JP2009206331A - 伝熱部材及びその製造方法、並びにパワーモジュール - Google Patents

伝熱部材及びその製造方法、並びにパワーモジュール Download PDF

Info

Publication number
JP2009206331A
JP2009206331A JP2008047936A JP2008047936A JP2009206331A JP 2009206331 A JP2009206331 A JP 2009206331A JP 2008047936 A JP2008047936 A JP 2008047936A JP 2008047936 A JP2008047936 A JP 2008047936A JP 2009206331 A JP2009206331 A JP 2009206331A
Authority
JP
Japan
Prior art keywords
metal coating
metal
base material
groove
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008047936A
Other languages
English (en)
Inventor
Noritaka Miyamoto
典孝 宮本
Yoshihiko Tsuzuki
佳彦 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008047936A priority Critical patent/JP2009206331A/ja
Publication of JP2009206331A publication Critical patent/JP2009206331A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】相手部材との熱膨張差による金属被膜の亀裂を抑制できる伝熱部材及びその製造方法、並びにこれを用いたパワーモジュールを提供する。
【解決手段】伝熱部材1は、基材2と、相手部材4の熱膨張率と基材2の熱膨張率との間の熱膨張率をもつ金属被膜3とを有する。金属被膜3は、基材2に固定された基材側表面31と、基材2よりも熱膨張率が小さい発熱体搭載用の相手部材4を固定する相手側表面32とをもつ。金属被膜3には、相手側表面32から基材側表面31に向けて窪む溝30が形成されている。溝30の内部の少なくとも一部には金属被膜3の熱変形を許容する空間部35が残されている。
【選択図】図2

Description

本発明は、金属粉末の吹き付け法を用いた伝熱部材及びその製造方法、並びにパワーモジュールに関する。
車両用インバータなどに使用されるパワーモジュールは、例えば、図38に示すように、パワー素子91をろう付け材943を介して搭載した絶縁部材92と、ヒートシンク95と、絶縁部材92とヒートシンク95との間に介設された緩衝部材93とを備えている。緩衝部材93は、絶縁部材92に対してはんだ941により固定され、ヒートシンク95に対してはシリコングリース942により固定されている。緩衝部材93は、パワー素子91で放熱された熱をヒートシンク95に伝達する役割と、絶縁部材92とヒートシンク95との熱膨張差を緩和する役割とを兼ね備えている。
しかしながら、パワーモジュールにおいては、緩衝部材93を固定するシリコングリース942の熱伝導性が他の構成部材に比べて低いため、シリコングリース942が、パワー素子91の熱をヒートシンク95に伝える障害となっている。このことを回避するため、シリコングリース942を用いずに、ヒートシンク95に対して直接的に、金属粉末を溶射して緩衝部材としての金属被膜を形成することが考えられる(特許文献1)。
また、近年、コールドスプレー法と呼ばれる被膜形成方法が開発されている。本願出願人は、コールドスプレー法により、ヒートシンク表面に直接に金属被膜を成膜する技術を提案した(特許文献2〜4)。このコールドスプレー法は、被膜の材料の融点又は軟化温度よりも低い温度に加熱した圧縮ガスを、先細り(ラバル)ノズルにより流速を高めて、このガス流れの中に粉末を投入して加速させ、粉末を固相状態のまま基材に高速で衝突させて被膜を形成する方法である。このコールドスプレー法によれば、比較的低温で金属被膜を成膜できるため、通常の熱溶射法に比べて、被膜の酸化を抑えることができる。
また、絶縁部材とヒートシンクとの間の熱伝導性を改良するために、特許文献5、6、7には、緩衝部材に多数の孔を形成し、この孔に熱伝導材を充填又は埋設することが提案されている。また、特許文献8には、緩衝部材として、熱硬化性樹脂と熱伝導性フィラーとを含む熱伝導材料を用いることで、熱伝導性を良好にして、熱応力の低減を可能とすることが提案されている。また、特許文献9には、緩衝部材として、メッシュ材に液体金属を担持させたものを用いることが提案されている。また,特許文献10、11、12には、緩衝部材又はヒートシンクにハニカム状又は針状の凹凸構造を設けて放熱性を向上させることが提案されている。
一方、絶縁部材には、一般に、AlN(窒化アルミニウム)などの低熱膨張率の材料が用いられる。ヒートシンクには、一般に、Al(アルミニウム)などの高熱膨張率の材料が用いられる。このため、AlN絶縁部材とAlヒートシンクとの間に介設される緩衝部材は、熱膨張差による熱応力を受ける。コールドスプレー法により成膜されたコールドスプレー被膜は、被膜全体が金属粉末からなる多孔質組織で構成されているため、ヤング率が小さく、熱応力は比較的低い。それゆえ、コールドスプレー被膜は、絶縁部材とヒートシンクとから受ける熱応力に追従することができ、熱変形による破壊は少ない。
しかし、高性能なインバータでは、パワー素子で発生する高い熱を逃がす必要がある。その場合、被膜全体を多孔質組織にするだけでは、熱変形による追従性能を満たさない場合がある。即ち、緩衝部材であるコールドスプレー被膜は、銅(Cu)を主体とする材料から構成されているが、銅の熱膨張率は17×10-6/℃である。このため、Cuコールドスプレー被膜は、AlN絶縁部材の熱膨張率(4.6×10-6/℃)よりむしろAlヒートシンクの熱膨張率(21×10-6/℃)に近い。このため、AlヒートシンクとCuコールドスプレー被膜との間で亀裂が発生するおそれがある。これを回避するために、コールドスプレー層の組織を緻密にすると、AlN絶縁部材はCuコールドスプレー被膜に追従できず、AlN絶縁部材とCuコールドスプレー層との間の界面で亀裂が発生するおそれがある。
特開2007−5332号公報 特願2007−163771 特願2007−188443 特開2007−197795号公報 特開2005−347500号公報 特開平7−183635号公報 特開2006−24719号公報 特開2004−335872号公報 特開2003−332505号公報 実開昭63−44083号公報 特開平9−55457号公報 特開平11−251495号公報
本発明はかかる事情に鑑みてなされたものであり、相手部材との熱膨張差による金属被膜の亀裂を抑制できる伝熱部材及びその製造方法、並びにこれを用いたパワーモジュールを提供することを課題とする。
上記課題を解決するため、請求項1に係る発明である伝熱部材は、基材と、前記基材に固定された基材側表面と、前記基材よりも熱膨張率が小さい発熱体搭載用の相手部材を固定する相手側表面とをもち、前記相手部材の熱膨張率と前記基材の熱膨張率との間の熱膨張率をもつ金属被膜と、を有する伝熱部材であって、前記金属被膜には、前記相手側表面から前記基材側表面に向けて窪む溝が形成されているとともに、前記溝の内部の少なくとも一部には前記金属被膜の熱変形を許容する空間部が残されていることを特徴とする。
本発明によれば、金属被膜には、相手側表面から基材側表面に向けて窪む溝が形成され、溝の内部には金属被膜の熱変形を許容する空間部が残されている。この空間部によって、金属被膜の熱変形は吸収されて、金属被膜の熱応力が緩和される。ゆえに、相手部材と基材との間の熱膨張差に追従することができ、相手部材との間及び基材との間で亀裂が発生することを抑制できる。
また、金属被膜は、基材表面に直接的に形成することができる。ゆえに、基材と金属被膜とを接合するためにシリコングリースなどの熱伝導性の低い接合材を用いる必要がなく、金属被膜と基材との熱伝導性が向上する。
前記金属被膜は、多孔質組織をもつことが好ましい(請求項2)。金属被膜が多孔質組織をもつため、金属被膜のヤング率を下げることができ、基材と相手部材との間の熱膨張差を吸収することができる。このため、熱疲労による金属被膜及び、基材や相手部材との界面に亀裂が発生することを抑制できる。
前記金属被膜は、前記溝により互いに独立した複数の島に分断されていることが好ましい(請求項3)。このように金属被膜を分断して形成された各島の大きさは、分断されていない金属被膜全体よりも小さい。このため、各島の熱変形量は、分断されていない金属被膜全体の熱変形量よりも小さくなる。ゆえに、金属被膜を各島に分断することによって、金属被膜と相手部材との間の界面、及び金属被膜と基材との間の界面で熱応力による亀裂が生じることを抑制できる。
前記溝は、前記金属被膜の厚み方向に貫通して形成されていることが好ましい(請求項4)。この場合には、溝を挟んで隣合う島同士を完全に分断することができ、金属被膜の熱変形を効果的に抑制できる。
前記空間部は、前記溝の内部全体に残されていることが好ましい(請求項5)。この場合には、溝内部の空間部によって、金属被膜の熱変形が吸収される。それゆえ、金属被膜と相手部材との間及び金属被膜と基材との間で亀裂が発生することを効果的に抑制できる。
前記金属被膜は、凹部及び一般部を有する前記基材の表面の形状に沿って形成されて、前記金属被膜における前記凹部上に形成された部分は、前記金属被膜における前記一般部上に形成された他の部分との間に前記溝を形成していることが好ましい(請求項6)。この場合には、金属被膜における基材表面の凹部を被覆する部分は、基材表面の凹部以外の一般部を被覆する他の部分よりも低い位置に形成される。このため、金属被膜における凹部を被覆する部分と、一般部を被覆する他の部分との間に溝が形成される。また、凹部の中には、金属被膜の一部が進入しているため、凹部の深さ分の領域に、基材と金属被膜との双方が存在することになり、基材と金属被膜との特性をもつ複合領域が形成される。ゆえに、基材表面の凹部深さ領域の熱応力が更に緩和される。
更に、前記金属被膜の熱膨張率よりも低い熱膨張率をもち、且つ前記溝に埋設されて前記基材表面を被覆する被覆部と、内部に前記金属被膜を形成した充填部と、をもつ低熱膨張材を有しており、前記被覆部は、前記溝の少なくとも開口端側に配置されており、且つ前記溝の少なくとも底部側には前記空間部が残されていることが好ましい(請求項7)。この場合には、低熱膨張材は、金属被膜の相手側表面を拘束して、金属被膜の相手側表面近傍での熱変形を抑制することができる。また、溝の基材側表面に近接する底部側では、金属被膜の熱変形を許容する空間部が形成されている。このため、金属被膜の基材側表面近傍は、熱変形が可能であり、基材の熱変形に追従することができる。ゆえに、金属被膜及び相手部材に対する接合性を確保しつつ、変形による金属被膜の亀裂が生じることを防止できる。
前記低熱膨張材の前記被覆部の表面は、前記金属被膜の前記相手側表面と同一面を形成していることが好ましい(請求項8)。この場合には、低熱膨張材及び金属被膜は、相手部材との間に隙間がなくなるため、相手部材に対して強固に接合する。
前記低熱膨張材は、前記基材から離間した位置に配設されて、前記低熱膨張材と前記基材との間に前記空間部が形成されていることが好ましい(請求項9)。この場合には、溝の中の低熱膨張材と基材との間に空間部が形成されている。このため、空間部によって、金属被膜は、基材の熱変形に追従することができる。
前記充填部の前記基材と対面している下開口端の開口幅は、前記充填部の前記相手部材と対面する上開口端の開口幅よりも大きく、前記充填部における前記上開口端の直下部分には前記金属被膜が形成されており、前記充填部における前記上開口端よりも大きい開口幅をもつ部分には前記空間部が残されていることが好ましい(請求項10)。この場合には、開口部における上開口端よりも大きい開口幅をもつ下開口端側の部分がアンダーカット部となり、このアンダーカット部に空間部が形成されている。金属被膜は、この空間部によって、基材の熱変形に追従することができる。
前記金属被膜は、硬質粒子を含み、前記溝の開口幅は、前記金属被膜の前記相手側表面から前記基材側表面に向けて漸次縮小していることが好ましい(請求項11)。この場合には、基材表面の凹部の内部に、硬質粒子の転動により研削されて溝が形成されている。このため、金属被膜は、基材の熱変形に追従することができる。
前記金属被膜は、銅又は銅合金を含むことが好ましい(請求項12)。この場合には、金属被膜の熱伝導性が向上する。
パワーモジュールは、前記伝熱部材に、前記発熱体としてのパワー素子を搭載した前記相手部材を搭載してなる(請求項13)。この場合には、パワー素子から発生する熱が、相手部材及び金属被膜を経て基材に伝達される。金属被膜には、溝が形成されているため、相手部材と基材との熱膨張差を吸収することができる。
前記伝熱部材を製造する方法であって、前記基材の表面に、金属粉末を吹き付けることにより前記金属被膜を形成することを特徴とする(請求項14)。この場合には、金属被膜を基材表面に直接的に形成することができる。ゆえに、基材と金属被膜とを接合するためにシリコングリースなどの熱伝導性の低い接合材を用いる必要がなく、金属被膜と基材との熱伝導性が向上する。
固相状態の金属粉末を圧縮ガスとともに前記基材表面に吹き付けることにより、前記金属被膜を形成することが好ましい(請求項15)。この場合には、金属粉末を固相状態のまま基材に衝突させることで金属被膜を形成できるため、金属被膜の酸化を抑制でき、また基材の熱影響も抑えることができる。
前記金属被膜に切削加工を施すことにより、前記溝を形成することが好ましい(請求項16)。この場合には、溝を容易に形成することができる。
溝形成壁及び開口部をもつマスク部材を配置した前記基材の表面に、前記金属粉末を吹き付けることにより、前記開口部に前記金属被膜を形成し、前記溝形成壁が配置されている部分には前記溝を形成する工程と、前記マスク部材を前記基材の表面から取り去ることにより、前記溝に前記空間部を残す工程と、をもつことが好ましい(請求項17)。この場合にも、溝を容易に形成することができる。
凹部をもつ前記基材の表面に、前記金属粉末を吹き付けることが好ましい(請求項18)。この場合には、金属被膜は、凹部を有する基材表面の形状に沿って形成される。金属被膜における凹部上に形成された部分は、凹部以外の一般部の上に形成された他の部分に比べて低い位置にある。このため、金属被膜における凹部上に形成された部分の上には、溝が形成される。
前記金属被膜の熱膨張率よりも低い熱膨張率をもち且つ前記金属被膜を形成する充填部と前記溝を形成する被覆部とをもつ低熱膨張材を、少なくとも前記基材に近接する部分に前記空間部が残るように、前記基材表面に配置して、前記金属粉末を吹き付けることが好ましい(請求項19)。この場合には、低熱膨張材の充填部に金属粉末からなる金属被膜が形成され、被覆部には、溝が形成される。これにより、低熱膨張材は、金属被膜を拘束して、金属被膜の熱変形を抑制することができる。また、基材側表面近傍では、金属被膜と低熱膨張材との間に金属被膜の熱変形を許容する空間部が形成される。このため、金属被膜の基材側表面近傍は、基材の熱変形に追従することができ、金属被膜と相手部材との接合性を確保しつつ、変形による金属被膜の亀裂が生じることを防止できる。
前記低熱膨張材を前記基材の表面から離間した位置に保持して前記金属粉末の吹き付けを行うことが好ましい(請求項20)。この場合には、低熱膨張材の充填部の直下部分には金属被膜が形成されるが、被覆部の直下部分には金属粉末が堆積せずに溝が形成される。そして、溝の中には、その一部に低熱膨張材の被覆部が埋設されて、低熱膨張材の被覆部と基材との間に空間部が残される。
前記低熱膨張材の前記充填部の前記基材と対面している下開口端の開口幅は、前記充填部の前記相手部材と対面する上開口端の開口幅よりも大きいことが好ましい(請求項21)。この場合には、低熱膨張材の充填部の上開口端の直下部分には、金属粉末が堆積して金属被膜が形成される。一方、上開口端よりも大きい開口端をもつ下開口端側の部分はアンダーカット部となり、金属粉末が堆積しない。ゆえに、このアンダーカット部に空間部が残される。
前記金属粉末に硬質粒子を混合してなる混合粒子を、凹部を有する前記基材の表面に向けて吹き付けることが好ましい(請求項22)。この場合には、ガス流によって硬質粒子が凹部内を転動する。このため、硬質粒子は、金属粉末の吹き付けによって凹部内に堆積していく金属被膜を削り取って、基材表面の凹部を起点とする溝が形成される。
前記金属被膜を成膜した後に、前記金属被膜を熱処理することが好ましい(請求項23)。成膜後の金属被膜に熱処理を施すことにより、金属被膜の熱伝導性が向上する。
以上のように本発明によれば、金属被膜に形成された溝によって、相手部材と基材との間の熱膨張差を吸収でき、相手部材との熱膨張差による金属被膜の亀裂を抑制できる。
本発明の実施形態について、図面を参照にしつつ詳細に説明する。
(伝熱部材の構成)
図1に、本発明の実施の形態に係る伝熱部材の断面図を示す。図1に示すように、伝熱部材1は、基材2と、金属被膜3とからなる。図2に示すように、金属被膜3は、基材2に対向している基材側表面31と、発熱体5が搭載される相手部材4に対向する相手側表面32とをもつ。
基材2としては、例えば、アルミニウム、アルミニウム合金などを用いる。アルミニウムの熱膨張率は、21×10−6/℃である。相手部材4は、基材2の熱膨張率よりも低い熱膨張率をもち、例えば、窒化アルミニウム(AlN)などの絶縁部材を用いる。相手部材に用いられるAlNの熱膨張率は、4.6×10−6/℃である。金属被膜3の熱膨張率は、基材2の熱膨張率よりも低く、且つ相手部材4の熱膨張率よりも高い。
金属被膜3を構成する金属粉末の材質は、例えば、銅、アルミニウム、クロム、ニッケル、鉄及びこれらの合金から選ばれる少なくとも1つが挙げられる。このうち、金属粉末の材質は、熱伝導性のよい銅又は銅合金がよい。銅の熱膨張率は、17×10−6/℃である。金属被膜3の厚みAは、0.3〜10mmであるとよく、更には、1〜5mmであるとよい。
金属被膜3は、金属粉末を吹き付けてなる多孔質組織をもつとよい。多孔質組織の空孔は、金属被膜3に対して5〜50体積%であることが好ましい。これにより、熱膨張差による金属被膜の亀裂を効果的に抑制できる。金属被膜3の密度は、4.5〜8.5g/cmであることが好ましい。この場合には、金属被膜を多孔質組織とすることができる。
金属被膜3のヤング率は、70GPa以下であることが好ましい。ヤング率が70GPaを超える場合には、金属被膜が基材や相手部材の熱変形に追従できず、金属被膜と基材との界面及び金属被膜と相手部材との界面で亀裂が生じるおそれがある。また、金属被膜3のヤング率は、例えば、10GPa以上であるとよい。
(金属被膜の成膜法)
基材表面に金属被膜を成膜する前には、基材表面をショットブラストなどにより表面処理を施すとよい。これにより、基材表面への金属被膜の密着性が向上する場合が多くなる。
表面処理が施された基材表面には、金属粉末の吹き付け等により金属被膜が成膜される。具体的には、金属粉末は、固相状態で圧縮ガスとともに基材表面に吹き付けられることが好ましい。すなわち、金属被膜3は、コールドスプレー法で成膜されるとよい。これにより、金属被膜が固相状態で基材表面に吹き付けられるため、溶射法のように金属被膜が大気中で溶融する場合に生じる酸化を抑制できる。
金属粉末としては、電気分解を利用して電極に金属を析出させることにより製造される電気分解粉末、ガスアトマイズ粉末又は水アトマイズ粉末などのアトマイズ粉末などを挙げることができる。このうち、金属粉末は、電気分解粉末であることが好ましい。電気分解粉末は、他の粉末に比べて凹凸を多く含む樹脂状の表面形状をもつため、多孔質組織を有する金属被膜をより容易に形成できる。
金属粉末の平均粒径は、5〜60μmであることが好ましい。この場合には、金属粉末の基材表面への付着性が向上する。金属粉末の平均粒径が5μm未満の場合には、基材に吹き付ける圧縮ガスの反射波(吹き返り)により金属粉末の運動エネルギの一部が奪われて、基材表面への付着性が低下するおそれがある。金属粉末の平均粒径が60μmを超える場合には、金属粉末の重量が重くなり、圧縮ガスで加速されにくく、基材表面への付着性が低下するおそれがある。金属粉末の平均粒径は、更には10〜30μmであるとよい。この場合には、金属粉末の基材表面への付着性が更に向上する。
金属粉末の基材表面に衝突する直前の温度は、50℃以上であって金属粉末の融点未満であることが好ましい。これにより、金属粉末を固相状態のままで成膜化させることができる。より好ましくは、金属粉末の基材表面に衝突する直前の温度は200℃以下であるとよい。金属粉末の温度が200℃を超える場合には、吹き付け前の金属粉末が凝着しやすくなり、また被膜が酸化されるおそれがある。金属粉末の基材表面に衝突する直前の温度を50〜200℃とするにあたっては、例えば、圧縮ガスの温度を250〜550℃とするとよい。
圧縮ガスとしては、エアなどの窒素ガス、純窒素ガス、又はヘリウムガスなどの不活性ガスなどを挙げることができる。圧縮ガスは、金属粉末を固相状態で基材表面に堆積させることにより多孔質組織をもつ金属被膜を形成できるのであれば、特に限定されない。圧縮ガスの圧力は、0.4〜1.0MPaであることが好ましい。0.4MPa未満の場合には、金属粉末を基材表面に付着させることが困難になるおそれがある。1.0MPaを超える場合には、設備費用が高くなる場合があり、また、金属被膜が緻密になり、多孔質組織を形成することが困難になるおそれがある。
金属被膜を成膜する成膜装置を図3に示す。図3に示すように、成膜装置8は、圧縮ガス供給器81と、粉末供給器82と、ノズル83と、ノズル移動機構84とを備えている。圧縮ガス供給器81は、圧縮ガスをノズル83に供給するガス供給源81aと、圧縮ガスを加熱する加熱器81bと、圧縮ガスの圧力を調整する圧力調整弁81cと、を備えている。ガス供給源81aとしては、エア、不活性ガスなどの圧縮ガスが充填されたボンベ、大気を圧縮するコンプレッサなどを挙げることができる。加熱器81bは、圧縮ガスを加熱することで、間接的に金属粉末を加熱するものである。この加熱器81bは、ガス供給源81aと圧力調整弁81cとの間に配置されているが、ガス供給源81aの内部に配置されていてもよく、後述するヒータ83aにより金属粉末を所望の温度に加熱することができるのであれば、特に必要なものではない。
粉末供給器82は、金属粉末37を収容するホッパ82aを備えており、金属粉末37を所定の供給速度でノズル83に供給可能なように、ノズル83に接続されている。ノズル83は、ノズル移動機構84に接続されている。ノズル移動手段84を駆動させることによりノズル83を図4に示すルートRに沿って移動させる。ノズル83の内部には、金属粉末を加熱するヒータ83aが設けられている。
上記成膜装置8を用いて以下の方法により金属被膜を成膜する。本実施形態においては、まず、図3に示すように、矩形の開口部85aを有するマスキング板85の下方に基材2を配置する。開口部85aは、基材2の表面の矩形の成膜領域2aに相当する形状をもつように形成されている。金属粉末の吹き付け方向dに、開口部85aと基材2の成膜領域2aとが一致するように基材2を配置する。
次に、圧力調整弁81cにより圧縮ガスを、例えば0.4〜1.0MPaに圧力調整するとともに、加熱手段81bにより所定の温度に加熱する。また、金属粉末をホッパ82aに収容し、粉末供給器82からノズル83に金属粉末を供給する。吹き付けの際に、金属粉末が、基材表面において50〜200℃の温度で吹き付けられるように、圧縮ガスを加熱器81bで加熱するとともに金属粉末をヒータ83aで加熱することにより、金属粉末の温度調整を行う。ノズル83から、圧縮ガスとともに金属粉末37を基材2表面に吹き付ける。このときの金属粉末37の吹き付け方向dは、垂直方向とする。
そして、図4に示すルートRのように、基材2の表面の水平面(X−Y平面)に対して、ノズル83を所定の移動方向(X方向)に直線移動させる。次に、X方向から、X方向に対して直交するY方向に、ノズル83を方向転換して、Y方向に直接移動させる。この移動を繰り返すことにより、基材2の成膜領域2aに金属粉末を吹き付けて、金属被膜3の成膜を行う。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行うことによって、多孔質組織をもつ金属被膜3が成膜される。
多孔質組織をもつ金属被膜を成膜するにあたっては、上記のコールドスプレー法に限らず、加熱溶融された金属粉末を基材表面に吹き付ける熱溶射法、圧粉成形法を行っても良い。溶射法としては、例えば、プラズマ溶射、HVOF溶射法、アーク溶射、フレーム溶射が挙げられる。
金属被膜を成膜した後には、金属被膜は熱処理をすることが好ましい。金属被膜を熱処理することによって、付着した金属粉末同士の粒界(金属被膜を構成する金属粒子の粒界)の酸化物が粒子内部で拡散し、粒子同士の金属結合の割合が増加する。その結果、熱処理後の金属被膜の熱伝導性が更に高まる。また、熱処理は不活性ガス雰囲気下で200〜700℃の温度で熱処理を行うことが好ましい。これにより、金属被膜及び基材の表面が酸化されることを抑制できる。不活性ガスは、例えば、アルゴンガス、Nガスなどを用いることができる。200℃未満の場合には、熱伝導性を高めることは困難であり、700℃を越える場合には、それ以上の効果は望めず、基材に熱影響を与えるおそれが生じる。また、金属被膜の熱処理を不活性ガス雰囲気下で行わない場合には、金属被膜の酸化を抑制するため、200〜600℃で熱処理を行うことが好ましい。
金属被膜には、相手側表面から基材側表面に向けて、その厚み方向に窪む溝が形成されている。溝の構成及びその形成方法については、以下の(1)〜(4)に示すものが挙げられる。
(1)第1の溝の構成においては、図1,図5に示すように、金属被膜3には、相手側表面32から基材側表面31に向けて、その厚み方向に窪む溝30が形成されている。溝30は、金属被膜3の相手側表面32に開口する開口端30aと、基材側表面31に近接する底部30bとをもつ。溝30は、開口端30aから底部30bまでの間を、周壁30cにより囲まれている。好ましくは、溝30は、金属被膜3の相手側表面32から基材側表面31に向けて、その厚み方向に貫通して形成されているとよい。
溝30は、金属被膜3の熱伝導性を保持しつつ且つ金属被膜3の熱変形を可能とする形状であればよく、互いに独立した複数の島33に分断されているとよい。溝30は、例えば、金属被膜3の平面方向全体に形成されているとよい。たとえば、図6に示すように、溝30は、格子状に形成されているとよい。また、溝30は、ハニカム状(図8)、散点状に形成されていてもよい。また、溝30のピッチBは、1〜20mmであるとよく、好ましくは3〜10mmであるとよい。この場合には、金属被膜3が基材2及び相手部材4に対して十分な接触面積をもつため、基材2及び相手部材4に安定に保持される。図5に示すように、溝30の底部30aの幅Cは、0.1〜3mmであるとよい。この場合には、溝30によって金属被膜3の熱変形を十分に吸収することができる。溝30の深さDは、少なくとも金属被膜3の厚みAに対して1/2であるとよく、好ましくは金属被膜3の厚みAと同じであるとよい。この場合には、効果的に金属被膜3の熱変形を吸収することができる。溝30を囲む周壁30cの対向幅Eは、開口端30aから底部30bにかけて同一であってもよく、また、開口端30aから底部30bに向けて縮小していてもよい。
溝30を形成する第1の方法では、図7に示すように、回転砥石88、ウォータージェトなどにより、成膜された金属被膜3に切削加工を施す。切削加工により形成された溝30の形状は、問わないが、例えば、図6に示す格子状の形状であってもよく、また、複数の平行な直線群、平行四辺形などでもよい。
溝30を形成する第2の方法では、図9〜図11に示すように、基材2の成膜領域2aの上に、溝形成壁71aと開口部71bとをもつマスク部材71を配置する。本実施形態においては、図10に示すように、マスク部材71は、断面六角形の溝形成壁71aを有するハニカム形状であり、溝形成壁71aは、基材2の成膜領域2aの上に立設させる。図11に示すように、マスク部材71を配置した基材2を、マスキング板85の下方に配置する。そして、図12に示すように、成膜装置8により、基材2の表面に、金属粉末37を吹き付ける。金属粉末37は、マスク部材71の開口部71bの中に堆積して、多孔質組織をもつ金属被膜3が形成される。基材2上の溝形成壁71aが配置された部分には、金属粉末が堆積せずに溝30が形成される。その後、マスク部材71を基材2の表面から取り去ることによって、溝30に空間部35が形成される。
溝形成壁71aの高さTは、金属被膜3の厚みAと同じか又は該厚みAよりも大きいことが好ましい(図9)。この場合には、図13に示すように、吹き付けられた金属粉末37、及び基材2表面や堆積された金属粉末に衝突して跳ね返された金属粉末37が、溝形成壁71aに衝突して、運動エネルギが減少する。このため、堆積された金属粉末間に多少の隙間が存在する。ゆえに、マスク部材71を用いて成膜した金属被膜3は、マスク部材71を用いることなく成膜した金属被膜に比べて、金属粉末間により多くの隙間が存在することになり、ヤング率が低くなる。この製造方法で成膜した金属粉末のヤング率は、たとえば、30〜40GPaである。
(2)第2の溝の構成においては、図14に示すように、基材2の金属被膜3と接している表面が、一般部22と、一般部22から窪む凹部21とをもつ。一般部22は、金属被膜3における一般部3aにより被覆され、凹部21は、金属被膜3における凹状部3bにより被覆されている。凹状部3bの上には、一般部3aとの間に、溝30が形成されている。この場合には、凹部21の中に金属被膜3の一部が進入して、凹部21と一般部22との段差Fに、基材2の成分の物性と金属被膜3の成分の物性とを併せ持つ複合領域が形成される。この複合領域によって、金属被膜3の熱応力が効果的に緩和される。基材2表面の凹部21と一般部22との段差F、及び凹部21の底部21aの幅Gは、金属粉末の吹き付けによって形成された金属被膜3に、溝30が形成される程度であればよい。例えば、凹部21と一般部22との段差Fは、0.1〜10mmであるとよく、更には、0.5〜5mmであることが好ましい。凹部21の底部21aの幅Gは、0.1〜10mmであるとよく、更には、0.5〜5mmであるとよい。金属被膜3の厚みAに対する凹部21と一般部22との段差Fの比率(F/A)は0.3〜10であるとよく、好ましくは1〜6である。この場合には、基材2の凹部21と一般部22との段差Fに、熱応力を緩和させるのに十分な厚みの複合領域が形成される。本実施形態においては、溝30は、例えば、図15に示すように、金属被膜3の平面方向に正方形の格子状に形成されているが、これに限定されない。
溝30を形成するにあたって、図16に示すように、基材2の表面に予め凹部21を形成する。凹部21を形成するにあたっては、基材2の表面に切削加工を施したり、基材2の成形とともに形成したりしてもよい。また、基材2表面の凹部21を形成した部分をマスクして、コールドスプレー法や熱容射法などの吹き付け法により、凹部21以外の一般部22を形成したい部分にのみ金属粉末を堆積させてもよい。次に、表面に凹部21を形成した基材2を、マスキング板85の下方に配置する。
次に、図17に示すように、前記成膜装置8を用いて、基材2の表面に、金属粉末37を吹き付ける。金属粉末37は、基材2表面に、その凹部21及び一般部22の形状に沿って堆積して、多孔質組織をもつ金属被膜3が成膜される。このため、基材2の一般部22上には、金属被膜3の一般部3aが形成され、基材2の凹部22上には金属被膜3の凹状部3bが形成される。凹状部3bの上には溝30が形成される。
(3)第3の溝の構成においては、図18、図19に示すように、溝30の内部には、金属被膜3の熱膨張率よりも低い熱膨張率をもつ低熱膨張材6が埋設されていても良い。図20に示すように、溝30に埋設されている低熱膨張材6は、金属被膜3の相手側表面32を拘束している。このため、図20の点線に示すように、金属被膜3の相手側表面32の熱膨張が抑制されて、金属被膜3の相手側表面32は、熱変形量が少ない。このため、熱膨張の少ない相手部材4との間に亀裂が生じにくくなる。一方、金属被膜3の基材側表面31には、熱膨張を吸収し得る空間部35が残されている。このため、図20の点線に示すように、金属被膜3の基材側表面31は、基材側表面31に比べて大きく熱変形することができる。金属被膜3の基材側表面31は、基材2の熱膨張に十分追従することができ、基材2との間でも亀裂が生じることが抑制される。
低熱膨張材6は、金属被膜3の熱膨張率よりも低い熱膨張率をもつ。低熱膨張材6は、金属被膜3を形成する充填部62と、溝30を形成する被覆部61とをもつ。少なくとも基材2の表面に近接する部分に空間部35が残るように、低熱膨張材6を基材2表面に配置して、基材2表面に金属粉末を吹き付ける。これにより、低熱膨張材6の充填部62から基材2表面上に金属粉末が吹き付けられて、充填部62直下の基材2表面及び充填部62の内部に金属粉末が堆積して、多孔質組織をもつ金属被膜3が形成される。また、低熱膨張材6の被覆部61で被覆された基材2表面には金属粉末は堆積せず、溝30が形成される。
図20に示すように、低熱膨張材6は、溝30の開口端30a側に配置されているとよい。また、溝30の底部30b側には、金属被膜3の変形を許容する空間部35が形成されているとよい。低熱膨張材6は、いずれの材質を選択しても良いが、金属被膜3よりも熱膨張率の小さくなるように選択される。低熱膨張材6の材質は、熱膨張率が3.8×10−6/℃である炭化ケイ素(SiC)の他、窒化アルミニウム(AlN)、ムライト、コージェライト、鋳鉄などを用いることができる。このうち、熱伝導性のよいSiC、AlNを用いることが好ましい。低熱膨張材6の表面63は、金属被膜3の相手側表面32と同一面を形成しているとよい。
溝30には、空間部35を残して低熱膨張材6が埋設されている。例えば、図21、図22に示すように、低熱膨張材6は、基材2との間に枠体66を介設して、基材2から離間した位置に保持されている。枠体66は、低熱膨張材6と外形を同一とし、基材2の成膜領域2aを囲む枠部66aをもつ。図23に示すように、枠体66及び低熱膨張材6を載置した基材2を、マスキング材85の下方に配置して、前記成膜装置8により、金属粉末37を基材2表面に吹き付ける。金属粉末は、低熱膨張材6の充填部62からその軸方向に沿って基材2側表面に向かって吹き付けられる。これにより、図20に示すように、低熱膨張材6の充填部62及び充填部62の直下部分62aには、金属粉末が堆積されて金属被膜3が形成される。被覆部61の直下部分61aには、金属粉末は堆積せずに、空間部35が残る。
また、図24〜図26に示すように、低熱膨張材6は、基材2の表面に直接に載置されていてもよい。例えば、図27、図28に示すように、低熱膨張材6の上面に開口する充填部62の上開口端62bの幅Iを、下面に開口する下開口端62cの幅Jよりも小さくする。これにより、上開口端62bよりも大きい開口幅をもつ部分、即ち、上開口端62bの直下部分と、上開口端62bよりも大きい開口幅を形成する被覆部61の側壁61bとの間の空間がアンダーカット部62dとなる。図29に示すように、このような低熱膨張材6を載置した基材2表面に、前記成膜装置8により、金属粉末37を吹き付ける。図26に示すように、低熱膨張材6の充填部62の上開口端62bの直下部分62eには、金属粉末が堆積して金属被膜3が形成される。一方、被覆部61及びアンダーカット部62dには、金属粉末は堆積せずに、溝30が形成される。被覆部61は溝30の中に埋設され、アンダーカット部62dには空間部35が残る。
(4)第4の溝の構成においては、図30に示すように、金属被膜3は、金属粉末37のほかに硬質粒子38を含んでいてもよい。金属粉末37を硬質粒子38とともに表面に凹部21をもつ基材2に吹き付けると、基材2表面の凹部21以外の一般部22上に、金属粉末37及び硬質粒子38が堆積して金属被膜3が形成される。また、基材2の凹部21の上に溝30が形成される。この溝30の底部30bは、基材2の表面に形成された凹部21の上に位置している。底部30bは、凹部21の底部21aから凹部21の上端21cよりも若干上方までの間に位置しているとよい。凹部21の周壁21bは、底部21aに対して垂直方向に形成されていてもよいし、上方にいくに従って拡径するようにテーパ形状を呈していても良い。凹部21の底部21aは、図30に示すように、平坦状で、ある程度の幅Lを持っていても良いし、また、図31に示すように、V字状で、幅Lが殆どなくてもよい。
凹部21の開口幅Nは、0.1〜5mmであることが好ましく、また凹部21の深さMは0.1〜2mmであることが好ましい。これにより、凹部21の中に進入した金属被膜3が硬質粒子38によって削られて、凹部21の中から上方に向けて溝30を形成することができる。凹部21の開口幅Nが0.1mm未満の場合又は凹部21の深さMが0.1mm未満の場合には、基材2に金属粉末及び効率粒子を吹き付けたとき、凹部21内で硬質粒子が転がりにくくなり、溝が形成されないおそれがある。凹部21の開口幅Nが5mmを超える場合には、金属被膜の伝熱効果が低下するおそれがある。凹部21の開口幅Nは、更には、0.1〜3mmであるとよい。これにより、金属被膜の伝熱効果が更に向上する。
金属被膜3は、溝30を挟んで互いに対向する周壁30cを有している。この周壁30cは、溝30の開口端30aから底部30bに向けて、溝30の中心部側に漸次近接するように傾斜する斜面を有している。即ち、金属被膜3の周壁30cにより挟まれた溝30の開口幅Kは、溝30の開口端30aから底部30bに向けて漸次縮小している。溝30の底部30bは、硬質粒子で削られて、丸みを帯びていることが多い。
溝を形成するにあたっては、図32に示すように、予め、基材2の表面に凹部21を形成する。凹部21を形成するにあたっては、基材2の表面に切削加工を施したり、基材の成形とともに形成したりしてもよい。また、図36に示すように、基材2表面の凹部22を形成した部分をマスクして、コールドスプレー法や熱溶射法などの吹き付け法を行うことにより、凹部21以外の一般部22を形成したい部分にのみ金属粉末を堆積させて被膜34を形成してもよい。
次に、図33に示すように、前記成膜装置8を用いて、基材2の表面に、金属粉末37及び硬質粒子38からなる複合粉末39を吹き付ける。図34に示すように、一般部22の上には、複合粉末39からなる金属被膜3が形成される。凹部21の中では、硬質粒子38が、ガス流によって転動する。このため、硬質粒子38が、凹部22内に堆積していく金属被膜3を削り取って、凹部22を起点とする溝30が形成される。
硬質粒子38は、金属粉末よりも硬度が高く、例えば、硬度がHv200以上の粒子である。更には、硬質粒子の熱伝導率は10W/mK以上であるとよく、この場合には、金属被膜の熱伝導性の低下を少なくすることができる。かかる硬質粒子の材質としては、酸化アルミニウム(Al)、炭化ケイ素(SiC)、又は窒化アルミニウム(AlN)、酸化ケイ素(SiO)からなることが好ましい。硬質粒子は、例えば、鋼粉、鋳鉄粉でもよい。硬質粒子は、金属被膜中に5〜50体積%含有しているとよい。5体積%未満の場合には、硬質粒子による金属被膜の切削性能が低下して、溝の深さが浅くなるおそれがある。硬質粒子は金属粒子よりも熱伝導性の低いものが多いため、50体積%を越える場合には、金属被膜の熱伝導性が低下するおそれがある。硬質粒子の粒径は、0.5〜100μmであることが好ましく、更には5〜50μmであるとよい。これにより、金属被膜の切削性能が更に向上し、深い溝が形成される。
(伝熱部材の用途)
伝熱部材の金属被膜の相手側表面に相手部材を固定し、相手部材の表面には発熱体としてのパワー素子を搭載することによって、伝熱部材はパワーモジュールを構成することができる。このようなパワーモジュールは、高い信頼性が要求される車両用インバータに用いることができる。また、金属被膜は熱伝導性がよいため、車両のエンジン部品、コンピュータのCPU、車両用オーディオ機器、家電製品など、放熱性が要求される機器に用いることもできる。
(付記)
基材の表面に金属被膜を成膜するにあたって、金属被膜には、金属被膜の表面から前記基材に向けて窪み、内部に空間部をもつ溝を形成する。溝を有する金属被膜の形成方法は、上記の方法と同様である。即ち、溝は、金属被膜に切削加工を施すことにより形成することができる。基材の表面にマスク部材を配置するとともに、マスク部材に形成された溝形成壁により、基材表面上の溝形成部を覆いながら、基材の表面に金属粉末を吹き付ける工程と、マスク部材を基材の表面から取り去る工程と、を行うことにより、溝を形成することもできる。凹部を有する基材の表面に、金属粉末を吹き付けてもよい。基材の表面における溝形成部に、少なくとも基材の表面に近接する部分に空間部が残るように埋設部材を配置して、金属粉末を吹き付けてもよい。基材表面の溝形成部を被覆する被覆部と開口部とをもつ埋設部材を、基材の表面から離間した位置に保持して前記金属粉末の吹き付けを行ってもよい。埋設部材の開口部の下開口端の開口幅は、開口部の上開口端の開口幅よりも大きくしてもよい。金属粉末と硬質粒子とを混合してなる混合粒子を、基材の表面に形成された凹部に向けて吹き付けてもよい。
また、上記の溝を有する金属被膜は、伝熱部材以外の構成要素にも適用できる。例えば、金属被膜は、軸受などのベアリング構成材にも適している。
(実施例1)
図1に示すように、本例の伝熱部材1は、基材2と、多孔質組織の金属被膜3とからなる。図2に示すように、金属被膜3は、基材2と対向する基材側表面31と、発熱体5が搭載される相手部材4と対向する相手側表面32とをもつ。
基材2は、アルミニウムからなるヒートシンクであり、熱膨張率は21×10−6/℃である。金属被膜3は、銅粉末を堆積させてなる多孔質組織をもち、熱膨張率は17×10−6/℃であり、ヤング率は50GPaであり、密度は7.8g/cmである。相手部材4は、窒化アルミニウム(AlN)であり、熱膨張率は4.6×10−6/℃である。相手部材4は、金属被膜3の上にはんだ41で接合される。相手部材4の上には、発熱体5としてのパワー素子がろう付け部51によって固定される。
図5に示すように、金属被膜3には、相手側表面32から基材側表面31に向かって、その厚み方向に貫通する溝30が形成されている。金属被膜3の厚みA、及び溝30の深さDは、ともに3mmである。図6に示すように、溝30は、金属被膜3の平面方向全体にわたって、格子状に形成されている。金属被膜3は、溝30によって一辺Rが5mmの正方形の島33に分断されている。溝30の内部全体には、空間部35が残されている。
本例の伝熱部材1を製造するにあたっては、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。粒径150〜180μmの白アルミナ粒子を用いて、基材2の表面にショットブラストを行う。
次に、図3に示す成膜装置8を用いて、基材2表面の成膜領域2aに、固相状態の金属粉末37を圧縮ガスとともに吹き付けることにより金属被膜3を成膜する。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を基材表面に吹き付けるに当たっては、表1に示すように、圧縮ガスは、圧縮エアであり、その圧力は0.6MPaであり、ガス温度は500℃とする。これにより、金属粉末の基材表面に衝突する直前の温度は、50〜200℃となる。ノズル83からの金属粉末の吹き付け方向dは、垂直方向とする。金属粉末のノズル83への供給速度は、12g/分とする。ノズル83の先端から基材2表面までの間の距離(スプレー距離)は、10mmとする。ノズル83は、図4に示すルートRのように、X−Y方向(水平方向)に移動させる。ノズル83の移動速度は、10mm/秒とする。隣り合うX方向のルートRの距離(パスピッチ)Qは、2mmとする。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行うことによって、多孔質組織をもつ金属被膜3を成膜する。
Figure 2009206331
次に、図7に示すように、金属被膜3を、回転砥石88で格子状に切削加工を施す。これにより、金属被膜3に、内部に空間部35をもつ溝30が形成される。溝30は、格子形状を呈しており、金属被膜3の相手側表面32から基材側表面31までの間の溝30の幅Eは、1mmである。溝30のピッチBは6mmであり、隣り合う溝30の間に形成された島33は、一辺Rが5mmの正方形である。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス(Nガス、以下の実施例及び比較例において同じ。)雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を測定する。熱伝導率は、レーザフラッシュ法により測定する。ヤング率は、超音波測定法(JISZ2280)に準拠した方法により測定する。熱膨張率は測微望遠鏡法により測定する。これらの測定結果を表1に示す。
(実施例2)
本例においては、図8に示すように、金属被膜3が、溝30によって、断面六角形状のハニカム状に分断されている。分断された各島33の形状は六角形状である。島33の幅Uは5mmであり、溝の幅Eは1mmである。
本例においては、金属被膜3に溝30を形成するにあたって、図10に示すハニカム状のマスク部材71を用いている点が、実施例1と相違する。マスク部材71は、断面六角形状の溝形成壁71aと、溝形成壁71aにより囲まれた開口部71bとからなる。マスク部材71の高さTは、4mmである。開口部71bの開口幅Uは5mmである。
まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。粒径150〜180μmの白アルミナ粒子を用いて、基材2の表面にショットブラストを行う。
次に、図11に示すように、ショットブラストを施した基材2表面に、マスク部材71を載置する。次に、マスク部材71を載置した基材2を、マスキング板85の下方に配置する。次に、図12に示すように、成膜装置8を用いて、基材2表面に固相状態の金属粉末37を圧縮ガスとともに吹き付ける。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行うことによって、多孔質組織をもつ金属被膜3を成膜する。このとき、マスク部材71の開口部71bの中に金属粉末が堆積して金属被膜3が形成される。また、溝形成壁71aには、金属粉末が堆積せずに、溝30が形成される。
次に、マスク部材71を金属被膜3から取り去る。これにより、溝30から溝形成壁71aが抜き取られて、溝30に空間部35が形成される。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下で550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を実施例1と同様に測定し、表1に示す。
(実施例3)
本例の伝熱部材1は、図14に示すように、基材2の金属被膜3と接している表面が、平坦な一般部22と、一般部22よりも窪む凹部21とをもつ。一般部22は、金属被膜3の一般部3aにより被覆され、凹部21は、金属被膜3の凹状部3bにより被覆されている。凹状部3bは、一般部3aよりも低いため、凹状部3bの上に溝30が形成される。基材2表面の凹部21と一般部22との段差Fは、1mmである。金属被膜3の厚みAは3mmである。凹部21の底部21aの幅Gは、1mmである。金属被膜3の厚みAに対する凹部21と一般部22との段差Fの比率(F/A)は1である。
図15に示すように、溝30は、金属被膜3の平面方向に正方形の格子状に形成されている。金属被膜3は、溝30によって一辺Rが5mmの正方形の島33に分断されている。溝30の内部全体には、空間部35が残されている。溝30の幅Eは、凹部21の底部21aの幅よりも小さく、1mm未満である。
本例の伝熱部材を製造するにあたっては、図16に示すように、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。基材2の表面に予め凹部21を形成する。この凹部21は、平坦な基材2の表面に機械加工を施して形成する。隣り合う凹部21の間には、正方形格子状のテラスが一般部22として残る。次に、凹部21が形成された基材2表面に、粒径150〜180μmの白アルミナ粒子を用いて、ショットブラストを行う。基材2を、マスキング板85の下方に配置する。
次に、図17に示す成膜装置8を用いて、基材2表面に、固相状態の金属粉末37を圧縮ガスとともに吹き付けることにより金属被膜3を成膜する。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行うことによって、多孔質組織をもつ金属被膜3を成膜する。
成膜された金属被膜3は、基材2の凹部21の上及び一般部22の上をほぼ均一な厚みで被覆する。このため、凹部21を被覆する金属被膜3と一般部22を被覆する金属被膜3との間に、内部に空間部35をもつ溝30が形成される。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を実施例1と同様に測定し、表1に示す。
(実施例4)
本例の伝熱部材1においては、図18〜図20に示すように、溝30の内部に、金属被膜3の熱膨張率よりも低い熱膨張率をもつ低熱膨張材6が埋設されている。低熱膨張材6は、炭化ケイ素(SiC)からなり、熱膨張率は、3.8×10−6/℃であって、金属被膜3の熱膨張率よりも低い。低熱膨張材6は、被覆部61と充填部62とをもつ。充填部62の内部には、金属被膜3が形成されている。被覆部61は、溝30の中の相手側表面32側に埋設されている。そして、被覆部61の表面63は、金属被膜3の相手側表面32と同一面を形成している。溝30の中の被覆部61と基材2との間には、空間部35が残されている。
被覆部61は、図19に示すように、正方形格子状に形成されている。被覆部61の幅Eは1mmである。隣り合う被覆部61間に形成されている充填部62は、一辺Rが2mmの正方形状を呈している。図20に示すように、被覆部61の厚みHは1mmであり、金属被膜3の厚みAは3mmである。被覆部61と基材2との間に形成されている空間部35の高さSは、2mmである。
本例の伝熱部材1を製造するに当たっては、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。次に、基材2表面に、粒径150〜180μmの白アルミナ粒子を用いて、ショットブラストを行う。図21,22に示すように、基材2の表面に、低熱膨張材6を配置する。このとき、低熱膨張材6と基材2との間に、低熱膨張材6の外形と同一の枠体66を介在させる。枠体66は、アルミニウム製の角パイプを高さ2mmに切断したものである。このように枠体66を基材2と低熱膨張材6との間に介在させることにより、低熱膨張材6と基材2との間が離間する。
次に、図23に示すように、低熱膨張材6を離間して配置した基材2を、マスキング部材85の下方に配置する。次に、成膜装置8を用いて、基材2表面の成膜領域2aに、固相状態の金属粉末37を圧縮ガスとともに吹き付ける。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行う。これにより、低熱膨張材6の充填部62から基材2表面上に金属粉末が吹き付けられて、充填部62及び充填部62の直下部分62aに金属粉末が堆積して、多孔質組織をもつ金属被膜3が形成される。また、低熱膨張材6の被覆部61で被覆された基材2表面、即ち被覆部61の直下部分61aには金属粉末は堆積せず、溝30が形成される。溝30の相手側表面32側には低熱膨張材6の被覆部61が埋設され、被覆部61と基材2との間には、空間部35が残される。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を実施例1と同様に測定し、表1に示す。
(実施例5)
本例の伝熱部材1は、図24〜図26に示すように、溝30に埋設された低熱膨張材6は、枠体を用いることなく、基材2の上に直接に載置されている。低熱膨張材6の厚みHは、3mmであり、金属被膜3の厚みAと同じである。低熱膨張材6の充填部62は、円形状であり、千鳥状に配列している。低熱膨張材6の被覆部61は、充填部62と対向する側壁61bをもつ。
この側壁61bの相手側表面32側は、側壁61bの基材側表面31側よりも充填部62に向けて突出している。側壁61bは、充填部62の上開口端62bの幅Iは、下開口端62cの幅Jよりも小さくなるように傾斜している(図28)。上開口端62bよりも大きい開口幅をもつ部分、即ち、上開口端62bの直下部分62eよりも径方向外側の空間がアンダーカット部62dとなる。上開口端62bの直下部分62eに金属被膜3が形成されている。金属被膜3と側壁61bとの間のアンダーカット部62dには、空間部35が形成されている。
本例の伝熱部材を製造するに当たっては、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。次に、基材2表面に、粒径150〜180μmの白アルミナ粒子を用いて、ショットブラストを行う。図27,28に示すように、基材2の表面に、低熱膨張材6を配置する。
次に、図29に示すように、低熱膨張材6を表面に配置した基材2を、マスキング部材85の下方に配置する。次に、成膜装置8を用いて、基材2表面に、固相状態の金属粉末37を圧縮ガスとともに吹き付けることにより金属被膜3を成膜する。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行う。これにより、低熱膨張材6の充填部62から基材2表面に金属粉末が吹き付けられて、充填部62の上開口端62bの直下部分に金属粉末が堆積して多孔質組織の金属被膜3が形成される。また、充填部62の下開口端62cの近傍には、上開口端62bの直下部分62eよりも径方向外側に、アンダーカット部62dが形成されている。このアンダーカット部62dには、金属粉末が堆積しないため、空間部35が残る。したがって、金属被膜3の基材側表面31の近傍に空間部35を残して、金属被膜3が形成される。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を実施例1と同様に測定し、表1に示す。
(実施例6)
本例の伝熱部材は、図30に示すように、金属被膜3に硬質粒子38が含まれている。基材2の表面には、正方形格子状の凹部21が形成されている。凹部21以外の一般部22上は金属被膜3が被覆され、凹部21の内部から上方に向けて溝30が形成されている。溝30の底部30bは、丸みを帯びており、また凹部21の底部21aから、凹部21の上端21cよりも若干上方、例えば、金属被膜3の厚みAの半分までの間に位置している。
金属被膜3は、金属粉末37と硬質粒子38とからなるポーラスな複合組織からなる。金属被膜3は、溝30を挟んで互いに対向する周壁30cを有している。この周壁30cは、溝30の開口端30aから底部30bに向けて、溝30の中心部側に漸次近接するように傾斜する斜面を有している。即ち、溝30を挟んで互いに対向する周壁30cの間の開口幅Kは、溝30の開口端30aから底部30bに向けて漸次縮小している。溝30は、金属被膜3の平面方向に正方形の格子状に形成されている。金属被膜3は、溝30によって一辺Rが5mm未満の正方形の島33に分断されている。溝30の内部全体には、空間部35が残されている。
本例の伝熱部材を製造するにあたっては、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。基材2の平坦な表面に予め凹部21を形成する。凹部21は、平坦な基材2の表面に機械加工を施して、上端の間口幅Nが1mm、底幅Lが0.5mm、開口幅Nが1mm、深さMが0.5mmの凹部21を形成する。凹部21のを囲む周壁21bは、上端21cから底部21aにかけて、対向する周壁との間の幅が漸次小さくなるように傾斜している。凹部21の間には、正方形格子状の平坦なテラスが一般部22として残る。次に、凹部21が形成された基材2表面に、粒径150〜180μmの白アルミナ粒子を用いて、ショットブラストを行う。図32に示すように、基材2を、マスキング板85の下方に配置する。
次に、図33に示す成膜装置8を用いて、基材2表面に、固相状態の金属粉末及び硬質粒子からなる混合粉末39を圧縮ガスとともに吹き付ける。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。硬質粒子としては、平均粒径10〜20μm、熱伝導率168W/mK、熱膨張率が3.8×10−6/℃のSiC粉末を用いる。混合粉末における金属粉末及び硬質粒子の配合比は、体積比で3:2である。成膜装置8を用いて混合粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末及び硬質粒子からなる混合粉末39を基材2の表面に吹き付けるコールドスプレー法を行うことによって、金属粉末と硬質粒子とからなるポーラスな複合組織をもつ金属被膜3を成膜する。
基材表面に吹き付けられる混合粉末39には、硬質粒子が含まれている。図34に示すように、この硬質粒子38は、圧縮ガスのガス流GFによって、基材2表面の凹部21内を転動する。このため、混合粉末の吹き付けによって凹部21内に堆積していく金属被膜3を削り取っていく。それゆえ、金属被膜3には、凹部21を起点とする溝30が形成される。また、成膜された金属被膜3には、ポーラスな銅マトリックスにSiC粉末が混合された複合組織となっている。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を、実施例1と同様に測定し、表1に示す。
(実施例7)
本例の伝熱部材は、図35に示すように、基材2表面の凹部21及び一般部22が、金属粉末からなる多孔質組織の被膜34によって形成されている点が、実施例6と相違する。平滑な基材2の表面には、格子状に配列している一辺(V)5mmの正方形の複数の一般部22と、隣り合う一般部22同士の間に幅(L)1mm、深さ(M)0.5mmで開口している凹部21とからなる。
一般部22上は金属被膜3により被覆され、凹部21の内部から上方に向けて溝30が形成されている。溝30の底部30bは、凹部21の内部に位置している。
金属被膜3は、金属粉末37と硬質粒子38とからなるポーラスな複合組織からなる。金属被膜3には、溝30を挟んで互いに対向する周壁30cを有している。この周壁30cは、溝30の開口端30aから底部30bに向けて、溝30の中心部側に漸次近接するように傾斜する斜面を有している。即ち、溝30を挟んで互いに対向する周壁30cの間の開口幅Kは、溝30の開口端30aから底部30bに向けて漸次縮小している。溝30は、金属被膜3の平面方向に正方形の格子状に形成されている。金属被膜3は、溝30によって一辺Rが5mm未満の正方形の島33に分断されている。溝30の内部全体には、空間部35が残されている。
本例の伝熱部材を製造するにあたっては、まず、基材2として、材質アルミニウム(JIS規格:A6063)、サイズ80×40mmのヒートシンクを準備する。次に、基材2の平坦な表面に、粒径150〜180μmの白アルミナ粒子を用いて、ショットブラストを行う。
次に、図36に示すように、基材2の表面に、マスク部材7を載置する。マスク部材71は、幅1mmの正方形格子状の溝形成壁71aと、溝形成壁71aによって一辺が5mmの正方形状に区画された開口部71bとを有する。マスク部材71を載置した基材2を、マスキング板85の下方に配置する。次に、成膜装置8を用いて、基材2の表面に、固相状態の金属粉末37を圧縮ガスとともに吹き付ける。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。成膜装置8を用いて金属粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の金属粉末37を基材2の表面に吹き付けるコールドスプレー法を行うことによって、金属粉末37からなる多孔質組織の被膜34を成膜する。被膜34の厚みは0.5mmとする。マスク部材71を被膜34から取り去る。
次に、図37に示すように、成膜装置8を用いて、被膜34を形成した基材2表面に、固相状態の金属粉末及び硬質粒子からなる混合粉末39を圧縮ガスとともに吹き付ける。金属粉末としては、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を用いる。硬質粒子としては、平均粒径10〜20μmのSiC粉末を用いる。混合粉末における金属粉末及び硬質粒子の配合比は、体積比で3:2である。成膜装置8を用いて混合粉末を吹き付ける条件は、表1に示されているように、実施例1と同様である。このように、圧縮ガスとともに固相状態の混合粉末Pを基材2の表面に吹き付けるコールドスプレー法を行うことによって、金属粉末と硬質粒子とからなるポーラスな複合組織をもつ金属被膜3を成膜する。
基材表面に吹き付けられる混合粉末には、硬質粒子が含まれている。このため、実施例6と同様の原理により、金属被膜3に、凹部21を起点とする溝30が形成される。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。その後、金属被膜3に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を、実施例1と同様に測定し、表1に示す。
(比較例1)
実施例1と同様に、図38に示すように、基材としてのアルミニウム製のヒートシンク95を準備する。ヒートシンク95の表面には、実施例1で形成した多孔質組織からなる金属被膜の代わりに、緩衝部材93をシリコングリース942で接着している。緩衝部材93は、厚み3mmのCu−Co板である。
緩衝部材93に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を、実施例1と同様に測定し、表1に示す。
(比較例2)
実施例1と同様に、基材としてのアルミニウム製のヒートシンクを準備する。実施例1と同条件で、ヒートシンクの表面に、樹枝形状を呈する平均粒径10〜30μmの電気分解銅粉末を圧縮ガスとともに吹き付けて、多孔質組織をもつ金属被膜を形成している。本比較例においては、実施例1とは異なり、金属被膜には、溝は形成していない。その他は、実施例1と同様である。
次に、金属被膜3の表面に機械加工を施して平滑にする。金属被膜3の厚みAは3.0mmとする。金属被膜に不活性ガス雰囲気下、550℃で熱処理を施す。この熱処理の前、後の双方の金属被膜の熱伝導率、ヤング率及び熱膨張率を実施例1と同様に測定し、表1に示す。
(実験例)
上記実施例1〜7及び比較例2の伝熱部材について、金属被膜の表面に、窒化アルミニウムからなる絶縁部材をはんだで接合する。比較例1の伝熱部材については、Cu−Mo板の表面に、窒化アルミニウムからなる絶縁部材をはんだで接合する。これらを試験材として、熱サイクル試験を行う。試験材に対して、−30℃を下限温度、120℃を上限温度とした温度範囲内で、試験材が損傷するまで繰り返し熱負荷を加えることにより、熱サイクル試験を行う。金属被膜(比較例1ではCu−Mo板)に亀裂等が発生したり、規格以上に反ったりした時点のサイクル数を記録する。
また、比較例1の伝熱性能を基準とし、実施例1〜7及び比較例2の伝熱性能を評価する。伝熱性能は、JIS規格(R1611)によるレーザーフラッシュ法に準拠して行う。測定結果を表2に示す。
Figure 2009206331
同表より知られるように、実施例1〜7は、比較例1,2に比べて、いずれも熱サイクル数が格段に高かった。実施例1〜7では、金属被膜に溝が形成されているため、絶縁部材と基材との間の熱膨張差が溝によって緩和されたものであると考えられる。
また、金属被膜に熱処理をした場合には、熱処理しない場合に比べて、熱伝導率が高かった。熱処理によって、被膜として付着した金属粉末同士の粒界の酸化物(酸化膜)が粒子内部に拡散し、粒子同士の金属結合の割合が増加する。この結果、熱伝導性の良い金属被膜となったものと考えられる。
実施例2では、金属被膜のヤング率が、実施例1,3、6,7に比べて低かった。実施例2では、図13に示すように、金属粉末37が基材2表面に堆積するときに、マスク部材71の溝形成壁71aに衝突して、運動エネルギが減速される。それゆえ、金属粉末37は基材表面に比較的大きな空孔を残しながら堆積していく。ゆえに、成膜された金属被膜3のヤング率が低くなったものと考えられる。
また、実施例4,5では、金属被膜のヤング率が、実施例1,3、6,7に比べて低かった。これは、金属被膜3が、低熱膨張材6で跳ね返された金属粉末の跳ね返り粒子を包含して、粒子と粒子との間が必ずしも全て密着していないためであると考えられる。
また、実施例6,7では、金属被膜の熱膨張率、熱伝導率及び放熱性能が、実施例1〜5に比べて小さかった。これは、実施例6,7では、金属被膜3の中に含まれている硬質粒子(SiC)が、金属粉末(Cu)よりも低い熱膨張率をもち、金属粉末よりも熱伝導性が低いためであると考えられる。
また、実施例2,4,5は、実施例1,3,6、7に比べて、熱サイクル数が多かった。実施例2では、金属被膜のヤング率が小さいため、相手部材と基材との熱膨張差を効果的に緩和したため、金属被膜に亀裂や反りが発生しにくかったものと考えられる。実施例4、5では、図20、図26に示すように、溝30に埋設されている低熱膨張材6が、金属被膜3の相手側表面32を拘束している。このため、金属被膜3の相手側表面32の熱膨張が抑制されて、熱膨張の少ない相手部材4との間に亀裂が生じにくくなる。一方、金属被膜3の基材側表面31には、熱膨張を吸収し得る空間部35が残されているため、基材2の熱膨張に十分追従することができ、基材2との間でも亀裂が生じることが抑制されたものと考えられる。
比較例1は、比較例2及び実施例1〜7に比べて、熱サイクル数及び放熱性能がともに低かった。比較例1では、図38に示すように、基材2表面に緻密な金属組織の緩衝部材93(Cu−Mo板)をシリコングリース942で接合している。このため、緩衝部材93は、ポーラスな組織の金属被膜に比べて、熱膨張差に追従しにくく、緩衝部材93に亀裂や反りが発生したり接合界面で亀裂が生じたりしやすくなったものと考えられる。
本発明の伝熱部材は、車両用インバータのパワーモジュールとして用いられるだけでなく、車両のエンジン部品、コンピュータのCPU、車両用オーディオ機器、家電製品など、放熱性が要求される機器に用いることもできる。
本発明の実施例1の伝熱部材の断面図である。 実施例1の伝熱部材を用いたパワーモジュールの断面図である。 実施例1における、金属被膜の成膜方法を示す説明図である。 実施例1における、成膜装置のノズルの移動ルートを示す説明図である。 実施例1の伝熱部材の要部拡大断面図である。 図1のA−A矢視断面図である。 実施例1における、金属被膜に切削加工を施す方法を示す説明図である。 実施例2の伝熱部材の斜視図である。 実施例2における、溝形成用のマスク部材の断面図である。 実施例2における、溝形成用のマスク部材の斜視図である。 実施例2における、金属被膜の成膜方法を示す説明図である。 図11に続く、金属被膜の成膜方法を示す説明図である。 実施例2における、金属粉末がマスク部材に衝突しながら基材表面に体積していく状態を示す説明図である。 実施例3の伝熱部材の要部拡大断面図である。 図14のB−B矢視断面図である。 実施例3における、金属被膜の成膜方法を示す説明図である。 図16に続く、金属被膜の成膜方法を示す説明図である。 実施例4の伝熱部材の断面図である。 図18のC−C矢視断面図である。 実施例4の伝熱部材の要部拡大断面図である。 実施例4における、低熱膨張材及び枠体の斜視図である。 実施例4における、低熱膨張材及び枠体を載置した基材の断面図である。 実施例4における、金属被膜の成膜方法を示す説明図である。 実施例5の伝熱部材の断面図である。 実施例5の伝熱部材の平面図である。 実施例5の伝熱部材の要部拡大断面図である。 実施例5における、低熱膨張材を載置した基材の断面図である。 実施例5における、低熱膨張材の要部拡大断面図である。 実施例5における、金属被膜の成膜方法を示す説明図である。 実施例6の伝熱部材の断面図である。 実施例6の変形例としての伝熱部材の断面図である。 実施例6における、金属被膜の成膜方法を示す説明図である。 図32に続く、金属被膜の成膜方法を示す説明図である。 実施例6における、硬質粒子が金属被膜を削っていく状態を示す説明図である。 実施例7の伝熱部材の断面図である。 実施例7における、被膜の成膜方法を示す説明図である。 図36に続く、金属被膜の成膜方法を示す説明図である。 従来例における、パワーモジュールの断面図である。
符号の説明
1:伝熱部材、2:基材、2a:被膜形成領域、21:凹部、22:一般部、3:金属被膜、30:溝、30a:開口端、30b:底部、30c:周壁、31:基材側表面31:相手側表面、33:島、34:被膜、35:空間部、37:金属粉末、38:硬質粒子、39:混合粉末、4:相手部材、5:発熱体、6:低熱膨張材、8:成膜装置、61:被覆部、61a:被膜部の直下部分、61b:周壁、62:充填部、62a:充填部の直下部分、62b:上開口端、62c:下開口端、62d:アンダーカット部、62e:上開口端の直下部分、63:低熱膨脹材の表面、71:マスク部材、71a:溝形成壁、71b:開口部、85:マスキング板、81:圧縮ガス供給器、82:粉末供給器、83:ノズル、84:ノズル移動機構、85:マスキング板。

Claims (23)

  1. 基材と、
    前記基材に固定された基材側表面と、前記基材よりも熱膨張率が小さい発熱体搭載用の相手部材を固定する相手側表面とをもち、前記相手部材の熱膨張率と前記基材の熱膨張率との間の熱膨張率をもつ金属被膜と、を有する伝熱部材であって、
    前記金属被膜には、前記相手側表面から前記基材側表面に向けて窪む溝が形成されているとともに、前記溝の内部の少なくとも一部には前記金属被膜の熱変形を許容する空間部が残されていることを特徴とする伝熱部材。
  2. 前記金属被膜は、多孔質組織をもつことを特徴とする請求項1記載の伝熱部材。
  3. 前記金属被膜は、前記溝により互いに独立した複数の島に分断されていることを特徴とする請求項1又は請求項2に記載の伝熱部材。
  4. 前記溝は、前記金属被膜の厚み方向に貫通して形成されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の伝熱部材。
  5. 前記空間部は、前記溝の内部全体に残されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の伝熱部材。
  6. 前記金属被膜は、凹部及び一般部を有する前記基材の表面の形状に沿って形成されて、前記金属被膜における前記凹部上に形成された部分は、前記金属被膜における前記一般部上に形成された他の部分との間に前記溝を形成していることを特徴とする請求項1乃至請求項3及び請求項5のいずれか1項に記載の伝熱部材。
  7. 更に、前記金属被膜の熱膨張率よりも低い熱膨張率をもち、且つ前記溝に埋設されて前記基材表面を被覆する被覆部と、内部に前記金属被膜を形成した充填部と、をもつ低熱膨張材を有しており、
    前記被覆部は、前記溝の少なくとも開口端側に配置されており、且つ前記溝の少なくとも底部側には前記空間部が残されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の伝熱部材。
  8. 前記低熱膨張材の前記被覆部の表面は、前記金属被膜の前記相手側表面と同一面を形成していることを特徴とする請求項7に記載の伝熱部材。
  9. 前記低熱膨張材は、前記基材から離間した位置に配設されて、前記低熱膨張材と前記基材との間に前記空間部が形成されていることを特徴とする請求項7又は請求項8に記載の伝熱部材。
  10. 前記充填部の前記基材と対面している下開口端の開口幅は、前記充填部の前記相手部材と対面する上開口端の開口幅よりも大きく、
    前記充填部における前記上開口端の直下部分には前記金属被膜が形成されており、前記充填部における前記上開口端よりも大きい開口幅をもつ部分には前記空間部が残されていることを特徴とする請求項7又は請求項8に記載の伝熱部材。
  11. 前記金属被膜は、硬質粒子を含み、
    前記溝の開口幅は、前記金属被膜の前記相手側表面から前記基材側表面に向けて漸次縮小していることを特徴とする請求項1乃至請求項5のいずれか1項に記載の伝熱部材。
  12. 前記金属被膜は、銅又は銅合金を含むことを特徴とする請求項1乃至請求項11のいずれか1項に記載の伝熱部材。
  13. 請求項1乃至請求項12のいずれか1項に記載の伝熱部材に、前記発熱体としてのパワー素子を搭載した前記相手部材を搭載してなることを特徴とするパワーモジュール。
  14. 請求項1乃至請求項12のいずれか1項に記載の伝熱部材を製造する方法であって、
    前記基材の表面に、金属粉末を吹き付けることにより前記金属被膜を形成することを特徴とする伝熱部材の製造方法。
  15. 固相状態の金属粉末を圧縮ガスとともに前記基材表面に吹き付けることにより、前記金属被膜を形成することを特徴とする請求項14記載の伝熱部材の製造方法。
  16. 前記金属被膜に切削加工を施すことにより、前記溝を形成することを特徴とする請求項14又は請求項15に記載の伝熱部材の製造方法。
  17. 溝形成壁及び開口部をもつマスク部材を配置した前記基材の表面に、前記金属粉末を吹き付けることにより、前記開口部に前記金属被膜を形成し、前記溝形成壁が配置されている部分には前記溝を形成する工程と、
    前記マスク部材を前記基材の表面から取り去ることにより、前記溝に前記空間部を残す工程と、をもつことを特徴とする請求項14又は請求項15に記載の伝熱部材の製造方法。
  18. 凹部をもつ前記基材の表面に、前記金属粉末を吹き付けることを特徴とする請求項14又は請求項15に記載の伝熱部材の製造方法。
  19. 前記金属被膜の熱膨張率よりも低い熱膨張率をもち且つ前記金属被膜を形成する充填部と前記溝を形成する被覆部とをもつ低熱膨張材を、少なくとも前記基材に近接する部分に前記空間部が残るように、前記基材表面に配置して、前記金属粉末を吹き付けることを特徴とする請求項14又は請求項15に記載の伝熱部材の製造方法。
  20. 前記低熱膨張材を前記基材の表面から離間した位置に保持して前記金属粉末の吹き付けを行うことを特徴とする請求項19記載の伝熱部材の製造方法。
  21. 前記低熱膨張材の前記充填部の前記基材と対面している下開口端の開口幅は、前記充填部の前記相手部材と対面する上開口端の開口幅よりも大きいことを特徴とする請求項19に記載の伝熱部材の製造方法。
  22. 前記金属粉末に硬質粒子を混合してなる混合粒子を、凹部を有する前記基材の表面に向けて吹き付けることを特徴とする請求項14又は請求項15に記載の伝熱部材の製造方法。
  23. 前記金属被膜を成膜した後に、前記金属被膜を熱処理することを特徴とする請求項14乃至請求項22のいずれか1項に記載の伝熱部材の製造方法。
JP2008047936A 2008-02-28 2008-02-28 伝熱部材及びその製造方法、並びにパワーモジュール Withdrawn JP2009206331A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047936A JP2009206331A (ja) 2008-02-28 2008-02-28 伝熱部材及びその製造方法、並びにパワーモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047936A JP2009206331A (ja) 2008-02-28 2008-02-28 伝熱部材及びその製造方法、並びにパワーモジュール

Publications (1)

Publication Number Publication Date
JP2009206331A true JP2009206331A (ja) 2009-09-10

Family

ID=41148301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047936A Withdrawn JP2009206331A (ja) 2008-02-28 2008-02-28 伝熱部材及びその製造方法、並びにパワーモジュール

Country Status (1)

Country Link
JP (1) JP2009206331A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047329A1 (ja) * 2011-09-28 2013-04-04 日本発條株式会社 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
WO2015186644A1 (ja) * 2014-06-06 2015-12-10 日本発條株式会社 複合材、積層体、及びパワーモジュール
CN106469703A (zh) * 2015-08-18 2017-03-01 精工爱普生株式会社 接合体、电子设备、投影仪以及接合体的制造方法
JP2017098520A (ja) * 2015-11-12 2017-06-01 日本発條株式会社 積層体、パワーモジュールおよび積層体の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047329A1 (ja) * 2011-09-28 2013-04-04 日本発條株式会社 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
JP2013074199A (ja) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
WO2015186644A1 (ja) * 2014-06-06 2015-12-10 日本発條株式会社 複合材、積層体、及びパワーモジュール
JP2015231041A (ja) * 2014-06-06 2015-12-21 日本発條株式会社 積層体、及びパワーモジュール
CN106469703A (zh) * 2015-08-18 2017-03-01 精工爱普生株式会社 接合体、电子设备、投影仪以及接合体的制造方法
US10036942B2 (en) 2015-08-18 2018-07-31 Seiko Epson Corporation Joined body, electronic device, projector, and manufacturing method of joined body
JP2017098520A (ja) * 2015-11-12 2017-06-01 日本発條株式会社 積層体、パワーモジュールおよび積層体の製造方法

Similar Documents

Publication Publication Date Title
JP4241859B2 (ja) パワーモジュールの製造方法、パワーモジュール、車両用インバータ、及び車両
JP4586823B2 (ja) 成膜方法、伝熱部材、パワーモジュール、車両用インバータ、及び車両
JP6096094B2 (ja) 積層体、絶縁性冷却板、パワーモジュールおよび積層体の製造方法
KR102151824B1 (ko) 전자 부품 장착 기판 및 전자 부품 장착 기판을 제조하는 방법
JP6811719B2 (ja) 積層体の製造方法
WO2007125878A1 (ja) アルミニウム-炭化珪素質複合体及びそれを用いた放熱部品
CN106796927A (zh) 散热基板及该散热基板的制造方法
TW201325330A (zh) 配線基板及其製造方法以及半導體裝置
JP2007247058A (ja) 複合材およびその製造方法
JP2009206331A (ja) 伝熱部材及びその製造方法、並びにパワーモジュール
JP2010024077A (ja) アルミニウム−炭化珪素質複合体及びその製造方法
JP4645464B2 (ja) 電子部材の製造方法
JP2009127086A (ja) 伝熱部材及びその製造方法
CN103194712A (zh) 高导热性的钨铜热沉和电子封装材料及其制备方法
CN106232845A (zh) 铝‑金刚石系复合体及使用其的散热部件
US9370795B2 (en) Method for applying a wear-resistant layer to a turbomachine component
JP2009001873A (ja) 伝熱部材の製造方法、パワーモジュール、車両用インバータ、及び車両
JP2009038162A (ja) 放熱部品、その製造方法及びパワーモジュール
JP5602566B2 (ja) アルミニウム−炭化珪素質複合体からなる伝熱部材
KR101473708B1 (ko) 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판
JP4973608B2 (ja) パワーモジュール用基板の製造方法及びパワーモジュール用基板
JP2010189754A (ja) 金属被膜の成膜方法、伝熱部材、パワーモジュール、及び車両用インバータ
JP2009032996A (ja) 放熱構造体の製造方法
JP2009242899A (ja) SiC/Al複合焼結体およびその製造方法
JP6497616B2 (ja) ヒートスプレッダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322