WO2013047329A1 - 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法 - Google Patents

放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法 Download PDF

Info

Publication number
WO2013047329A1
WO2013047329A1 PCT/JP2012/074102 JP2012074102W WO2013047329A1 WO 2013047329 A1 WO2013047329 A1 WO 2013047329A1 JP 2012074102 W JP2012074102 W JP 2012074102W WO 2013047329 A1 WO2013047329 A1 WO 2013047329A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
heat
metal member
brazing material
heat dissipation
Prior art date
Application number
PCT/JP2012/074102
Other languages
English (en)
French (fr)
Inventor
雄一郎 山内
慎二 斎藤
優 赤林
省吾 森
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP12836204.3A priority Critical patent/EP2763166A4/en
Priority to US14/345,769 priority patent/US20140226284A1/en
Priority to CN201280047332.4A priority patent/CN103828040B/zh
Priority to KR1020147007285A priority patent/KR101585142B1/ko
Publication of WO2013047329A1 publication Critical patent/WO2013047329A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/064Fluid cooling, e.g. by integral pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49353Heat pipe device making

Definitions

  • the present invention relates to a heat dissipation structure, a power module, a heat dissipation structure manufacturing method, and a power module manufacturing method in which a metal is laminated on an insulating substrate.
  • a chip (transistor) is disposed by soldering on a circuit pattern made of a brazed metal plate on one surface of an insulating substrate (for example, a ceramic substrate) as a base material,
  • a heat radiating plate is disposed by soldering through a brazed metal plate (see, for example, Patent Document 1).
  • the heat sink for example, a metal or alloy member having high thermal conductivity is used.
  • cooling can be performed by moving the heat generated from the chip to the heat radiating plate through the metal plate and radiating the heat to the outside.
  • a heat pipe type cooling device for a circuit board in which a heat pipe is connected to a circuit board surface on which a circuit pattern is formed, or a heat pipe A method of manufacturing an embedded circuit board (for example, see Patent Document 2 or 3) is disclosed.
  • a ceramic substrate made of silicon nitride having a predetermined plate thickness and a metal plate made of copper or a copper alloy having a predetermined plate thickness are brazed and joined with each other through the metal plate.
  • a heat sink (chip) made of an alloy By joining a heat sink (chip) made of an alloy to a ceramic substrate by soldering, it is possible to improve the durability such as the joining strength in a cooling cycle.
  • the semiconductor module needs to use the same metal (copper) or alloy (copper alloy) as the material constituting the metal plate and the heat sink in order to suppress the influence of strain due to the difference in thermal expansion coefficient during joining. was there.
  • patent document 2 or 3 can raise cooling efficiency by use of a heat pipe, when joining a heat pipe on a board
  • the present invention has been made in view of the above, and even when the metal plate and the heat radiating plate are made of different materials, the bonding strength in the cooling cycle is high and the heat pipe is damaged by heat.
  • the object is to provide a heat dissipation structure, a power module, a heat dissipation structure manufacturing method, and a power module manufacturing method capable of joining heat pipes.
  • a heat dissipation structure includes an insulating ceramic substrate and a metal member made of a metal or an alloy bonded to the surface of the ceramic substrate by a brazing material. And a metal film layer formed by accelerating a powder made of a metal or an alloy together with a gas on the surface of the metal member and spraying and depositing the powder in a solid state on the surface, and an external electrode at one end of the rod shape.
  • the heat dissipation structure of the present invention is characterized in that, in the above invention, the ceramic substrate is made of a nitride ceramic.
  • the heat dissipation structure of the present invention is characterized in that, in the above invention, the brazing material is an aluminum brazing material.
  • the heat dissipation structure of the present invention is characterized in that, in the above invention, the brazing material contains at least one metal selected from the group consisting of germanium, magnesium, silicon, and copper.
  • the heat dissipation structure of the present invention is characterized in that, in the above invention, the metal member is made of a metal selected from the group consisting of aluminum, silver, nickel, gold, and copper, or an alloy containing the metal. To do.
  • the heat dissipation structure of the present invention is characterized in that, in the above invention, the metal film layer is made of a metal selected from the group consisting of copper, aluminum and silver, or an alloy containing the metal.
  • the power module of the present invention is bonded to the heat dissipation structure according to any one of the above and a surface of the ceramic substrate facing the surface on which the metal film layer is formed by a brazing material.
  • a second metal member made of metal or an alloy, a circuit layer formed on the second metal member, and a power device mounted on the circuit layer are provided.
  • the circuit layer accelerates a powder made of a metal or an alloy together with a gas on the surface of the second metal member through a mask, and a solid state is formed on the surface. It is formed by spraying and depositing as it is.
  • the method for manufacturing a heat dissipation structure of the present invention includes a metal member joining step of joining a metal member made of a metal or an alloy to a surface of an insulating ceramic substrate with a brazing material, and heat absorption from the outside to a rod-shaped one end.
  • the heat absorbing part of the heat pipe that can be adjusted in temperature is disposed on the metal member, and the heat absorbing part of the heat pipe is disposed.
  • the metal member joining step includes a brazing material arranging step of arranging a brazing material on the surface of the ceramic substrate, and the metal member on the brazing material. And a heat treatment step of heat-treating the ceramic substrate on which the brazing material and the metal member are sequentially disposed.
  • the brazing material disposing step includes a brazing material paste coating step on the ceramic substrate, and a brazing material foil placing step on the ceramic substrate. And a step of adhering the brazing material to the ceramic substrate by a vapor deposition method or a sputtering method.
  • the method for manufacturing a heat dissipation structure according to the present invention is characterized in that, in the above invention, the heat treatment step is performed in a vacuum or in an inert gas atmosphere.
  • the brazing material is an aluminum brazing material and contains at least one metal selected from the group consisting of germanium, magnesium, silicon, and copper. It is characterized by doing.
  • the method for manufacturing a heat dissipation structure according to the present invention is characterized in that, in the above invention, the thickness of the metal member is 1 mm or less.
  • the film forming step accelerates a powder made of a metal or an alloy together with a gas on the surface of the metal member, and remains in a solid state on the surface.
  • the method for manufacturing a power module of the present invention includes a heat dissipation structure manufacturing process for manufacturing a heat dissipation structure by the method according to any one of the above, and a surface of the ceramic substrate on which the metal film layer is formed.
  • a second metal member joining step for joining a metal member made of metal or an alloy with a brazing material to the surface opposite to the surface, and a metal or alloy powder on the metal member joined in the second metal member joining step.
  • the metal member joining step and the second metal member joining step of the heat dissipation structure manufacturing process are performed simultaneously.
  • a metal member made of a metal or an alloy is joined to the surface of the ceramic substrate with a brazing material, and the powder made of the metal or the alloy is accelerated together with the gas on the surface of the metal member to remain in a solid state.
  • the metal coating layer is formed by a cold spray method in which the metal coating layer is sprayed on the metal coating layer, the metal coating layer and the intermediate layer are plastically deformed to form a strong metal bond with each other, and when the powder collides with the intermediate layer, The layer is pressed towards the ceramic substrate.
