WO2013047265A1 - 気体分離膜 - Google Patents

気体分離膜 Download PDF

Info

Publication number
WO2013047265A1
WO2013047265A1 PCT/JP2012/073817 JP2012073817W WO2013047265A1 WO 2013047265 A1 WO2013047265 A1 WO 2013047265A1 JP 2012073817 W JP2012073817 W JP 2012073817W WO 2013047265 A1 WO2013047265 A1 WO 2013047265A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
separation membrane
polyacetal
carbon atoms
trioxane
Prior art date
Application number
PCT/JP2012/073817
Other languages
English (en)
French (fr)
Inventor
顕 伊東
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP12835746.4A priority Critical patent/EP2762224B1/en
Priority to CN201280047275.XA priority patent/CN103842061B/zh
Priority to KR1020147011102A priority patent/KR101885362B1/ko
Priority to JP2013536188A priority patent/JP6070562B2/ja
Priority to US14/347,148 priority patent/US9295951B2/en
Publication of WO2013047265A1 publication Critical patent/WO2013047265A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a gas separation membrane containing a specific polyacetal as a main component.
  • Polyacetal is excellent in mechanical strength, chemical resistance, wear resistance, etc., and has good molding processability. Therefore, it is an engineering plastics that forms machine industrial parts, automotive parts, electrical equipment parts, and other industrial products. Widely used as a material. However, while other thermoplastic resins have expanded their use in the field of films, polyacetal is rarely used as a film.
  • One of the expected applications is a gas separation membrane of polyacetal, and it has been shown in the past that polyacetal has high separation ability (ratio of gas permeability coefficient) of CO 2 , NO 2 , SO 2 to N 2 . (For example, refer to Patent Document 1, Non-Patent Documents 1 and 2).
  • An object of the present invention is to provide a gas separation membrane made of polyacetal having high CO 2 separation ability and high permeation rate.
  • the present invention is as follows: [1] A gas separation membrane mainly composed of polyacetal having 1.5 to 10 mol of oxyalkylene units having 2 or more carbon atoms per 100 mol of oxymethylene units. [2] Gas separation according to the above [1], wherein the polyacetal is a copolymer obtained from trioxane and a compound capable of copolymerizing with trioxane to give an oxyalkylene unit having two or more carbon atoms. film.
  • the compound giving an oxyalkylene unit having two or more carbon atoms copolymerizable with trioxane is at least one selected from cyclic acetal, cyclic ether, vinyl ether and allyl ether, The gas separation membrane according to the above [2].
  • the compound that gives an oxyalkylene unit having two or more carbon atoms copolymerizable with trioxane is at least selected from 1,3-dioxolane, 1,4-dioxepane, alkyl glycidyl ether, vinyl ether and allyl ether
  • thermoplastic resin is polyester or polyether resin.
  • thermoplastic resin is at least one selected from polylactic acid, polyhydroxybutyric acid, polyglycolic acid, polydioxolane, polyethylene glycol, polypropylene glycol and polytetramethylene glycol.
  • the gas separation membrane as described.
  • thermoplastic resin is contained in an amount of 1 to 80 parts by mass with respect to 100 parts by mass of the main component polyacetal.
  • the present invention it is possible to provide a gas separation membrane having an excellent ability to selectively separate carbon dioxide gas (CO 2 ) as compared with a conventional polymer gas separation membrane.
  • the gas separation membrane of the present invention is particularly suitable as a carbon dioxide separation membrane in exhaust gas discharged in large quantities from thermal power plants and factories.
  • the polyacetal used as a main component in the gas separation membrane of the present invention is a copolymer containing an oxymethylene unit and an oxyalkylene unit having two or more carbon atoms, and two or more carbons per 100 mol of the oxymethylene unit.
  • polyacetal according to the present invention such polyacetal is referred to as “polyacetal according to the present invention”.
  • the oxyalkylene unit having 2 or more carbon atoms in the polyacetal according to the present invention is preferably an oxyalkylene unit having 2 to 6 carbon atoms, more preferably an oxyalkylene unit having 2 to 4 carbon atoms. Particularly preferred are oxyalkylene units having 2 or 3 carbon atoms.
  • the oxyalkylene unit having two or more carbon atoms may be one type or two or more types.
  • the polyacetal according to the present invention includes, for example, a compound that gives an oxyalkylene unit having two or more carbon atoms that can be copolymerized with 1,3,5-trioxane as a monomer and with 1,3,5-trioxane. It can be obtained by a bulk polymerization method in which a cationic polymerization initiator such as boron trifluoride may be added as necessary. Examples of such comonomers include cyclic acetals, cyclic ethers, vinyl ethers, and allyl ethers.
  • Examples of the cyclic acetal include 1,3-dioxolane, 1,4-dioxepane and derivatives thereof, and 1,3-dioxolane is particularly preferable.
  • Examples of the cyclic ether include alkylene oxides having 2 to 6 carbon atoms such as ethylene oxide and propylene oxide, epoxy compounds, glycidyl ether compounds and the like, and particularly 4 to 10 such as butyl glycidyl ether and hexyl glycidyl ether. Alkyl glycidyl ethers having the following carbon atoms are preferred.
  • Vinyl ether and allyl ether mean compounds having a vinyl ether structure (CH 2 ⁇ CH—O—) or an allyl ether structure (CH 2 ⁇ CH—CH 2 —O—), for example, mono, di, tri or poly ( Ethylene glycol) vinyl ether or allyl ether of monoalkyl ether.
  • One or more of these comonomers are selected and introduced into the polyacetal so that the oxyalkylene unit having two or more carbon atoms falls within a predetermined range.
  • a unit different from the oxymethylene unit and the oxyalkylene unit may be introduced as long as the CO 2 separation ability and the permeation rate are not impaired.
  • Additional comonomers that provide such different units include, for example, cyclic siloxanes such as decamethylsiloxane.
