WO2012093613A1 - 温度調節装置およびこの温度調節装置の製造方法 - Google Patents

温度調節装置およびこの温度調節装置の製造方法 Download PDF

Info

Publication number
WO2012093613A1
WO2012093613A1 PCT/JP2011/080124 JP2011080124W WO2012093613A1 WO 2012093613 A1 WO2012093613 A1 WO 2012093613A1 JP 2011080124 W JP2011080124 W JP 2011080124W WO 2012093613 A1 WO2012093613 A1 WO 2012093613A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
temperature control
metal film
control device
Prior art date
Application number
PCT/JP2011/080124
Other languages
English (en)
French (fr)
Inventor
公一 川崎
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to EP11855235.5A priority Critical patent/EP2662655A1/en
Priority to KR1020137016070A priority patent/KR101550345B1/ko
Priority to US13/977,807 priority patent/US20130284406A1/en
Publication of WO2012093613A1 publication Critical patent/WO2012093613A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49353Heat pipe device making

Definitions

  • the present invention relates to a temperature control device used between electric circuit boards and the like, and a method of manufacturing the temperature control device.
  • temperature adjusting devices that circulate or circulate a heat medium for cooling or heating on the surface of the substrate have been used. Yes.
  • Such a temperature control device is manufactured, for example, by arranging and contacting a heat pipe on the upper side and / or the lower side of the substrate. Since the heat pipe has a good heat transfer property, the heat of the heat medium can be efficiently transferred from the substrate to the outside or from the outside to the substrate, and the substrate temperature can be quickly adjusted.
  • the heat pipe has a cylindrical shape that forms a vacuum internal space with both ends closed.
  • the heat pipe includes a heat absorption part that is provided on one end side and absorbs heat from the outside, and a heat dissipation part that is provided on the other end side and releases heat to the outside.
  • a capillary structure called a wick is formed on the wall surface in the internal space of the heat pipe, and a liquid (for example, water and a small amount of alcohol) is enclosed.
  • the liquid sealed inside evaporates and this vapor moves to the heat dissipation part.
  • the liquid is vaporized below the boiling point at normal pressure.
  • the vapor that has moved to the heat radiating portion returns to the liquid again, and moves to the heat absorbing portion by the wick capillary phenomenon.
  • the liquid sealed inside repeats evaporation and condensation between the heat absorbing portion and the heat radiating portion, so that rapid heat transfer is performed.
  • the heat absorption part and the heat radiation part of the heat pipe are further improved in the efficiency of heat absorption and heat radiation by being joined to the heat conduction plate.
  • the heat absorbing portion is joined to the heat absorbing plate.
  • the heat absorbing plate transmits heat generated by a substrate or the like disposed at another position of the heat absorbing plate to the heat absorbing portion.
  • the heat radiating part is joined to the heat radiating plate, and heat transferred from the heat absorbing part to the heat radiating part is released to the outside through the heat radiating plate.
  • the present invention has been made in view of the above, and a temperature control device capable of joining a heat conductive plate and a heat pipe with high joining strength without damaging the heat pipe due to heat, and the temperature control device It aims at providing the manufacturing method of.
  • a temperature control device is provided on one end side, a heat absorption part that absorbs heat from the outside, and provided on the other end side, A heat pipe that adjusts the temperature of the temperature adjustment target, and accelerates the powder containing the metal together with the gas to the outer surface of the heat absorbing part and / or the heat radiating part, And a metal film formed by spraying and depositing in a solid state on the surface.
  • the heat pipe has a part of the outer surface of the heat absorption part in contact with the temperature adjustment target, and the outer surface other than the contact portion is the metal. It is characterized by being covered with a film.
  • the metal used for the metal film is made of copper, molybdenum, aluminum, tungsten, silver, nickel, titanium, stainless steel, or an alloy containing at least one of these. It includes at least one selected from the group consisting of:
  • the manufacturing method of the temperature control device is a manufacturing method of a temperature control device having a heat pipe that performs temperature control of a temperature control target, and at least a surface of one end of the heat pipe is made of metal.
  • the manufacturing method of the temperature control apparatus further includes a holding step of holding the heat pipe by a jig for holding a part of the surface of the end portion of the heat pipe in the above invention,
  • the powder containing the metal is accelerated together with the gas toward the surface exposed to the outside of the heat pipe held by the jig in the holding step, and the solid state remains on the surface.
  • the first metal film forming step of forming the metal film by spraying and depositing and after the first metal film forming step, the jig is removed and the surface of the heat pipe exposed to the outside is removed.
  • the second metal skin for forming the metal film by accelerating the powder containing the metal together with the gas and spraying and depositing the powder in the solid state on the surface And forming steps, and having a.
  • the end of the heat pipe and the heat conducting plate are joined by the film formed by the cold spray method, so that the heat pipe is damaged by heat.
  • the effect is that the heat conducting plate and the heat pipe can be joined with high joining strength without doing so.
  • FIG. 1 is a perspective view schematically showing a configuration of a temperature control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of a cold spray apparatus used for manufacturing the temperature control apparatus according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating the formation of the heat sink of the temperature control device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for explaining the formation of the heat radiating plate of the temperature control device according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view for explaining the formation of the heat sink of the temperature control device according to the embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing a configuration of a temperature control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of a cold spray apparatus used for manufacturing the temperature control apparatus according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating the formation
  • FIG. 6 is a cross-sectional view illustrating the formation of the heat sink of the temperature control device according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view for explaining the formation of the heat sink of the temperature control device according to the embodiment of the present invention.
  • FIG. 8 is sectional drawing which shows the structure of the principal part of the temperature control apparatus concerning the modification 1 of embodiment of this invention.
  • FIG. 9 is sectional drawing which shows the structure of the principal part of the temperature control apparatus concerning the modification 2 of embodiment of this invention.
  • FIG. 10 is sectional drawing which shows the structure of the principal part of the temperature control apparatus concerning the modification 3 of embodiment of this invention.
  • FIG. 1 is a perspective view schematically showing a configuration of a temperature control device according to an embodiment of the present invention.
  • a temperature control device 1 shown in FIG. 1 includes a substrate 11 on which a chip 10 realized by a semiconductor element such as a diode, a transistor, or an IGBT (insulated gate bipolar transistor) is loaded, and a heat pipe 12 that cools the substrate 11. Prepare.
  • the substrate 11 forms a circuit pattern (not shown) for transmitting an electrical signal to the chip 10 and the like mounted on the substrate 11 on the surface not bonded to the heat pipe 12.
  • This circuit pattern is formed by patterning using a metal such as copper.
  • a plurality of chips 10 are provided on the substrate 11 in accordance with the purpose of use.
  • the heat pipe 12 is joined to the substrate 11 and includes a heat absorbing plate 13 that holds one end of the heat pipe 12 and a heat radiating plate 14 that is formed on a different end side from the connection side of the heat pipe 12 to the substrate 11.
  • the heat pipe 12 includes a heat absorbing portion 12a provided on the end portion side on the substrate 11 side, and a heat radiating portion 12b provided on the end portion side different from the substrate 11 side.
  • the heat absorbing plate 13 and the heat radiating plate 14 as heat conducting plates are metal films formed on the surfaces of the heat absorbing portion 12a and the heat radiating portion 12b of the heat pipe 12 by a cold spray method described later.
  • the metal film include copper, molybdenum, aluminum, tungsten, silver, nickel, titanium, stainless steel, and alloys containing at least one of these.
  • the heat absorption part 12a can efficiently absorb the heat generated from the chip 10 via the substrate 11, and the heat conducted to the heat dissipation part 12b can be efficiently released to the outside.
  • any metal or alloy having a density of 95% or more and a thermal conductivity of 90% or more with respect to the same type of bulk material can be applied.
  • FIG. 2 is a schematic diagram showing an outline of a cold spray apparatus used for forming a metal film.
  • the cold spray device 20 contains a gas heater 21 that heats a compressed gas, a powder supply device 22 that contains a powder material to be sprayed on a sprayed material, and supplies the powder material to a spray gun 24, and a compressed gas heated by the spray gun 24. And a gas nozzle 23 for injecting the mixed material powder onto the substrate.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the supplied compressed gas is supplied to the gas heater 21 and the powder supply device 22 by valves 25 and 26, respectively.
  • the compressed gas supplied to the gas heater 21 is heated to, for example, 50 to 700 ° C. and then supplied to the spray gun 24. More preferably, the compressed gas is heated so that the upper limit temperature of the powder sprayed onto the substrate 11 is kept below the melting point of the metal material. This is because the oxidation of the metal material can be suppressed by keeping the heating temperature of the powder material below the melting point of the metal material.
  • the compressed gas supplied to the powder supply device 22 supplies, for example, material powder having a particle size of about 10 to 100 ⁇ m in the powder supply device 22 to the spray gun 24 so as to have a predetermined discharge amount.
  • the heated compressed gas is converted into a supersonic flow (about 340 m / s or more) by a gas nozzle 23 having a tapered wide shape.
  • the powder material supplied to the spray gun 24 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the substrate at a high speed in the solid state to form a film.
  • the above-mentioned cold spray device 20 forms a metal film (heat absorbing plate 13) as shown in FIG.
  • the apparatus is not limited to the cold spray apparatus 20 of FIG. 2 as long as the apparatus can form a film by colliding the material powder with the base material in a solid state.
  • the heat pipe 12 is in contact with the substrate 11, but the metal film 13 may be interposed between the substrate 11 and the heat pipe 12.
  • the present invention is applicable as long as the heat generated by the substrate 11 can be transferred to the heat absorbing portion 12a of the heat pipe 12.
  • FIGS. 3 to 7 are cross-sectional views for explaining the formation of the heat sink according to the present embodiment.
  • metal is used to cover the outer surface of the heat pipe 12 using the cold spray device 20 shown in FIG. 2 with respect to the heat pipe 12 (heat radiating portion 12 b) held by the jig 30.
  • a film 14a is formed.
  • the jig 30 has a recess that holds a part of the surface of the end portion of the heat pipe 12.
  • the film formed product (see FIG. 4) on which the metal film 14a is laminated is reversed with respect to the cold spray device 20, and the jig 30 is removed (FIG. 5).
  • a metal film 14b is formed on the outer surface of the heat pipe 12 covered with the jig 30 (FIGS. 6 and 7).
  • the jig 30 is formed using a material having a linear thermal expansion coefficient significantly different from that of the metal used for the heat sink 14 to be formed. Thereby, the jig 30 can be easily removed from the heat pipe 12.
  • the outer surface of the heat pipe 12 (heat dissipating part 12b) can be covered with the metal films 14a and 14b to form the heat dissipating plate 14.
  • the surface shape is adjusted by performing surface processing such as cutting.
  • the end portion of the heat pipe is covered with the metal film formed by the cold spray method, so that the heat pipe is not damaged by heat, and has high bonding strength.
  • the substrate and the heat pipe can be joined.
  • a dense metal film can be formed as compared with a thermal spraying method or the like that is processed at a high temperature. Therefore, the metal properties of the metal film formed by the cold spray method are formed by a thermal spraying method or the like. It is superior to the metallic properties of the metal film. Thereby, the heat conductivity of a metal membrane
  • a copper film formed by a cold spray method has a density of 95% or more compared to a copper bulk material. In the cold spray method, the powder is heated only to the extent that the solid state of the metal powder can be maintained, and the oxidation of the powder is suppressed. Therefore, the thermal conductivity is 90% of that of the bulk material. It has the above characteristics.
  • the metal film has been described as a cooling fin that dissipates heat generated from the chip, it may be provided to heat a substrate or the like through the metal film.
  • the formation area of the metal film by the cold spray method is at least an area where the heat generating portion and the heat pipe are connected, and it is only necessary that the metal film can be reliably joined, and the uniformity of the shape of the metal film does not matter.
  • the heat pipe 12 has been described as having a U-shape, the heat pipe 12 may have an arc shape other than the U-shape or a linear shape.
  • FIG. 8 is a schematic diagram illustrating a configuration of a main part of the temperature control device according to the first modification of the present embodiment. As shown in FIG. 8, when the heat pipe 12 is disposed adjacent to the base plate 31 on which the temperature adjustment target substrate or the like is placed, the metal coating 14c is applied to the arrangement surface of the heat pipe 12 by a cold spray method. Form.
  • the base plate 31 may be a heat conductive sheet made of a heat absorbing sheet or a heat radiating sheet.
  • FIG. 9 is a schematic diagram illustrating a configuration of a main part of the temperature control device according to the second modification of the present embodiment.
  • the heat pipe 15 may have a substantially square cross-sectional shape.
  • the metal films 16a and 16b are formed using a jig in the same manner as in FIG.
  • FIG. 10 is a schematic diagram showing the configuration of the main part of the temperature control device according to the third modification of the present embodiment.
  • the heat pipe 15 having a substantially square cross-sectional shape may be held by a jig 30 a that surrounds and holds three surfaces of the heat pipe 15.
  • the metal film 17a is formed using a jig, and then reversed to remove the jig 30a to form the film, thereby producing a heat radiating plate. be able to.
  • the surface on which the metal film is first formed by the cold spray method is flat, it is not necessary to perform surface processing such as cutting on the surface after forming the film.
  • the work process can be reduced.
  • the temperature control device according to the present invention and the method for manufacturing the temperature control device are useful for preventing heat damage to the heat pipe and joining the substrate or the metal film and the heat pipe with high joint strength. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 一端側に設けられ、外部からの熱を吸収する吸熱部(12a)と、他端側に設けられ、外部へ熱を放出する放熱部(12b)とを有するヒートパイプ(12)と、ヒートパイプ(12)の吸熱部(12a)および/または放熱部(12b)の外表面に対して、金属を含む粉体をガスと共に加速し、表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜からなる吸熱板(13)および放熱板(14)(熱伝導プレート)と、を備えた。

Description

温度調節装置およびこの温度調節装置の製造方法
 本発明は、電気回路基板間等に用いられる温度調節装置およびこの温度調節装置の製造方法に関するものである。
 従来より、半導体や液晶表示装置や光ディスク等の製造における種々の基板プロセスでは、基板の表面に冷却又は加熱を行う熱媒体を流通または循環させる温度調節装置(冷却装置または加熱装置)が用いられている。このような温度調節装置は、例えば、基板の上側および/または下側にヒートパイプを配設して当接させることにより作製されている。ヒートパイプは、良好な熱伝熱性を有しているため、基板から外部、または外部から基板へ熱媒体の熱を効率良く伝達し、基板温度を素早く調節することができる。
 ヒートパイプは、両端が閉鎖された真空状態の内部空間を形成する筒状をなす。ヒートパイプは、一端側に設けられ、外部からの熱を吸収する吸熱部と、他端側に設けられ、外部へ熱を放出する放熱部とを備える。また、ヒートパイプの内部空間には、壁面にウィックと呼ばれる毛細管構造が形成され、液体(例えば、水と少量のアルコール)が封入されている。
 ヒートパイプでは、吸熱部に外部からの熱が加わると、内部に封入されている液体が蒸発して、この蒸気が放熱部に移動する。このとき、ヒートパイプの内部空間は真空のため、液体は常圧における沸点以下で気化する。放熱部に移動した蒸気は、再び液体に戻り、ウィックの毛細管現象によって吸熱部に移動する。上述したように、ヒートパイプでは、内部に封入された液体が、吸熱部と放熱部との間で蒸発と凝縮とを繰り返すことで迅速な熱伝達が行われる。
 また、ヒートパイプの吸熱部および放熱部は、熱伝導プレートと接合されることによって吸熱および放熱の効率をさらに向上させている。ここで、熱伝導プレートにおいて、例えば、吸熱部が吸熱プレートに接合されている。この吸熱プレートは、吸熱プレートの他の位置に配設される基板等が発する熱を吸熱部に伝達させている。また、放熱部は放熱プレートと接合され、吸熱部から放熱部へ伝達された熱を、放熱プレートを介して外部に放出している。
 従来、温度調節対象の基板を配設した熱伝導プレートに対し、半田によって接合されるヒートパイプが知られている(例えば、特許文献1を参照)。また、半田接合時の熱による影響を抑制するものとして、ヒートパイプを配設するプレートに挿入孔を形成し、挿入孔にヒートパイプの一方の端部を挿入して接続するヒートパイプ式冷却器が開示されている(例えば、特許文献2を参照)。
特開平6-181396号公報 特開平7-142653号公報
 しかしながら、特許文献1が開示するような半田による接合では、熱伝導プレートとヒートパイプとの接合の強度を確保できるものの、半田接合時に加わる熱によってヒートパイプに損傷を与えてしまうおそれがあった。また、半田の組織は剥離やクラックが生じやすく、高温環境下で長時間保持すると組織が粗大化して強度が低下するため、ヒートパイプと吸熱部(放熱部)と間の接合強度に対する信頼性が低いという問題があった。
 また、特許文献2が開示するヒートパイプ式冷却器では、ヒートパイプが熱によって損傷することはないものの、挿入孔に対してヒートパイプを挿入する構成のため、熱伝導プレートとの接合強度が低いという問題があった。この問題により、ヒートパイプと吸熱部(放熱部)と間の熱抵抗が高くなり、ヒートパイプの優れた熱輸送能力を生かすことができなかった。
 本発明は、上記に鑑みてなされたものであって、熱によってヒートパイプが損傷することなく、高い接合強度で熱伝導プレートとヒートパイプとを接合することができる温度調節装置およびこの温度調節装置の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる温度調節装置は、一端側に設けられ、外部からの熱を吸収する吸熱部と、他端側に設けられ、外部へ熱を放出する放熱部とを有し、温度調節対象の温度調節を行うヒートパイプと、前記吸熱部および/または前記放熱部の外表面に対して、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜と、を備えたことを特徴とする。
 また、本発明にかかる温度調節装置は、上記の発明において、前記ヒートパイプは、前記吸熱部の外表面の一部が前記温度調節対象に接触するとともに、接触箇所以外の前記外表面が前記金属皮膜によって被覆されることを特徴とする。
 また、本発明にかかる温度調節装置は、上記の発明において、前記金属皮膜に用いる金属は、銅、モリブデン、アルミニウム、タングステン、銀、ニッケル、チタン、ステンレス系またはこれらの少なくとも一つを含む合金からなる群より選択される少なくとも1種類を含むことを特徴とする。
 また、本発明にかかる温度調節装置の製造方法は、温度調節対象の温度調節を行うヒートパイプを有する温度調節装置の製造方法であって、少なくとも前記ヒートパイプの一方の端部の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜を形成させる金属皮膜形成ステップを含むことを特徴とする。
 また、本発明にかかる温度調節装置の製造方法は、上記の発明において、前記ヒートパイプ端部の表面の一部を保持する治具によって前記ヒートパイプを保持する保持ステップをさらに含み、前記金属皮膜形成ステップは、前記保持ステップで前記治具に保持された前記ヒートパイプの外部に露出している表面に向けて、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって前記金属皮膜を形成させる第1の金属皮膜形成ステップと、前記第1の金属皮膜形成ステップ後、前記治具を取り除き、外部に露出された前記ヒートパイプの表面に対して、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって前記金属皮膜を形成させる第2の金属皮膜形成ステップと、を有することを特徴とする。
 本発明にかかる温度調節装置およびこの温度調節装置の製造方法は、ヒートパイプの端部と熱伝導プレートとをコールドスプレー法によって形成された皮膜で接合するようにしたので、熱によってヒートパイプが損傷することなく、高い接合強度で熱伝導プレートとヒートパイプとを接合することができるという効果を奏する。
図1は、本発明の実施の形態にかかる温度調節装置の構成を模式的に示す斜視図である。 図2は、本発明の実施の形態にかかる温度調節装置の製造に使用されるコールドスプレー装置の概要を示す模式図である。 図3は、本発明の実施の形態にかかる温度調節装置の放熱板の形成を説明する断面図である。 図4は、本発明の実施の形態にかかる温度調節装置の放熱板の形成を説明する断面図である。 図5は、本発明の実施の形態にかかる温度調節装置の放熱板の形成を説明する断面図である。 図6は、本発明の実施の形態にかかる温度調節装置の放熱板の形成を説明する断面図である。 図7は、本発明の実施の形態にかかる温度調節装置の放熱板の形成を説明する断面図である。 図8は、本発明の実施の形態の変形例1にかかる温度調節装置の要部の構成を示す断面図である。 図9は、本発明の実施の形態の変形例2にかかる温度調節装置の要部の構成を示す断面図である。 図10は、本発明の実施の形態の変形例3にかかる温度調節装置の要部の構成を示す断面図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
 まず、本発明の実施の形態にかかる温度調節装置について、図面を参照して詳細に説明する。なお、以下の説明では、温度調節装置の一例として半導体素子を実装する基板の冷却を行う温度調節装置を説明する。図1は、本発明の実施の形態にかかる温度調節装置の構成を模式的に示す斜視図である。図1に示す温度調節装置1は、ダイオード、トランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)等の半導体素子によって実現されるチップ10を積載した基板11と、基板11の冷却を行うヒートパイプ12と、を備える。
 基板11は、ヒートパイプ12と接合しない表面に、基板11に実装されるチップ10などに対して電気信号を伝達させるための図示しない回路パターンを形成する。この回路パターンは、銅等の金属を用いたパターニングによって形成される。なお、チップ10は、使用の目的に合わせて基板11上に複数個設けられる。
 ヒートパイプ12は、基板11と接合するとともに、ヒートパイプ12の一端を保持する吸熱板13と、ヒートパイプ12の基板11との接続側と異なる端部側に形成される放熱板14と、を備える。また、ヒートパイプ12は、基板11側の端部側に設けられた吸熱部12aと、基板11側と異なる端部側に設けられた放熱部12bと、を有する。
 熱伝導プレートとしての吸熱板13および放熱板14は、後述するコールドスプレー法によってヒートパイプ12の吸熱部12aおよび放熱部12bの表面に形成される金属皮膜である。この金属皮膜としては、銅、モリブデン、アルミニウム、タングステン、銀、ニッケル、チタン、ステンレス系またはこれらの少なくとも一つを含む合金が挙げられる。金属皮膜によって、チップ10から発生した熱を、基板11を介して吸熱部12aが効率よく吸熱するとともに、放熱部12bに熱伝導された熱を効率よく外部に放出することができる。ここで、金属皮膜としては、同じ種類のバルク材に対して密度が95%以上であって、熱伝導度が90%以上の金属または合金であれば適用可能である。
 つづいて、吸熱部12aの吸熱板13(金属皮膜)の形成について、図2を参照して説明する。図2は、金属皮膜の形成に使用されるコールドスプレー装置の概要を示す模式図である。コールドスプレー装置20は、圧縮ガスを加熱するガス加熱器21と、被溶射物に溶射する粉末材料を収容し、スプレーガン24に供給する粉末供給装置22と、スプレーガン24で加熱された圧縮ガスと混合された材料粉末を基材に噴射するガスノズル23とを備えている。
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。供給された圧縮ガスは、バルブ25,26により、ガス加熱器21と粉末供給装置22にそれぞれ供給される。ガス加熱器21に供給された圧縮ガスは、例えば50~700℃に加熱された後、スプレーガン24に供給される。より好ましくは、基板11上に噴射される粉末の上限温度を金属材料の融点以下に留めるように圧縮ガスを加熱する。粉末材料の加熱温度を金属材料の融点以下に留めることにより、金属材料の酸化を抑制できるためである。
 粉末供給装置22に供給された圧縮ガスは、粉末供給装置22内の、例えば、粒径が10~100μm程度の材料粉末をスプレーガン24に所定の吐出量となるように供給する。加熱された圧縮ガスは先細末広形状をなすガスノズル23により超音速流(約340m/s以上)にされる。スプレーガン24に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基材に高速で衝突して皮膜を形成する。
 上述したコールドスプレー装置20によって、図1に示すような金属皮膜(吸熱板13)が形成される。なお、材料粉末を基材に固相状態で衝突させて皮膜を形成できる装置であれば、図2のコールドスプレー装置20に限定されるものではない。また、本実施の形態では、基板11に対してヒートパイプ12が接触しているものとして説明したが、基板11とヒートパイプ12との間に金属皮膜13を介するものであってもよい。基板11が発した熱をヒートパイプ12の吸熱部12aに伝達することができれば適用可能である。
 つぎに、放熱部12bの放熱板14(金属皮膜)の形成について、図3~図7を参照して説明する。図3~図7は、本実施の形態にかかる放熱板の形成を説明する断面図である。まず、図3に示すように、治具30に保持されたヒートパイプ12(放熱部12b)に対して、図2に示すコールドスプレー装置20を用いてヒートパイプ12の外表面を覆うように金属皮膜14aを形成する。ここで、治具30は、ヒートパイプ12端部の表面の一部を保持する凹部を有する。
 図3に示すようにヒートパイプ12の一方の外周を金属皮膜によって被覆した後、金属皮膜14aが積層された皮膜形成物(図4参照)をコールドスプレー装置20に対して反転させて、治具30を取り除く(図5)。その後、治具30によって覆われていたヒートパイプ12の外表面に対して金属皮膜14bを形成する(図6,7)。ここで、治具30は、形成される放熱板14に用いられる金属と線熱膨張率が大きく異なる材料を用いて形成される。これにより、治具30をヒートパイプ12から容易に取り除くことができる。
 上述した処理によって、図7に示すように、ヒートパイプ12(放熱部12b)の外表面を金属皮膜14a,14bで覆い、放熱板14を形成することができる。なお、皮膜形成時、治具30およびヒートパイプ12が形成する表面形状に沿った金属皮膜が形成される場合は、切削加工等の表面加工処理を施すことによって、表面の形状を調整する。
 上述した実施の形態にかかる温度調節装置によれば、ヒートパイプの端部をコールドスプレー法によって形成された金属皮膜で覆うようにしたので、熱によってヒートパイプが損傷することなく、高い接合強度で基板とヒートパイプとを接合することができる。これにより、従来のような低い融点の半田等によって作製された温度調節装置において生じていた使用温度や熱輸送量の制限を改善させることができるとともに、温度調節装置の耐久性を向上させることが可能となる。
 また、コールドスプレー法では、高温で処理する溶射法等と比して緻密な金属皮膜を形成させることができるため、コールドスプレー法によって形成された金属皮膜の金属特性は、溶射法等によって形成された金属皮膜の金属特性より優れている。これにより、金属皮膜の熱伝導性が向上し、ヒートパイプと吸熱部(放熱部)との間において一段と効率のよい熱伝導を実現することができる。例えば、コールドスプレー法による銅皮膜は、銅のバルク材に比較して95%以上の密度を有している。また、コールドスプレー法においては、金属の粉体の固相状態を維持できる程度までしか粉体を加熱せず、粉体の酸化が抑制されているため、熱伝導率は、バルク材の90%以上の特性を有している。
 なお、金属皮膜は、チップから発生した熱を発散させる冷却フィンとして説明したが、金属皮膜を介して基板等を加熱するために設けられるものであってもよい。
 また、コールドスプレー法による金属皮膜の形成領域は、少なくとも発熱部分とヒートパイプとを接続する領域であって確実に接合できればよく、金属皮膜の形状の均一性等は問わない。
 また、ヒートパイプ12は、U字状をなすものとして説明したが、U字状以外の弧状に湾曲した形状であってもよいし、直線状であってもよい。
 図8は、本実施の形態の変形例1にかかる温度調節装置の要部の構成を示す模式図である。図8に示すように、ヒートパイプ12が、温度調節対象の基板等を載置するベース板31に隣接配置されている場合は、ヒートパイプ12の配置面に対してコールドスプレー法により金属皮膜14cを形成する。
 なお、ベース板31は、吸熱シートまたは放熱シートからなる熱伝導シートであってもよい。
 図9は、本実施の形態の変形例2にかかる温度調節装置の要部の構成を示す模式図である。図9に示すように、ヒートパイプ15が、略角形の断面形状をなしてもよい。この場合、放熱部では、図7と同様に、治具を用いて金属皮膜16a,16bを形成させて放熱板16を作製する。ヒートパイプの面積の大きい方の表面を基板に向けることによって、基板に対して対向する面積を拡大することができ、熱伝達の効率を向上させることができる。
 また、図10は、本実施の形態の変形例3にかかる温度調節装置の要部の構成を示す模式図である。図10に示すように、略角形の断面形状をなすヒートパイプ15が、ヒートパイプ15の3つの面を包囲して保持する治具30aによって保持されてもよい。この場合、放熱部では、図3~図7と同様に、治具を用いて金属皮膜17aを形成させた後、反転させて治具30aを取り除いて皮膜を形成させることで放熱板を作製することができる。
 変形例3によれば、コールドスプレー法で1回目に金属皮膜を形成させる面がフラットになっているため、皮膜形成後、この面に対して切削加工等の表面加工処理を行う必要がなく、作業工程を削減させることができる。
 以上のように、本発明にかかる温度調節装置およびこの温度調節装置の製造方法は、ヒートパイプの熱損傷を防止し、高い接合強度で基板または金属皮膜とヒートパイプとを接合する場合に有用である。
 1 温度調節装置
 10 チップ
 11 基板
 12,15 ヒートパイプ
 12a 吸熱部
 12b 放熱部
 13 吸熱板
 14 放熱板
 20 コールドスプレー装置
 21 ガス加熱器
 22 粉末供給装置
 23 ガスノズル
 24 スプレーガン
 25,26 バルブ

Claims (5)

  1.  一端側に設けられ、外部からの熱を吸収する吸熱部と、他端側に設けられ、外部へ熱を放出する放熱部とを有し、温度調節対象の温度調節を行うヒートパイプと、
     前記吸熱部および/または前記放熱部の外表面に対して、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって形成された金属皮膜と、
     を備えたことを特徴とする温度調節装置。
  2.  前記ヒートパイプは、前記吸熱部の外表面の一部が前記温度調節対象に接触するとともに、接触箇所以外の前記外表面が前記金属皮膜によって被覆されることを特徴とする請求項1に記載の温度調節装置。
  3.  前記金属皮膜に用いる金属は、銅、モリブデン、アルミニウム、タングステン、銀、ニッケル、チタン、ステンレス系またはこれらの少なくとも一つを含む合金からなる群より選択される少なくとも1種類を含むことを特徴とする請求項1または2に記載の温度調節装置。
  4.  温度調節対象の温度調節を行うヒートパイプを有する温度調節装置の製造方法であって、
     少なくとも前記ヒートパイプの一方の端部の表面に、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって金属皮膜を形成させる金属皮膜形成ステップを含むことを特徴とする温度調節装置の製造方法。
  5.  前記ヒートパイプ端部の表面の一部を保持する治具によって前記ヒートパイプを保持する保持ステップをさらに含み、
     前記金属皮膜形成ステップは、
     前記保持ステップで前記治具に保持された前記ヒートパイプの外部に露出している表面に向けて、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって前記金属皮膜を形成させる第1の金属皮膜形成ステップと、
     前記第1の金属皮膜形成ステップ後、前記治具を取り除き、外部に露出された前記ヒートパイプの表面に対して、金属を含む粉体をガスと共に加速し、前記表面に固相状態のままで吹き付けて堆積させることによって前記金属皮膜を形成させる第2の金属皮膜形成ステップと、
     を有することを特徴とする請求項4に記載の温度調節装置の製造方法。
PCT/JP2011/080124 2011-01-07 2011-12-26 温度調節装置およびこの温度調節装置の製造方法 WO2012093613A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11855235.5A EP2662655A1 (en) 2011-01-07 2011-12-26 Temperature control device and method for manufacturing same
KR1020137016070A KR101550345B1 (ko) 2011-01-07 2011-12-26 온도 조절 장치 및 이 온도 조절 장치의 제조 방법
US13/977,807 US20130284406A1 (en) 2011-01-07 2011-12-26 Temperature control device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011002210A JP5848874B2 (ja) 2011-01-07 2011-01-07 温度調節装置およびこの温度調節装置の製造方法
JP2011-002210 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093613A1 true WO2012093613A1 (ja) 2012-07-12

Family

ID=46457472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080124 WO2012093613A1 (ja) 2011-01-07 2011-12-26 温度調節装置およびこの温度調節装置の製造方法

Country Status (5)