  • the present invention embeds the heat absorption part of the heat pipe in the metal film layer by the cold spray method, so that the bonding strength between the heat pipe and the metal film can be maintained without damaging the heat pipe, and the heat dissipation efficiency Can be improved.
  • FIG. 1 is a cross-sectional view showing a configuration of a power module that is a heat dissipation structure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a joint portion between the ceramic substrate and the metal member.
  • FIG. 3 is a flowchart showing a manufacturing method of the power module shown in FIG.
  • FIG. 4A is a cross-sectional view illustrating a manufacturing process of a heat dissipation member according to an embodiment of the present invention.
  • FIG. 4B is a cross-sectional view illustrating a manufacturing process of the heat dissipation member according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an outline of the cold spray apparatus.
  • FIG. 1 is a cross-sectional view showing a configuration of a power module that is a heat dissipation structure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a joint portion between the ceramic substrate and
  • FIG. 6A is a cross-sectional view illustrating a manufacturing step of a heat dissipation member according to a modification of the embodiment of the present invention.
  • FIG. 6B is a cross-sectional view illustrating a manufacturing process of a heat dissipation member according to a modification of the embodiment of the present invention.
  • FIG. 6C is a cross-sectional view illustrating a manufacturing process of a heat dissipation member according to a modification of the embodiment of the present invention.
  • FIG. 6D is a cross-sectional view illustrating a manufacturing step of a heat dissipation member according to a modification of the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of a power module that is a heat dissipation structure according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a joint portion between the ceramic substrate and the metal member.
  • a power module 1 shown in FIG. 1 is bonded to a ceramic substrate 10 which is an insulating substrate, a circuit layer 20 formed on one surface of the ceramic substrate 10 via a metal member 50, and solder C1 on the circuit layer 20.
  • the chip 30 and a heat radiating member 40 provided on the surface of the ceramic substrate 10 opposite to the circuit layer 20 via a metal member 50 are provided.
  • the ceramic substrate 10 is a substantially plate-like member made of an insulating material.
  • the insulating material include nitride ceramics such as aluminum nitride and silicon nitride, and oxide ceramics such as alumina, magnesia, zirconia, steatite, forsterite, mullite, titania, silica, and sialon.
  • Nitride ceramics are preferred from the viewpoints of durability and thermal conductivity.
  • the circuit layer 20 is made of, for example, a metal or alloy having good electrical conductivity such as aluminum or copper.
  • the circuit layer 20 is formed with a circuit pattern for transmitting an electrical signal to the chip 30 and the like.
  • the chip 30 is realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor).
  • the chip 30 may be a power device that can be used at a high voltage, and a plurality of chips 30 may be provided on the ceramic substrate 10 in accordance with the purpose of use.
  • the heat radiating member 40 is a metal film layer formed by a cold spray method to be described later, and is made of a metal or alloy having good thermal conductivity such as copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, and the like.
  • a heat pipe 60 is embedded in the wall.
  • the heat pipe 60 has a cylindrical shape that forms an internal space in a vacuum state in which both ends are closed, and has a heat absorbing portion that absorbs heat from the outside at one end portion and a heat radiating portion that radiates heat to the outside at the other end portion. .
  • a capillary structure called a wick is formed on the wall surface, and a liquid (for example, water and a small amount of alcohol) is enclosed.
  • the heat absorption part of the heat pipe 60 is embedded.
  • the chip 30 is generated, and the liquid enclosed inside is vaporized below the boiling point by the heat conducted to the heat radiation member 40 side through the ceramic substrate 10, and the heat is evaporated by the heat of vaporization.
  • the member 40 is cooled.
  • the evaporated gas moves to the heat radiating portion side, returns to the liquid again, and moves to the heat absorbing portion by the wick capillary phenomenon.
  • the liquid sealed inside can perform rapid heat transfer by repeating evaporation and condensation between the heat absorbing portion and the heat radiating portion.
  • the heat absorbing portion of the heat pipe 60 is installed inside the heat radiating member 40 so as to be close to the ceramic substrate 10, the efficiency of heat absorption can be further improved.
  • a plurality of heat pipes 60 may be embedded in the heat dissipation member 40 according to the size of the ceramic substrate 10, the number of chips 30 to be mounted, and the like.
  • a plurality of heat radiating fins may be installed around the heat radiating portion of the heat pipe 60.
  • the metal member 50 is joined to the surface of the ceramic substrate 10 by a brazing material 51.
  • the metal member 50 can improve the bonding strength when the ceramic substrate 10 and the circuit layer 20 made of metal or alloy, or the ceramic substrate 10 and the heat radiating member 40 made of metal or alloy are bonded.
  • the metal member 50 is a foil-like rolled member having a thickness of about 0.01 mm to 0.2 mm, for example. In the present embodiment, by using such a thin member, the coefficient of thermal expansion between the metal member 50 and the ceramic substrate 10 can be reduced during the bonding with the ceramic substrate 10 and other heat treatment processes. The damage caused by the difference is to be prevented.
  • the metal member 50 disposed on the brazing material 51 is not limited to a foil shape, and a plate-shaped metal member may be disposed as long as the thickness is about 1 mm or less.
  • the metal member 50 a metal or an alloy having a hardness that can be joined to the ceramic substrate 10 by brazing and can form a film by a cold spray method described later is used. Since the hardness range varies depending on the film forming conditions in the cold spray method and the like, it is not unconditionally determined, but in general, any metal member having a Vickers hardness of 100 HV or less can be applied. Specific examples include aluminum, silver, nickel, gold, copper, and alloys containing these metals. Aluminum or an aluminum alloy is preferable from the viewpoints of hardness and workability.
  • the brazing material 51 can be selected according to the type of the ceramic substrate 10 and the type of the metal member 50.
  • the brazing material 51 is preferably an aluminum brazing material containing aluminum as a main component and containing at least one metal selected from germanium, magnesium, silicon, and copper.
  • a paste-like brazing material containing an organic solvent and an organic binder may be applied to the ceramic substrate 10 by a screen printing method.
  • a foil-like brazing material (brazing material foil) may be placed on the ceramic substrate 10.
  • a brazing material may be attached to the surface of the ceramic substrate 10 by vapor deposition or sputtering.
  • the brazing between the metal member 50 and the ceramic substrate 10 varies depending on the brazing material 51, the metal member 50, and the ceramic substrate 10 to be used, but is 500 ° C. to 630 ° C. in a vacuum or in an inert atmosphere such as nitrogen gas. For example, preferably in the temperature range of 550 ° C. to 600 ° C.
  • FIG. 3 is a flowchart showing a manufacturing method of the power module 1 shown in FIG. 4A and 4B are cross-sectional views for explaining a manufacturing process of the heat dissipation member 40 according to the embodiment of the present invention.
  • the brazing material 51 is placed on the surface of the ceramic substrate 10 by screen printing or the like (step S1).
  • step S2 the metal member 50 is disposed on the brazing material 51 (step S2).
  • the ceramic substrate 10 having the brazing material 51 and the metal member 50 disposed on the surface thereof is subjected to heat treatment in a vacuum while being held at a predetermined temperature for a predetermined time (step S3).
