JP7186929B1 - 積層体、及びその製造方法、並びに、パワーモジュール - Google Patents

積層体、及びその製造方法、並びに、パワーモジュール Download PDF

Info

Publication number
JP7186929B1
JP7186929B1 JP2022535194A JP2022535194A JP7186929B1 JP 7186929 B1 JP7186929 B1 JP 7186929B1 JP 2022535194 A JP2022535194 A JP 2022535194A JP 2022535194 A JP2022535194 A JP 2022535194A JP 7186929 B1 JP7186929 B1 JP 7186929B1
Authority
JP
Japan
Prior art keywords
layer
metal
ceramic plate
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022535194A
Other languages
English (en)
Other versions
JPWO2022153891A1 (ja
JPWO2022153891A5 (ja
Inventor
優也 弓場
篤士 酒井
賢久 上島
賢太郎 中山
佳孝 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2022153891A1 publication Critical patent/JPWO2022153891A1/ja
Priority to JP2022190059A priority Critical patent/JP2023026431A/ja
Application granted granted Critical
Publication of JP7186929B1 publication Critical patent/JP7186929B1/ja
Publication of JPWO2022153891A5 publication Critical patent/JPWO2022153891A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本開示の一側面は、セラミック板と、上記セラミック板上に形成された応力緩和層と、上記応力緩和層上に形成された金属回路層と、を備え、上記応力緩和層は、マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、上記セラミック板に接触する合金層と、上記合金層よりもマグネシウムの含有量が少なく、上記金属回路層に接触する金属層と、を有する、積層体を提供する。

Description

本開示は、積層体、及びその製造方法、並びに、パワーモジュールに関する。
自動車、電鉄、産業用機器、及び発電関係等の分野では、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される絶縁基板には、セラミック基板が利用されている。セラミック基板は、セラミック板と、セラミック板上に設けられる金属回路層とを有する。
近年、電流密度を上げるために金属回路層の厚みを増加させる傾向にある。このため、セラミック板と、金属回路層との熱膨張差に起因する熱応力が大きくなっている。そこで、セラミック基板には、ヒートサイクルに対する耐久性のさらなる向上が求められる。セラミック基板のヒートサイクルに対する耐久性を向上させる観点から、セラミック板と、金属回路層との熱膨張差に起因する熱応力を低減する中間層を設けることが有効であるとされている。
またセラミック基板の生産性及び信頼性を向上させる観点から、エッチング工程等を必須とせずに回路形成が可能であり、加熱に伴う材料の酸化を抑制してセラミック基板を製造する方法が検討されている。その一例として、コールドスプレー法によって金属回路層を形成する方法が検討されている(例えば、特許文献1、2等)。
特開2013-018190号公報 国際公開第2018/135490号
コールドスプレー法によるセラミック基板の製造方法の利点として、セラミック板上にろう材を使用せずに、金属回路を形成できることが挙げられる。しかし、一方で、ろう材を使用せずに金属回路層を形成することで、従前の製造方法で得られるセラミック基板と比較すると、セラミック板と金属回路層との接合が弱くなる場合が生じ得る。コールドスプレー法によるセラミック基板の製造方法によって、セラミック板と金属回路層との接合性の低下を抑制し、ヒートサイクルに対する耐久性に優れるセラミック基板の製造ができれば有用である。
本開示は、ヒートサイクルに対する耐久性に優れる積層体及びその製造方法を提供することを目的とする。本開示はまた、信頼性に優れるパワーモジュールを提供することを目的とする。
本開示の一側面は、セラミック板と、上記セラミック板上に形成された応力緩和層と、上記応力緩和層上に形成された金属回路層と、を備え、上記応力緩和層は、マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、上記セラミック板に接触する合金層と、上記合金層よりもマグネシウムの含有量が少なく、上記金属回路層に接触する金属層と、を有する、積層体を提供する。
上記積層体は、応力緩和層が合金層と金属層とを有し、セラミック板と接触する合金層がマグネシウムを含むことによって、セラミック板と金属回路との接着が強固なものとなっている。上記積層体はまた、金属回路層と接触する金属層におけるマグネシウムの含有量が少なく、また合金層が所定の厚み未満となるように設けられていることによって、応力緩和層が硬くなりすぎることを抑制し、応力緩和層の金属層側が適度に熱膨張することが可能となることから、全体として、ヒートサイクルに対する耐久性に優れる。
上記合金層の平均厚さが0.02mm以上0.2mm未満であってよい。
上記応力緩和層の熱膨張率が、上記セラミック板の熱膨張率よりも大きく、上記金属回路層の熱膨張率よりも大きくてよい。応力緩和層の熱膨張率が上述の条件を充足する場合、セラミック板よりも熱膨張率が大きな金属回路層からの熱応力を、より十分に緩和することができ、ヒートサイクルに対する耐久性をより一層向上させることができる。
上記金属層はアルミニウムを含有してよい。
上記金属層の平均厚さが0.1mm超であってよい。
上記セラミック板は、窒化ケイ素板、窒化アルミニウム板、又は酸化アルミニウム板材であってよい。
本開示の一側面は、回路基板と、上記回路基板の一方の主面上に電気的に接続された半導体素子と、上記回路基板のもう一方の主面上に接続された放熱部材と、を備え、上記回路基板が上述の積層体である、パワーモジュールを提供する。
上記パワーモジュールは、回路基板が上述の積層体であることによって、信頼性に優れる。
本開示の一側面は、マグネシウムを含む第一金属粉体を不活性ガスと共にノズルからセラミック板の表面に対して吹き付けることによって、セラミック板に接触する第一の堆積層を形成する工程と、上記第一の堆積層を不活性ガス雰囲気下で加熱処理して合金層を形成する工程と、上記第一金属粉体よりもマグネシウムの含有量が小さい第二金属粉体を不活性ガスと共に上記合金層の表面に対して吹き付けることによって、上記合金層に接触する第二の堆積層を形成する工程と、上記第二の堆積層を不活性ガス雰囲気下で加熱処理して金属層を形成する工程と、金属粒子を含む第三金属粉体を不活性ガスと共にノズルから上記金属層の表面に対して吹き付けることによって、上記金属層に接触する第三の堆積層を形成する工程と、上記第三の堆積層を不活性ガス雰囲気下で加熱処理して金属回路層を形成する工程と、を有する、積層体の製造方法を提供する。
上記積層体の製造方法は、金属粉体の吹き付けによって、セラミック板上にセラミック板側から合金層、金属層及び金属回路層を備える積層体を製造することができる。そして、当該製造方法によれば、マグネシウムの含有量がセラミック板側から徐々に少なくなるように合金層及び金属層を形成することが可能であり、ヒートサイクルに対する耐久性に優れる積層体を製造することができる。
上記第一金属粉体が、アルミニウム-マグネシウム合金粒子を含むガスアトマイズ粉であってよい。
本開示によれば、ヒートサイクルに対する耐久性に優れる積層体及びその製造方法を提供できる。本開示によればまた、信頼性に優れるパワーモジュールを提供できる。
図1は、積層体の一例を示す模式断面図である。 図2は、積層体の一例を示す模式断面図である。 図3は、セラミクス板上に合金層を形成する工程の一例を示す模式図である。 図4は、パワーモジュールの一例を示す模式断面図である。
以下、場合によって図面を参照して、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。
積層体の一実施形態は、セラミック板と、上記セラミック板上に形成された応力緩和層と、上記応力緩和層上に形成された金属回路層と、を備える。ここで、上記応力緩和層は、マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、上記セラミック板に接触する合金層と、上記合金層よりもマグネシウムの含有量が少なく、上記金属回路層に接触する金属層と、を有する。
図1は、積層体の一例を示す模式断面図である。図1に示す積層体100は、セラミック板1と、その両面に設けられた金属回路2a及び2bとを有する。金属回路2aは、応力緩和層20aと、金属回路層23aとからなる。金属回路層23aは、セラミック板1と、応力緩和層20aを介して接合している。応力緩和層20aは、セラミック板1に接触する合金層21aと、合金層21a上に設けられ、金属回路層23aと接触する金属層22aとからなる。金属回路2bは、応力緩和層20bと、金属回路層23bとからなる。金属回路層23bは、セラミック板1と、応力緩和層20bを介して接合している。応力緩和層20bは、セラミック板1に接触する合金層21bと、合金層21b上に設けられ、金属回路層23bと接触する金属層22bとからなる。図1に示す金属回路層23a及び23bはいずれも一様な層の例で記載したが、配線等のパターンを有してもよい。セラミック板1によって、金属回路2aと金属回路2bとは電気的に絶縁されている。上述のとおり、金属回路層と応力緩和層又は金属回路層とが直接接触しており、積層体100は、ろう材層を有しない。