  • the amount of comonomer introduced into the polyacetal according to the present invention is 1 oxyalkylene unit having 2 or more carbon atoms (derived from the comonomer) when the oxymethylene unit (derived mainly from trioxane) is 100 mol. It is preferably 5 to 10 mol, particularly 2 to 6 mol. It is preferred to use 1,3-dioxolane or 1,4-dioxepane as the comonomer.
  • the introduction amount of the comonomer can be calculated from the charged amount of the monomer and comonomer, or from the NMR spectrum data of the obtained copolymer.
  • the polyacetal according to the present invention preferably has a melt index in the range of 0.5 to 50 g / 10 min.
  • the gas separation membrane of the present invention can be obtained by forming a film of the polyacetal according to the present invention or a composition containing it as a main component.
  • a composition may contain other thermoplastic resins, and may contain a small amount of an antioxidant, a heat stabilizer and other necessary additives.
  • main component means that the composition (or the gas separation membrane of the present invention) contains at least 50% by mass, preferably 60% by mass or more of the polyacetal according to the present invention. To do.
  • thermoplastic resin that can be contained in such a composition (or the gas separation membrane of the present invention), the heat resistance of the gas separation membrane is not significantly reduced, and the CO 2 separation ability and permeation rate of the polyacetal according to the present invention are increased.
  • polyester, polyether resin, etc. are mentioned.
  • polyester resin include polylactic acid, polyhydroxybutyric acid, and polyglycolic acid.
  • polyether resins include polydioxolane, polyethylene glycol, polypropylene glycol and polytetramethylene glycol. It is preferable to use polylactic acid and / or polydioxolane as the thermoplastic resin.
  • the blending amount of the thermoplastic resin is preferably in the range of 1 to 80 parts by mass with respect to 100 parts by mass of the polyacetal according to the present invention.
  • the gas separation membrane of the present invention can be produced from the polyacetal according to the present invention or a composition containing the same as a main component by a production method known to those skilled in the art.
  • the polyacetal according to the present invention or a composition comprising the same as a main component is formed into a film by hot pressing or a melt extrusion molding method, or a uniaxially or biaxially stretched one. Preferably used.
  • a film obtained by dissolving the polyacetal according to the present invention or a composition containing the polyacetal as a main component in an appropriate solvent, casting, and drying may be used.
  • the solvent include hexafluoroisopropanol, high-boiling solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and benzyl alcohol (dissolved at a temperature higher than 100 ° C.).
  • the shape of the gas separation membrane of the present invention is not limited to a film, and can be used as a known shape such as a tube or a hollow fiber.
  • the monomers, comonomers, catalysts, thermoplastic resins, solvents and the like used in the present invention are all available from reagent suppliers or can be prepared by methods known to those skilled in the art.
  • Examples 1 to 12 and Comparative Examples 1 and 2 A polyacetal was produced by batch polymerization using a desktop biaxial kneader having an internal volume of 1000 cc having a Z-shaped blade inside and a jacket structure capable of circulating hot water. 70 ° C. warm water was circulated through the jacket, and the inside of the mixer was heated and dried with a heat gun with the lid removed, and then the lid was attached and the system was purged with nitrogen.
  • the measurement of gas permeability was performed by a differential pressure method based on JIS K7126. Specifically, a gas chromatograph was used as a detector, and a differential pressure gas / vapor permeability measuring device (GTR-30XAD, G6800T • F (S)) [GTR Tech Co., Ltd., Yanaco Technical Science Co., Ltd.] was used. The test differential pressure was 1 atm, and a dry gas was used. The test temperature was 23 ⁇ 2 ° C., and the transmission area was 1.52 ⁇ 10 ⁇ 3 m 2 ( ⁇ 4.4 ⁇ 10 ⁇ 2 m). The results are shown in Table 1.
  • thermoplastic resin in Examples 10 to 12 was produced as follows.
  • As the polymerization apparatus an apparatus similar to that used for the production of polyacetal was used. Hot water at 50 ° C. was circulated through the jacket, and the inside of the mixer was heated and dried with a heat gun with the lid removed, and then the lid was attached and the system was purged with nitrogen. 200 g of 1,3-dioxolane was injected from the raw material inlet, 0.003 parts by mass of phosphotungstic acid was added to 100 parts by mass of 1,3-dioxolane charged, and the polymerization was continued for 20 minutes. went.
  • the reaction was stopped by adding a triethylamine / benzene solution.
  • the solid content was filtered off, washed with acetone and vacuum dried at room temperature. The yield calculated from the obtained solid was 75%. Further, the melt index (MI value) was measured by ASTM-D1238 (under 2.16 kg load) and the measurement temperature was changed to 100 ° C., and it was 1.6.
  • Gas separation membranes (Examples 1 to 12) containing polyacetal as a main component according to the present invention and containing a predetermined amount of an oxyalkylene unit having two or more carbon atoms derived from a comonomer are conventional polymer gas separation membranes ( Compared with Comparative Examples 1 and 2, the permeation rate was high, and the ability to selectively separate carbon dioxide (CO 2 ) from oxygen gas and nitrogen gas, particularly nitrogen gas, was excellent. Therefore, the gas separation membrane of the present invention is expected to be useful as a carbon dioxide separation membrane in exhaust gas discharged in large quantities from thermal power plants and factories.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、オキシメチレンユニット100molに対してオキシアルキレンユニットが1.5~10molであるポリアセタールを主成分とする気体分離膜に関する。本発明の気体分離膜は、炭酸ガス分離能及び透過速度が高く、排ガス中の炭酸ガス分離膜として好適である。

Description

気体分離膜
 本発明は、特定のポリアセタールを主成分とする気体分離膜に関する。
 ポリアセタールは、優れた機械的強度、耐薬品性、耐摩耗性等に優れ、また成形加工性も良いことからエンジニアリングプラスチックスとして機械工業部品、自動車部品、電気機器部品、その他の産業用製品の成形材料として広く用いられている。しかしながら、他の熱可塑性樹脂がフィルムの分野にその用途を広げたのに対して、ポリアセタールはフィルムとしてほとんど使用されていないのが現状である。期待される用途の一つとしてポリアセタールの気体分離膜が挙げられ、過去にポリアセタールがNに対するCO、NO、SOの分離能(ガス透過係数の比)が高いことが示されている(例えば、特許文献1、非特許文献1及び2参照)。
 しかしながら、工業的に用いるためには更なるガス分離能の向上、ガス透過速度の向上が強く求められていた。
特公昭64-9042号公報
The Diffusion of Gases and Water Vapor Through Grafted Polyoxymethylene, Journal of Applied Polymer Science, Vol.14, pp.1949-1959 (1970) Gaseous Transfer Coefficients in Membranes, Separation Science, 9(6), pp.461-478 (1974)
 本発明の目的は、CO分離能及び透過速度の高いポリアセタールからなる気体分離膜を提供することである。
 本発明者らは、ポリアセタールの構造と気体分離膜としての性能に着目して鋭意研究した結果、特定の構造を有するポリアセタールを用いることでCOを選択的に分離する能力が優れた良質の気体分離膜となることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下のとおりである:
[1]オキシメチレンユニット100molに対して2個以上の炭素原子を有するオキシアルキレンユニットが1.5~10molであるポリアセタールを主成分とする気体分離膜。
[2]ポリアセタールが、トリオキサン、及びトリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物より得られるコポリマーであることを特徴とする、上記[1]記載の気体分離膜。
[3]トリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物が、環状アセタール、環状エーテル、ビニルエーテル及びアリルエーテルから選ばれる少なくとも1種であることを特徴とする、上記[2]記載の気体分離膜。
[4]トリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物が、1,3-ジオキソラン、1,4-ジオキセパン、アルキルグリシジルエーテル、ビニルエーテル及びアリルエーテルから選ばれる少なくとも1種であることを特徴とする、上記[2]記載の気体分離膜。
[5]さらに熱可塑性樹脂を含有することを特徴とする、上記[1]記載の気体分離膜。
[6]熱可塑性樹脂が、ポリエステル又はポリエーテル樹脂であることを特徴とする、上記[5]記載の気体分離膜。
[7]熱可塑性樹脂が、ポリ乳酸、ポリヒドロキシ酪酸、ポリグリコール酸、ポリジオキソラン、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールから選ばれる少なくとも1種であることを特徴とする、上記[5]記載の気体分離膜。
[8]主成分であるポリアセタール100質量部に対し、熱可塑性樹脂を1~80質量部で含有することを特徴とする、上記[5]記載の気体分離膜。
 本発明により、従来の高分子気体分離膜に比して、炭酸ガス(CO)を選択的に分離する能力に優れた気体分離膜を提供することが可能となった。本発明の気体分離膜は、特に火力発電所や工場等から多量に排出される排ガス中の炭酸ガス分離膜として好適である。
 本発明の気体分離膜で主成分として使用されるポリアセタールは、オキシメチレンユニットと、2個以上の炭素原子を有するオキシアルキレンユニットを含むコポリマーであり、オキシメチレンユニット100molに対して2個以上の炭素原子を有するオキシアルキレンユニットが1.5~10molであるコポリマーである。以下、かかるポリアセタールを「本発明に係るポリアセタール」と称する。
 本発明に係るポリアセタールにおける2個以上の炭素原子を有するオキシアルキレンユニットとしては、2~6個の炭素原子を有するオキシアルキレンユニットが好ましく、2~4個の炭素原子を有するオキシアルキレンユニットがより好ましく、2又は3個の炭素原子を有するオキシアルキレンユニットが特に好ましい。2個以上の炭素原子を有するオキシアルキレンユニットは、1種であっても、2種以上であってもよい。
 本発明に係るポリアセタールは、例えば、1,3,5-トリオキサンをモノマーとして、そして1,3,5-トリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物をコモノマーとして用い、必要に応じて、三フッ化ホウ素等のカチオン重合開始剤を添加してもよい、塊状重合法により得ることができる。そのようなコモノマーとしては、例えば、環状アセタール、環状エーテル、ビニルエーテル及びアリルエーテル等が挙げられる。環状アセタールとしては、1,3-ジオキソラン、1,4-ジオキセパン及びそれらの誘導体が挙げられ、特に1,3-ジオキソランが好ましい。環状エーテルとしては、エチレンオキシド、プロピレンオキシド等の2~6個の炭素原子を有するアルキレンオキシド、エポキシ化合物、グリジジルエーテル化合物等が挙げられ、特にブチルグリシジルエーテル、ヘキシルグリシジルエーテルのような4~10個の炭素原子を有するアルキルグリシジルエーテルが好ましい。ビニルエーテル及びアリルエーテルは、ビニルエーテル構造(CH=CH-O-)又はアリルエーテル構造(CH=CH-CH-O-)を有する化合物を意味し、例えば、モノ、ジ、トリ又はポリ(エチレングリコール)モノアルキルエーテルのビニルエーテル又はアリルエーテル等が挙げられる。これらコモノマーの中から1種以上を選択し、2個以上の炭素原子を有するオキシアルキレンユニットが所定の範囲内となるように、ポリアセタールに導入する。
 本発明に係るポリアセタールには、CO分離能及び透過速度を損なわない範囲で、オキシメチレンユニット及びオキシアルキレンユニットとは異なるユニットを導入してもよい。そのような異なるユニットを与える追加のコモノマーとしては、例えば、デカメチルシロキサンのような環状シロキサンが挙げられる。
 本発明に係るポリアセタール中のコモノマー導入量としては、(主にトリオキサンから由来する)オキシメチレンユニットを100molとした際に、(コモノマーに由来する)2個以上の炭素原子を有するオキシアルキレンユニットが1.5~10molであることが好ましく、特に2~6molが好ましい。コモノマーとして、1,3-ジオキソラン又は1,4-ジオキセパンを用いるのが好適である。コモノマーの導入量は、モノマー及びコモノマーの仕込量から、あるいは得られたコポリマーのNMRスペクトルデータ等から算出することができる。
 本発明に係るポリアセタールは、メルトインデックスが0.5~50g/10分の範囲にあるものが好ましい。
 本発明の気体分離膜は、本発明に係るポリアセタール又はそれを主成分とする組成物をフィルム化することにより得られる。かかる組成物には他の熱可塑性樹脂が配合されていてもよいし、少量の酸化防止剤、熱安定剤、その他必要な添加剤が配合されていてもよい。なお本発明において「主成分とする」とは、かかる組成物(あるいは、本発明の気体分離膜)が少なくとも50質量%、好ましくは60質量%以上の本発明に係るポリアセタールを含有することを意味する。
 かかる組成物(あるいは、本発明の気体分離膜)が含有しうる熱可塑性樹脂としては、気体分離膜の耐熱性を著しく低下させず、そして本発明に係るポリアセタールのCO分離能及び透過速度を損なわないものであれば特に制限はないが、例えば、ポリエステル及びポリエーテル樹脂等が挙げられる。ポリエステル樹脂の例としては、ポリ乳酸、ポリヒドロキシ酪酸及びポリグリコール酸等が挙げられる。ポリエーテル樹脂の例としては、ポリジオキソラン、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールが挙げられる。熱可塑性樹脂として、ポリ乳酸及び/又はポリジオキソランを用いるのが好適である。熱可塑性樹脂の配合量は、本発明に係るポリアセタール100質量部に対し、1~80質量部の範囲であるのが好ましい。
 本発明の気体分離膜は、本発明に係るポリアセタール又はそれを主成分とする組成物から、当業者に公知の製造方法により製造することができる。例えば、本発明の気体分離膜としては、本発明に係るポリアセタール又はそれを主成分とする組成物を熱プレスや溶融押出成形法によりフィルム化したもの、あるいはこれを一軸又は二軸延伸したものが好適に用いられる。
 更に、本発明に係るポリアセタール又はそれを主成分とする組成物を適切な溶媒に溶解させ、キャスティングし、乾燥させたフィルム化したものでもよい。前記溶媒としては、ヘキサフルオロイソプロパノールや、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ベンジルアルコールのような高沸点溶媒(100℃より高い温度で溶解させる)等が挙げられる。
 本発明の気体分離膜の形状としてはフィルムに留まらず、チューブや中空繊維等公知の形状として用いることができる。
 以下に実施例を挙げて本発明を説明する。なお、本発明で使用するモノマー、コモノマー、触媒、熱可塑性樹脂、溶媒等はいずれも、試薬供給業者から入手可能であるか、または当業者に公知の方法により調製することができる。
〈実施例1~12及び比較例1、2〉
 重合装置として、内部にZ型翼を有し、温水循環が可能なジャケット構造をする内容積1000ccの卓上型二軸混練機を用い、バッチ式の重合によりポリアセタールの製造を実施した。
 ジャケットに70℃の温水を循環させ、蓋を取り外した状態で混線機内部をヒートガンで加熱乾燥した後、蓋を取り付け、系内を窒素置換した。原料投入口より1,3,5-トリオキサン200g及び下記表1に記載のコモノマーの所定量を注入し、高速運転しながら攪拌後、三フッ化ホウ素ジエチルエーテラートを触媒量(1,3,5-トリオキサン 1molに対して0.04mmol)添加し、重合を20分間行った。その後、トリエチルアミン/ベンゼン溶液を加え反応を停止し、系内よりポリアセタールを採り出しミキサーで粉砕してポリアセタール粗共重合体を得た。得られたポリアセタール粗共重合体中の固形分率を収率として計算したところ、いずれも90%以上であった。
 次に、上記で得られたポリアセタール粗共重合体100質量部に対して、トリエチレングリコール-ビス[3-(3-t-ブチルー5-メチル-4-ヒドロキシフエニル)プロピオネート](BASF社製、商品名イルガノックス245)0.3質量部、メラミン0.1質量部、水酸化マグネシウム0.05質量部及び下記表1に記載の熱可塑性樹脂の所定量を添加し、均一に混合した後、小型ミキサー(株式会社東洋精機製作所社製、商品名ラボプラストミル)に供給し、220℃で20分間溶融混練した。このようにして得られた組成物について200°Cに加熱した油圧プレス機を用いて100ミクロン厚のフィルムを調製し、CO及びNのガス透過速度、及び分離能について評価した。
 気体透過率の測定(単位:cm3・cm/cm2・s・cmHg)は、JIS K7126に準拠した差圧法により行った。詳しくは、ガスクロマトグラフを検出器とし、差圧式ガス・蒸気透過率測定装置(GTR-30XAD、G6800T・F(S))[GTRテック株式会社・ヤナコテクニカルサイエンス株式会社製]を用いた。試験差圧は1atmとし、乾燥状態の気体を用いた。試験温度は23±2℃、透過面積は1.52×10-3m2(φ4.4×10-2m)とした。
結果を表1に合わせて示す。
Figure JPOXMLDOC01-appb-T000001
〈合成例:ポリジオキソランの製造〉
 実施例10~12で熱可塑性樹脂として用いたポリジオキソランは、以下のようにして製造した。
 重合装置としてはポリアセタールの製造と同様の装置を用いた。
 ジャケットに50℃の温水を循環させ、蓋を取り外した状態で混線機内部をヒートガンで加熱乾燥した後、蓋を取り付け、系内を窒素置換した。原料投入口より1,3-ジオキソラン200gを注入し、高速で攪拌しながら、仕込みの1,3-ジオキソラン100質量部に対して0.003質量部のリンタングステン酸を添加し、重合を20分間行った。その後、トリエチルアミン/ベンゼン溶液を加え反応を停止した。次に、ミキサーへ水:メタノール=4:1(容積比)に対して1wt%のトリエチルアミンを添加した溶液、更にポリジオキソランを投入し、混合しながら完全に反応を停止させるとともに残存するモノマーを除去した。固形分はろ別後、アセトンで洗浄後に常温で真空乾燥させた。得られた固形分から収率を計算したところ、75%であった。またASTM-D1238(2.16kg荷重下)で測定温度を100℃に変更して溶融指数(MI値)を測定したところ、1.6であった。
 コモノマー由来の2個以上の炭素原子を有するオキシアルキレンユニットを所定量で含む、本発明に係るポリアセタールを主成分とする気体分離膜(実施例1~12)は、従来の高分子気体分離膜(比較例1、2)に比して、透過速度も高く、かつ酸素ガスや窒素ガス、特に窒素ガスに対して炭酸ガス(CO)を選択的に分離する能力に優れたものであった。したがって本発明の気体分離膜は、火力発電所や工場等から多量に排出される排ガス中の炭酸ガス分離膜として有用であると期待される。

Claims (8)

  1.  オキシメチレンユニット100molに対して2個以上の炭素原子を有するオキシアルキレンユニットが1.5~10molであるポリアセタールを主成分とする気体分離膜。
  2.  ポリアセタールが、トリオキサン、及びトリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物より得られるコポリマーであることを特徴とする、請求項1記載の気体分離膜。
  3.  トリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物が、環状アセタール、環状エーテル、ビニルエーテル及びアリルエーテルから選ばれる少なくとも1種であることを特徴とする、請求項2記載の気体分離膜。
  4.  トリオキサンと共重合可能な、2個以上の炭素原子を有するオキシアルキレンユニットを与える化合物が、1,3-ジオキソラン、1,4-ジオキセパン、アルキルグリシジルエーテル、ビニルエーテル及びアリルエーテルから選ばれる少なくとも1種であることを特徴とする、請求項2記載の気体分離膜。
  5.  さらに熱可塑性樹脂を含有することを特徴とする、請求項1記載の気体分離膜。
  6.  熱可塑性樹脂が、ポリエステル又はポリエーテル樹脂であることを特徴とする、請求項5記載の気体分離膜。
  7.  熱可塑性樹脂が、ポリ乳酸、ポリヒドロキシ酪酸、ポリグリコール酸、ポリジオキソラン、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールから選ばれる少なくとも1種であることを特徴とする、請求項5記載の気体分離膜。
  8.  主成分であるポリアセタール100質量部に対し、熱可塑性樹脂を1~80質量部で含有することを特徴とする、請求項4記載の気体分離膜。
PCT/JP2012/073817 2011-09-27 2012-09-18 気体分離膜 WO2013047265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12835746.4A EP2762224B1 (en) 2011-09-27 2012-09-18 Use of gas separation membrane for carbon dioxide separation
CN201280047275.XA CN103842061B (zh) 2011-09-27 2012-09-18 气体分离膜
KR1020147011102A KR101885362B1 (ko) 2011-09-27 2012-09-18 기체 분리막
JP2013536188A JP6070562B2 (ja) 2011-09-27 2012-09-18 気体分離膜
US14/347,148 US9295951B2 (en) 2011-09-27 2012-09-18 Gas separation membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-211637 2011-09-27
JP2011211637 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047265A1 true WO2013047265A1 (ja) 2013-04-04

Family

ID=47995297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073817 WO2013047265A1 (ja) 2011-09-27 2012-09-18 気体分離膜

Country Status (7)

Country Link
US (1) US9295951B2 (ja)
EP (1) EP2762224B1 (ja)
JP (1) JP6070562B2 (ja)
KR (1) KR101885362B1 (ja)
CN (1) CN103842061B (ja)
TW (1) TWI604886B (ja)
WO (1) WO2013047265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213850A (ja) * 2014-05-07 2015-12-03 三菱エンジニアリングプラスチックス株式会社 ガス分離体及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207504A (en) * 1981-06-16 1982-12-20 Daicel Chem Ind Ltd Membrane for separation of gas
JPS649042A (en) 1987-07-01 1989-01-12 Kanto Jidosha Kogyo Kk Thigh supporting device for seat cushion
WO2002022245A1 (fr) * 2000-09-15 2002-03-21 Centre National De La Recherche Scientifique Membranes pour la separation selective gazeuse

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994448B2 (ja) * 1990-10-29 1999-12-27 旭化成工業株式会社 ポリオキシメチレンフィルム及びその製造方法
JPH07292215A (ja) * 1994-04-28 1995-11-07 Du Pont Kk ポリアセタール樹脂組成物
US5468430A (en) * 1994-05-19 1995-11-21 L'air Liquide S.A. Process of making multicomponent or asymmetric gas separation membranes
JP4306199B2 (ja) * 2001-08-03 2009-07-29 東レ株式会社 樹脂組成物ならびにそれからなる成形品、フィルムおよび繊維
WO2003014224A1 (en) * 2001-08-03 2003-02-20 Toray Industries, Inc. Resin composition and molded article, film, and fiber each comprising the same
US20030105199A1 (en) * 2001-11-16 2003-06-05 Mitsubishi Gas Chemical Company, Inc. Polyoxymethylene resin composition and molded article thereof
JP2004155110A (ja) * 2002-11-07 2004-06-03 Mitsubishi Engineering Plastics Corp ポリアセタールフィルムの製造法
KR101121398B1 (ko) * 2003-10-01 2012-03-14 폴리플라스틱스 가부시키가이샤 폴리아세탈 수지 조성물
BRPI0715090A2 (pt) * 2006-07-26 2013-03-26 Basf Se processo para a preparaÇço de homopolÍmeros ou copolÍmeros de polioximetileno
WO2009090949A1 (ja) * 2008-01-15 2009-07-23 Idemitsu Kosan Co., Ltd. グラフト共重合体を含有するエンジニアリングプラスチック系樹脂組成物
JP4858457B2 (ja) * 2008-01-31 2012-01-18 東レ株式会社 ポリアセタール樹脂を主成分とする成形品を製造する方法
CN106863695A (zh) * 2008-05-29 2017-06-20 三菱瓦斯化学株式会社 具有两层结构的复合成型品
KR101071422B1 (ko) * 2009-03-13 2011-10-11 한밭대학교 산학협력단 자작자동차용 동력전달장치
US8734569B2 (en) * 2009-12-15 2014-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
US20120193827A1 (en) * 2010-12-23 2012-08-02 Ticona Llc Microporous Film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207504A (en) * 1981-06-16 1982-12-20 Daicel Chem Ind Ltd Membrane for separation of gas
JPS649042A (en) 1987-07-01 1989-01-12 Kanto Jidosha Kogyo Kk Thigh supporting device for seat cushion
WO2002022245A1 (fr) * 2000-09-15 2002-03-21 Centre National De La Recherche Scientifique Membranes pour la separation selective gazeuse

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"The Diffusion of Gases and Water Vapor Through Grafted Polyoxymethylene", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 14, 1970, pages 1949 - 1959
??? B. E ET AL.: "???", VYSOKOMOLEKULYARNYE SOEDINENIYA. SERIYA B. KRATKIE SOOBSHCHENIYA, vol. 24, no. 9, September 1982 (1982-09-01), pages 716 - 718, XP008171683 *
GASEOUS TRANSFER COEFFICIENTS IN MEMBRANES, SEPARATION SCIENCE, vol. 9, no. 6, 1974, pages 461 - 478
HITESH C. ET AL: "Molecular Modeling of Polymers 16. Gaseous Diffusion in Polymers: A Quantitative Structure-Property Relationship (QSPR) Analysis", PHARMACEUTICAL RESEARCH, vol. 14, no. 10, October 1997 (1997-10-01), pages 1349 - 1354, XP003030955 *
RAMESH K. SHARMA ET AL.: "Copolymerization reactions of carbon dioxide, Preprints of Papers", PREPRINTS OF PAPERS. AMERICAN CHEMICAL SOCIETY. DIVISON OF FUEL CHEMISTRY, vol. 45, no. 4, 2000, pages 676 - 680, XP003030956 *
See also references of EP2762224A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213850A (ja) * 2014-05-07 2015-12-03 三菱エンジニアリングプラスチックス株式会社 ガス分離体及びその製造方法

Also Published As

Publication number Publication date
JPWO2013047265A1 (ja) 2015-03-26
KR101885362B1 (ko) 2018-08-03
US20140230654A1 (en) 2014-08-21
EP2762224A4 (en) 2015-05-27
EP2762224B1 (en) 2017-12-13
JP6070562B2 (ja) 2017-02-01
TW201317047A (zh) 2013-05-01
US9295951B2 (en) 2016-03-29
CN103842061A (zh) 2014-06-04
CN103842061B (zh) 2019-03-19
EP2762224A1 (en) 2014-08-06
KR20140079434A (ko) 2014-06-26
TWI604886B (zh) 2017-11-11

Similar Documents

Publication Publication Date Title
CN111072965B (zh) 一种聚砜类树脂聚合物材料及其制备方法
Han et al. Fluorene-containing poly (arylene ether sulfone) block copolymers: Synthesis, characterization and application
US10456834B2 (en) Process for the production of sintered moldings
JP2012501379A (ja) ポリオキシメチレン組成物およびこれらから作られる物品
JP6070562B2 (ja) 気体分離膜
KR101680832B1 (ko) 고성능 이산화탄소 분리용 피페라지늄-매개 가교된 폴리이미드 막 및 이를 제조하는 방법
CN108291042A (zh) 氟聚合物杂化复合材料
EP1215245A1 (en) Polyacetal resin composition
Hossain et al. (PIM-co-Ellagic Acid)-based Copolymer Membranes for High Performance CO 2 Separation
JPH02155951A (ja) ポリフェニレンスルフィド樹脂組成物
KR102062866B1 (ko) 자가-가교가 가능한 조성물을 이용한 기체 분리막 및 그 제조방법
JP6865817B2 (ja) ポリオキシメチレン樹脂組成物
JP6707468B2 (ja) 成形品の曲げ靭性を改良する方法
EP3820942A1 (en) Method for the production of stable polyoxymethylene copolymers (cpom)
CN103936949B (zh) 一种聚氧化亚甲基共聚物的生产方法
CN105199020B (zh) 一种乙烯‑氧亚甲基共聚物及其制备方法
JP4169868B2 (ja) ポリオキシメチレン共重合体及びその製造方法
WO2000055227A1 (fr) Copolymere polyacetal et son procede de production
JP2023043157A (ja) オキシメチレン樹脂組成物
JPH0686509B2 (ja) ポリオキシメチレンコポリマー
Nagase et al. Separation Property of Pervaporation Membrane Prepared from Polydimetylsiloxane-Grafted Polyimide
JP2024045843A (ja) ポリアセタール樹脂組成物
Gibson Synthesis of polyester rotaxanes via the statistical threading method
김용범 et al. Preparation of DMFC membrane by crosslinkable blend of sPPO and PS copolymer
JP2015209456A (ja) ポリアセタール共重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536188

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012835746

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347148

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011102

Country of ref document: KR

Kind code of ref document: A