  • the brazing material 51 is melted, and a joined body of the ceramic substrate 10 and the metal member 50 is obtained.
  • the ceramic substrate 10 having the brazing material 51 disposed on both surfaces is heat-treated between the two metal members 50.
  • the metal member 50 can be bonded to both surfaces of the ceramic substrate 10.
  • the metal member 50 when joining the metal member 50 which consists of a different metal or alloy with a different brazing material on both surfaces of the ceramic substrate 10, what is necessary is just to join to the ceramic substrate 10 in an order from the heat processing temperature.
  • the metal member 50 is bonded to both surfaces of the ceramic substrate 10, but the metal member 50 may be bonded to the brazing material 51 at least on the side on which the heat radiating member 40 is formed.
  • step S4 After joining the metal member 50, as shown in FIG. 4A, the heat absorption part of the heat pipe 60 is disposed on the metal member 50 (step S4).
  • FIG. 4B a metal film layer is laminated on the metal member 50 on which the heat pipe 60 is arranged by a cold spray method to form the heat radiating member 40 (step S5).
  • FIG. 5 is a schematic view showing an outline of a cold spray device 70 used for forming the metal film layer.
  • a cold spray device 70 shown in FIG. 5 includes a gas heater 71 that heats a compressed gas, a powder supply device 72 that stores powder of a metal film layer material, and supplies the powder to a spray gun 73.
  • a gas nozzle 74 for injecting the material powder supplied thereto onto the substrate, and valves 75 and 76 for adjusting the amount of compressed gas supplied to the gas heater 71 and the powder supply device 72 are provided.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the compressed gas supplied to the gas heater 71 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the material powder of the metal coating layer, and then supplied to the spray gun 73.
  • the heating temperature of the compressed gas is preferably 300 to 900 ° C.
  • the compressed gas supplied to the powder supply device 72 supplies the material powder in the powder supply device 72 to the spray gun 73 so as to have a predetermined discharge amount.
  • the heated compressed gas is converted into a supersonic flow (about 340 m / s or more) by the gas nozzle 74 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because the adhesion strength of the metal film layer to the metal member 50 can be improved by adjusting the pressure of the compressed gas to this level. More preferably, the treatment is performed at a pressure of about 2 to 4 MPa.
  • the powder material supplied to the spray gun 73 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the metal member 50 on the ceramic substrate 10 at a high speed and accumulates in the solid state. Form a film.
  • the apparatus is not limited to the cold spray apparatus 70 shown in FIG. 5 as long as the apparatus can form a film by colliding the material powder against the ceramic substrate 10 in a solid state.
  • the circuit layer 20 is formed in addition to the heat dissipation member 40 as a metal film layer, for example, a metal mask having a circuit pattern formed on the metal member 50 is disposed, for example, a cold spray device 70 or the like.
  • the film may be formed using a metal or alloy powder forming the circuit layer 20.
  • the heat radiating member 40 is formed on the ceramic substrate 10 by the cold spray method.
  • the cold spray method since the injection temperature of the metal powder is low, it is possible to obtain a metal film in which the influence of thermal stress is mitigated and there is no phase transformation and oxidation is suppressed.
  • the powder that becomes the film collides with the base material plastic deformation occurs between the powder and the base material, and an anchor effect can be obtained.
  • the oxide film of each other is destroyed, metal bonding occurs between the new surfaces, and the effect of obtaining a laminate with high adhesion strength is also expected. Yes.
  • the present applicants join a metal member 50 made of a predetermined metal or alloy to the surface of the ceramic substrate 10 with a brazing material 51, and form the heat radiation member 40 by a cold spray method via the metal member 50. It has been found that the adhesion strength can be improved.
  • the metal member 50 is bonded to the surface of the ceramic substrate 10 by the brazing material 51, the heat pipe 60 is disposed on the metal member 50, and then the metal film layer is laminated by the cold spray method.
  • the heat radiating member 40 is formed. For this reason, when the material powder collides with the metal member 50 and the heat pipe 60, a sufficient anchor effect is generated, and a metal film layer firmly adhered to the metal member 50 is formed. Further, since the pressing force in the direction of the ceramic substrate 10 is applied to the intermediate layer 50 and the heat pipe 60 when the material powder collides, the bonding strength of the metal member 50 to the ceramic substrate 10 is improved.
  • the circuit layer 20 and the heat dissipation member 40 can be disposed without using a mechanical fastening member, solder, silicon grease, or the like. Therefore, the thermal conductivity is superior to the conventional one, the structure is simplified, and the size can be reduced. Moreover, when making the size of the power module 1 comparable to the conventional size, the ratio for which main components, such as the heat radiating member 40, occupy can be enlarged.
  • the heat pipe 60 is embedded in the heat radiating member 40, the heat generated in the circuit layer 20 can be radiated more efficiently by the heat pipe 60. Further, since the heat pipe 60 is joined by the cold spray method, it is possible to join with high joining strength and to prevent the heat pipe 60 from being damaged by heat.
  • the metal member 50 is formed on both sides of the ceramic substrate 10, but the metal member 50 may be formed only on the heat dissipation member 40 side of the ceramic substrate 10.
  • the heat pipe 60 is disposed directly on the metal member 50 and the metal film layer is laminated by the cold spray method to form the heat radiating member 40.
  • the heat pipe 60 may be arranged after a part of the coating layer is laminated.
  • FIG. 6A to FIG. 6D are cross-sectional views for explaining a manufacturing process of a heat dissipation member according to a modification of the embodiment of the present invention.
  • a metal film layer constituting the heat radiating member 40 is formed on the metal member 50 by the cold spray device 70 shown in FIG.
  • a groove 61 in which the heat pipe 60A is disposed is formed in the formed metal film layer by cutting or the like.
  • the heat pipe 60 ⁇ / b> A is placed in the groove 61. Since the shape of the groove portion 61 is formed so as to match the shape of the heat pipe 60A, for example, the heat pipe 60A having a circular cross section as shown in FIG. 6C has an effect of being easily arranged at a predetermined position. .
  • the heat radiating member 40 may be formed by further laminating a metal film layer with a cold spray device 70 or the like.
  • nitride ceramics and oxide ceramics having insulating properties are exemplified as the base material of the laminate.
  • conductive base materials such as carbide ceramics.
  • the body can be made.
  • the metal member 50 and the brazing material 51 are observed as a substantially uniform layer mainly composed of aluminum.
  • elemental distribution analysis for the metal member 50 and the brazing material 51, observation of the metal structure by SEM, and the like are derived from the plate-like aluminum member, and are derived from the aluminum metal brazing material 50 layer and the aluminum brazing material, except for aluminum.
  • the brazing material 51 layer containing the above components can be distinguished.
  • the heat dissipation structure, power module, heat dissipation structure manufacturing method, and power module manufacturing method according to the present invention are useful in fields where high heat dissipation characteristics and durability are required.
  • Power Module 10 Ceramic Substrate 20 Circuit Layer 30 Chip 40 Heat Dissipation Member 50 Metal Member 51 Brazing Material 60 Heat Pipe 70 Cold Spray Device 71 Gas Heater 72 Powder Supply Device 73 Spray Gun 74 Gas Nozzle 75, 76 Valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 冷熱サイクルにおける接合強度が高く、かつ冷却効率の高い放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法を提供する。本発明のパワーモジュール1は、絶縁性を有するセラミックス基板10と、該セラミックス基板10の表面にろう材により接合された金属又は合金からなる金属部材50と、該金属部材50の表面に、金属又は合金からなる粉末をガスと共に加速し、表面に固相状態のままで吹き付けて堆積させることによって形成された放熱部材40とを備え、放熱部材40内部にはヒートパイプ60が埋設されている。

Description

放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
 本発明は、絶縁基板に金属を積層した放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法に関する。
 従来より、産業用、自動車用などの電力制御からモータ制御まで、幅広い分野に使用される省エネルギー化のキーデバイスとして、パワーモジュールが知られている。パワーモジュールは、基材である絶縁基板(例えばセラミックス基板)の一方の面に、ろう付された金属板からなる回路パターン上に半田付によりチップ(トランジスタ)を配設し、他方の面に、ろう付された金属板を介して半田付により放熱板を配設した装置である(例えば、特許文献1参照)。放熱板としては、例えば、熱伝導率の高い金属又は合金の部材が用いられる。このようなパワーモジュールにおいては、チップから発生した熱を、金属板を介して放熱板に移動させ外部に放熱することにより、冷却を行うことができる。
 また、半導体素子等の発熱量の多い部品を実装する回路基板の冷却する技術として、回路パターンが形成された回路基板表面にヒートパイプを接続した回路基板のヒートパイプ式冷却装置や、ヒートパイプを埋め込んだ回路基板の製造方法(例えば、特許文献2または3参照)が開示されている。
特許第4270140号公報 特開平06-181396号公報 特開平03-255690号公報
 特許文献1の半導体モジュールは、所定の板厚の窒化珪素からなるセラミックス基板と所定の板厚の銅または銅合金からなる金属板とをろう付接合し、さらに前記金属板を介して銅または銅合金からなる放熱板(チップ)を半田付によりセラミックス基板に接合することにより冷熱サイクルにおける接合強度等の耐性を向上することができる。しかしながら、前記半導体モジュールは、接合時の熱膨張率の差によるひずみの影響を抑制するために、金属板と放熱板を構成する材料を同一の金属(銅)又は合金(銅合金)とする必要があった。
 また、特許文献2または3は、ヒートパイプの使用により冷却効率を高めることができるものの、ヒートパイプを半田付により基板上に接合する場合は、熱によりヒートパイプに損傷を与える恐れがあり、ヒートパイプを基板の内部に埋設する場合は、基板の厚さが厚くなりチップ等の実装の際問題となることがあった。
 本発明は、上記に鑑みてなされたものであって、金属板と放熱板とを異なる材料とした場合であっても、冷熱サイクルにおける接合強度が高く、かつ、熱によってヒートパイプを損傷することなく、ヒートパイプを接合可能な放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る放熱構造体は、絶縁性を有するセラミックス基板と、前記セラミックス基板の表面にろう材により接合された金属又は合金からなる金属部材と、前記金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜層と、棒状の一端部に外部から吸熱する吸熱部と、他端部に外部に放熱する放熱部とを有し、温度調整可能なヒートパイプと、を備え、前記吸熱部は前記金属皮膜層内部に埋設されたことを特徴とする。
 また、本発明の放熱構造体は、上記発明において、前記セラミックス基板は窒化物系セラミックスからなることを特徴とする。
 また、本発明の放熱構造体は、上記発明において、前記ろう材は、アルミニウム系ろう材であることを特徴とする。
 また、本発明の放熱構造体は、上記発明において、前記ろう材は、ゲルマニウム、マグネシウム、珪素、銅からなる群より選択される少なくとも1種類の金属を含有することを特徴とする。
 また、本発明の放熱構造体は、上記発明において、前記金属部材は、アルミニウム、銀、ニッケル、金、銅からなる群より選択される金属、または該金属を含有する合金からなることを特徴とする。
 また、本発明の放熱構造体は、上記発明において、前記金属皮膜層は、銅、アルミニウム、銀からなる群より選択される金属、または該金属を含有する合金からなることを特徴とする。
 また、本発明のパワーモジュールは、上記のいずれか一つに記載の放熱構造体と、前記セラミックス基板の、前記金属皮膜層が形成された面と対向する面上に、ろう材により接合された金属又は合金からなる第2金属部材と、前記第2金属部材上に形成された回路層と、前記回路層上に実装されたパワーデバイスと、を備えることを特徴とする。
 また、本発明のパワーモジュールは、上記発明において、前記回路層は、マスクを介して、前記第2金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成されたことを特徴とする。
 また、本発明の放熱構造体の製造方法は、絶縁性を有するセラミックス基板の表面に、金属又は合金からなる金属部材をろう材により接合する金属部材接合工程と、棒状の一端部に外部から吸熱する吸熱部と、他端部に外部に放熱する放熱部とを有し、温度調整可能なヒートパイプの該吸熱部を前記金属部材上に配置し、前記ヒートパイプの吸熱部を配置した金属部材上に、金属又は合金からなる粉末をガスと共に加速して、固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する皮膜形成工程と、を含むことを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記金属部材接合工程は、前記セラミックス基板の表面にろう材を配置するろう材配置工程と、前記ろう材上に前記金属部材を配置する金属部材配置工程と、前記ろう材及び前記金属部材が順次配置された前記セラミックス基板を熱処理する熱処理工程と、を含むことを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記ろう材配置工程は、ろう材ペーストの前記セラミックス基板への塗布工程と、ろう材箔の前記セラミックス基板上への載置工程と、蒸着法若しくはスパッタ法による前記セラミックス基板へのろう材の付着工程との内のいずれかの工程を含むことを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記熱処理工程は真空中又は不活性ガス雰囲気中で行われることを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記ろう材は、アルミニウム系ろう材であり、ゲルマニウム、マグネシウム、珪素、銅からなる群より選択される少なくとも1種類の金属を含有することを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記金属部材の厚さが1mm以下であることを特徴とする。
 また、本発明の放熱構造体の製造方法は、上記発明において、前記皮膜形成工程は、前記金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する第1皮膜形成工程と、前記第1皮膜形成工程で形成した金属皮膜を切削して、前記ヒートパイプを配置する溝部を形成する溝部形成工程と、前記溝部に前記ヒートパイプを配置した後、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する第2皮膜形成工程と、を含むことを特徴とする。
 また、本発明のパワーモジュールの製造方法は、上記のいずれか一つに記載の方法により放熱構造体を製造する放熱構造体製造工程と、前記セラミックス基板の、前記金属皮膜層が形成された面と対向する面に、金属又は合金からなる金属部材をろう材により接合する第2金属部材接合工程と、前記第2金属部材接合工程で接合した金属部材上に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって回路層を形成する回路層形成工程と、前記回路層上にパワーデバイスを実装するパワーデバイス実装工程と、を含み、前記放熱構造体製造工程の金属部材接合工程と前記第2金属部材接合工程とを同時に行うことを特徴とする。