Country Link
US (1) US20130284406A1 (ja)
EP (1) EP2662655A1 (ja)
JP (1) JP5848874B2 (ja)
KR (1) KR101550345B1 (ja)
WO (1) WO2012093613A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768096B2 (en) * 2014-03-20 2017-09-19 Huawei Device Co., Ltd. Mobile terminal
US10884203B2 (en) * 2015-11-16 2021-01-05 Accedian Networks Inc. Cooling apparatus for pluggable modules
WO2018006258A1 (en) * 2016-07-05 2018-01-11 Shenzhen Xpectvision Technology Co., Ltd. Bonding materials of dissimilar coefficients of thermal expansion
EP3606306B1 (en) * 2017-03-21 2024-05-01 LG Innotek Co., Ltd. Converter
TWI694563B (zh) * 2017-09-28 2020-05-21 雙鴻科技股份有限公司 雙迴路液冷系統
US20210410331A1 (en) * 2020-06-25 2021-12-30 Intel Corporation Integrated circuit die thermal solutions with a contiguously integrated heat pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181396A (ja) 1992-12-14 1994-06-28 Furukawa Electric Co Ltd:The 回路基板のヒートパイプ式冷却装置
JPH07142653A (ja) 1993-06-25 1995-06-02 Mitsubishi Cable Ind Ltd ヒートパイプ式冷却器
JP2009026953A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両
JP2010522974A (ja) * 2007-03-30 2010-07-08 エレクトロヴァック エージー ヒートシンク、およびヒートシンクを備えたコンポーネントユニットまたはモジュールユニット
JP2010189754A (ja) * 2009-02-20 2010-09-02 Toyota Motor Corp 金属被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ
JP2010270349A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 炭素粒子含有被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268734B2 (ja) * 1996-11-15 2002-03-25 古河電気工業株式会社 ヒートパイプを用いた電子機器放熱ユニットの製造方法
JP3893681B2 (ja) * 1997-08-19 2007-03-14 住友電気工業株式会社 半導体用ヒートシンクおよびその製造方法
US6585039B2 (en) * 2000-02-01 2003-07-01 Cool Options, Inc. Composite overmolded heat pipe construction
US6589310B1 (en) * 2000-05-16 2003-07-08 Brush Wellman Inc. High conductivity copper/refractory metal composites and method for making same
ES2187280B1 (es) * 2001-06-28 2004-08-16 Lear Automotive (Eeds) Spain, S.L. Placa de circuito impreso con substrato metalico aislado con sistema de refrigeracion integrado.
TWI250056B (en) * 2004-05-14 2006-03-01 Hon Hai Prec Ind Co Ltd Heat dissipating device and method of making same
JP2005344984A (ja) * 2004-06-02 2005-12-15 Toshiba Home Technology Corp 熱伝達部材の接合構造
JP2009127086A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp 伝熱部材及びその製造方法
US20110277963A1 (en) * 2010-05-12 2011-11-17 Chenming Mold Ind. Corp. Thermal module and method of manufacturing the same
US20120067550A1 (en) * 2010-09-22 2012-03-22 David Shih Heat sink structure embedded with heat pipes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181396A (ja) 1992-12-14 1994-06-28 Furukawa Electric Co Ltd:The 回路基板のヒートパイプ式冷却装置
JPH07142653A (ja) 1993-06-25 1995-06-02 Mitsubishi Cable Ind Ltd ヒートパイプ式冷却器
JP2010522974A (ja) * 2007-03-30 2010-07-08 エレクトロヴァック エージー ヒートシンク、およびヒートシンクを備えたコンポーネントユニットまたはモジュールユニット
JP2009026953A (ja) * 2007-07-19 2009-02-05 Toyota Motor Corp パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両
JP2010189754A (ja) * 2009-02-20 2010-09-02 Toyota Motor Corp 金属被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ
JP2010270349A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 炭素粒子含有被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ

Also Published As

Publication number Publication date
KR20130098410A (ko) 2013-09-04
JP2012145240A (ja) 2012-08-02
JP5848874B2 (ja) 2016-01-27
EP2662655A1 (en) 2013-11-13
US20130284406A1 (en) 2013-10-31
KR101550345B1 (ko) 2015-09-04

Similar Documents

Publication Publication Date Title
JP5409740B2 (ja) 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
JP5848874B2 (ja) 温度調節装置およびこの温度調節装置の製造方法
CN110192273B (zh) 用于在热接地平面中散布高热通量的方法和设备
WO2013008865A1 (ja) 積層体及び積層体の製造方法
US20110127013A1 (en) Heat-radiating component and method of manufacturing the same
WO2015064430A1 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
US10475723B1 (en) IGBT heat dissipation structure
JPWO2011141979A1 (ja) マスキング治具、基板加熱装置、及び成膜方法
WO2017082368A1 (ja) 積層体および積層体の製造方法
US10018428B2 (en) Method and apparatus for heat spreaders having a vapor chamber with a wick structure to promote incipient boiling
JP5077529B2 (ja) 絶縁基板の製造方法、ならびに半導体装置の製造方法
CN111421141A (zh) 一种定向高导热金刚石/金属基复合材料的制备方法
WO2013021870A1 (ja) 冷却装置及びその製造方法
Kim et al. Thermal performance of carbon nanotube enhanced vapor chamber wicks
WO2016021561A1 (ja) 複合基板及びパワーモジュール
JP5565166B2 (ja) 半導体パッケージ及びその製造方法
JP2009032996A (ja) 放熱構造体の製造方法
JP2019021657A (ja) 電子装置、及び電子装置の製造方法
US20210410331A1 (en) Integrated circuit die thermal solutions with a contiguously integrated heat pipe
JP2012138629A (ja) 絶縁基板および半導体装置
JP5940589B2 (ja) 積層体、及びパワーモジュール
KR101242610B1 (ko) 전자부품 방열용 냉각기판 및 그 제조방법
WO2015186643A1 (ja) 複合材、積層体、及びパワーモジュール
CN118366939A (zh) 三维堆叠芯片结构及封装器件
Shooshtari et al. Electronics, Next Generation: Cooling of

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016070

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13977807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011855235

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE