれ量設定部13は、ステップS24で取得した光源1B、1G、1Rそれぞれの時間を比較し、その時間が最も長いものを基準光源として決定する(ステップS25)。
 図24に、図22のステップS11の振幅調整処理の具体的な手順を示す。
 まず、光軸ずれ量設定部13は、調整期間において、中間の2ラインに相当する期間だけ、基準光源を点灯させる(ステップS30)。
 次に、光軸ずれ量設定部13は、光検出部9から2つのパルスを含む検出信号S1を受信したか否かを判定する(ステップS31)。
 ステップS31の判定結果が「No」である場合は、光軸ずれ量設定部13は、垂直走査ミラー8aの振幅を増加させる(ステップS32)。
 ステップS31の判定結果が「Yes」である場合は、光軸ずれ量設定部13は、検出信号S1のパルス間隔が所定値と一致するか否かを判定する(ステップS33)。
 ステップS33の判定結果が「No」である場合は、光軸ずれ量設定部13は、検出信号S1のパルス間隔が所定値よりも大きいか否かを判定する(ステップS34)。
 ステップS34の判定結果が「Yes」である場合は、光軸ずれ量設定部13は、水平走査ミラー8bの振幅を増加させる(ステップS35)。その後、ステップS33の判定を行う。
 ステップS34の判定結果が「No」である場合は、光軸ずれ量設定部13は、水平走査ミラー8bの振幅を減少させる(ステップS36)。その後、ステップS33の判定を行う。
 ステップS33の判定結果が「Yes」である場合は、光軸ずれ量設定部13による振幅調整処理は終了する。
 図25に、図22のステップS12の光軸ずれ量の検出処理の具体的な手順を示す。
 まず、光軸ずれ量設定部13は、調整期間において、中間の2ラインに相当する期間だけ基準光源を点灯させ、光検出部9から受信した検出信号S1の、調整期間開始タイミングから最初のパルスの立ち上がりタイミングまでの時間T0を取得する(ステップS40)。
 次に、光軸ずれ量設定部13は、調整期間において、中間の2ラインに相当する期間だけ光軸補正すべき光源を点灯させ、光検出部9から受信した検出信号S1の、調整期間開始タイミングから最初のパルスの立ち上がりタイミングまでの時間T1を取得する(ステップS41)。
 次に、光軸ずれ量設定部13は、変数Xに時間T0から時間T1を引いた差分値をピクセルクロックで割った値を代入する(ステップS42)。ピクセルクロックは、例えばXGAの場合で65MHzである。変数Xの初期値は0である。
 次に、光軸ずれ量設定部13は、変数Xが閾値「H Total」より小さいか否かを判定する(ステップS43)。ここで、閾値「H Total」は、1水平ラインを走査するのに必要な時間(有効映像期間と水平ブランキング期間とを含む1水平期間)をピクセルクロックで割った値であって、例えば、水平表示画素数に水平同期期間に対応する画素数を足した値である。より具体的には、XGAの場合で、有効映像期間を1水平期間全体の84%とし、有効映像期間の表示画素数を1024とすると、閾値「H Total」は、1222である。
 ステップS43の判定結果が「No」である場合、光軸ずれ量設定部13は、変数「V Delay Line」に「V Delay Line」+1の値を代入し、変数XにX-「H Total」の値を代入する(ステップS44)。変数「V Delay Line」の初期値は0である。その後、ステップS43の判定を行う。
 ステップS43の判定結果が「Yes」である場合、光軸ずれ量設定部13は、変数Xから第1の閾値の半分の値「(H Total)/2」を引いた値が0より大きいか否かを判定する(ステップS45)。
 ステップS45の判定結果が「Yes」である場合、光軸ずれ量設定部13は、変数Xが1より小さいか否かを判定する(ステップS46)。
 ステップS46の判定結果が「No」である場合、光軸ずれ量設定部13は、変数「H Delay Pixel」に「H Delay Pixel」+1の値を代入し、変数XにX-1の値を代入する(ステップS47)。変数「H Delay Pixel」の初期値は0である。その後、ステップS46の判定を行う。
 ステップS45の判定結果が「No」である場合、光軸ずれ量設定部13は、変数Xに「H Total」-Xの値を代入する(ステップS48)。
 ステップS48の後、光軸ずれ量設定部13は、変数Xが1より小さいか否かを判定する(ステップS49)。
 ステップS49の判定結果が「No」である場合は、光軸ずれ量設定部13は、変数「H Delay Pixel」に「H Delay Pixel」-1の値を代入し、変数XにX-1の値を代入する(ステップS50)。その後、ステップS49の判定を行う。
 ステップS46またはステップS49の判定結果が「Yes」である場合は、光軸ずれ量設定部13は、基準光源に対して、光軸補正すべき光源が、垂直方向に変数「V Delay Line」の値だけずれており、水平方向に変数「H Delay Pixel」の値だけずれていると判定する。この後、光軸ずれ量の検出処理は終了する。
 光軸ずれ量設定部13は、図23に示した手順で光源1B、1G、1Rのうちから基準光源を決定し、基準光源の光軸ずれ量として0を出力する。
 また、光軸ずれ量設定部13は、残りの光源については、それぞれの光源について、図24および図25の手順で垂直および水平の光軸ずれを決定し、その値を光軸ずれ量として出力する。
 例えば、基準光源の、調整開始タイミングから最初のパルスの立ち上がりタイミングまでの時間と、他の光源の、調整開始タイミングから最初のパルスの立ち上がりタイミングまでの時間との差が、約37082.3nsである場合、その差の値をピクセルクロックで割った値は約2447となる。この場合は、垂直光軸ずれが2ライン分発生し、水平光軸ずれが3ピクセル分発生していることになる。光軸ずれ量設定部13は、他の光源について、垂直光軸ずれとして2を、水平光軸ずれ量として3を出力する。
 なお、垂直光軸ずれの補正後に、上記の基準光源と他の光源との間における、調整開始タイミングから最初のパルスの立ち上がりタイミングまでの時間との差を測定し、その測定結果に基づいて、水平光軸ずれ量を決定することで、水平光軸ずれ補正の精度を向上することができる。
 本実施形態の画像投影装置において、光検出部9の配置は、図15に示した配置に限定されない。光検出部9は、枠体9a上のどの位置に設けられてもよい。
 例えば、光検出部9は、枠体9aの下部の枠部の中央付近に設けられてもよい。この場合も、図22~図25で説明した手順で光軸ずれ量を検出することができる。また、光検出部9は、枠体9aの上部または下部の枠部の左端または右端に設けられてもよい。この場合も、図22~図25で説明した手順で光軸ずれ量を検出することができる。
 ただし、水平方向の走査速度は、中央部付近が最も速く、端部側に近づくほど遅くなる。このため、光検出部9を端部付近に設けた場合の検出信号S1のパルスの形状(立ち上がりの傾斜)は、光検出部9を中央付近に設けた場合の検出信号S1のパルスの形状(立ち上がりの傾斜)に比較してなだらかものとなり、その結果、検出精度が低くなる。
 本実施形態においても、第1の実施形態で説明した変形を適用することができる。
 また、水平光軸ずれ補正部11B、11G、11Rを第2の実施形態で説明したものと同様の構成としてもよい。
 本実施形態において、光検出部9は受光面と対向する位置に、受光面への入射光の範囲を制限するための開口を備えた遮光板を有する。
 光検出部9を走査ラインの中央に配置した場合、光検出部9の受光面を含む平面において、光源(1B、1G、1R)からの光ビームの走査間隔をT、垂直方向のビーム径をRとするとき、開口の垂直方向の大きさWが、(T-R)≦W<(2T-R)の条件を満たすことが望ましい。この条件を満たす場合、光源1B、1G、1Rのいずれかの光源を基準光源とする場合に、調整期間内において、基準光源からの光ビームを光検出部9により2度、検出することができる。この場合、基準光源に対する他の光源の垂直光軸ずれを0.5ライン以内に補正することができる。
 また、開口の垂直方向の大きさWが、(2T-R)≦W<(3T-R)の条件を満たすように設定してもよい。この条件を満たす場合、光源1B、1G、1Rのいずれかの光源を基準光源とする場合に、調整期間内において、基準光源からの光ビームを光検出部9により3度、検出することができる。この場合も、基準光源に対する他の光源の垂直光軸ずれを0.5ライン以内に補正することができる。
 上述したように、開口の垂直方向の大きさWを、1.5T-R、2.5T-R、...、(m+0.5)T-Rといった、垂直方向のビームの走査間隔Tと垂直方向のビーム径Rとの関係で示される条件を満たすように設定すれば、基準光源に対する他の光源の垂直光軸ずれを0.5ライン以内に補正することができる。
 一方、光検出部9を走査ラインの端に配置した場合は、開口の垂直方向の大きさWが、(2T-R)≦W<(4T-R)の条件を満たすように設定することが望ましい。この場合、基準光源に対する他の光源の垂直光軸ずれを1ライン以内に補正することができる。
 また、開口の水平方向の大きさをW0とし、光検出部9の受光面を含む平面における水平方向のビームの径をR0とすると、R0≦W0≦2R0の条件を満たすことで、光検出部9による光ビームの検出精度が向上する。例えば、開口の水平方向の大きさW0を1.5R0程度とすると、0.5ピクセル単位でのずれ量の検出および補正を行うことができる。
 (第5の実施形態)
 本発明の第5の実施形態である画像投影装置は、図13に示した構成を有し、光検出部9と映像信号制御部10の一部の機能とにより位相ずれ量を自動検出する機能が構成されている。
 図26は、本実施形態の画像投影装置の映像信号制御部10の構成を示すブロック図である。
 図26に示す映像信号制御部10は、位相ずれ量設定部15が、光検出部9からの検出信号S1に基づいて位相ずれ量P_B、P_G、P_Rを決定する以外は、第3の実施形態で説明したものと同じである。
 光検出部9は、フォトダイオード(PD)よりなり、例えば、図15に示したように、垂直走査ミラー8aとスクリーン20との間の空間の所定の位置に配置されている。光検出部9は、垂直ブランキング期間において、光源1B、1G、1Rを点灯させて水平走査を行った場合に、光源1B、1G、1Rからの光ビームの一部を検出し、検出信号S1を出力する。検出信号S1は、映像信号制御部10の位相ずれ量設定部15に供給されている。
 位相ずれ量設定部15は、走査ミラー制御部6を介して垂直走査ミラー8aの駆動信号の振幅を調整するとともに、垂直ブランキング期間の非表示期間を利用して、光源1B、1G、1Rを別々に所定のタイミングで点灯させて、光検出部9からの検出信号S1に基づいて、光源1B、1G、1Rのうちから、位相ずれ量を検出する際の基準となる光源を決定し、その基準光源に対する他の2つの光源の位相ずれ量を検出する。
 垂直光軸ずれ補正および水平光軸ずれ補正は、第1または第2の実施形態と同様であるので、ここでは、それらの説明は省略し、位相ずれ量の自動検出を中心に説明する。
 垂直光軸ずれ補正部11B、11G、11Rによる垂直光軸ずれの補正および水平光軸ずれ補正12B、12G、12Rによる水平光軸ずれの補正が行われた後に、位相ずれ量設定部15が、位相ずれ量を検出する処理を実行する。
 図27は、位相ずれ量設定部15による位相ずれ量の算出処理の一手順を示すフローチャートである。
 まず、位相ずれ量設定部15は、光源1B、1G、1Rのうちから基準となる光源を決定して振幅調整を行う(ステップS50)。基準光源の決定は、図23に示した手順で行う。振幅調整は、図24に示した手順で行う。
 次に、位相ずれ量設定部15は、調整期間において、中間の2ラインに相当する期間だけ基準光源を点灯させ、光検出部9から受信した検出信号S1の、調整期間開始タイミングから最初のパルスの立ち上がりタイミングまでの時間T10を取得する(ステップS51)。
 次に、位相ずれ量設定部15は、調整期間において、中間の2ラインに相当する期間だけ位相補正すべき光源を点灯させ、光検出部9から受信した検出信号S1の、調整期間開始タイミングから最初のパルスの立ち上がりタイミングまでの時間T11を取得する(ステップS52)。
 次に、位相ずれ量設定部15は、変数Yに時間T10から時間T11を引いた差分値をピクセルクロックで割った値を代入する(ステップS53)。ピクセルクロックは、例えばXGAの場合で65MHzである。変数Yの初期値は0である。
 次に、位相ずれ量設定部15は、変数Yが0より大きいか否かを判定する(ステップS54)。
 ステップS54の判定結果が「Yes」である場合、位相ずれ量設定部15は、光軸補正すべき光源が、基準光源に対して、変数Yの値だけ進んでいると判定する(ステップS55)。
 ステップS54の判定結果が「No」である場合、位相ずれ量設定部15は、変数Yに-Yの値を代入する(ステップS56)。そして、位相ずれ量設定部15は、光軸補正すべき光源が、基準光源に対して、変数Yの値だけ遅れていると判定する(ステップS57)。
 ステップS55またはステップS57の後、本位相ずれ量算出処理は終了する。
 位相ずれ量設定部15は、基準光源の位相ずれ量として0を出力するとともに、残りの光源については、それぞれの光源について、図27の手順で位相ずれ量を算出し、その値を位相ずれ量として出力する。
 例えば、光源1B、1G、1Rのうち、光源1Rが基準光源となった場合は、位相ずれ量設定部15は、位相ずれ量として0を位相ずれ補正部16Rに供給する。また、位相ずれ量設定部15は、光源1B、1Gのそれぞれについて、図27の手順で位相ずれ量を算出し、その値を位相ずれ補正部16B、16Gに供給する。
 補正部16B、16G、16Rによる位相ずれ補正は、第3の実施形態で説明した通りである。
 本実施形態によれば、任意のタイミングまたは一定期間毎に、位相ずれ量を検出して補正することで、経時変化によって生じた位相ずれを正確に補正することができ、高画質を維持することができる。
 本実施形態において、光検出部として2つ以上のPDを用いることで、位相ずれ量を正確に検出することができる。
 図28に、2つのPDを用いた構成を示す。この例では、光検出部9に加えて、光検出部91が枠体9aの上部の枠部の右端に配置されている。光検出部9からの検出信号S1および光検出部91からの検出信号S2が位相ずれ量設定部15に供給される。
 位相ずれ量設定部15は、検出信号S1、S2に基づき、基準光源に対する他の光源の位相ずれ量を算出する。
 図29に、基準とされた光源の走査軌跡と光検出部9、91の関係を示し、図30に、光検出部9、91の検出信号S1、S2の波形を示す。
 検出信号S1のパルスaは、往路におけて光ビームが光検出部9を通過したタイミングを示す。検出信号S1のパルスbは、復路におけて光ビームが光検出部9を通過したタイミングを示す。検出信号S2のパルスcは、光ビームが右端の位置で折り返されたタイミングを示す。
 パルスaの立ち上がりタイミングからパルスcの立ち上がりタイミングまでの時間t1が、パルスcの立ち下がりタイミングからパルスbの立ち上がりタイミングまでの時間t2と一致していれば、基準光源は、往路の水平走査ラインと復路の水平走査ラインとの中間位置に配置されている。したがって、光検出部9、91の検出信号S1、S2に基づいて、時間t1が時間t2と一致するように垂直振幅を調整することで、基準光源が往路の水平走査ラインと復路の水平走査ラインとの中間に確実に位置するようにすることができる。そして、基準光源と他の光源のそれぞれについて、調整期間の開始時点からパルスaの立ち上がりのタイミングまでの時間t3を計測することで、基準光源に対する他の光源の位相ずれ量を正確に算出することができる。
 本実施形態においても、第4の実施形態と同様に、光検出部9、91は、受光面と対向する位置に、受光面への入射光の範囲を制限するための開口を備えた遮光板を有する。基準光源からの光ビームを2度検出するための開口の垂直方向の大きさは第4の実施形態で説明したとおりである。
 また、開口の水平方向の大きさについても、第4の実施形態で説明した条件(R0≦W0≦2R0)を満たすように設定することで、光検出部9、91による光ビームの検出精度が向上する。
 (他の実施形態)
 本他の実施形態の画像投影装置は、光ビームを出力する複数の光源と、上記光源毎に異なる映像信号が入力され、該映像信号に応じて対応する光源の点灯状態を制御する映像信号制御部と、上記複数の光源から出力された各光ビームを、第1の方向に往復走査しながら、上記第1の方向と交差する第2の方向に走査する走査手段と、を有する。
 上記映像信号制御部は、上記複数の光源のうちのいずれか一つを第1の基準光源とし、他を光軸調整光源として、上記第1の基準光源の光軸に対する上記光軸調整光源の光軸の上記第2の方向のずれ量を、上記第1の方向の走査ラインの数で示される第1の遅延量として設定する光軸ずれ量設定部と、上記第1の基準光源による画像の表示タイミングに対する、上記光軸調整光源による画像の表示タイミングを、上記第1の遅延量だけ遅延させ、上記第1の遅延量が奇数である場合には、往路および復路のそれぞれで、上記走査ラインにて描画される画像の左右を反転させるように上記光軸調整光源の点灯状態を制御した上で遅延させる光軸ずれ補正手段と、を有する。
 本他の実施形態において、映像信号制御部は、前述の各実施形態で説明した映像信号制御部10のいずれかであってもよい。光軸ずれ量設定部は、例えば、図4や図14に示した光軸ずれ量設定部13より構成され、光軸ずれ補正手段は、図4や図14に示した垂直光軸ずれ補正部11B、11G、11Rおよびフレームメモリ10B、10G、10Rより構成されてもよい。
 各光源は、同じ色の波長帯域に中心波長を有する光源であってもよい。また、各光源は、互いに異なる色の光ビームを出力してもよい。
 走査手段は、光ビームを第1の方向に往復走査する第1方向走査手段と、光ビームを第2の方向に走査する第2方向走査手段とを有していても良い。
 以上説明した本発明の画像投影装置は、光ビームを出力する複数の光源を用いて、各光源からの各光ビームを、第1の方向(例えば水平方向)に往復走査しながら、第1の方向と交差する第2の方向(例えば垂直方向)に走査し、第1の方向における往路および復路の走査ラインそれぞれで描画を行わせる装置全般に適用することができる。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。
 この出願は、2011年9月27日に出願された日本出願特願2011-211589を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  光ビームを出力する複数の光源と、
     前記光源毎に異なる映像信号が入力され、該映像信号に基づいて対応する光源の点灯状態を制御する映像信号制御部と、
     前記複数の光源から出力された各光ビームを、第1の方向に往復走査、および/または、前記第1の方向と交差する第2の方向に走査する走査手段と、を有し、
     前記映像信号制御部は、
     前記複数の光源のうちのいずれか一つを第1の基準光源とし、他を光軸調整光源として、前記第1の基準光源の光軸に対する前記光軸調整光源の光軸の前記第2の方向のずれ量を、前記第1の方向の走査ラインの数で示される第1の遅延量として設定する光軸ずれ量設定部と、
     前記第1の基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記第1の遅延量だけ遅延させ、前記第1の遅延量が奇数である場合には、往路および復路のそれぞれで、前記走査ラインにて描画される画像を第2の方向を軸として反転させるように前記光軸調整光源の出力を制御する光軸ずれ補正手段と、を有する、画像投影装置。
  2.  前記光軸ずれ量設定部は、前記第1の基準光源の光軸に対する前記光軸調整光源の光軸の前記第1の方向のずれ量を、前記走査ラインにおける描画点の数で示される第2の遅延量として設定し、
     前記光軸ずれ補正手段は、
     前記光軸調整光源からの光ビームで前記往路の走査ラインを描画させる場合は、前記第1の基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記第2の遅延量だけ遅延させ、
     前記光軸調整光源からの光ビームで前記復路の走査ラインを描画させる場合は、前記第1の基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記第2の遅延量だけ早める、請求項1に記載の画像投影装置。
  3.  前記光軸ずれ量設定部は、前記走査ライン上の描画位置に応じて前記第2の遅延量を変化させる、請求項2に記載の画像投影装置。
  4.  前記光軸ずれ量設定部は、前記描画位置が前記走査ラインの中央部に位置する場合に、前記第2の遅延量を最大とし、前記描画位置が前記走査ラインの端部に近づくにつれて前記第2の遅延量を小さくする、請求項3に記載の画像投影装置。
  5.  前記映像信号は、映像が表示される有効映像期間と、前記映像が表示されないブランキング期間を含み、
     前記走査手段と前記各光ビームで走査される走査面との間の空間における、前記各光ビームの走査可能な範囲のち、前記映像の表示のための光ビームが通過する範囲以外の部分に配置された光検出部を、さらに有し、
     前記光軸ずれ量設定部は、前記ブランキング期間内の前記往路および復路の2ライン分に相当する光軸調整期間にわたって前記第1の基準光源を点灯させた場合に、所定のパルス間隔を有する信号が前記光検出部から出力されるように、前記走査手段の前記第2の方向における振幅を調整し、その後、前記第1の基準光源および光軸調整光源のそれぞれについて、前記光軸調整期間にわたって点灯させた場合の、前記光軸調整期間の開始時点から光ビームが前記光検出部で検出されるまでの経過時間を取得し、前記第1の基準光源の前記経過時間と前記光軸調整光源の前記経過時間との差に基づいて前記第1および第2の遅延量を算出する、請求項2から4のいずれか1項に記載の画像投影装置。
  6.  前記複数の光源のうちからのいずれか1つを第2の基準光源とし、他を位相ずれ調整光源として、前記第2の基準光源の駆動信号に対する前記位相ずれ調整光源の駆動信号の位相ずれ量を、前記走査ラインにおける描画点の数で示される第3の遅延量として設定する位相ずれ量設定部と、
     前記位相ずれ調整光源からの光ビームで前記往路および復路それぞれの前記走査ラインを描画する場合に、前記第2の基準光源による画像の表示タイミングに対する、前記位相ずれ調整光源による画像の表示タイミングを、前記第3の遅延量だけ遅延させる位相ずれ補正部を、さらに有する、請求項1から4のいずれか1項に記載の画像投影装置。
  7.  前記映像信号は、映像が表示される有効映像期間と、前記映像が表示されないブランキング期間を含み、
     前記走査手段と前記各光ビームで走査される走査面との間の空間における、前記各光ビームの走査可能な範囲のち、前記映像の表示のための光ビームが通過する範囲以外の部分に配置された光検出部を、さらに有し、
     前記位相ずれ量設定部は、前記ブランキング期間内の前記往路および復路の2ライン分に相当する位相調整期間にわたって前記第2の基準光源を点灯させた場合に、所定のパルス間隔を有する信号が前記光検出部から出力されるように、前記走査手段の前記第2の方向における振幅を調整し、その後、前記第2の基準光源および位相ずれ調整光源のそれぞれについて、前記位相調整期間にわたって点灯させた場合の、前記位相調整期間の開始時点から光ビームが前記光検出部で検出されるまでの経過時間を取得し、前記第2の基準光源の前記経過時間と前記位相ずれ調整光源の前記経過時間との差に基づいて前記3の遅延量を算出する、請求項2から4のいずれか1項に記載の画像投影装置。
  8.  前記第2の方向のずれ量は、ドットクロックを1単位とした遅延量で与えられ、
     前記映像信号は、映像が表示される有効映像期間と、前記映像が表示されないブランキング期間を含み、
     前記光軸ずれ量設定部は、
     前記有効映像期間と前記ブランキング期間を含めた1水平期間中の前記ドットクロックに基づくドット数をDとすると、前記第2の方向のずれ量が0からDの範囲であれば、前記第1の遅延量は0であると判定し、前記第2の方向のずれ量がD+1から2Dの範囲であれば、前記第1の遅延量は1であると判定し、前記第2の方向のずれ量が2D+1から3Dの範囲であれば、前記第1の遅延量は2であると判定する、請求項1から7のいずれか1項に記載の画像投影装置。
  9.  前記走査手段は、前記光ビームを前記第1の方向に往復走査する第1方向走査手段と、前記光ビームを前記第2の方向に走査する第2方向走査手段とを有する、請求項1~8のいずれか一項に記載の走査型表示装置。
  10.  光ビームを出力する複数の光源を備え、各光源から出力された各光ビームを、第1の方向に往復走査しながら、前記第1の方向と交差する第2の方向に走査する装置において行われる光軸ずれ補正方法であって、
     前記複数の光源のうちのいずれか一つを基準光源とし、他を光軸調整光源として、前記基準光源の光軸に対する前記光軸調整光源の光軸の前記第2の方向のずれ量を、前記第1の方向の走査ラインの数で示される遅延量として設定し、
     前記基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記遅延量だけ遅延させ、前記遅延量が奇数である場合には、往路および復路それぞれで、前記走査ラインにて描画される画像を前記第2の方向を軸として反転させるように前記光軸調整光源の出力を制御する、光軸ずれ補正方法。
  11.  光ビームを出力する複数の光源と、
     前記光源毎に異なる映像信号が入力され、該映像信号に応じて対応する光源の点灯状態を制御する映像信号制御部と、
     前記複数の光源から出力された各光ビームを、第1の方向に往復走査、および/または、前記第1の方向と交差する第2の方向に走査する走査手段と、を有し、
     前記映像信号制御部は、
     前記複数の光源のうちのいずれか1つを基準光源とし、他を光軸調整光源とし、前記基準光源の光軸に対する前記光軸調整光源の光軸の前記第1の方向のずれ量を、前記第1の方向の走査ラインにおける描画点の数で示される遅延量として設定する光軸ずれ量設定部と、
     前記光軸調整光源からの光ビームで往路の走査ラインを描画する場合は、前記基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記遅延量だけ遅延させ、前記光軸調整光源からの光ビームで復路の走査ラインを描画する場合は、前記基準光源による画像の表示タイミングに対する、前記光軸調整光源による画像の表示タイミングを、前記遅延量だけ早める光軸ずれ補正手段と、を有し、
     前記光軸ずれ量設定部は、前記走査ライン上の描画位置に応じて前記遅延量を変化させる、画像投影装置。
PCT/JP2012/074881 2011-09-27 2012-09-27 画像投影装置および光軸ずれ補正方法 WO2013047656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211589 2011-09-27
JP2011211589 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047656A1 true WO2013047656A1 (ja) 2013-04-04

Family

ID=47995685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074881 WO2013047656A1 (ja) 2011-09-27 2012-09-27 画像投影装置および光軸ずれ補正方法

Country Status (2)

Country Link
JP (1) JPWO2013047656A1 (ja)
WO (1) WO2013047656A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173942A1 (ja) * 2014-05-16 2015-11-19 日立マクセル株式会社 走査型表示装置
JP2017167197A (ja) * 2016-03-14 2017-09-21 パイオニア株式会社 光軸補正装置、制御方法、プログラム及び記憶媒体
JP2019503616A (ja) * 2016-01-11 2019-02-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 投影装置の校正方法およびこのように校正された投影装置の操作方法
CN111552074A (zh) * 2019-02-12 2020-08-18 株式会社理光 显示装置、显示系统、移动体、显示控制方法
JP2020194116A (ja) * 2019-05-29 2020-12-03 株式会社デンソー レーザ走査式映像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148554A (ja) * 2000-11-03 2002-05-22 Samsung Electronics Co Ltd 光スキャナ及びこれを適用したレーザ映像投射装置並びにその駆動方法
JP2002344765A (ja) * 2001-05-16 2002-11-29 Canon Inc 光走査装置及び光走査方法
JP2002365568A (ja) * 2001-06-04 2002-12-18 Canon Inc 2次元光走査装置、及び該2次元光走査装置の駆動方法
JP2005181831A (ja) * 2003-12-22 2005-07-07 Seiko Epson Corp 表示装置及び表示装置の制御方法
JP2011039326A (ja) * 2009-08-12 2011-02-24 Funai Electric Co Ltd 画像表示装置
JP2012068547A (ja) * 2010-09-27 2012-04-05 Brother Ind Ltd 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148554A (ja) * 2000-11-03 2002-05-22 Samsung Electronics Co Ltd 光スキャナ及びこれを適用したレーザ映像投射装置並びにその駆動方法
JP2002344765A (ja) * 2001-05-16 2002-11-29 Canon Inc 光走査装置及び光走査方法
JP2002365568A (ja) * 2001-06-04 2002-12-18 Canon Inc 2次元光走査装置、及び該2次元光走査装置の駆動方法
JP2005181831A (ja) * 2003-12-22 2005-07-07 Seiko Epson Corp 表示装置及び表示装置の制御方法
JP2011039326A (ja) * 2009-08-12 2011-02-24 Funai Electric Co Ltd 画像表示装置
JP2012068547A (ja) * 2010-09-27 2012-04-05 Brother Ind Ltd 表示装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015173942A1 (ja) * 2014-05-16 2015-11-19 日立マクセル株式会社 走査型表示装置
CN106463088A (zh) * 2014-05-16 2017-02-22 日立麦克赛尔株式会社 扫描型显示装置
JPWO2015173942A1 (ja) * 2014-05-16 2017-04-20 日立マクセル株式会社 走査型表示装置
US10089911B2 (en) 2014-05-16 2018-10-02 Maxell, Ltd. Scanning display device
CN106463088B (zh) * 2014-05-16 2019-09-03 麦克赛尔株式会社 扫描型显示装置
JP2019503616A (ja) * 2016-01-11 2019-02-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 投影装置の校正方法およびこのように校正された投影装置の操作方法
JP2017167197A (ja) * 2016-03-14 2017-09-21 パイオニア株式会社 光軸補正装置、制御方法、プログラム及び記憶媒体
CN111552074A (zh) * 2019-02-12 2020-08-18 株式会社理光 显示装置、显示系统、移动体、显示控制方法
JP2020194116A (ja) * 2019-05-29 2020-12-03 株式会社デンソー レーザ走査式映像装置
JP7196769B2 (ja) 2019-05-29 2022-12-27 株式会社デンソー レーザ走査式映像装置

Also Published As

Publication number Publication date
JPWO2013047656A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
US8287136B2 (en) Display apparatus
US9298013B2 (en) Image display device
WO2016203993A1 (ja) 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
KR100998740B1 (ko) 광주사장치, 상의 위치 교정방법 및 화상표시장치
US10353282B2 (en) Projection display apparatus that calculates a distance to a display surface
US8866803B2 (en) Image display device displaying image by applying laser light
JP2018010100A (ja) レーザ投射表示装置
WO2013047656A1 (ja) 画像投影装置および光軸ずれ補正方法
WO2016203991A1 (ja) 投影装置、投影モジュールおよび電子機器
WO2016203992A1 (ja) 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
JP2007025522A (ja) 画像表示装置及び画像表示装置の制御方法
US20160255316A1 (en) Display device
JP2010079198A (ja) 画像投影装置
US8096666B2 (en) Laser projector performing laser raster scan using a scanning mirror
US20130162960A1 (en) Image Display Device
WO2013046329A1 (ja) 光軸ずれ補正装置、制御方法、及びヘッドアップディスプレイ
JP5929894B2 (ja) プロジェクタおよびその制御方法
US20140300544A1 (en) Projector and Electronic Device Having Projector Function
JP2016099561A (ja) 投影装置、投影方法、プログラム及び記憶媒体
US9202434B2 (en) Image displaying device
WO2014162415A1 (ja) 投影装置及びヘッドアップディスプレイ
JP6809270B2 (ja) 投影装置、制御方法、プログラム及び記憶媒体
WO2012081308A1 (ja) プロジェクタおよび制御方法
JP5622941B2 (ja) 光軸ずれ補正装置、制御方法、及びヘッドアップディスプレイ
WO2013046922A1 (ja) マルチプロジェクションシステムおよび制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835084

Country of ref document: EP

Kind code of ref document: A1