セラミック板1を構成するセラミックス成分の種類は、例えば、炭化物、酸化物及び窒化物等であってよい。セラミックス成分の種類は、具体的には、炭化ケイ素(SiC)、酸化アルミニウム(Al)、窒化ケイ素(Si)、及び窒化アルミニウム(AlN)等であってよい。セラミック板1は、例えば、酸化アルミニウム板、窒化ケイ素板、及び窒化アルミニウム板であってよい。窒化ケイ素板は表面の酸化物層が少ないことから、セラミック板1が窒化ケイ素板である場合、本開示の効果が一層顕著である。酸化物層は他層との接着力を向上させる。本開示に係る積層体は、合金層がマグネシウムを所定量含むことで、接着力を向上させている。これによって、酸化物層が少ないセラミックス板を用いた場合にも十分な接着力を発揮し得る。
セラミック板1の平均厚さは、例えば、0.2~1.5mm、又は0.25~1.0mmであってよい。
本明細書における板及び層の平均厚さは、マイクロメーターによって測定される厚さの平均値を意味する。なお、上記平均値は、10箇所の測定行い、得られた値の算術平均値とする。
応力緩和層20a及び20bは、それぞれ、セラミック板1と、金属回路層23a及び23bとの間で、ヒートサイクル時の熱膨張の差に伴って生じる応力を緩和する層である。応力緩和層20a及び20bの熱膨張率は、セラミック板1の熱膨張率よりも大きく、金属回路層23a、23bの熱膨張率よりも大きくてよい。
応力緩和層20a及び20bは、それぞれ、合金層21a及び21b、並びに金属層22a及び22bの2層で構成される例で示したが、例えば、3層以上で構成されてもよい。応力緩和層20a及び20bにおけるマグネシウムの含有量は、セラミック板1側が大きく、金属回路層23a及び23b側で小さくなるように設定される。金属回路層23a及び23bと接触する金属層22a及び22bは、マグネシウムを含まなくてよい。金属層22a及び22bがマグネシウムを含まないことによって、合金層21a及び21bと比較して柔らかく、応力緩和の性能をより向上させることができる。
合金層21a及び21bは、マグネシウムを含む。酸素親和性に優れるマグネシウムを含有することによって、合金層21a及び21bとセラミック板1との接合がより強固なものとなっている。当該効果はセラミック板の表面における酸化物層が少ない場合により顕著である。ここで、合金層21a及び21bは、マグネシウムとアルミニウムを含む合金であってよい。合金層21a及び21bの組成は、金属層22a及び22bの金属組成に合わせて選択することができる。合金層21a及び21bは、アルミニウム-マグネシウム系合金であってよく、アルミニウム-マグネシウム合金であってよい。
なお、合金層21a及び21bは、本発明の効果を損なわない範囲で、アルミニウム及びマグネシウム以外の他の成分を含有してよい。他の成分の合計の含有量は、例えば、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.1質量%以下、0.05質量%以下、又は0.01質量%以下であってよい。ここで、「他の成分」の用語には、任意添加する成分以外に意図せず含有する不純物も含まれる。他の成分としては、例えば、O、C、Si、Mn、P、S、N、Ca、Cr、Ti、Nb、V、B、Mo、Cu、Ni、Sb、Sn、Ta、Mg、Zn、Co、Zr、REM(Rare-earth element)、及びこれらの化合物(例えば、酸化物、窒化物、及び硫化物等)等が挙げられる。
合金層21aにおけるマグネシウムの含有量の上限値は、合金層21aの全量を基準として、7.5質量%以下であるが、例えば、7.0質量%以下、6.5質量%以下、又は6.0質量%以下であってよい。マグネシウムの含有量の上限値が上記範囲内であることで、応力緩和層20aが硬くなりすぎることをより十分に抑制し、全体としてヒートサイクルに対する耐久性により優れる。合金層21aにおけるマグネシウムの含有量の下限値は、合金層21aの全量を基準として、例えば、0質量%超であればよく、例えば、0.001質量%以上、0.01質量%以上、0.05質量%以上、0.1質量%以上、又は0.3質量%以上であってよい。マグネシウムの含有量の下限値が上記範囲内であることで、酸素原子を介した化学結合を生じせしめ、応力緩和層20aとセラミック板1との接合をより強固なものにできる。合金層21aにおけるマグネシウムの含有量は上述の範囲内で調整してよく、合金層21aの全量を基準として、例えば、0.001~7.5質量%であってよい。
本明細書におけるマグネシウムの含有量は、誘導結合プラズマ(ICP)発光分析法によって測定される値を意味する。
合金層21aの平均厚さの上限値は、0.2mm未満であるが、例えば、0.1mm以下であってよい。合金層21aはマグネシウムを含むことから比較的硬い層となっているため、合金層21aの平均厚さの上限値が上記範囲内であると、応力緩和層20aが硬くなりすぎることをより十分に抑制し、ヒートサイクルに対する耐久性により優れる。合金層21aの平均厚さの下限値は、例えば、0.02mm以上、0.03mm以上、0.04mm以上、又は0.05mm以上であってよい。合金層21aの平均厚さの下限値が上記範囲内であると、応力緩和層20aとセラミック板1との接合をより強固なものにできる。合金層21aの平均厚さは上述の範囲内で調整してよく、例えば、0.02mm以上0.2mm未満、0.02mm~0.1mm、又は0.03~0.1mmであってよい。
合金層21bにおけるマグネシウムの含有量は、合金層21aについて上述したものと同様であってよい。合金層21bにおけるマグネシウムの含有量と、合金層21aにおけるマグネシウムの含有量とは、同一であっても異なってもよい。金属回路層23a及び23bの金属の種類、及び厚さ等に応じて調整してよい。
合金層21bの平均厚さは、合金層21aについて上述したものと同様であってよい。合金層21bの平均厚さと、合金層21aの平均厚さとは同一であっても異なってもよい。合金層21a及び21bの平均厚さは、合金層の組成、及びセラミック板1と金属回路層23a、23bとの熱膨張率等の違い等に応じて調整することができる。
金属層22a及び22bは、合金層21a及び21bよりもマグネシウムの含有量が少ない層であり、マグネシウムを含まないものであってよい。金属層22a及び22bは、例えば、アルミニウム及びアルミニウム合金からなる群より選択される少なくとも一種を含んでよく、アルミニウム又はアルミニウム合金から構成されてもよく、アルミニウムから構成されていてもよい。金属層22a及び22bは、好ましくは、マグネシウムを含まず、より好ましくはアルミニウム及び金属回路層23a及び23bを構成する金属のみからなる。金属層22a及び22bが金属回路層23a及び23bを構成する金属を含む場合、当該金属はアルミニウムと合金を形成していてよく、この場合、当該合金は金属層22a及び22bの金属回路層23a及び23b側の面上に点在してよい。
なお、金属層22a及び22bは、本発明の効果を損なわない範囲で、アルミニウム及びマグネシウム以外の他の成分を含有してよい。他の成分の合計の含有量は、例えば、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.1質量%以下、0.05質量%以下、又は0.01質量%以下であってよい。ここで、「他の成分」の用語には、任意添加する成分以外に意図せず含有する不純物も含まれる。他の成分としては、例えば、O、C、Si、Mn、P、S、N、Ca、Cr、Ti、Nb、V、B、Mo、Cu、Ni、Sb、Sn、Ta、Mg、Zn、Co、Zr、REM、及びこれらの化合物(例えば、酸化物、窒化物、及び硫化物等)等が挙げられる。
金属層22aの平均厚さは、合金層21aの平均厚さよりも大きく、合金層21aの平均厚さを基準として、例えば、1.0倍以上、1.5倍以上、又は2倍以上であってよい。金属層22aの平均厚さと合金層21aの平均厚さが上記関係にあることで、応力緩和層20aの硬くなりすぎることをより十分に抑制し、ヒートサイクルに対する耐久性により優れる。金属層22aの平均厚さは、合金層21aの平均厚さを基準として、例えば、20倍以下、17倍以下、又は15倍以下であってよい。金属層22aの平均厚さと合金層21aの平均厚さが上記関係にあることで、セラミック基板の熱抵抗を下げることができる。金属層22aの平均厚さは上述の範囲内で調整してよく、合金層21aの平均厚さを基準として、例えば、1.0~20倍であってよい。
金属層22aの平均厚さの下限値は、例えば、0.1mm超、0.15mm以上、又は0.2mm以上であってよい。金属層22aの平均厚さの下限値が上記範囲内であると、ヒートサイクルに対する耐久性により優れる。金属層22aの平均厚さの上限値は、例えば、0.4mm以下、0.35mm以下、又は0.3mm以下であってよい。金属層22aの平均厚さの上限値が上記範囲内であると、セラミック基板の熱抵抗を下げることができる。
金属層22bの平均厚さは、金属層22aについて上述したものと同様であってよい。金属層22bの平均厚さと、金属層22aの平均厚さとは同一であっても異なってもよい。金属層22a及び22bの平均厚さは、セラミック板1と金属回路層23a、23bとの熱膨張率等の違い等に応じて調整することができる。
金属回路層23a及び23bは、例えば、金、白金、銀、銅、ニッケル、及びクロム等の金属を含んでよく、金、銀、及び銅等を含んでよく、銅からなってもよい。金属回路層23a及び23bは、例えば、銅からなる配線パターン、及び銅合金からなる配線パターン等であってよい。
金属回路層23a及び23bの平均厚さの下限値は、例えば、0.3mm以上、0.35mm以上、又は0.4mm以上であってよい。金属回路層23a及び23bの平均厚さの上限値は、例えば、4mm以下、3mm以下、又は2mm以下であってよい。
図1の積層体100は、合金層21aの端面21E、金属層22aの端面22E、及び金属回路層23aの端面23Eが同一面となる例で示したが、合金層21aの端面21E、及び金属層22aの端面22Eで構成される面と、金属回路層23aの端面23Eで構成される面とは、必ずしも同一面である必要はない。図2に示す積層体101は、合金層21aの端面21E、及び金属層22aの端面22Eで構成される面と、金属回路層23aの端面23Eで構成される面とが異なる面である例を示した。積層体101のように、金属回路層23a、23bの幅よりも、応力緩和層20a、20bの幅の方が大きくなるように設定されることで、積層体はヒートサイクルに対する耐久性により優れたものとなり得る。金属回路層23a、23bの幅と、応力緩和層20a、20bの幅との差は、例えば、1~1000μm、又は10~100μmであってよい。
上述の積層体100,101は、いわゆるコールドスプレー法を用いて、セラミック板上に、合金層、金属層を含む応力緩和層、金属回路層を順次形成する方法によって製造することができる。セラミック板上に、合金層及び金属層を有する応力緩和層、並びに金属回路層を、コールドスプレー及び溶射等の吹き付け操作によって形成する場合、各層の界面には吹き付け操作に由来する凹凸が形成され得る。したがって、上述の積層体100、101は、予め層状に形成された金属薄膜等を順次ラミネートして製造されたものと異なる特徴を有する。
積層体の製造方法の一実施形態は、マグネシウムを含む第一金属粉体を不活性ガスと共にノズルからセラミック板の表面に対して吹き付けることによって、セラミック板に接触する第一の堆積層を形成する工程と、上記第一の堆積層を不活性ガス雰囲気下で加熱処理して合金層を形成する工程と、上記第一金属粉体よりもマグネシウムの含有量が小さい第二金属粉体を不活性ガスと共に上記合金層の表面に対して吹き付けることによって、上記合金層に接触する第二の堆積層を形成する工程と、上記第二の堆積層を不活性ガス雰囲気下で加熱処理して金属層を形成する工程と、金属粒子を含む第三金属粉体を不活性ガスと共にノズルから上記金属層の表面に対して吹き付けることによって、上記金属層に接触する第三の堆積層を形成する工程と、上記第三の堆積層を不活性ガス雰囲気下で加熱処理して金属回路層を形成する工程と、を有する。
図3は、セラミック板上に合金層を形成する工程の一例を示す模式図である。図3に示す方法では、粉体スプレー装置3を用いて金属粉体をセラミック板1の表面に吹き付けることによって、セラミック板1上に第一の堆積層が成膜される。第一の堆積層が加熱処理されることで合金層21aが形成される。合金層21aを形成した後に、その裏側の合金層21bを形成してもよい。
図3に示す粉体スプレー装置3は、高圧ガスボンベ4、ヒーター6、粉末供給装置7、先細末広形状を有するスプレーガンのノズル10及びこれらを連結する配管から主として構成される。複数の高圧ガスボンベ4の下流側に第一の圧力調整器5aが設けられており、第一の圧力調整器5aの下流側で配管が2回路に分岐する。分岐した2回路の配管のそれぞれに、第二の圧力調整器5b及びヒーター6と、第三の圧力調整器5c及び粉末供給装置7とが、それぞれ接続されている。ヒーター6及び粉末供給装置7からの配管がノズル10に接続されている。
粉体スプレー装置3において、高圧ガスボンベ4には、作動ガスとして用いられる不活性ガスが、例えば、1MPa以上の圧力で充填されている。不活性ガスは、例えば、ヘリウム若しくは窒素の単一ガス、又はこれらの混合ガスであってよい。高圧ガスボンベ4から供給された作動ガスOGは、一方の回路上で第二の圧力調整器5bにより圧力が調整された上で、ヒーター6によって加熱され、その後、スプレーガンのノズル10に供給される。作動ガスOGはまた、他方の回路上で第三の圧力調整器5cによって圧力が調整された上で、粉末供給装置7にも供給される。粉末供給装置7から、作動ガスOGとともに成膜用の金属粉体がスプレーガンのノズル10に供給される。
作動ガスOGのゲージ圧力は、ノズル10の入口10aにおいて、例えば、1.5~5.0MPa、又は2.0~4.0MPaとなるように調節される。作動ガスOGのゲージ圧力が上記範囲内にあることで、堆積層(後に加熱処理され合金層となる層)等を効率的に形成することができる。作動ガスOGのノズルの入口におけるゲージ圧力は、ノズルと配管との接続部分で測定することができる。
ヒーター6による加熱温度は、通常、成膜される金属粉体の融点又は軟化点よりも低く設定される。ヒーター6は、通常の加熱装置から任意に選択することができる。
スプレーガンのノズル10に供給された作動ガスは、先細の部分を通ることで圧縮され、その下流側の末広の部分で一気に膨張されることで加速される。金属粉体は所定の温度に加熱されるとともに所定の速度まで加速された後、ノズル10の出口から噴出される。ノズル10から噴出された金属粉体は、セラミック板1の表面に吹き付けられる。これによって金属粉体がセラミック板1の表面に固相状態で衝突しながら堆積して、第一の堆積層を形成する。第一の堆積層がその後、加熱処理されることによって、合金層21aが形成される。第一金属粉の吹き付け量を調整することによって、後に形成される合金層の厚さを制御できる。
第一金属粉体は、例えば、マグネシウムと他の金属元素とを含むマグネシウム合金粒子であってよく、アルミニウム-マグネシウム合金粒子であってよい。アルミニウム-マグネシウム合金粒子は、アルミニウムにマグネシウムを固溶させたガスアトマイズ粉であってよい。第一金属粉体の組成(例えば、マグネシウムの含有量)が、後に形成される合金層の組成(例えば、マグネシウムの含有量)に反映されることから、第一金属粉体の組成の調整によって、合金層の組成を制御できる。
第一の堆積層の形成において、第一金属粉体は、例えば、10~270℃、又は20~260℃に加熱されてよい。第一金属粉体の加熱温度がこの範囲内とすることで、第一の体積層を効率的に形成することができる。本明細書において、金属粉体が加熱される温度は、金属粉体の最高到達温度を意味する。ノズル10の出口における不活性ガスの温度を、金属粉体が加熱される温度とみなすこともできる。ここで、本明細書において「加熱する」の用語は、室温以下の所定の温度となるように調整することも含む意味で用いられる。
セラミック板1上に、セラミック板1の表面の一部を覆うマスク材を配置することによって、セラミックス基材上にパターン(回路パターン)を有する第一の堆積層等を形成させてもよい。この方法によれば、合金層等を形成した後に、エッチングのような追加の処理を行うことなく、所望のパターンを有する金属回路を容易に形成することができる。本実施形態に係る方法は、工程を簡略化し、得られる製品の品質管理等の観点から、パターン形成のためにエッチングを必要とする従来の溶湯法及びろう付法等に比べて有利であるといえる。
第一金属粉体をノズル10内で250~1050m/秒まで加速してよい。本明細書において、金属粉体が加速される速度は、加速された金属粉体が到達する最高速度を意味する。加速された金属粉体が到達する速度が250m/秒未満であると、金属粉体がセラミックス基材等に衝突した瞬間に金属粉体が十分に塑性変形し難いため、堆積層の形成が困難となるか、形成された堆積層の密着性が低下する傾向にある。加速された金属粉体が達する速度が1050m/秒を超えると、金属粉体がセラミックス基材等に衝突した時に、金属粉体が粉砕及び飛散して、堆積層の形成が困難になる傾向にある。
セラミック板上に形成された第一の体積層は、不活性ガス雰囲気下で加熱処理される。加熱処理の温度は、例えば、400~600℃であってよい。第一の堆積層を400℃以上の温度で加熱することで、マグネシウムとセラミック板の表面における酸化物層との反応をより進行させることができ、強固に接合させることができる。また、第一の堆積層を600℃以下の温度で加熱することで、第一の堆積層が軟化することによる影響を低減できる。
合金層を形成した後、上述した合金層の形成と同様の方法によって、第二金属粉体を合金層の表面に吹き付けることによって、第二の堆積層を形成、続く加熱処理によって、金属層を形成する。応力緩和層が3以上の層で構成される場合には、例えば、上述の合金層の形成と同様の手段を繰り返すことによって、順次層を形成することができる。金属層の組成及び厚さは、それぞれ第二金属粉体の組成及び吹き付け量によって制御できる。この際、各層を構成する合金又は金属の組成は、各層の表面に吹き付ける金属粉体の組成を調整することによって変更することができる。例えば、金属粉体中のマグネシウムの含有量を徐々に低減するよう調整にしてもよい。後に形成される金属回路層と接着される層を形成するための最終的に吹き付ける金属粉体はマグネシウムを含まないことが好ましく、応力緩和性能を向上させる観点からは、例えば、アルミニウム粉末であることが好ましい。
金属層を形成した後、銅等を主成分として含む第三金属粉体を不活性ガスと共にノズルから金属層の表面に対して吹き付け第三の堆積層を形成し、続き加熱処理によって、金属回路層を形成する。
第三の堆積層の形成において、第三金属粉体は、例えば、10~650℃、又は20~640℃に加熱されてよい。第三金属粉体の加熱温度を上記範囲内とすることで、第三の堆積層を効率的に形成できる。第三金属粉体の加熱温度を650℃以下とすることで、軟化した銅等の金属粒子がノズルの内壁に付着したり、ノズルの詰まりが生じたりすることを抑制することができ、金属回路層の形成をより容易なものとすることができる。第三金属粉体の加熱温度を10℃以上とすることで、銅等の金属粒子の塑性変形をより容易なものとし、第三の堆積層の形成をより容易なものとすることできる。
第三の堆積層の形成においても、作動ガスOGのゲージ圧力は、ノズル10の入口10aにおいて、例えば、1.5~5.0MPa、又は2.0~4.0MPaであってよい。作動ガスOGのゲージ圧力を上記範囲内とすることで、第三の堆積層を効率的に形成できる。ノズルの入口における作動ガスゲージ圧力を1.5MPa以上とすることで、金属層に対して第三金属粉体が密着し難くなることを抑制し、第三の堆積層の形成をより容易なものとすることができる。ノズルの入口における作動ガスのゲージ圧力を5.0MPa以下とすることで、不活性ガスとともに金属層に吹き付けられた第三金属粉体が破砕して、第三の堆積層の形成の効率が低下することをより抑制できる。
その他、第三金属粉体の吹き付けによる第三の堆積層の形成条件は、上述の合金層及び金属層の形成と同様に調整してよい。第三の堆積層を形成する際にも合金層及び金属層の形成と同様に、セラミック板1上にマスク材を配置することで、パターンを有する第三の堆積層を形成し、これを加熱処理することで、パターンを有する金属回路層を形成させてもよい。
第三の堆積層は、不活性ガス雰囲気下で加熱処理される。この加熱処理のため温度は、例えば、250~350℃であってもよい。第三の堆積層を250℃以上の温度で加熱することで、加工硬化による合金層及び金属層における歪みを低減することができる。第三の堆積層を350℃以下の比較的低温で加熱することで、金属層と、第三の堆積層との反応による金属間化合物の生成、及び、金属成分の拡散を抑制することができる。
合金層、金属層及び金属回路層における気孔の形成を抑えるために、第一金属粉体、第二金属粉体、及び/又は第三金属粉体は、それぞれ球形粒子で構成されていてよい。第一金属粉体、第二金属粉体、及び/又は第三金属粉体は、それぞれ粒径のバラツキが小さくてよい。金属粉体の平均粒径は、例えば、10~70μm、又は20~60μmであってもよい。金属粉体の平均粒径を10μm以上とすることで、金属粉体がノズルの先細の部分に詰まることをより抑制できる。金属粉体の平均粒径を70μm以下とすることで、金属粉体の速度を十分に上げることができる。
本明細書における平均粒径は、レーザー回折・散乱法によって測定される体積基準の粒子径の分布曲線において、小粒径からの積算値が全体の50%に達した時の粒子径(D50)をいう。なお、D50は、メジアン径とも呼ばれ、対象となる粒子の平均粒径として知られる。
上述の積層体はヒートサイクルに対する耐久性に優れることから、例えば、パワーモジュール等を構成する部材(例えば、回路基板等)として好適に使用できる。パワーモジュールの一実施形態は、回路基板と、上記回路基板の一方の主面上に電気的に接続された半導体素子と、上記回路基板のもう一方の主面上に接続された放熱部材と、を備える。上記回路基板が、上述の積層体である。
図4は、パワーモジュールの一例を示す模式断面図である。パワーモジュール300は、ベース板70と、ハンダ32を介してベース板70の一方面と接合される回路基板102とを備える。回路基板102の金属回路2b(合金層、金属層及び金属回路層)がハンダ32と接合している。回路基板102は、上述の積層体100、101等であってよい。
回路基板102の金属回路2aには、ハンダ31を介して半導体素子60が取り付けられている。半導体素子60は、アルミワイヤ(アルミ線)等の金属ワイヤ34で金属回路2aの所定箇所に接続されている。筐体36の外部と金属回路2aとを電気的に接続するため、金属回路2aの所定部分は、ハンダ35を介して筐体36を貫通して設けられる電極33に接続されている。
ベース板70の一方面には、回路基板102を収容するように筐体36が配置されている。ベース板70の一方面と筐体36とで形成される収容空間にはシリコーンゲル等の樹脂30が充填されている。
ベース板70の他方面には、グリース74を介して放熱部材をなす冷却フィン72が接合されている。ベース板70の端部には冷却フィン72をベース板70に固定するネジ73が取り付けられている。ベース板70及び冷却フィン72はアルミニウムで構成されていてもよい。ベース板70及び冷却フィン72は、高い熱伝導率を有することによって放熱部として良好に機能する。
パワーモジュール300は、回路基板102の金属回路2a,2bと、金属回路2aと電気的に接続される半導体素子60とを備える。半導体素子60は回路基板102とともに樹脂30によって封止されている。このようなパワーモジュール300は、半導体素子60が発熱しても、樹脂30とセラミック板1との密着性を維持することができる。
以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
<窒化アルミニウム板(AlN)の準備>
市販の窒化アルミニウム板(株式会社MARUWA社製)をセラミック板として用いた。
<窒化ケイ素板(Si板)の作製>
窒化ケイ素粉末と、焼結助剤として、酸化マグネシウム粉末、及び酸化イットリウム粉末を準備した。これらを、Si:Y:MgO=94.0:3.0:3.0(質量比)で配合して原料粉末を得た。この原料粉末を、一軸加圧成形し、成形体を作製した。この成形体を、カーボンヒータを備える電気炉中に配置し、窒素ガスの雰囲気下、1800℃で12時間焼成して、平板形状の窒化ケイ素板を得た。得られた窒化ケイ素板をセラミック板として用いた。
<酸化アルミニウム板(Al)の準備>
市販の酸化アルミニウム板(株式会社MARUWA社製)をセラミック板として用いた。
(実施例1)
<合金層(アルミニウム-マグネシウム合金からなる層)の形成>
アルミニウム-マグネシウム合金粉体(株式会社高純度化学研究所社製、ガスアトマイズ粉、メジアン径:24μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、縦:56mm、横:46mm、厚み:0.1mmのアルミニウム-マグネシウム合金粉体の堆積層(第一の堆積層)を、窒化アルミニウム板の表裏それぞれにおいて基材端面から2mm内側の範囲に形成した。第一の堆積層の形成は、作動ガスとして窒素を用い、アルミニウム-マグネシウム合金粉体(ガスアトマイズ粉)の温度を260℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。第一の堆積層を、窒素雰囲気下において550℃の温度で3時間保持することで加熱処理してアルミニウム-マグネシウム合金層(合金層)を形成した。
<金属層層(アルミニウムからなる層)の形成>
次に、アルミニウム粉体(高純度化学研究所社製、ガスアトマイズ粉、メジアン径:24μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、縦:56mm、横:46mm、厚み:0.2mmのアルミニウム粉体の堆積層(第二の堆積層)を、上述のとおり形成した2つの合金層の表面それぞれにおいて、合金層と同じく、縦:56mm、横:46mmとなるように形成した。第二の堆積層の形成は、作動ガスとして窒素を用い、アルミニウム粉体の温度を260℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。第二の堆積層を、窒素雰囲気下において550℃の温度で3時間保持することで加熱処理してアルミニウム層(金属層)を形成した。
<金属回路層(銅からなる層)の形成>
さらに、アルミニウム層の一部を鉄製のマスク材でマスキングし、銅粉体(福田金属箔粉工業社製、水アトマイズ粉、メジアン径:17μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、アルミニウム層の端面から50μm内側の範囲に銅粉体の堆積層(第三の堆積層)を縦:55.9mm、横:45.9mm、厚さ:0.4mmとなるように形成した。第三の堆積層は、作動ガスとして窒素を用い、銅粉体の温度を640℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。アルミニウム層の端面は、銅層の端面よりも50μmの幅で外側にはみ出していた。第三の堆積層を、窒素雰囲気下において300℃の温度で1時間保持することで加熱処理して銅層(金属回路層)を形成した。
以上の手順で、窒化ケイ素板の両面上に、アルミニウム-マグネシウム合金層、アルミニウム層及び銅層からなる金属回路が形成された積層体を得た。
(実施例2~9)
セラミック板の種類及び厚さ、合金層におけるマグネシウムの含有量及び合金層の厚さ、並びに、金属層の厚さを表1に示すとおり変更したこと以外は、実施例1と同様にして、積層体を調製した。
(比較例1~3)
金属層を設けず、セラミック板の種類及び厚み、並びに、合金層におけるマグネシウムの含有量を表2に示すとおり変更したこと以外は、実施例1と同様にして積層体を調製した。
(比較例4~5)
合金層を設けず、セラミック板の種類及び厚み、並びに、金属層の厚みを表2に示すとおり変更したこと以外は、実施例1と同様にして積層体を調製した。
(比較例7~14)
セラミック板の種類及び厚さ、合金層におけるマグネシウムの含有量及び合金層の厚さ、並びに、金属層の厚さを表1に示すとおり変更したこと以外は、実施例2と同様にして、積層体を調製した。
<ヒートサイクルに対する耐久性の評価:ヒートサイクル試験>
実施例1~9及び比較例1~17で調製した積層体それぞれについて、ヒートサイクル試験を行い、ヒートサイクルに対する耐久性を評価した。具体的には、積層体を「180℃の環境に30分間放置した後に、-55℃の環境に30分間放置すること」を1サイクルとして、これを3000サイクル実施するヒートサイクル試験を行った。試験後の積層体に対する断面観察から、以下の基準で評価した。結果を表1及び表2に示す。
A:3000サイクルでもはく離等の異常が観測されなかった。
B:1500サイクル超3000サイクル未満ではく離が観測された。
C:1000サイクル超1500サイクル以下ではく離が観測された。
D:1000サイクル以下ではく離が観測された。
Figure 0007186929000001
Figure 0007186929000002
本開示によれば、ヒートサイクルに対する耐久性に優れる積層体を提供できる。本開示によればまた、信頼性に優れるパワーモジュールを提供できる。
1…セラミック板、2a,2b…金属回路、3…粉体スプレー装置、4…高圧ガスボンベ、5a…第一の圧力調整器、5b…第二の圧力調整器、5c…第三の圧力調整器、6…ヒーター、7…粉末供給装置、10…ノズル、10a…入口、20a,20b…応力緩和層、21a,21b…合金層、22a,22b…金属層、23a,23b…金属回路層、30…樹脂、31,32,35…ハンダ、33…電極、34…金属ワイヤ、36…筐体、60…半導体素子、70…ベース板、72…冷却フィン、73…ネジ、74…グリース、100,101…積層体、102…回路基板、300…パワーモジュール。

Claims (6)

  1. セラミック板と、
    前記セラミック板上に形成された応力緩和層と、
    前記応力緩和層上に形成された金属回路層と、を備え、
    前記セラミック板は、窒化ケイ素板、窒化アルミニウム板、又は酸化アルミニウム板であり、
    前記応力緩和層の熱膨張率が、前記セラミック板の熱膨張率よりも大きく、前記金属回路層の熱膨張率よりも大きく、
    前記応力緩和層は、
    マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、前記セラミック板に接触する合金層と、
    前記合金層よりもマグネシウムの含有量が少なく、前記金属回路層に接触する金属層と、を有する、積層体。
  2. 前記合金層の平均厚さが0.02mm以上0.2mm未満である、請求項1に記載の積層体。
  3. 前記金属層はアルミニウムを含有する、請求項1又は2に記載の積層体。
  4. 前記金属層の平均厚さが0.1mm超である、請求項1~のいずれか一項に記載の積層体。
  5. 前記金属回路層が銅を含む、請求項1~のいずれか一項に記載の積層体。
  6. 回路基板と、
    前記回路基板の一方の主面上に電気的に接続された半導体素子と、
    前記回路基板のもう一方の主面上に接続された放熱部材と、を備え、
    前記回路基板が請求項1~のいずれか一項に記載の積層体である、パワーモジュール。
JP2022535194A 2021-01-12 2022-01-04 積層体、及びその製造方法、並びに、パワーモジュール Active JP7186929B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022190059A JP2023026431A (ja) 2021-01-12 2022-11-29 積層体、及び、パワーモジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021003040 2021-01-12
JP2021003040 2021-01-12
PCT/JP2022/000041 WO2022153891A1 (ja) 2021-01-12 2022-01-04 積層体、及びその製造方法、並びに、パワーモジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022190059A Division JP2023026431A (ja) 2021-01-12 2022-11-29 積層体、及び、パワーモジュール

Publications (3)

Publication Number Publication Date
JPWO2022153891A1 JPWO2022153891A1 (ja) 2022-07-21
JP7186929B1 true JP7186929B1 (ja) 2022-12-09
JPWO2022153891A5 JPWO2022153891A5 (ja) 2022-12-19

Family

ID=82447341

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022535194A Active JP7186929B1 (ja) 2021-01-12 2022-01-04 積層体、及びその製造方法、並びに、パワーモジュール
JP2022190059A Pending JP2023026431A (ja) 2021-01-12 2022-11-29 積層体、及び、パワーモジュール

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022190059A Pending JP2023026431A (ja) 2021-01-12 2022-11-29 積層体、及び、パワーモジュール

Country Status (2)

Country Link
JP (2) JP7186929B1 (ja)
WO (1) WO2022153891A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (ja) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2013074199A (ja) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
WO2017082368A1 (ja) * 2015-11-11 2017-05-18 日本発條株式会社 積層体および積層体の製造方法
WO2018135499A1 (ja) * 2017-01-17 2018-07-26 国立大学法人信州大学 セラミックス回路基板の製造方法
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法
JP2019067801A (ja) * 2017-09-28 2019-04-25 デンカ株式会社 放熱部品付きパワーモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (ja) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk 炭化珪素質複合体及びその製造方法とそれを用いた放熱部品
JP2013074199A (ja) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd 放熱構造体、パワーモジュール、放熱構造体の製造方法およびパワーモジュールの製造方法
WO2017082368A1 (ja) * 2015-11-11 2017-05-18 日本発條株式会社 積層体および積層体の製造方法
WO2018135499A1 (ja) * 2017-01-17 2018-07-26 国立大学法人信州大学 セラミックス回路基板の製造方法
WO2018135490A1 (ja) * 2017-01-17 2018-07-26 デンカ株式会社 セラミックス回路基板の製造方法
JP2019067801A (ja) * 2017-09-28 2019-04-25 デンカ株式会社 放熱部品付きパワーモジュール

Also Published As

Publication number Publication date
JPWO2022153891A1 (ja) 2022-07-21
JP2023026431A (ja) 2023-02-24
WO2022153891A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2017082368A1 (ja) 積層体および積層体の製造方法
JP2006278558A (ja) 絶縁伝熱構造体及びパワーモジュール用基板
WO2011040044A1 (ja) 電子機器用放熱板およびその製造方法
US20160152004A1 (en) Composite laminate and electronic device
US11160172B2 (en) Method for producing ceramic circuit board
CN106460191A (zh) 散热器及其制造方法
JP6991516B2 (ja) セラミックス回路基板の製造方法
JP3937952B2 (ja) 放熱回路基板とその作製方法
JP7186929B1 (ja) 積層体、及びその製造方法、並びに、パワーモジュール
JP7440944B2 (ja) 複合材料および放熱部品
JP2008147307A (ja) 回路基板およびこれを用いた半導体モジュール
JP2011082502A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP6378247B2 (ja) 積層体、パワーモジュールおよび積層体の製造方法
CN114729440B (zh) 复合基板及其制造方法、以及电路基板及其制造方法
WO2023008565A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7186929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150