WO2013041015A1 - 插件式发光二极管及其制造方法 - Google Patents
插件式发光二极管及其制造方法 Download PDFInfo
- Publication number
- WO2013041015A1 WO2013041015A1 PCT/CN2012/081565 CN2012081565W WO2013041015A1 WO 2013041015 A1 WO2013041015 A1 WO 2013041015A1 CN 2012081565 W CN2012081565 W CN 2012081565W WO 2013041015 A1 WO2013041015 A1 WO 2013041015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- pin
- semiconductor layer
- light emitting
- plug
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 30
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 4
- 238000005323 electroforming Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims 2
- 238000005538 encapsulation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 75
- 239000010931 gold Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000003447 ipsilateral effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
- H01L33/382—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the invention relates to a flip chip type light-emitting diode, belonging to the field of semiconductor optoelectronics.
- the flip chip packaging technology has been in the packaging industry for many years.
- the flip chip technology can be used to reverse the LED chip on a heat-conducting substrate.
- it solves the electrode wiring solder pad in the traditional light-emitting diode.
- Pad The light-shielding problem improves the light-emitting efficiency; on the other hand, the substrate with good thermal conductivity can be replaced with a substrate with poor thermal conductivity (such as sapphire) to improve the heat dissipation rate of the light-emitting diode and improve the device performance.
- the eutectic ball-planting method is mostly used, and the electrode is combined with the gold ball by ultrasonically heating the gold ball after the electrode is opposite to the site. Due to the need for precise alignment during eutectic ball implantation, the speed of production is reduced, and the virtual welding between the gold ball and the electrode often results in subsequent failure of the assembly and cannot be replaced after failure.
- the plug-in LED chip structure includes: an illuminating epitaxial structure, which is included from bottom to top. a second semiconductor layer, an active layer and a first semiconductor layer; at least one first electrode is located on the first semiconductor layer, at least one second electrode is located on the second semiconductor layer, and the first electrode and the second electrode are located in the light emitting epitaxial structure Ipsilateral; at least two The PIN pins are respectively located on the first electrode and the second electrode, and when the chip is mounted on the substrate with the corresponding jack, the detachable connection is realized by the PIN pin.
- the method for manufacturing the plug-in LED chip comprises the following steps: 1) providing a growth substrate; 2 Forming a light-emitting epitaxial structure on the front surface of the growth substrate, comprising a second semiconductor layer, an active layer and a first semiconductor layer from bottom to top; Forming a pattern on the first semiconductor layer, defining a second electrode region, etching the second electrode region to the second semiconductor layer and exposing the second semiconductor layer; Forming a first electrode on the first semiconductor layer, forming a second electrode on the exposed second semiconductor layer; 5) forming a PIN on the first electrode and the second electrode, respectively
- the foot which is higher than the surface of the light-emitting epitaxial structure, completes the plug-in LED chip structure, and when the chip is mounted on the substrate with the corresponding socket, the detachable connection is realized by the PIN pin.
- the growth substrate can be thinned or polished or directly peeled off, and in order to obtain a better light-emitting effect, the roughening treatment can be performed on the light-emitting surface.
- the plug-in LED chip can be combined with a pedestal package to form a flip-chip LED, wherein the PIN is distributed on the pedestal
- the socket for the alignment of the foot is provided with a metal connection.
- the method for fabricating the flip chip type light emitting diode mainly comprises the following steps: 1) providing a growth substrate; 2 Forming a light-emitting epitaxial structure on the front surface of the growth substrate, comprising a second semiconductor layer, an active layer and a first semiconductor layer from bottom to top; Forming a pattern on the first semiconductor layer, defining a second electrode region, etching the second electrode region to the second semiconductor layer and exposing the second semiconductor layer; Forming a first electrode on the first semiconductor layer, forming a second electrode on the exposed second semiconductor layer; 5) forming a PIN on the first electrode and the second electrode, respectively a foot, which is higher than the surface of the light-emitting epitaxial structure to form a plug-in LED chip; 6) providing a pedestal on which a socket for aligning with the PIN pin is disposed, and a metal wire is disposed to reflect the metal conductive layer Upper; 7 Installing the chip on the base by means of a plug-in, ie, a PIN The pin
- the invention changes the packaging mode of the traditional light emitting diode, and adopts the plug-in method to enable flexible disassembly and assembly between the chip and the package base, and can be quickly replaced after the component fails, thereby increasing the convenience in use;
- Structure of the electrode structure The PIN pin facilitates quick alignment and assembly with the socket of the base.
- the plug-in method of the invention by adopting the plug-in method of the invention, the structure of the conventional conventional packaging method to be wired is avoided, thereby effectively improving the performance of the device.
- FIG. 1 is a cross-sectional view showing the structure of a plug-in type light emitting diode chip in accordance with an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a structure of a flip chip type light emitting diode according to an embodiment of the present invention.
- 3 to 11 are schematic cross-sectional views showing a process of fabricating a plug-in type light emitting diode chip according to an embodiment of the invention.
- FIG. 12 is a cross-sectional view of a base of a flip chip type light emitting diode in accordance with an embodiment of the present invention.
- 100 light emitting diode chip; 110: growth substrate; 120: second semiconductor layer; 130: active layer; 140 : a first semiconductor layer; 150: a protective layer; 151: a patterned protective layer; 160: a reflective metal conductive layer; 171: a first electrode; 172: a second electrode; 180: a thick film photoresist layer; 191, 192: PIN pin; 200: pedestal; 201: first substrate; 202: second substrate; 211, 212,: jack; 221, 222 : Metal connection.
- the first electrode may be in direct contact with the first semiconductor layer.
- the third layer such as The ITO layer, the reflective layer, and the like are connected to the first semiconductor layer, and in this case, the stacking order to the bottom is the first semiconductor layer and the third layer (such as ITO) ), the first electrode.
- FIG. 1 is a cross-sectional view showing the structure of a plug-in type light emitting diode chip.
- Plug-in LED chip structure 100 The light emitting epitaxial structure composed of the first semiconductor layer 140, the active layer 130, and the second semiconductor layer 120 is formed on the growth substrate 110, wherein the second semiconductor layer 120 The surface is partially exposed; the reflective metal conductive layer 160 covers the surface of the first semiconductor layer 140; the first electrode 171 is formed on the reflective metal conductive layer 160, and the second electrode 172 Formed on the exposed portion of the second semiconductor layer; PIN pins 191, 192 are electroformed on the first electrode and the second electrode and above the surface of the epitaxial layer, wherein the PIN pin 191 The first electrode 171 is connected, and the PIN pin 192 is connected to the second electrode.
- a sapphire substrate may be used as the growth substrate, and the first semiconductor layer 140 is p.
- the semiconductor layer, the active layer 130 is a multiple quantum well structure, and the second semiconductor layer is an n-type semiconductor layer.
- the material of the reflective metal conductive layer 160 may be selected from Ag, Al, Ti, Ni, Pt, Au, Cr.
- a metal having a relatively good reflectance has a n-side as a light-emitting surface, and a reflective metal conductive layer 160 reflects an active layer to emit light from the P-type semiconductor layer, so that the reflected light can be emitted from the n-type layer.
- the number and position of the first electrode 171 and the second electrode 182 are designed according to the size of the chip, and include at least one first electrode 171 And a second electrode 172, PIN pins 191, 192 Corresponding to the first electrode and the second electrode, respectively.
- two first electrodes are designed, one second electrode being distributed in the middle of the two first electrodes.
- the material of the PIN foot is Cu, W, Mo, Co. Any one or combination of Ni.
- Figure 3 to Figure 11 It is a schematic cross-sectional view of the process of preparing the plug-in LED chip described in Embodiment 1. It mainly includes a luminescent epitaxial growth process, an electrode formation process, and a PIN formation process.
- a manufacturing process of a plug-in LED chip has the following steps:
- a growth substrate 110 is first provided, on which a light-emitting epitaxial layer is grown, and the bottom layer includes an N-layer semiconductor layer 120.
- the active layer 130 and the P-type semiconductor layer 140 have a structural cross-sectional view as shown in FIG.
- a protective layer 150 is formed on the P-type semiconductor layer 140, and its structural sectional view is as shown in FIG.
- a second electrode region is defined on the protective layer 150 to form a protective pattern 151 on: P-type semiconductor layer 140 Above, its structural section is shown in Figure 5.
- a reflective metal conductive layer 160 is formed on the P-type semiconductor layer 140, and its structural sectional view is as shown in FIG.
- a first electrode 171 is formed on the reflective metal conductive layer 160, and a second electrode is formed on the exposed portion of the N-type semiconductor layer 172, its structural section is shown in Figure 8.
- a thick film photoresist layer 180 is formed on the surface of the light-emitting epitaxial layer, which covers the reflective metal conductive layers 160 and N
- the bare portion of the semiconductor layer 120 covers the wires of the first electrode 171 and the second electrode 172, and only the pin line regions of the first electrode 71 and the second electrode 72 are exposed, and the structural sectional view thereof is as shown in FIG. Shown.
- electroforming PIN feet 191, 192 are formed on the first electrode 171 and the second electrode 172, respectively, wherein The PIN pin 191 is connected to the first electrode 171, and the PIN pin 192 is connected to the second electrode, and its structural sectional view is as shown in FIG.
- Next step remove the thick film photoresist layer 180, cut the chip and polish it to cut a PIN
- the cross-sectional LED chip has a cross-sectional view of the structure shown in Figure 11.
- FIG. 2 is a cross-sectional view showing a structure of a flip chip type LED of the present embodiment, the structure mainly including a PIN
- the structure of the LED chip has been described in detail in the first embodiment. In this embodiment, the structure of the pedestal structure and the chip and the pedestal will be described.
- the plug-in LED chip 100 is mounted upside down on the susceptor 200.
- the base 200 is distributed with the chip
- the PIN pin is aligned with the jacks 211, 212, and the base 200 is internally provided with metal wires 221, 222, and the metal connecting portion is at least partially disposed at the jacks 211, 212 Inside.
- the PIN pins 191, 192 of the chip 100 are respectively inserted into the sockets 211, 212 of the base 200, wherein the PIN pin 191 of the first electrode 171 Aligned with the jack 211, the PIN pin 192 of the second electrode 172 is aligned with the jack 212, the PIN pin 191 is connected to the metal connection 221, and the PIN pin 192 Connect to metal connection 222. Connect the external power supply through the metal wires 221 and 222.
- the material of the pedestal is preferably a material with good heat dissipation.
- PCB or MCPCB is available.
- the embodiment is a method for fabricating a flip chip type light emitting diode structure according to the third embodiment, which mainly comprises a plug-in LED chip 100. Manufacturing process and chip and pedestal 200 assembly process. The chip process has been described in detail in the second embodiment, and the description of the embodiment will not be repeated.
- a method for fabricating a flip chip type LED structure comprises the following steps:
- the plug-in light-emitting diode chip 100 is obtained according to the method of the second embodiment.
- Next step Provide the base 200.
- a socket 211, 212 is disposed on the base 200 opposite to the chip PIN pin.
- metal wires 221 and 222 are arranged inside, and the metal connecting portion is at least partially disposed in the jacks 211 and 212.
- a cross-sectional view of the susceptor 200 is shown in FIG.
- the substrate 200 is of a sandwich type and is composed of a first substrate 201 and a second substrate 202.
- Figure 12 As shown, the second substrate is on the first substrate, the middle interlayer is a metal wiring layer 221 and a socket 221, the socket 222 is disposed on the second substrate 202, and the bottom of the socket 202 is provided with a metal connection. 222.
- the structure of the substrate is not limited to the sandwich structure as long as the external power supply can be assembled with the chip and turned on.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
提供一种覆晶插件式发光二极管芯片结构并搭配插件封装方式电路设计,插件式发光二极管芯片结构(100)包括:发光外延结构,由下而上包含第二半导体层(120)、有源层(130)以及第一半导体层(140);至少一第一电极(171)位于第一半导体层(140)上,至少一第二电极(172)位于第二半导体层(120)上,且第一电极(171)和第二电极(172)位于发光外延结构的同侧;至少两个PIN脚(191,192)分别位于第一电极(171)和第二电极(172)上,当芯片(100)安装在带有对应插孔的基板上时,通过PIN脚(191,192)实现可拆卸式连接。
Description
本申请要求于 2011 年 9 月 23 日
提交中国专利局、申请号为201110284753.6、发明名称为'一种覆晶插件式发光二极管芯片结构及其制造方法 '
的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种覆晶插件式发光二极管,属半导体光电领域。
覆晶型封装技术已经在封装业界行之有年了,利用覆晶技术可将发光二极体芯片反转设置于一导热基板上,一方面解决了传统发光二极中电极接线焊垫( Bonding Pad
)的遮光问题,提高出光效率;另一方面,可用导热性能佳的基板替换导热性差的生长衬底(如蓝宝石),提升发光二极体的散热率,提高器件性能。
在覆晶技术中,目前较多地是使用共晶植球方式进行,透过金球植于电极对位点后进行超声加热的方式使得电极与金球相结合。由于共晶植球过程中需进行精密的对位,因此降低了生产的速度,而且金球与电极间常形成虚焊而导致组件后续的失效,并且失效后无法进行更换。
针对现有技术中存在的问题,本发明提出一种覆晶插件式发光二极管芯片结构并搭配插件封装方式提供电路设计,其插件式发光二极管芯片结构包括:发光外延结构,其由下而上包含第二半导体层、有源层以及第一半导体层;至少一第一电极位于第一半导体层上,至少一第二电极位于第二半导体层上,且第一电极和第二电极位于发光外延结构的同侧;至少两个
PIN 脚分别位于第一电极和第二电极上,当所述芯片安装在带有对应插孔的基板上时,通过所述 PIN 脚实现可拆卸式连接。
该插件式发光二极管芯片的制作方法,包括如下步骤: 1 )提供一生长衬底; 2
)在生长衬底的正面上形成发光外延结构 , 其由下而上包含第二半导体层 , 有源层以及第一半导体层; 3
)在第一半导体层上形成图案,定义第二电极区,蚀刻第二电极区至第二半导体层并裸露出第二半导体层; 4
)形成第一电极于第一半导体层上,形成第二电极于裸露出的第二半导体层上; 5 )分别在第一电极和第二电极上形成 PIN
脚,其高出发光外延结构表面,完成插件式发光二极管芯片结构,当所述芯片安装在带有对应插孔的基板上时,通过所述 PIN 脚实现可拆卸式连接。
在完成上述步骤后,可将生长衬底减薄抛光或直接剥离,为了取得更佳的出光效果,可在出光面上做粗化处理。
在本发明中,前述插件式发光二极管芯片可配合基座封装形成覆晶发光二极管,其中基座上分布有与前述 PIN
脚进行对位的插孔,且设置有金属连线,当 PIN 脚对位插入插孔后,实现第一电极和第二电极与金属连线连接;所述芯片和基座采用插件方式连接,即芯片通过 PIN
脚与基座上的插孔连接,实现自由组装。
该覆晶插件式发光二极管的制作方法,主要包括以下步骤: 1 )提供一生长衬底; 2
)在生长衬底的正面上形成发光外延结构 , 其由下而上包含第二半导体层 , 有源层以及第一半导体层; 3
)在第一半导体层上形成图案,定义第二电极区,蚀刻第二电极区至第二半导体层并裸露出第二半导体层; 4
)形成第一电极于第一半导体层上,形成第二电极于裸露出的第二半导体层; 5 )分别在第一电极和第二电极上形成 PIN
脚,其高出发光外延结构表面,形成插件式发光二极管芯片; 6 )提供一基座,其上分布有与前述 PIN 脚进行对位的插孔,并备置金属连线,反射金属导电层上; 7
)采用插件方式将所述芯片安装在所述基座上,即将 PIN
脚对位插入基座的插孔内,实现第一电极和第二电极与金属连线连接,形成覆晶插件式发光二极管结构,其中所述芯片与基座之间为可拆卸式的连接。
本发明改变了传统发光二极管的封装方式,采用插件方式使得芯片与封装基座之间可进行灵活拆卸与组装,当组件失效后能够快速的进行更换,增加了使用上的便利性;且在芯片结构的电极结构上采用
PIN 脚,方便与基座的插孔进行快速对位、组装。
进一步地,采用本发明的插件方式,避免了一般传统封装方式须打线的结构,进而有效提高了器件的性能。
图 1 为依照本发明实施例的插件式发光二极管芯片结构的剖面图。
图 2 为依照本发明实施例的覆晶插件式发光二极管结构的剖面图。
图 3 ~图 11 为依照本发明实施例的插件式发光二极管芯片制备过程的截面示意图。
图 12 为依照本发明实施例的覆晶插件式发光二极管的基座剖面图。
图中各标号表示如下:
100 :发光二极管芯片; 110 :生长衬底; 120 :第二半导体层; 130 :有源层; 140
:第一半导体层; 150 :保护层; 151 :图形化保护层; 160 :反射金属导电层; 171 :第一电极; 172 :第二电极; 180 :厚膜光阻层;
191 , 192 : PIN 脚; 200 :基座; 201 :第一基板; 202 :第二基板; 211 , 212 ,:插孔; 221 , 222
:金属连线。
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
在此,需要特别注意地是,在本发明中所提及的'第一电极位于第一半导体层上'应理解为两种情况:第一种,第一电极可直接与第一半导体层接触;第二种,通过第三层(如
ITO 层、反射层等)与第一半导体层连接,此情况下至下而上的层叠顺序为第一半导体层、第三层(如 ITO
)、第一电极。说明书中其他类似情况应做同样理解。
实施例一
图 1 为一种插件式发光二极管芯片结构的剖面图。一种插件式发光二极管芯片结构 100
,包括:至上而下由第一半导体层 140 、有源层 130 、第二半导体层 120 构成的发光外延结构形成于生长衬底 110 上,其中第二半导体层 120
部分裸露其表面;反射金属导电层 160 覆盖在第一半导体层 140 的表面上;第一电极 171 形成于反射金属导电层 160 上,第二电极 172
形成于第二半导体层裸露部分的上面; PIN 脚 191 、 192 以电铸方式形成于第一电极和第二电极的上,且高出外延层的表面,其中 PIN 脚 191
连接第一电极 171 , PIN 脚 192 连接第二电极。
在本实施例,以氮化物系发光二极管为例,生长衬底可以使用蓝宝石衬底,第一半导体层 140 为 p
型半导体层,有源层 130 为多量子阱结构,第二半导体层为 n 型半导体层。
反射金属导电层 160 的材料可选用 Ag 、 Al 、 Ti 、 Ni 、 Pt 、 Au 、 Cr
等反射率较佳的金属,以 n 侧作为出光面,反射金属导电层 160 反射一有源层向该 P 型半导体层发出的光射,使反射的光线可从 n 型层射出。
第一电极 171 和第二电极 182 的数量和位置根据芯片的尺寸进行设计,至少包含一个第一电极 171
和一个第二电极 172 , PIN 脚 191 、 192
分别与第一电极和第二电极对应。在本实施例中,设计两个第一电极,一个第二电极分布在两个第一电极的中间。 PIN 脚的材料选用 Cu 、 W 、 Mo 、 Co
、 Ni 的任意一种或其组合。
实施例二
图 3 ~图 11
为实施例一中所述的插件式发光二极管芯片制备过程的截面示意图。其主要包括发光外延生长工艺,电极形成工艺及 PIN 形成工艺。
一种插件式发光二极管芯片的制作工艺,其步骤如下:
首先,先提供生长衬底 110 ,在其上上生长发光外延层,其至下而上包含 N 层半导体层 120
,有源层 130 , P 型半导体层 140 ,其结构剖面图如图 3 所示。
下一步: P 型半导体层 140 上形成一保护层 150 ,其结构剖面图如图 4 所示。
下一步:在保护层 150 上定义第二电极区,形成保护图案 151 于: P 型半导体层 140
上,其结构剖面图如图 5 所示。
下一步:采用干蚀刻去除第二电极区的 P 型半导体层 140 和有源层 130 ,并裸露出 N 型半导体层
120 ,其结构剖面图如图 6 所示。
下一步:在 P 型半导体层 140 上形成反射金属导电层 160 ,其结构剖面图如图 7 所示。
下一步:在反射金属导电层 160 上形成第一电极 171 , N 型半导体层的裸露部分上形成第二电极
172 ,其结构剖面图如图 8 所示。
下一步:在发光外延层的表面上形成一厚膜光阻层 180 ,其覆盖住反射金属导电层 160 及 N
型半导体层 120 的裸露部分,并覆盖第一电极 171 及第二电极 172 之导线,仅裸露出第一电极 71 及第二电极 72 之钉线区域,其结构剖面图如图 9
所示。
下一步:分别于第一电极 171 及第二电极 172 上电铸形成 PIN 脚 191 , 192 ,其中
PIN 脚 191 连接第一电极 171 , PIN 脚 192 连接第二电极,其结构剖面图如图 10 所示。
下一步:去除厚膜光阻层 180 ,将芯片进行减薄抛光后切割得一具 PIN
脚对位之发光二级管芯片,其结构剖面图如图 11 所示。
实施例三
如图 2 所示为本实施所述的一种覆晶插件式发光二极管结构的剖面图,其结构主要包括一具有 PIN
脚对位的发光二极管芯片及与之对位组装的基座。其中发光二极管芯片的结构已在实施例一中进行了详细的描述,在本实施例将重点对基座结构与芯片与基座组装后的结构进行说明。
如图 2 所示,插件式发光二极管芯片 100 倒立安装于基座 200 上。基座 200 上分布有与芯片
PIN 脚对位的插孔 211 , 212 ,且基座 200 内部设置有金属连线 221 、 222 ,金属连接部分至少部分设置在插孔 211 、 212
内。芯片 100 的 PIN 脚 191 、 192 分别插入基座 200 的插孔 211 , 212 中,其中第一电极 171 的 PIN 脚 191
与插孔 211 对位,第二电极 172 的 PIN 脚 192 与插孔 212 对位, PIN 脚 191 与金属连接 221 连接, PIN 脚 192
与金属连接 222 连接。通过金属连线 221 、 222 ,连接外部电源。
基座的材料最好选择散热性佳的材料,可选用 PCB 或 MCPCB 。
实施例四
本实施例为实施例三所述的一种覆晶插件式发光二极管结构的制作方法,其主要包括插件式发光二极管芯片 100
的制作工艺及芯片与基座 200 组装工艺。其中芯片工艺在实施例二中已进行了细说的描述,本实施例再不再做重复说明。
一种覆晶插件式发光二极管结构的制作方法,其包括如下步骤:
首先,依据实施例二的方法制备获得插件式发光二极管芯片 100 。
下一步:提供基座 200 。基座 200 上分布有与芯片 PIN 脚对位的插孔 211 , 212
,且内部设置有金属连线 221 、 222 ,金属连接部分至少部分设置在插孔 211 、 212 内。基座 200 的剖面图如图 12 所示。
下一步:将发光二级管 100 的 PIN 脚与基座 200
进行对位、组装,形成覆晶插件式发光二极管,其结构剖面如图 2 所示。
在本实施例中,基板 200 为夹层式,由第一基板 201 和第二基板 202 构成。如图 12
所示,第二基板位于第一基板上,中间夹层为金属连线层 221 和插孔 221 ,插孔 222 设置在第二基板 202 上,插孔 202 的底部备置金属连线
222 。基板的结构并不局限于夹层结构,只要能够实现与芯片组装并接通外部电源即可。
以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不脱离本本发明的精神和范围的情况下,还可以作出各种变换或变化。因此,所有等同的技术方案也应该属于本发明的范畴,应由各权利要求限定。
Claims (20)
- 一种插件式发光二极管芯片,包括:一发光外延结构,其由下而包含第二半导体层 , 有源层以及第一半导体层;至少一第一电极位于第一半导体层上,至少一第二电极位于第二半导体层上,且第一电极和第二电极位于发光外延结构的同侧;至少两个 PIN 脚分别位于第一电极和第二电极上;当所述芯片安装在带有对应插孔的基板上时,通过所述 PIN 脚实现可拆卸式连接。
- 根据权利要求 1 所述的一种插件式发光二极管芯片,其特征在于:所述发光外延结构形成于一生长衬底上。
- 根据权利要求1 所述的一种插件式发光二极管芯片,其特征在于,还包括:一反射金属导电层形成于第一半导体层上,所述第一电极形成于该反射金属导电层上。
- 根据权利要求 1 所述的一种插件式发光二极管芯片,其特征在于:第一电极对应的 PIN 脚的顶端与第二电极对应的 PIN 脚的顶端不位于同一水平面上。
- 一种插件式发光二极管芯片的制作方法,包括如下步骤:提供一生长衬底;在生长衬底的正面上形成发光外延结构 , 其由下而上包含第二半导体层 , 有源层以及第一半导体层;在第一半导体层上形成图案,定义第二电极区,蚀刻第二电极区至第二半导体层并裸露出第二半导体层;形成第一电极于第一半导体层上,形成第二电极于裸露出的第二半导体层上;分别在第一电极和第二电极上形成 PIN 脚,其高出发光外延结构表面,完成插件式发光二极管芯片结构,当其安装在带有对应插孔的基板上时,通过所述 PIN 脚实现可拆卸式连接。
- 根据权利要求 5 所述的一种插件式发光二极管芯片的制作方法,其特征在于,还包括下面步骤:在步骤 4 )前先在第一半导体层上形成一反射金属导电层,步骤 4 )中所述第一电极形成于反射金属导电层上。
- 根据权利要求 5 所述的一种插件式发光二极管芯片的制作方法,其特征在于,所述步骤 5 包含如下工艺:在发光外延结构的表面上覆盖一光阻层,裸露出第一电极及第二电极的钉线区域;透过电铸方式形成 PIN 脚,其 PIN 脚分别与第一电极及第二电极相接触;去除光阻层。
- 根据权利要求 5 所述的一种插件式发光二极管芯片的制作方法,其特征在于,还包括下面步骤:在完成步骤 5 )后将所述生长衬底进行减薄抛光。
- 一种覆晶插件式发光二极管,由芯片和基座构成,其中所述芯片包括:一发光外延结构,其由下而上包含第二半导体层 , 有源层以及第一半导体层;至少一第一电极位于第一半导体层上,至少一第二电极位于第二半导体层上,且第一电极和第二电极位于发光外延结构的同侧;至少两个 PIN 脚分别位于第一电极和第二电极上;所述基座上分布有与前述 PIN 脚进行对位的插孔,且设置有金属连线,当 PIN 脚对位插入插孔后,实现第一电极和第二电极与金属连线连接;所述芯片和基座采用插件方式连接,即芯片通过 PIN 脚与基座上的插孔连接,实现自由组装。
- 根据权利要求 9 所述的一种覆晶插件式发光二极管,其特征在于:所述发光外延结构形成于一生长衬底上。
- 根据权利要求 9 所述的一种覆晶插件式发光二极管,其特征在于:还包括:一反射金属导电层形成于第一半导体层上,第一电极形成于反射金属导电层上。
- 根据权利要求 9 所述的一种覆晶插件式发光二极管,其特征在于:所述电路连接设置在基座的内部,当 PIN 脚对位插入插孔后,所有的第一电极全部相互导通,且所有的第二电极也全部相互导通。
- 一种覆晶插件式发光二极管的制作方法,包括如下步骤:1 )提供一生长衬底;2 )在生长衬底的正面上形成发光外延结构 , 其由下而上包含第二半导体层 , 有源层以及第一半导体层;3 )在第一半导体层上形成图案,定义 n 电极区,蚀刻 n 电极区至第二半导体层并裸露出第二半导体层;4 )形成第一电极于第一半导体层上,形成第二电极于裸露出的第二半导体层上;5 )分别在第一电极和第二电极上形成 PIN 脚,其高出发光外延结构表面,形成插件式发光二极管芯片;6 )提供一基座,其上分布有与前述 PIN 脚进行对位的插孔,并备置金属连线;7 )采用插件方式将所述芯片安装在所述基座上,即将 PIN 脚对位插入基座的插孔内,实现第一电极和第二电极与金属连线连接,形成覆晶插件式发光二极管结构,其中所述世芯片与基座之间为可拆卸式的连接。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于:所述金属连线设置在基座的内部,当 PIN 脚对位插入插孔后,所有第一电极相互连接,且所有的第二电极同样相互连接。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于:还包括下面步骤:在步骤 4 )前先在第一半导体层上形成一反射金属导电层,步骤 4 )中所述第一电极形成于反射金属导电层上。
- 根据权利要求 15 所述的一种覆晶插件式发光二极管的制作方法,其特征在于:所述反射金属导电层的材料选用 Ag 、 Al 、 Ti 、 Ni 、 Pt 、 Au 、 Cr 中的一种或其组合。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于,所述步骤 5 包含如下工艺:在发光外延结构的表面上覆盖一光阻层,裸露出第一电极及第二电极钉线区域;透过电铸方式形成 PIN 脚,其 PIN 脚分别与第一电极及第二电极相接触;去除光阻层。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于:所述 PIN 脚的材料选用 Cu 、 W 、 Mo 、 Co 、 Ni 中的一种或其组合。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于:所述基座的材料选用 PCB 或 MCPCB 。
- 根据权利要求 13 所述的一种覆晶插件式发光二极管的制作方法,其特征在于,还包括下面步骤:在完成步骤 5 )将所述生长衬底进行减薄抛光。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102847536A CN102299228A (zh) | 2011-09-23 | 2011-09-23 | 一种覆晶插件式发光二极管芯片结构及其制造方法 |
CN201110284753.6 | 2011-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013041015A1 true WO2013041015A1 (zh) | 2013-03-28 |
Family
ID=45359515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/081565 WO2013041015A1 (zh) | 2011-09-23 | 2012-09-19 | 插件式发光二极管及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102299228A (zh) |
WO (1) | WO2013041015A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150001796A (ko) * | 2012-04-24 | 2015-01-06 | 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. | 덤프 파워 에너지를 이용하여 연도 가스에 있는 이산화탄소를 천연 가스로 변환하기 위한 방법 및 장치 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102299228A (zh) * | 2011-09-23 | 2011-12-28 | 厦门市三安光电科技有限公司 | 一种覆晶插件式发光二极管芯片结构及其制造方法 |
CN102683531B (zh) * | 2012-06-05 | 2015-07-22 | 厦门市三安光电科技有限公司 | 一种覆晶式半导体发光器件结构与其制造方法 |
CN103887295A (zh) * | 2012-12-22 | 2014-06-25 | 鸿富锦精密工业(深圳)有限公司 | 发光芯片组合及其制造方法 |
JP6936574B2 (ja) * | 2016-12-07 | 2021-09-15 | 日機装株式会社 | 光半導体装置 |
CN109599474B (zh) * | 2018-12-25 | 2020-03-24 | 江苏罗化新材料有限公司 | 一种led芯片的csp封装方法及其封装结构 |
CN110197814A (zh) * | 2019-05-28 | 2019-09-03 | 青岛海信电器股份有限公司 | 一种Micro LED显示面板及其制备方法、显示装置 |
CN110265534B (zh) * | 2019-06-20 | 2021-02-05 | 合肥彩虹蓝光科技有限公司 | 一种半导体结构 |
CN111033762A (zh) * | 2019-11-28 | 2020-04-17 | 重庆康佳光电技术研究院有限公司 | 一种显示基板及其制造方法 |
WO2022000109A1 (zh) * | 2020-06-28 | 2022-01-06 | 南通大学 | 一种电子桌布 |
CN112151649A (zh) * | 2020-09-25 | 2020-12-29 | 成都辰显光电有限公司 | 微发光二极管及其制作方法,显示面板的制作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060102915A1 (en) * | 2003-10-10 | 2006-05-18 | Kim Hyun K | Wavelenght converted light emitting apparatus using phosphor and manufacturing method thereof |
JP4778107B1 (ja) * | 2010-10-19 | 2011-09-21 | 有限会社ナプラ | 発光デバイス、及び、その製造方法 |
CN102299228A (zh) * | 2011-09-23 | 2011-12-28 | 厦门市三安光电科技有限公司 | 一种覆晶插件式发光二极管芯片结构及其制造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101106148B1 (ko) * | 2004-12-14 | 2012-01-20 | 서울옵토디바이스주식회사 | 발광 소자 |
KR100691497B1 (ko) * | 2005-06-22 | 2007-03-09 | 서울옵토디바이스주식회사 | 발광 소자 및 이의 제조 방법 |
US7538359B2 (en) * | 2007-08-16 | 2009-05-26 | Philips Lumiled Lighting Company, Llc | Backlight including side-emitting semiconductor light emitting devices |
-
2011
- 2011-09-23 CN CN2011102847536A patent/CN102299228A/zh active Pending
-
2012
- 2012-09-19 WO PCT/CN2012/081565 patent/WO2013041015A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060102915A1 (en) * | 2003-10-10 | 2006-05-18 | Kim Hyun K | Wavelenght converted light emitting apparatus using phosphor and manufacturing method thereof |
JP4778107B1 (ja) * | 2010-10-19 | 2011-09-21 | 有限会社ナプラ | 発光デバイス、及び、その製造方法 |
CN102299228A (zh) * | 2011-09-23 | 2011-12-28 | 厦门市三安光电科技有限公司 | 一种覆晶插件式发光二极管芯片结构及其制造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150001796A (ko) * | 2012-04-24 | 2015-01-06 | 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. | 덤프 파워 에너지를 이용하여 연도 가스에 있는 이산화탄소를 천연 가스로 변환하기 위한 방법 및 장치 |
KR101648976B1 (ko) | 2012-04-24 | 2016-08-17 | 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. | 덤프 파워 에너지를 이용하여 연도 가스에 있는 이산화탄소를 천연 가스로 변환하기 위한 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN102299228A (zh) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013041015A1 (zh) | 插件式发光二极管及其制造方法 | |
US9224932B2 (en) | Wafer level photonic device die structure and method of making the same | |
TWI389295B (zh) | 發光二極體光源模組 | |
TWI344711B (en) | Surface mountable chip | |
TWI378576B (en) | Semiconductor device and method for fabricating the same | |
TWI378579B (en) | Light-emitting diode device and method for fabricating the same | |
TWI422065B (zh) | 發光二極體晶片、包含其之封裝結構以及其製造方法 | |
JP5208414B2 (ja) | Ledパワー・パッケージ | |
US8592827B2 (en) | Light-emitting device and the manufacturing method thereof | |
TWI535077B (zh) | 發光單元及其發光模組 | |
WO2014187164A1 (zh) | 集成led发光器件及其制作方法 | |
CN102769086B (zh) | 基于硅基板通孔技术倒装芯片的发光二极管及其制造工艺 | |
TWI528508B (zh) | 高功率發光二極體陶瓷封裝之製造方法 | |
WO2013044817A1 (zh) | 一种倒装集成发光二极管及其制备方法 | |
TW201336121A (zh) | 發光裝置 | |
EP2260341A2 (en) | Illumination apparatus and methods of forming the same | |
TW201003986A (en) | Semiconductor device and method for fabricating the same | |
US20100127294A1 (en) | Side view type light-emitting diode package structure, and manufacturing method and application thereof | |
CN103066192B (zh) | 半导体发光光源及制造该光源和半导体发光芯片的方法 | |
US20140232293A1 (en) | Light-emitting device package | |
TW201426969A (zh) | 高壓覆晶led結構及其製造方法 | |
TW201104914A (en) | Optoelectronic system | |
TWI398967B (zh) | 發光二極體晶片及其製法 | |
TWI472067B (zh) | 光學封裝及其製造方法 | |
WO2014106306A1 (zh) | 高压覆晶led结构及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12833000 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12833000 Country of ref document: EP Kind code of ref document: A1 |