 本発明によれば、セラミックス基板の表面に金属又は合金からなる金属部材をろう材にて接合し、この金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、固相状態のままで吹き付けて堆積させるコールドスプレー法によって金属皮膜層を形成するので、金属皮膜層と中間層は、互いに塑性変形が生じ、強固な金属結合がなされると共に、粉末が中間層に衝突する際に中間層がセラミックス基板に向かって押圧される。それにより、セラミックス基板と金属皮膜層との間の密着強度が高い積層体を得ることができる。さらに、本発明は、コールドスプレー法により前記金属皮膜層内部にヒートパイプの吸熱部を埋設するので、ヒートパイプに損傷を与えることなくヒートパイプと金属皮膜との接合強度を保持できるとともに、放熱効率を向上することができる。
図1は、本発明の実施の形態に係る放熱構造体であるパワーモジュールの構成を示す断面図である。 図2は、セラミックス基板と金属部材との接合部の拡大断面図である。 図3は、図1に示すパワーモジュールの作製方法を示すフローチャートである。 図4Aは、本発明の実施の形態に係る放熱部材の作製工程を説明する断面図である。 図4Bは、本発明の実施の形態に係る放熱部材の作製工程を説明する断面図である。 図5は、コールドスプレー装置の概要を示す模式図である。 図6Aは、本発明の実施の形態の変形例に係る放熱部材の作製工程を説明する断面図である。 図6Bは、本発明の実施の形態の変形例に係る放熱部材の作製工程を説明する断面図である。 図6Cは、本発明の実施の形態の変形例に係る放熱部材の作製工程を説明する断面図である。 図6Dは、本発明の実施の形態の変形例に係る放熱部材の作製工程を説明する断面図である。
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。
(実施の形態)
 図1は、本発明の実施の形態に係る放熱構造体であるパワーモジュールの構成を示す断面図である。図2は、セラミックス基板と金属部材との接合部の拡大断面図である。図1に示すパワーモジュール1は、絶縁基板であるセラミックス基板10と、セラミックス基板10の一方の面に金属部材50を介して形成された回路層20と、回路層20上に半田C1によって接合されたチップ30と、セラミックス基板10の回路層20とは反対側の面に金属部材50を介して設けられた放熱部材40とを備える。
 セラミックス基板10は、絶縁性材料からなる略板状の部材である。絶縁性材料としては、例えば、窒化アルミニウム、窒化珪素等の窒化物系セラミックスや、アルミナ、マグネシア、ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン等の酸化物系セラミックスが用いられる。耐久性、熱伝導性等の観点から窒化物系セラミックスが好ましい。
 回路層20は、例えば、アルミニウムや銅等の良好な電気伝導度を有する金属又は合金からなる。この回路層20には、チップ30等に対して電気信号を伝達するための回路パターンが形成されている。
 チップ30は、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現される。チップ30は、高電圧で使用が可能なパワーデバイスであってもよく、チップ30は、使用の目的に合わせてセラミックス基板10上に複数個設けられても良い。
 放熱部材40は、後述するコールドスプレー法によって形成された金属皮膜層であり、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金等の良好な熱伝導性を有する金属又は合金からなり、内部にヒートパイプ60が埋設されている。
 ヒートパイプ60は、両端が閉鎖された真空状態の内部空間を形成する筒状をなし、一端部に外部から吸熱する吸熱部と、他端部に外部に放熱する放熱部とを有している。ヒートパイプ60の内部空間には、壁面にウィックと呼ばれる毛細管構造が形成され、液体(例えば、水と少量のアルコール)が封入されている。
 放熱部材40内には、ヒートパイプ60の吸熱部が埋設されている。ヒートパイプ60の吸熱部では、チップ30が発生し、セラミックス基板10を介して放熱部材40側に伝導された熱により、内部に封入されている液体は沸点以下で気化し、該気化熱により放熱部材40は冷却される。蒸発した気体は、放熱部側に移動し、再び液体に戻り、ウィックの毛細管現象によって吸熱部に移動する。ヒートパイプ60では、内部に封入された液体が、吸熱部と放熱部との間で蒸発と凝縮とを繰り返すことで迅速な熱伝達を行うことができる。
 本実施の形態では、ヒートパイプ60の吸熱部をセラミックス基板10に近接するように放熱部材40の内部に設置しているので、吸熱の効率をさらに向上することができる。ヒートパイプ60は、セラミックス基板10の大きさ、実装するチップ30の個数等に応じて、放熱部材40内に複数埋設してもよい。なお、ヒートパイプ60の放熱部周辺には、複数の放熱フィンを設置等してもよい。
 金属部材50は、セラミックス基板10の表面にろう材51により接合される。金属部材50は、セラミックス基板10と金属または合金からなる回路層20、またはセラミックス基板10と金属または合金からなる放熱部材40とを接合する際の、接合強度を向上しうる。
 金属部材50は、厚さが例えば0.01mm~0.2mm程度の箔状の圧延部材である。本実施の形態においては、このように厚さの小さい部材を用いることにより、セラミックス基板10との接合や、その他の熱処理工程の際、金属部材50とセラミックス基板10との間における熱膨張率の差に起因する破損を防止することとしている。なお、ろう材51上に配置する金属部材50としては、箔状に限定されず、厚さが約1mm以下であれば、板状の金属部材を配置しても良い。
 金属部材50としては、セラミックス基板10に対してろう付による接合が可能であり、且つ、後述するコールドスプレー法による皮膜形成が可能な程度の硬度を有する金属または合金が用いられる。この硬度の範囲はコールドスプレー法における成膜条件等によっても異なるため、一概には定められないが、概ね、ビッカース硬度が100HV以下の金属部材であれば適用することができる。具体的には、アルミニウム、銀、ニッケル、金、銅、又はこれらの金属を含む合金等が挙げられる。硬度および加工性等の観点からアルミニウム又はアルミニウム合金が好ましい。
 ろう材51は、セラミックス基板10の種類や、金属部材50の種類に応じて選択することができる。ろう材51は、アルミニウムを主成分とし、ゲルマニウム、マグネシウム、珪素、銅から選択される少なくとも1種の金属を含有するアルミニウム系ろう材が好ましい。
 ろう材51をセラミックス基板10表面に配置する方法としては、公知の種々の方法が用いられる。例えば、有機溶剤及び有機バインダーを含むペースト状のろう材をスクリーン印刷法によってセラミックス基板10に塗布しても良い。また、箔状のろう材(ろう材箔)をセラミックス基板10上に載置しても良い。或いは、蒸着法やスパッタ法等によりろう材をセラミックス基板10の表面に付着させても良い。
 金属部材50とセラミックス基板10とのろう付けは、使用するろう材51、金属部材50およびセラミックス基板10によっても変動するが、真空中または窒素ガス等の不活性雰囲気中で、500℃~630℃の温度範囲、好ましくは550℃~600℃の温度範囲で加熱することにより行う。
 次に、パワーモジュール1の作製方法について、図3~図6Dを参照しながら説明する。図3は、図1に示すパワーモジュール1の作製方法を示すフローチャートである。図4Aおよび図4Bは、本発明の実施の形態に係る放熱部材40の作製工程を説明する断面図である。
 まず、スクリーン印刷等によりセラミックス基板10の表面にろう材51を配置する(ステップS1)。
 続いて、ろう材51上に金属部材50を配置する(ステップS2)。
 ろう材51および金属部材50を表面に配置したセラミックス基板10を所定時間、所定温度に保持して真空中において熱処理を施す(ステップS3)。この熱処理により、ろう材51が溶融し、セラミックス基板10と金属部材50との接合体が得られる。
 図2に示すように、セラミックス基板10の両面に金属部材50を接合する場合には、ろう材51を両面に配置したセラミックス基板10を2枚の金属部材50によって挟んだものを熱処理することにより、セラミックス基板10の両面に金属部材50を接合することができる。なお、セラミックス基板10の両面に、異なるろう材により異なる金属または合金からなる金属部材50を接合する場合は、熱処理温度が高いものから順にセラミックス基板10に接合すればよい。なお、図2では、セラミックス基板10の両面に金属部材50を接合しているが、少なくとも放熱部材40を形成する側に金属部材50がろう材51により接合されていればよい。
 金属部材50の接合後、図4Aに示すように、金属部材50上にヒートパイプ60の吸熱部を配置する(ステップS4)。
 続いて、図4Bに示すように、コールドスプレー法によりヒートパイプ60を配置した金属部材50上に金属皮膜層を積層し、放熱部材40を形成する(ステップS5)。図5は、金属皮膜層の形成に使用されるコールドスプレー装置70の概要を示す模式図である。
 図5に示すコールドスプレー装置70は、圧縮ガスを加熱するガス加熱器71と、金属皮膜層の材料の粉末を収容し、スプレーガン73に供給する粉末供給装置72と、加熱された圧縮ガス及びそこに供給された材料粉末を基材に噴射するガスノズル74と、ガス加熱器71及び粉末供給装置72に対する圧縮ガスの供給量をそれぞれ調節するバルブ75及び76とを備える。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器71に供給された圧縮ガスは、例えば50℃以上であって、金属皮膜層の材料粉末の融点よりも低い範囲の温度に加熱された後、スプレーガン73に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。
 一方、粉末供給装置72に供給された圧縮ガスは、粉末供給装置72内の材料粉末をスプレーガン73に所定の吐出量となるように供給する。
 加熱された圧縮ガスは末広形状をなすガスノズル74により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調整することにより、金属部材50に対する金属皮膜層の密着強度の向上を図ることができるからである。より好ましくは、2~4MPa程度の圧力で処理すると良い。スプレーガン73に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま、セラミックス基板10上の金属部材50に高速で衝突して堆積し、皮膜を形成する。なお、材料粉末をセラミックス基板10に向けて固相状態で衝突させて皮膜を形成できる装置であれば、図5に示すコールドスプレー装置70に限定されるものではない。
 なお、金属皮膜層として放熱部材40に加え、回路層20を形成する場合には、例えば、金属部材50の上層に回路パターンが形成されたメタルマスク等を配置し、例えば、コールドスプレー装置70等により、回路層20を形成する金属または合金の粉末を用いて皮膜形成を行えば良い。
 さらに、必要に応じてチップ30等の部品を半田で回路層20に接合する。これにより、図1に示すパワーモジュール1が完成する。
 本実施の形態では、セラミックス基板10上に放熱部材40をコールドスプレー法により形成している。コールドスプレー法は、金属粉末の噴射温度が低いため熱応力の影響が緩和され、相変態がなく酸化も抑制された金属皮膜を得ることができる。特に、基材と皮膜となる材料がともに金属である場合、基材に皮膜となる粉末が衝突することで、粉末と基材との間に塑性変形が生じ、アンカー効果を得ることができる。また、塑性変形が生じる領域では、基材に粉末が衝突した際に、互いの酸化皮膜が破壊され、新生面同士による金属結合が生じ、高い密着強度の積層体が得られるという効果も期待されている。しかしながら、セラミックス基板10に、コールドスプレー法により直接金属粉末を噴射した場合、塑性変形が金属側のみで生じ、セラミックスと金属との間の十分なアンカー効果が得られず、セラミックスと金属皮膜との間の密着強度が弱いという問題があった。
 本出願人らは、セラミックス基板10の表面に、所定の金属又は合金からなる金属部材50をろう材51により接合し、金属部材50を介してコールドスプレー法により放熱部材40を形成することにより、密着強度を向上できることを見出した。
 本実施の形態においては、セラミックス基板10の表面に、ろう材51により金属部材50を接合し、この金属部材50上にヒートパイプ60を配置した後、コールドスプレー法により金属皮膜層を積層して放熱部材40を形成する。このため、材料粉末が金属部材50およびヒートパイプ60に衝突した際に十分なアンカー効果が生じ、金属部材50に強固に密着した金属皮膜層が形成される。また、材料粉末の衝突の際に、中間層50およびヒートパイプ60にセラミックス基板10方向の押圧力が加えられるので、セラミックス基板10に対する金属部材50の接合強度が向上する。その結果、セラミックス基板10と金属部材50と金属皮膜層とが強固に密着した放熱構造体を得ることができる。
 従って、このような放熱構造体をパワーモジュール1に適用することにより、モジュール全体の機械的強度を向上させることができる。
 また、本実施の形態によれば、回路層20や放熱部材40を、機械締結部材や半田やシリコングリース等を用いることなく配設することができる。従って、従来よりも熱伝導性に優れ、構造も簡素となり、サイズを小型化することができる。また、パワーモジュール1のサイズを従来と同程度にする場合には、放熱部材40等の主要な構成部分が占める割合を大きくすることができる。
 さらに、本実施の形態によれば、放熱部材40内にヒートパイプ60を埋設しているため、回路層20において発生した熱をヒートパイプ60によりさらに効率よく放熱することが可能となる。また、ヒートパイプ60の接合をコールドスプレー法により行うため、高い接合強度での接合を可能にするとともに、ヒートパイプ60の熱損傷を防止することができる。
 本実施の形態においては、セラミックス基板10の両側に金属部材50を形成しているが、セラミックス基板10の放熱部材40側のみに金属部材50を形成することとしても良い。
 また、本実施の形態では、ヒートパイプ60を直接金属部材50上に配置し、コールドスプレー法により金属皮膜層を積層して、放熱部材40を形成しているが、一旦金属部材50上に金属皮膜層を一部積層した後、ヒートパイプ60を配置するようにしてもよい。
 図6A~図6Dは、本発明の実施の形態の変形例に係る放熱部材の作製工程を説明する断面図である。
 図6Aに示すように、金属部材50上に、図5に示すコールドスプレー装置70等により放熱部材40を構成する金属皮膜層を形成する。形成した金属皮膜層に、図6Bに示すように、切削等によりヒートパイプ60Aを配置する溝部61を形成する。
 続いて、図6Cに示すように、溝部61にヒートパイプ60Aを載置する。溝部61の形状は、ヒートパイプ60Aの形状に合うように形成されるため、例えば、図6Cに示すような、断面円形のヒートパイプ60Aでも所定位置に配置することが容易になるという効果を有する。
 ヒートパイプ60Aの配置後、図6Dに示すように、さらにコールドスプレー装置70等により、金属皮膜層を積層して、放熱部材40を形成すればよい。
 上記実施の形態においては、積層体の基材として絶縁性を有する窒化物系セラミックスや酸化物系セラミックスを挙げたが、炭化物系セラミックス等の導電性の基材に対しても同様の方法により積層体を作製することができる。
 また、上記実施の形態において、ろう材51としてアルミニウムろう材、金属部材50としてアルミニウムを用いた場合、金属部材50とろう材51とはアルミニウムを主成分とするほぼ一様な層として観察されることが多い。しかしながら、金属部材50およびろう材51に対する元素分布分析やSEMによる金属組織観察等により、板状のアルミニウム部材に由来し、ほぼアルミニウムからなる金属部材50層と、アルミニウムろう材に由来し、アルミニウム以外の成分(ゲルマニウム、マグネシウム、珪素、銅等)を含有するろう材51層とを識別できる場合もある。
 以上のように、本発明にかかる放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法は、高い放熱特性と耐久性が要求される分野に有用である。
 1 パワーモジュール
 10 セラミックス基板
 20 回路層
 30 チップ
 40 放熱部材
 50 金属部材
 51 ろう材
 60 ヒートパイプ
 70 コールドスプレー装置
 71 ガス加熱器
 72 粉末供給装置
 73 スプレーガン
 74 ガスノズル
 75、76 バルブ

Claims (16)

  1.  絶縁性を有するセラミックス基板と、
     前記セラミックス基板の表面にろう材により接合された金属又は合金からなる金属部材と、
     前記金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜層と、
     棒状の一端部に外部から吸熱する吸熱部と、他端部に外部に放熱する放熱部とを有し、温度調整可能なヒートパイプと、
     を備え、前記吸熱部は前記金属皮膜層内部に埋設されたことを特徴とする放熱構造体。
  2.  前記セラミックス基板は窒化物系セラミックスからなることを特徴とする請求項1に記載の放熱構造体。
  3.  前記ろう材は、アルミニウム系ろう材であることを特徴とする請求項1に記載の放熱構造体。
  4.  前記ろう材は、ゲルマニウム、マグネシウム、珪素、銅からなる群より選択される少なくとも1種類の金属を含有することを特徴とする請求項3に記載の放熱構造体。
  5.  前記金属部材は、アルミニウム、銀、ニッケル、金、銅からなる群より選択される金属、または該金属を含有する合金からなることを特徴とする請求項1に記載の放熱構造体。
  6.  前記金属皮膜層は、銅、アルミニウム、銀からなる群より選択される金属、または該金属を含有する合金からなることを特徴とする請求項1~5のいずれか一つに記載の放熱構造体。
  7.  請求項1~6のいずれか一つに記載の放熱構造体と、
     前記セラミックス基板の、前記金属皮膜層が形成された面と対向する面上に、ろう材により接合された金属又は合金からなる第2金属部材と、
     前記第2金属部材上に形成された回路層と、
     前記回路層上に実装されたパワーデバイスと、
     を備えることを特徴とするパワーモジュール。
  8.  前記回路層は、マスクを介して、前記第2金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成されたことを特徴とする請求項7に記載のパワーモジュール。
  9.  絶縁性を有するセラミックス基板の表面に、金属又は合金からなる金属部材をろう材により接合する金属部材接合工程と、
     棒状の一端部に外部から吸熱する吸熱部と、他端部に外部に放熱する放熱部とを有し、温度調整可能なヒートパイプの該吸熱部を前記金属部材上に配置し、前記ヒートパイプの吸熱部を配置した金属部材上に、金属又は合金からなる粉末をガスと共に加速して、固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する皮膜形成工程と、
    を含むことを特徴とする放熱構造体の製造方法。
  10.  前記金属部材接合工程は、
     前記セラミックス基板の表面にろう材を配置するろう材配置工程と、
     前記ろう材上に前記金属部材を配置する金属部材配置工程と、
     前記ろう材及び前記金属部材が順次配置された前記セラミックス基板を熱処理する熱処理工程と、
    を含むことを特徴とする請求項9に記載の放熱構造体の製造方法。
  11.  前記ろう材配置工程は、ろう材ペーストの前記セラミックス基板への塗布工程と、ろう材箔の前記セラミックス基板上への載置工程と、蒸着法若しくはスパッタ法による前記セラミックス基板へのろう材の付着工程との内のいずれかの工程を含むことを特徴とする請求項10に記載の放熱構造体の製造方法。
  12.  前記熱処理工程は真空中又は不活性ガス雰囲気中で行われることを特徴とする請求項10に記載の放熱構造体の製造方法。
  13.  前記ろう材は、アルミニウム系ろう材であり、ゲルマニウム、マグネシウム、珪素、銅からなる群より選択される少なくとも1種類の金属を含有することを特徴とする請求項12に記載の放熱構造体の製造方法。
  14.  前記金属部材の厚さが1mm以下であることを特徴とする請求項9に記載の放熱構造体の製造方法。
  15.  前記皮膜形成工程は、
     前記金属部材の表面に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する第1皮膜形成工程と、
     前記第1皮膜形成工程で形成した金属皮膜を切削して、前記ヒートパイプを配置する溝部を形成する溝部形成工程と、
     前記溝部に前記ヒートパイプを配置した後、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜層を形成する第2皮膜形成工程と、
     を含むことを特徴とする請求項9~14のいずれか一つに記載の放熱構造体の製造方法。
  16.  請求項9~14のいずれか一つに記載の方法により放熱構造体を製造する放熱構造体製造工程と、
     前記セラミックス基板の、前記金属皮膜層が形成された面と対向する面に、金属又は合金からなる金属部材をろう材により接合する第2金属部材接合工程と、
     前記第2金属部材接合工程で接合した金属部材上に、金属又は合金からなる粉末をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって回路層を形成する回路層形成工程と、
     前記回路層上にパワーデバイスを実装するパワーデバイス実装工程と、
     を含み、前記放熱構造体製造工程の金属部材接合工程と前記第2金属部材接合工程とを同時に行うことを特徴とするパワーモジュールの製造方法。
PCT/JP2012/074102 2011-09-28 2012-09-20 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法 WO2013047329A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12836204.3A EP2763166A4 (en) 2011-09-28 2012-09-20 HEAT DISSIPATING STRUCTURE, POWER MODULE, METHOD FOR MANUFACTURING HEAT DISSIPATING STRUCTURE, AND METHOD FOR MANUFACTURING POWER MODULE
US14/345,769 US20140226284A1 (en) 2011-09-28 2012-09-20 Heat dissipation structure, power module, method of manufacturing heat dissipation structure, and method of manufacturing power module
CN201280047332.4A CN103828040B (zh) 2011-09-28 2012-09-20 散热结构体、功率模块、散热结构体的制造方法以及功率模块的制造方法
KR1020147007285A KR101585142B1 (ko) 2011-09-28 2012-09-20 방열 구조체, 파워 모듈, 방열 구조체의 제조 방법 및 파워 모듈의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213303A JP5409740B2 (ja) 2011-09-28 2011-09-28 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
JP2011-213303 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047329A1 true WO2013047329A1 (ja) 2013-04-04

Family

ID=47995361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074102 WO2013047329A1 (ja) 2011-09-28 2012-09-20 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法

Country Status (7)

Country Link
US (1) US20140226284A1 (ja)
EP (1) EP2763166A4 (ja)
JP (1) JP5409740B2 (ja)
KR (1) KR101585142B1 (ja)
CN (1) CN103828040B (ja)
TW (1) TW201330761A (ja)
WO (1) WO2013047329A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465603A (zh) 2013-09-23 2015-03-25 台达电子企业管理(上海)有限公司 功率模块
JP6178217B2 (ja) * 2013-11-13 2017-08-09 株式会社東芝 伝熱管の取り付け構造および取り付け方法
CN103796491A (zh) * 2014-01-24 2014-05-14 东莞汉旭五金塑胶科技有限公司 携带式电子装置之散热装置
DE102014213490C5 (de) * 2014-07-10 2020-06-18 Continental Automotive Gmbh Kühlvorrichtung, Verfahren zur Herstellung einer Kühlvorrichtung und Leistungsschaltung
CN106152844A (zh) * 2015-04-27 2016-11-23 索士亚科技股份有限公司 相变化型散热器及制作该散热器的方法
CN104928672B (zh) * 2015-05-29 2017-11-03 中国兵器科学研究院宁波分院 电真空陶瓷管表面冷喷涂铝铜复合涂层的制备方法
US9578791B1 (en) * 2015-08-17 2017-02-21 Asia Vital Components Co., Ltd. Internal frame structure with heat isolation effect and electronic apparatus with the internal frame structure
WO2017044712A1 (en) 2015-09-11 2017-03-16 Laird Technologies, Inc. Devices for absorbing energy from electronic components
TWI647995B (zh) * 2016-05-30 2019-01-11 財團法人工業技術研究院 插拔式功率模組及次系統
EP3255665B1 (en) 2016-06-08 2022-01-12 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic device with component carrier and method for producing it
EP3302006A1 (en) * 2016-09-30 2018-04-04 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier comprising at least one heat pipe and method for producing said component carrier
JP6744259B2 (ja) 2017-07-03 2020-08-19 タツタ電線株式会社 金属セラミックス基材、金属セラミックス接合構造、金属セラミックス接合構造の作製方法、及び混合粉末材料
CN107734829A (zh) * 2017-09-25 2018-02-23 郑州云海信息技术有限公司 一种高效的pcb内层散热系统及实现方法
KR102651940B1 (ko) 2018-11-22 2024-03-27 현대자동차주식회사 수냉각 장치 및 이를 포함하는 수냉각식 파워 모듈 어셈블리
US11849539B2 (en) * 2020-08-13 2023-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Embedded cooling systems utilizing heat pipes
JP7186929B1 (ja) * 2021-01-12 2022-12-09 デンカ株式会社 積層体、及びその製造方法、並びに、パワーモジュール
TWI793589B (zh) * 2021-05-05 2023-02-21 艾姆勒科技股份有限公司 散熱基材結構及其形成方法
CN113953609A (zh) * 2021-09-16 2022-01-21 黎铭坚 一种amb陶瓷-金属钎焊方法
US20230371204A1 (en) * 2022-05-10 2023-11-16 Ford Global Technologies, Llc Thermal energy management system and method for component of an electrified vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255690A (ja) 1990-01-29 1991-11-14 Furukawa Electric Co Ltd:The ヒートパイプ埋め込み回路基板とその製造方法
JPH06181396A (ja) 1992-12-14 1994-06-28 Furukawa Electric Co Ltd:The 回路基板のヒートパイプ式冷却装置
JP2007043064A (ja) * 2005-07-08 2007-02-15 Fuji Electric Systems Co Ltd パワーモジュールの冷却装置
JP4270140B2 (ja) 2005-02-17 2009-05-27 日立金属株式会社 窒化珪素回路基板およびそれを用いた半導体モジュール
JP2009206331A (ja) * 2008-02-28 2009-09-10 Toyota Motor Corp 伝熱部材及びその製造方法、並びにパワーモジュール
WO2009131217A1 (ja) * 2008-04-25 2009-10-29 京セラ株式会社 放熱基体およびこれを用いた電子装置
JP2010522974A (ja) * 2007-03-30 2010-07-08 エレクトロヴァック エージー ヒートシンク、およびヒートシンクを備えたコンポーネントユニットまたはモジュールユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817096B2 (en) * 2000-01-11 2004-11-16 Cool Options, Inc. Method of manufacturing a heat pipe construction
US6408935B1 (en) * 2000-08-16 2002-06-25 Thermal Corp. Heat sink assembly with over-molded cooling fins
ES2187280B1 (es) * 2001-06-28 2004-08-16 Lear Automotive (Eeds) Spain, S.L. Placa de circuito impreso con substrato metalico aislado con sistema de refrigeracion integrado.
US20040065432A1 (en) * 2002-10-02 2004-04-08 Smith John R. High performance thermal stack for electrical components
JP2005344984A (ja) * 2004-06-02 2005-12-15 Toshiba Home Technology Corp 熱伝達部材の接合構造
US20070215677A1 (en) * 2006-03-14 2007-09-20 Honeywell International, Inc. Cold gas-dynamic spraying method for joining ceramic and metallic articles
JP4241859B2 (ja) * 2007-07-19 2009-03-18 トヨタ自動車株式会社 パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両
CN101945561A (zh) * 2009-07-07 2011-01-12 富准精密工业(深圳)有限公司 散热装置及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03255690A (ja) 1990-01-29 1991-11-14 Furukawa Electric Co Ltd:The ヒートパイプ埋め込み回路基板とその製造方法
JPH06181396A (ja) 1992-12-14 1994-06-28 Furukawa Electric Co Ltd:The 回路基板のヒートパイプ式冷却装置
JP4270140B2 (ja) 2005-02-17 2009-05-27 日立金属株式会社 窒化珪素回路基板およびそれを用いた半導体モジュール
JP2007043064A (ja) * 2005-07-08 2007-02-15 Fuji Electric Systems Co Ltd パワーモジュールの冷却装置
JP2010522974A (ja) * 2007-03-30 2010-07-08 エレクトロヴァック エージー ヒートシンク、およびヒートシンクを備えたコンポーネントユニットまたはモジュールユニット
JP2009206331A (ja) * 2008-02-28 2009-09-10 Toyota Motor Corp 伝熱部材及びその製造方法、並びにパワーモジュール
WO2009131217A1 (ja) * 2008-04-25 2009-10-29 京セラ株式会社 放熱基体およびこれを用いた電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763166A4

Also Published As

Publication number Publication date
JP5409740B2 (ja) 2014-02-05
KR20140064888A (ko) 2014-05-28
CN103828040A (zh) 2014-05-28
TW201330761A (zh) 2013-07-16
CN103828040B (zh) 2016-06-29
KR101585142B1 (ko) 2016-01-13
JP2013074199A (ja) 2013-04-22
EP2763166A4 (en) 2016-01-27
US20140226284A1 (en) 2014-08-14
EP2763166A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5409740B2 (ja) 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
JP5548167B2 (ja) 積層体及び積層体の製造方法
JP4595665B2 (ja) 配線基板の製造方法
US9887173B2 (en) Method for producing structured sintered connection layers, and semiconductor element having a structured sintered connection layer
JP6096094B2 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
WO2017082368A1 (ja) 積層体および積層体の製造方法
JP5077529B2 (ja) 絶縁基板の製造方法、ならびに半導体装置の製造方法
CN108687352A (zh) 用于制造冷却装置的方法、冷却装置及冷却设备
WO2012093613A1 (ja) 温度調節装置およびこの温度調節装置の製造方法
WO2016021561A1 (ja) 複合基板及びパワーモジュール
JP2019081690A (ja) 接合体、及び、絶縁回路基板
WO2013047330A1 (ja) 接合体
JP2009038162A (ja) 放熱部品、その製造方法及びパワーモジュール
JP2009127086A (ja) 伝熱部材及びその製造方法
WO2015019890A1 (ja) 放熱板、パワーモジュールおよび放熱板の製造方法
US9349704B2 (en) Jointed structure and method of manufacturing same
JP2009032996A (ja) 放熱構造体の製造方法
JP5644806B2 (ja) 絶縁基板、半導体装置およびそれらの製造方法
JP2009043814A (ja) 放熱構造体の製造方法
WO2015186643A1 (ja) 複合材、積層体、及びパワーモジュール
JP2015231041A (ja) 積層体、及びパワーモジュール
JP2010239164A (ja) 配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007285

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14345769

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012836204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836204

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE