WO2013040887A1 - 一种全护筒工法施工装置 - Google Patents

一种全护筒工法施工装置 Download PDF

Info

Publication number
WO2013040887A1
WO2013040887A1 PCT/CN2012/073755 CN2012073755W WO2013040887A1 WO 2013040887 A1 WO2013040887 A1 WO 2013040887A1 CN 2012073755 W CN2012073755 W CN 2012073755W WO 2013040887 A1 WO2013040887 A1 WO 2013040887A1
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
rig
chassis
full
cylinder construction
Prior art date
Application number
PCT/CN2012/073755
Other languages
English (en)
French (fr)
Inventor
梁大云
龚高柏
王龙刚
Original Assignee
湖南三一智能控制设备有限公司
北京市三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 北京市三一重机有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013040887A1 publication Critical patent/WO2013040887A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds

Definitions

  • the invention relates to the priority of a Chinese patent application filed on September 19, 2011, the Chinese Patent Office, the application number is 201110278363.8, and the invention name is "a full-protection construction method". The entire contents are incorporated herein by reference.
  • the invention relates to the field of engineering machinery, in particular to a full protection method construction device.
  • full casing construction is an important construction method that is widely used.
  • Full-cylinder construction means that by connecting a plurality of lengths of the casing sections together, the whole pile depth is pressed or pressed into a stable formation throughout the entire depth of the pile depth, thereby cooperating with the manual, the rushing bucket, the rotary digging, and the rushing. Drilling and other methods to take the soil into holes, and then remove the casing after the hole is completed.
  • Vibrating hammer using the exciting force of the vibrating hammer to liquefy the soil layer at the lower end of the casing, and reducing the pressure of the casing by reducing the resistance between the soil and the wall of the casing; the lifting cylinder also utilizes the vibration hammer The vibration force reduces the friction between the wall of the casing and the ground layer, and the casing is lifted by the crane.
  • Rotary drilling rig By installing a casing drive on the power head of the rotary drilling rig, the pressing and pulling of the casing is realized by the torque of the power head and the pressing force provided by the rotary drilling machine pressing device.
  • Full-rotary drilling rig special casing pressing and lifting equipment, through the clamping mechanism to hold the casing to press down, lift and turn, to achieve the pressure, lifting and unloading of the casing.
  • Impact hammer use the impact force of gravity to achieve the pressure of the casing.
  • the vibration hammer has a small driving force and is only suitable for soft soil and sandy formations. Because it has only vertical force, it cannot be used in hard formations such as rock formations;
  • the torque and downforce of the rotary drill power head are limited, usually several tens of tons, but the depth of the casing is generally tens of meters, the diameter is 0.8m-3.0m, and the force requirement for pressing and lifting the casing is 100. More than tons, Therefore, the method is only applicable to the construction of the shallow depth of the casing, or the initial depth of the casing; the full-rotary drilling machine uses the cylinder to realize the pressing and lifting of the casing, and the rotation of the casing is realized by the motor.
  • the impact hammer is only suitable for field work due to its noise, and has only the ability to press down the casing, and does not have the ability to lift the casing.
  • the object of the present invention is to provide a full-cylinder construction method as a special equipment for pressing and lifting the casing, which has sufficient downforce and pulling force, and has high construction efficiency and low production. cost.
  • the present invention provides a full-cylinder construction method, comprising a soil removing device and a manifold drilling machine, wherein the manifold drilling machine is installed on a body of the earthmoving device through a connecting member, the manifold
  • the power source of the rig is the power component of the earthmoving device.
  • the connecting component is an interface seat of the manifold rig.
  • the chassis of the manifold is provided with a pressing platform
  • the interface seat comprises a pressing block located above the pressing table and abutting or away from the pressing platform; the interface seat is away from the pressing block
  • One end is fixedly connected to the earth-boring device, and one end of the pressure block is rotatably connected to the bottom plate of the manifold, and the chassis of the manifold is swung in a vertical direction with respect to the interface seat.
  • the interface seat is provided with a hanging shaft, the hanging shaft is disposed along a lateral direction of the chassis of the manifold, and a hook hooked to the hanging shaft is mounted on the chassis of the manifold.
  • the interface base further includes a connecting block
  • the chassis of the manifold is provided with a sliding slot extending along a longitudinal direction thereof
  • the connecting block is slidably mounted on the sliding slot
  • the hook is mounted on the connecting The end of the block.
  • the connecting block is provided with a strip-shaped hole, the strip-shaped hole is opened in a longitudinal direction of the chassis of the manifold, and the positioning pin is inserted into the connecting block through the strip-shaped hole.
  • the interface base includes at least two connecting arms, and the connecting arm is drilled along the manifold The lateral arrangement of the chassis of the machine, the interface seat is fixedly connected to the earthmoving device through the connecting arm.
  • the fixed secondary card of the manifold is rotatably mounted to the chassis of the manifold by a rotary connecting member, and the rotating shaft of the rotating connecting member is horizontally disposed along the lateral direction of the chassis of the manifold.
  • the rotary connecting member comprises a shaft seat, the shaft seat is fixed to a chassis of the manifold, and the rotating shaft is mounted to the shaft seat through a bearing.
  • the fixed secondary card is an arc plate with a smooth curved surface, and the outer top end of the arc plate is mounted with a supporting plate.
  • the reduced-diameter moving sub-card of the manifold rig is of a unitary structure, and the reduced-diameter sub-card is detachably mounted to the mobile sub-card of the manifold rig.
  • variable-path mobile sub-card is provided with a mounting shaft
  • the mobile sub-card is provided with a mounting hole
  • the mounting shaft is inserted into the mounting hole
  • the mounting shaft is radially inserted with a positioning pin
  • a bushing is further included, and the mounting shaft is inserted into the bushing along a radial direction of the bushing, and the positioning pin is coaxially inserted into the bushing.
  • one of the main card and the clamping arm of the fistula rig is fitted with a limit rod, and the other is provided with a stop that abuts or separates from the limit rod.
  • the earthmoving device is a rotary drilling rig or a grab crane.
  • the invention provides a full protection method construction device, which comprises a soil removal device and a manifold drill, and the manifold drill is installed on the fuselage of the earthmoving device through a connecting component, the crucible
  • the power source of the pipe drilling machine is the power component of the earthmoving device.
  • the ground under the chassis of the manifold is reinforced and leveled, and the center of the earthmoving equipment, the center of the drilling machine, and the center of the secondary card and the secondary card are adjusted by adjusting the host position of the earthmoving equipment.
  • Align the hole position first use the working part of the earthmoving equipment to drill the appropriate depth, and then use the hoisting lifting hoist of the earthmoving equipment to the boring machine, and connect the casing to the casing of the boring machine
  • the driver uses the power of the power head to press the casing into a certain depth, and then uses the manifold rig to perform the boring pipe drilling; the boring of the earthmoving equipment and the drilling of the boring machine alternately, after reaching the set depth, hoisting Reinforcement cages and concrete conduits, injecting concrete, while lifting the casing, keeping the concrete filling height higher than the lower end of the casing until it is holed.
  • the full-cylinder construction method attaches the boring machine to the earth-removing equipment, and utilizes The earth-moving equipment is used as the power of the boring machine to reduce the production cost.
  • the lifting and walking ability of the earth-boring equipment is used to realize convenient installation and movement, and the drilling ability of the earth-boring equipment is realized efficiently. Drilling into holes significantly improves construction efficiency.
  • the connecting component of the full-cylinder construction apparatus is an interface seat of a manifold.
  • a pressure plate is arranged on the chassis of the manifold, and the interface seat comprises a pressure block located above the pressure table and abutting or away from the pressure table; the end of the interface seat away from the pressure block is fixedly connected with the earthmoving device, and is close to one end of the pressure block.
  • the chassis of the manifold is rotatably connected, and the chassis of the manifold is oscillated in the vertical direction with respect to the interface seat.
  • the pressing cylinder of the boring machine shrinks, the chassis is lifted, and the whole chassis rotates relative to the interface seat.
  • the pressing table extending at both ends of the chassis meets and Abutting against the two pressing blocks of the interface seat, since the interface seat is fixedly connected with the earth-moving device and cannot be rotated, the interface seat is integrated with the earth-boring device, and the chassis is continuously lifted by the weight of the earth-boring device, so that During the drilling process of the boring machine, the weight of the earth-moving equipment is used to balance the reaction force generated when the casing is pressed down, and the earth equipment replaces the weight of the boring machine, thereby further reducing the construction cost.
  • FIG. 1 is a schematic structural view of a full-shield construction method according to the present invention.
  • FIG. 2 is a schematic structural view of a fistula rig in a front view direction in a full-cylinder construction method according to the present invention
  • Figure 3 is a schematic view showing the structure of the manifold drill shown in Figure 2 in a plan view;
  • FIG. 4 is a structural schematic view of the chassis of the manifold drill shown in FIG. 2 in a plan view.
  • the core of the invention is to provide a full-cylinder construction method as a special equipment for pressing and lifting the casing, which has sufficient downforce and pulling force, and has high construction efficiency and low production. cost.
  • FIG. 1 is a schematic structural view of a full-shield construction method according to the present invention.
  • the invention provides a full protection method construction device, and the full protection construction method comprises The earthmoving device 1 and the manifold rig 2, wherein the manifold rig 2 is mounted to the body of the earthmoving device 1 through a connecting member, and obviously, the boring machine 2 should be installed at a fixed portion of the earthmoving device 1, the fixed portion It should be stationary relative to the ground during construction.
  • the manifold rig 2 can be mounted on the chassis 22 of the earthmoving equipment 1.
  • the power source of the manifold rig 2 is the power component of the earthmoving device 1.
  • the manifold rig 2 can be various boring rigs conventionally used in the field, or can be the basis of the original boring machine.
  • the boring rig provided by the present invention is more suitable for the full boring method.
  • the boring rig provided by the present invention not only includes the components involved in the text, but also includes other components necessary for completing the working process, such as a boring machine. 2
  • the pressure extraction cylinder that provides the pressure extraction force, the wrong tube cylinder that supplies the power to the movement protection cylinder, and the like.
  • the working principle of the boring machine 2 is basically the same as that of the conventional boring machine.
  • the function of the fistula rig 2 is to press down and lift the casing, and the action steps can be designed as follows:
  • the main card 26 of the S12 manifold rig 2 is opened;
  • S13 pipe rig 2's pressure extraction cylinder is raised (lowered) to top dead center (bottom dead center;);
  • S14 main card 26 holds the protective tube
  • the manifold cylinder of the S16 manifold rig 2 is swayed, and the cylinder is pressed down (pull up); the cylinder is stopped and pulled down after the cylinder is reached to the bottom dead center (top dead center), and the cylinder is stopped.
  • Start step S11 and after this cycle, reach the upper end (lower end) of the casing section, install (disassemble) the casing section, and continue to cycle until the design depth is reached (all the casings are taken out).
  • the ground under the chassis 22 of the manifold rig 2 is reinforced and leveled, and the drilling center of the earth-boring device 1 and the main body of the boring machine 2 are adjusted by adjusting the host position of the earth-boring device 1.
  • the center of the card 26 and the secondary card are aligned with the hole; first, the working part of the earth-boring device 1 is used to drill the appropriate depth, and then the hoisting hoist of the earth-boring device 1 is used to connect the casing to the manifold rig 2, and the casing is connected to
  • the casing driver on the power head of the boring machine 2 uses the power of the power head to press the casing into a certain depth, and then uses the boring machine to perform the boring pipe drilling; the boring of the earthmoving equipment and the drilling of the boring machine Alternately, after reaching the set depth, the steel cage and concrete conduit are hoisted, concrete is poured, and the casing is pulled up, keeping the concrete filling height higher than the lower end of the casing until it reaches Hole.
  • the full-cylinder construction device is attached to the boring machine 2 on the earth-removing device 1, and the earth-moving device 1 is used as the power of the boring machine 2, thereby reducing the production cost; meanwhile, during the work,
  • the hoisting and walking ability of the earth-boring equipment 1 is used to realize convenient installation and movement, and the drilling ability of the earth-boring equipment 1 itself is realized to achieve efficient drilling and hole-forming, which significantly improves the construction efficiency.
  • FIG. 2 is a schematic structural view of the fistula drilling rig in the front view direction of the full-cylinder construction method provided by the present invention
  • FIG. 3 is a schematic structural view of the fistula drilling rig shown in FIG. .
  • the full-cylinder construction device provided by the present invention may have a connecting member of the interface seat 21 of the manifold rig 2; thus, the connection is realized by the existing structure of the manifold rig 2.
  • the structure of the equipment further reduces production costs.
  • the above-mentioned connecting member is not limited to the interface seat 21 of the manifold rig 2, and may be a separately designed structure as long as the reliable connection of the manifold rig 2 to the earth-boring device 1 can be realized.
  • the bottom plate 22 of the above-mentioned manifold rig 2 may be provided with a pressing table 221, and the interface seat 21 includes a pressing block located above the pressing table 221 and abutting or away from the pressing table 221; One end of the pressing block is fixedly connected with the earth-boring device 1 , and one end of the pressing block is rotatably connected with the bottom plate 22 of the manifold rig 2 , and the bottom plate 22 of the boring machine 2 is vertical with respect to the interface seat 21 . Swing in the straight direction.
  • the pressing cylinder of the boring machine 2 contracts, the chassis 22 is lifted, and the chassis 22 as a whole rotates relative to the interface seat 21, and after the predetermined angle is turned, the pressure exerted on the chassis 22
  • the table 221 is in contact with and abuts against the pressure block of the interface seat 21.
  • the interface seat 21 is fixedly connected to the earth-moving device 1 and is not rotatable, the interface seat 21 is integrated with the earth-moving device 1 and passes through the weight of the earth-moving device 1
  • the pressing of the pressing chassis 22 is continued, so that during the drilling process of the manifold rig 2, the weight of the earth-boring device 1 is used to balance the reaction force generated when the casing is pressed down, and the earth equipment replaces the weight of the manifold rig 2. , which further reduces construction costs.
  • the number of the pressing table 221 may be two, and the two pressing tables 221 are respectively located at opposite positions of the chassis 22 of the manifold rig 2. Accordingly, the number of the pressing blocks may also be two, and the two pressing blocks are respectively located at the interface seat 21. The relative position matches the position of the pressing table 221 . Obviously, the number of the pressing table 221 and the pressing block is not limited to two, and three, four or more can be set.
  • the pressure tables 221 can be evenly distributed on the chassis 22 of the manifold rig 2, and the plurality of pressure blocks can be evenly distributed on the interface seat 21.
  • the above-mentioned pressing table 221 and the pressing block abut each other or separate means that during the first working process of the full-cylinder construction method, the chassis 22 of the manifold rig 2 moves relative to the interface seat 21 when moving When the predetermined position is reached, the pressing table 221 abuts against the pressing block, and the pressing block limits the further movement of the pressing table 221; and when the full working method construction device performs the second working process, the chassis 22 of the manifold rig 2 is opposed to The interface seat 21 moves in the opposite direction, and the pressing table 221 is separated from the pressing block and gradually moved away from the pressing block.
  • the fixed connection of the interface seat 21 to the earthmoving device 1 can be achieved by a conventional method in the art, for example, the two can be detachably connected by bolts, or can be fixedly connected by welding or the like.
  • the pivotal connection structure of the interface block 21 and the chassis 22 of the manifold rig 2 may be specifically: the interface seat 21 is provided with a hanging shaft 212 disposed along the lateral direction of the chassis 22 of the manifold rig 2, and the chassis of the boring machine 2 22 is mounted with a hook 222 attached to the hanging shaft 212; when the boring machine 2 presses the protective tube, the pressing cylinder is contracted, the chassis 22 is lifted, and the hook 222 is rotated around the hanging shaft 212, thereby realizing the overall relative movement of the chassis 22.
  • Rotating at the interface seat 21, the structure of the rotary connection is relatively simple, and the processing is convenient, safe and reliable.
  • the rotational connection of the interface base 21 and the chassis 22 is not limited to the form of the above-mentioned hanging shaft 212 and the hook 222, and may be other ways that can be rotated in the art, for example, the interface seat 21 can be directly hinged to the chassis 22.
  • the hinge shaft is oriented in the same direction as the above-mentioned hanging shaft 212, that is, in the lateral direction of the chassis 22 of the manifold rig 2.
  • the interface block 21 may further include a connecting block 213.
  • the chassis 22 of the manifold rig 2 is provided with a sliding slot extending along the longitudinal direction thereof.
  • the connecting block 213 is slidably mounted on the sliding slot, and the hook 222 is mounted at the end of the connecting block 213;
  • the interface base 21 is mounted on the chassis 22 via a connecting block 213.
  • the manifold rig 2 has a certain degree of freedom in the horizontal direction, and the position of the casing and the position of the interface seat 21 are fixed, and the interface seat 21 can be adjusted relative to the chassis.
  • the position of 22 adjusts the position of the casing to ensure the positional accuracy when the casing is pressed.
  • the lateral direction of the chassis 22 of the fistula rig 2 referred to herein is the direction perpendicular to the advancing direction of the fistula rig 2, and the longitudinal direction is the direction along the advancing direction of the fistula rig 2.
  • the connecting block 213 can be provided with a strip-shaped hole, which is opened along the longitudinal direction of the chassis 22 of the manifold rig 2, and the positioning pin is inserted into the connecting block 213 through the strip hole; the connecting block 213 can be expanded and contracted Inserted in the chassis 22 of the manifold rig 2, fixedly connected by the positioning pin shaft, in the working state, the positioning pin shaft is inserted into the strip hole, which not only ensures the freedom of the boring machine 2 in the horizontal direction, but also avoids The connecting block 213 is detached from the sliding slot to ensure the operational reliability of the device.
  • a positioning circular hole can also be formed in the connecting block 213, and the positioning pin can be selectively inserted into the positioning circular hole.
  • the positioning pin shaft is pulled out from the strip hole, and the chassis receding connection block 213 of the earth-boring device 1 draws a certain distance from the chassis 22 of the manifold rig 2, and then The positioning pin 2 is inserted into the positioning circular hole to realize a fixed connection of the connecting block 213 with the chassis 22 of the manifold rig 2, thereby realizing the displacement of the entire manifold rig 2.
  • the positioning hole 213 may not be provided with the positioning circular hole.
  • the interface seat 21 may further include at least two connecting arms 214 disposed along the lateral direction of the chassis 22 of the manifold rig 2, and the interface seat 21 is fixedly connected to the earthmoving device 1 through the connecting arm 214 for convenient connection. A fixed connection of the interface seat 21 and the earthmoving device 1 is achieved.
  • the fixed connection of the connecting arm 214 to the earth-moving device 1 can be a pin-connecting manner.
  • the two-row pin can be used for multi-point fixing to ensure connection reliability.
  • the interface seat 21 may be a U-shaped frame type interface seat, and the connecting portion of the connecting working portion of the manifold rig 2 is located in the frame in the horizontal direction; when the two manifold cylinders of the manifold rig 2 are alternately telescopically moved In the case of the casing, the manifold rig 2 is alternately oscillated in the direction of the connecting end.
  • the connecting end of the manifold rig 2 alternately hits the interface seat 21, and the interface seat 21 passes through the pin shaft and
  • the connecting arm 214 is fixedly connected to the chassis of the earth-moving device 1, and the interface seat 21 is integrated with the chassis of the earth-boring device 1 in the horizontal plane, thereby restricting the swing of the manifold rig 2 and improving the working stability of the device.
  • FIG. 4 is a schematic structural view of the chassis of the manifold rig shown in FIG. 2 in a plan view.
  • the fixed secondary card 23 of the manifold rig 2 is rotatably mounted to the chassis 22 of the manifold rig 2 by a rotary connecting member, and the connecting member of the rotary joint is rotated.
  • the rotating shaft is horizontally disposed along the lateral direction of the chassis 22 of the manifold rig 2; thus, the fixed secondary card 23 is fixed in the horizontal direction to achieve the holding of the protective cylinder, and at the same time, the vertical direction can be rotated, and the pressing cylinder is pressed down.
  • the chassis 22 of the drill 2 is lowered, the secondary card 23 is fixed. It is not lifted up with the chassis 22, thereby avoiding interference between the manifold rig 2 and the casing.
  • the rotating connecting component comprises a rotating shaft and a shaft seat, the shaft seat is fixed to the bottom plate 22 of the manifold rig 2, and the rotating shaft is mounted on the shaft seat through a bearing; when the cylinder is pressed down, the bottom plate 22 of the boring machine 2 is far away from the earth-boring device 1 One end of the casing is lifted. Since the casing is inserted into the ground, it can be considered to be fixed. At this time, the rotating shaft rotates in the axle seat, thereby driving the fixed secondary card 23 to rotate on the vertical plane, thereby avoiding the chassis 22 and the protection of the manifold rig 2. Interference between the cylinders; the structure of the rotary connecting member is relatively simple and forceful. Work is more convenient.
  • the rotary connecting member is not limited to the form in which the above-mentioned rotating shaft rotates in the shaft seat, and as long as the swinging of the fixed secondary card 23 with respect to the chassis 22 of the manifold rig 2 can be realized, the rotary connecting member can have various forms.
  • the fixed secondary card 23 is hinged to the chassis 22 of the manifold rig 2.
  • the number of the above-mentioned rotating shafts may be two, and the two rotating shafts are respectively disposed at the two end points of the fixed secondary card 23.
  • the fixed secondary card 23 can be an arc plate with a smooth curved surface, and the outer top end of the arc plate is provided with a support plate; the smooth curved surface can reduce the difficulty of the teaching staff, and at the same time, the support plate disposed at the outer top end of the arc plate can avoid When the fixed secondary card 23 holds the protective cylinder, the rotating bearing receives all the shearing force, which reduces the force requirement of the rotating shaft.
  • variable-diameter moving secondary card of the manifold rig 2 may be of a unitary structure, and the variable-diameter secondary card is detachably mounted to the mobile secondary card 25 of the manifold rig 2.
  • the variable-path mobile sub-card is provided with a mounting shaft, and the mobile sub-card 25 is provided with a mounting hole, and the mounting shaft is inserted into the mounting hole, and the mounting shaft is radially inserted with the positioning pin;
  • the variable-diameter moving secondary card is removed, and at the same time, the variable-diameter moving secondary card conforming to the size requirement is replaced.
  • This structure makes the process of replacing the variable-diameter moving secondary card more convenient, and improves the applicability of the device.
  • the above-mentioned manifold rig 2 may further include a bushing, and the mounting shaft is inserted into the bushing in the radial direction of the bushing, and the positioning pin is coaxially inserted into the bushing to improve the mounting reliability of the mounting shaft.
  • One of the main card 26 and the clamp arm 27 of the above-mentioned manifold rig 2 is mounted with a limit rod 29, and the other is provided with a stopper 210 that abuts or separates from the limit rod 29;
  • the cylinder pulls the clamping arm 27 to open the main card 26
  • the clamping arm 27 rotates about its rotation axis to a certain extent
  • the limiting lever 29 blocks the clamping arm 27, and the clamping arm 27 continues to open to push the limiting rod 29 to move.
  • the rules of the entire main card 26 are pushed open, so that the opening of the main card 26 is more regular, and the reliability of opening the main card 26 is ensured.
  • the stop 210 can be realized by the existing structure of the clamping arm or by a recess formed in the clamping arm 27, or it can be an additional component.
  • the full-carrying construction method provided by the invention has the earth-removing equipment 1 as a rotary drilling rig or a grab crane, and can also be other engineering machinery capable of providing power and capable of realizing the drilling operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Abstract

一种全护筒工法施工装置,该装置包括取土设备(1)和搓管钻机(2),搓管钻机(2)的动力源为取土设备(1)的动力元件,搓管钻机(2)通过接口座(21)安装于取土设备的机身,搓管钻机(2)的底盘(22)上设有压台(221),接口座(21)包括压块,搓管钻机(2)下压护筒时,底盘(22)被抬起并整体相对于接口座(21)转动,转过预定角度后,压块与压台(221)抵靠限制底盘(22)的进一步运动,由于接口座(21)与取土设备(1)固定连接而不可旋转,通过取土设备(1)的的自身重量压制底盘(22)的继续抬升,取土设备替代搓管钻机(2)的配重,降低了施工成本。

Description

一种全护筒工法施工装置 本申请要求于 2011 年 9 月 19 日提交中国专利局、 申请号为 201110278363.8、 发明名称为"一种全护筒工法施工装置"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工程机械领域, 特别涉及一种全护筒工法施工装置。
背景技术
现代建筑工程的施工过程一般均以桩基础施工开始, 因此, 基础成桩 施工显得尤为重要。 在诸多的基础成桩施工工法中, 全护筒施工是应用较 为广泛的一种重要的施工工法。 全护筒施工是指, 通过将多个一定长度的 护筒节连接在一起, 在整个桩深的范围全程压入或者压入至稳定的地层, 从而配合人工、 沖抓斗、 旋挖、 沖击钻等方法取土成孔, 成孔完成后再将 护筒拔出的施工方法。 由于护筒对地层的支撑和密封作用, 避免了桩孔的 坍塌、 缩颈、 扩径等问题, 避免使用泥浆来平衡地下水压从而避免了泥浆 污染, 同时可以避免地下水进入护筒内, 为打桩设备创造良好钻进条件, 全护筒施工形成的孔壁较为规则, 从而能够提高成桩的承载力。
目前, 下压和起拔护筒的主要通过以下几种方法实现:
振动锤; 利用振动锤的激振力, 使护筒下端的土层液化, 通过减小土 壤与护筒筒壁之间的阻力实现护筒的下压; 起拔护筒同样利用振动锤的激 振力减小护筒筒壁与地层的摩擦, 通过吊车实现护筒起拔。
旋挖钻机; 通过在旋挖钻机的动力头上安装护筒驱动器, 利用动力头 的扭矩和旋挖钻机加压装置提供的压拔力实现护筒的下压和起拔。
全回转钻机; 专门的护筒下压和起拔设备, 通过夹紧机构抱紧护筒进 行下压、 起拔和回转的方式实现护筒的下压、 起拔。
沖击锤; 利用重力的沖击力实现护筒的下压。
上述几种方法均有各自的缺点, 具体地:
振动锤驱动力较小, 只适用于较软的土质、 沙质地层, 由于只有垂直 方向的作用力, 无法在岩层等硬质地层中使用;
旋挖钻机动力头的扭矩和下压力有限, 一般为数十吨, 但护筒的埋深 一般为数十米, 直径为 0.8m-3.0m, 下压和起拔护筒的力要求为百吨以上, 所以该方法仅适用于埋深较浅的护筒施工, 或者是最初深度的护筒下压; 全回转钻机利用油缸实现对护筒的下压、 起拔, 用马达驱动护筒的旋 转实现对地层的切割, 但其无法同时实现钻进取土, 需要配合沖抓斗或者 旋挖钻机施工, 不仅施工效率较低, 且在施工过程中全回转钻机和钻进取 土设备需要单独提供动力, 使得施工成本较高;
沖击锤由于其噪音只适用与野外的作业, 且只具有下压护筒的能力, 不具有起拔护筒的能力。
因此, 开发一种专用于护筒下压和起拔的全护筒工法施工装置, 使其 具有足够的下压力和起拔力, 且具有较高的施工效率和较低的生产成本, 就成为本领域技术人员亟须解决的问题。
发明内容
本发明的目的是提供一种全护筒工法施工装置, 作为护筒下压和起拔 的专用设备, 其具有足够的下压力和起拔力, 且具有较高的施工效率和较 低的生产成本。
为解决上述技术问题, 本发明提供一种全护筒工法施工装置, 包括取 土设备和搓管钻机, 所述搓管钻机通过连接部件安装于所述取土设备的机 身, 所述搓管钻机的动力源为所述取土设备的动力元件。
优选地, 所述连接部件为所述搓管钻机的接口座。
优选地, 所述搓管钻机的底盘上设置有压台, 所述接口座包括位于所 述压台上方且抵靠或者远离所述压台的压块; 所述接口座远离所述压块的 一端与所述取土设备固定连接, 其靠近所述压块的一端与所述搓管钻机的 底盘转动连接, 所述搓管钻机的底盘相对于所述接口座在竖直方向摆动。
优选地, 所述接口座上设置有挂轴, 所述挂轴沿所述搓管钻机的底盘 的横向设置, 所述搓管钻机的底盘上安装有挂接于所述挂轴的挂钩。
优选地, 所述接口座还包括连接块, 所述搓管钻机的底盘上开设有沿 其纵向开设的滑槽, 所述连接块滑动安装于所述滑槽, 所述挂钩安装于所 述连接块的末端。
优选地, 所述连接块上开设有条形孔, 所述条形孔沿所述搓管钻机的 底盘的纵向开设, 定位销轴通过条形孔插入所述连接块。
优选地, 所述接口座包括至少两个连接臂, 所述连接臂沿所述搓管钻 机的底盘的横向设置, 所述接口座通过所述连接臂与所述取土设备固定连 接。
优选地, 所述搓管钻机的固定副卡通过转动连接部件转动安装于所述 搓管钻机的底盘, 所述转动连接部件的转轴沿所述搓管钻机的底盘的横向 水平设置。
优选地, 所述转动连接部件包括轴座, 所述轴座固定于所述搓管钻机 的底盘, 所述转轴通过轴承安装于所述轴座。
优选地, 所述固定副卡为抱紧面呈光滑弧面的弧板, 所述弧板的外部 顶端安装有支板。
优选地, 所述搓管钻机的变径移动副卡为整体式结构, 所述变径移动 副卡可拆装地安装于所述搓管钻机的移动副卡。
优选地, 所述变径移动副卡上设有安装轴, 所述移动副卡上开设有安 装孔, 所述安装轴插入所述安装孔中, 所述安装轴径向插装有定位销。
优选地,还包括轴套,所述安装轴沿所述轴套的径向插装于所述轴套, 所述定位销同轴地插装于所述轴套。
优选地, 所述搓管钻机的主卡和夹持臂两者中的一者安装有限位杆, 另一者设置有与所述限位杆抵靠或者分离的挡块。
优选地, 所述取土设备为旋挖钻机或者抓斗起重机。
本发明提供一种全护筒工法施工装置, 该全护筒工法施工装置包括取 土设备和搓管钻机, 所述搓管钻机通过连接部件安装于所述取土设备的机 身, 所述搓管钻机的动力源为所述取土设备的动力元件。
在进行全护筒施工时, 首先对搓管钻机底盘下的地面进行加固、平整, 通过调整取土设备的主机位置使取土设备的钻进中心、 搓管钻机的主卡和 副卡的中心对正孔位; 首先使用取土设备的工作部件钻进适当的深度, 然 后利用取土设备的卷扬吊装护筒到搓管钻机内, 连接护筒到搓管钻机的动 力头上的护筒驱动器, 利用动力头的动力将护筒压入一定深度, 而后使用 搓管钻机进行搓管钻进; 取土设备的旋挖和搓管钻机的钻进交替进行, 达 到设定深度后, 吊入钢筋笼及混凝土导管, 灌注混凝土, 同时起拔护筒, 保持混凝土的灌注高度高于护筒的下端, 直到成孔。
这样, 该种全护筒工法施工装置在取土设备上附着搓管钻机, 并利用 取土设备作为搓管钻机的动力, 从而降低了生产成本; 同时, 在工作过程 中, 利用取土设备的起吊和行走能力实现便捷的安装和移动, 配合取土设 备自身的钻进能力实现高效钻进成孔, 显著提高了施工效率。
在一种具体实施方式中, 本发明所提供的全护筒工法施工装置的连接 部件为搓管钻机的接口座。 搓管钻机的底盘上设置有压台, 接口座包括位 于压台上方且抵靠或者远离压台的压块; 接口座远离压块的一端与取土设 备固定连接, 其靠近压块的一端与搓管钻机的底盘转动连接, 搓管钻机的 底盘相对于接口座在竖直方向摆动。
在搓管钻机下压护筒时, 搓管钻机的压拔油缸收缩, 底盘被抬起, 底 盘整体相对于接口座转动, 转过预定角度后, 底盘上两端伸出的压台碰到 并抵靠于接口座的两个压块,由于接口座与取土设备固定连接而不可旋转, 接口座与取土设备连为一体, 通过取土设备的自身重量压制底盘的继续抬 升, 这样, 在搓管钻机的钻进过程中, 利用取土设备的重量来平衡下压护 筒时产生的反作用力, 土设备替代了搓管钻机的配重, 从而进一步降低了 施工成本。
附图说明
图 1为本发明所提供的全护筒工法施工装置的结构示意图;
图 2为本发明所提供的全护筒工法施工装置中搓管钻机在主视方向的 结构示意图;
图 3为图 2所示搓管钻机在俯视方向的结构示意图;
图 4为图 2所示搓管钻机的底盘在俯视方向的结构示意图。
具体实施方式
本发明的核心是提供一种全护筒工法施工装置, 作为护筒下压和起拔 的专用设备, 其具有足够的下压力和起拔力, 且具有较高的施工效率和较 低的生产成本。
为了使本技术领域的人员更好地理解本发明的技术方案, 下面结合附 图和具体实施方式对本发明作进一步的详细说明。
请参考图 1 , 图 1为本发明所提供的全护筒工法施工装置的结构示意 图。
本发明提供了一种全护筒工法施工装置, 该全护筒工法施工装置包括 取土设备 1和搓管钻机 2, 其中, 搓管钻机 2通过连接部件安装于取土设 备 1的机身, 显然地, 搓管钻机 2应该安装在取土设备 1的固定部分, 该 固定部分在施工过程中相对于地面应该是静止的, 例如搓管钻机 2可以安 装在取土设备 1的底盘 22上。搓管钻机 2的动力源为取土设备 1的动力元 件。
需要指出的是, 在本发明所提供的全护筒功法施工装置中, 其中的搓 管钻机 2可以为本领域中常规使用的各种搓管钻机, 也可以是在原有搓管 钻机的基础上进行改进, 以更适应全护筒工法的搓管钻机, 本发明所提供 的搓管钻机不仅包括文中所涉及的部件, 还应该包括完成工作过程所必须 的其他零部件, 例如为搓管钻机 2提供压拔力的压拔油缸、 为搓动护筒提 供动力的错管油缸等。搓管钻机 2的工作原理与传统的搓管钻机基本相同。 具体地, 在全护筒工法中, 搓管钻机 2的作用为下压和起拔护筒, 动作步 骤可以设计为:
S11搓管钻机 2的副卡夹紧;
S12搓管钻机 2的主卡 26打开;
S13搓管钻机 2的压拔油缸升(降)至上止点 (下止点;);
S14主卡 26抱紧护筒;
S15副卡打开;
S16搓管钻机 2的搓管油缸搓动, 同时压拔油缸下压(起拔); 压拔油 缸到达下止点(上止点)后停止下压(起拔), 搓管油缸停止搓动, 开始步 骤 S11 , 如此循环, 达到护筒节的上端(下端)后, 安装(拆解)护筒节, 继续循环, 直到达到设计深度(护筒全部取出)。
在进行全护筒施工时,首先对搓管钻机 2的底盘 22下的地面进行加固、 平整, 通过调整取土设备 1的主机位置使取土设备 1的钻进中心、 搓管钻 机 2的主卡 26和副卡的中心对正孔位;首先使用取土设备 1的工作部件钻 进适当的深度, 然后利用取土设备 1的卷扬吊装护筒到搓管钻机 2内, 连 接护筒到搓管钻机 2的动力头上的护筒驱动器, 利用动力头的动力将护筒 压入一定深度, 而后使用搓管钻机进行搓管钻进; 取土设备的旋挖和搓管 钻机的钻进交替进行, 达到设定深度后, 吊入钢筋笼及混凝土导管, 灌注 混凝土, 同时起拔护筒, 保持混凝土的灌注高度高于护筒的下端, 直到成 孔。
这样, 该种全护筒工法施工装置在取土设备 1上的附着搓管钻机 2 , 并利用取土设备 1作为搓管钻机 2的动力, 从而降低了生产成本; 同时, 在工作过程中,利用取土设备 1的起吊和行走能力实现便捷的安装和移动, 配合取土设备 1自身的钻进能力实现高效钻进成孔,显著提高了施工效率。
请参考图 2和图 3, 图 2为本发明所提供的全护筒工法施工装置中搓 管钻机在主视方向的结构示意图; 图 3为图 2所示搓管钻机在俯视方向的 结构示意图。
在一种具体实施方式中, 本发明所提供的全护筒工法施工装置, 其连 接部件可以为搓管钻机 2的接口座 21; 这样, 通过搓管钻机 2的既有结构 实现连接, 筒化了设备的结构, 进一步降低了生产成本。 显然地, 上述连 接部件也不局限于为搓管钻机 2的接口座 21, 也可以为单独设计的结构, 只要能够实现搓管钻机 2与取土设备 1的可靠连接即可。
上述搓管钻机 2的底盘 22上可以设置有压台 221, 所述接口座 21包 括位于所述压台 221上方且抵靠或者远离所述压台 221的压块; 所述接口 座 21远离所述压块的一端与所述取土设备 1固定连接,其靠近所述压块的 一端与所述搓管钻机 2的底盘 22转动连接, 搓管钻机 2的底盘 22相对于 接口座 21在竖直方向摆动。在搓管钻机 2下压护筒时,搓管钻机 2的压拔 油缸收缩, 底盘 22被抬起, 底盘 22整体相对于接口座 21转动, 转过预定 角度后, 底盘 22上伸出的压台 221碰到并抵靠于接口座 21的压块, 由于 接口座 21与取土设备 1固定连接而不可旋转, 接口座 21与取土设备 1连 为一体, 通过取土设备 1的自身重量压制底盘 22的继续抬升, 这样, 在搓 管钻机 2的钻进过程中, 利用取土设备 1的重量来平衡下压护筒时产生的 反作用力, 土设备替代了搓管钻机 2的配重,从而进一步降低了施工成本。
显然地, 上述压块应该是相对于接口座 21向外伸出的, 相应地, 压台
221也应该是相对于底盘 22向外伸出的。
压台 221的数量可以为两个, 两压台 221分别位于搓管钻机 2的底盘 22的相对的位置, 相应地, 压块的数量也可以为两个, 两压块分别位于接 口座 21的相对位置, 与压台 221的位置相匹配。 显然地, 压台 221和压块 的数量也不局限于设置有两个, 也可以设置有三个、 四个或者更多个, 多 个压台 221可以均勾分布于搓管钻机 2的底盘 22上,多个压块也可以均匀 分布在接口座 21上。
需要指出的是, 上述压台 221与压块相互抵靠或者分离是指, 在全护 筒工法施工装置第一种工作过程中, 搓管钻机 2的底盘 22相对于接口座 21运动, 当运动至预定位置时,压台 221抵靠于压块上,压块限制压台 221 的进一步运动; 而在全护筒工法施工装置进行第二种工作过程时, 搓管钻 机 2的底盘 22相对于接口座 21反向运动, 压台 221脱离压块并逐步远离 压块。
接口座 21与取土设备 1固定连接可以通过本领域中常规的方法实现, 例如两者可以通过螺栓可拆装地连接, 也可以通过焊接等方式固定连接。
接口座 21与搓管钻机 2的底盘 22的转动连接结构可以具体为, 接口 座 21上设置有挂轴 212 , 挂轴 212沿搓管钻机 2的底盘 22的横向设置, 搓管钻机 2的底盘 22上安装有挂接于挂轴 212的挂钩 222; 当搓管钻机 2 下压护筒时, 压拔油缸收缩, 底盘 22被抬起, 挂钩 222绕挂轴 212转动, 从而实现底盘 22整体相对于接口座 21转动, 该种转动连接的结构较为筒 单, 且加工方便, 安全可靠。
接口座 21与底盘 22的转动连接也不局限于上述挂轴 212和挂钩 222 的形式, 也可以为本领域中常规使用的其他能够实现转动的方式, 例如接 口座 21可以直接铰接于底盘 22上, 铰接轴与上述挂轴 212的方向相同, 即沿搓管钻机 2的底盘 22的横向设置。
上述接口座 21还可以包括连接块 213, 搓管钻机 2的底盘 22上开设 有沿其纵向开设的滑槽, 连接块 213滑动安装于滑槽, 挂钩 222安装于连 接块 213的末端; 这样, 接口座 21通过连接块 213安装于底盘 22上, 搓 管钻机 2在水平方向具有一定的自由度,而护筒的位置和接口座 21的位置 是固定的, 可以通过调整接口座 21相对于底盘 22的位置, 调节护筒的位 置, 从而保证了护筒下压时的位置精度。
需要指出的是,文中所提到的搓管钻机 2的底盘 22的横向是指,垂直 于搓管钻机 2前进方向的方向, 纵向是指沿搓管钻机 2前进方向的方向。
上述连接块 213上可以开设有条形孔, 该条形孔沿搓管钻机 2的底盘 22的纵向开设, 定位销轴通过条形孔插入连接块 213; 连接块 213可伸缩 的插入在搓管钻机 2的底盘 22内,通过定位销轴固定连接,在工作状态时, 定位销轴插入条形孔内, 既保证了搓管钻机 2在水平方向的自由度, 又避 免了连接块 213从滑槽内脱落, 保证了设备的工作可靠性。
在连接块 213上还可以开设有定位圓孔, 定位销轴可选择地插入该定 位圓孔中。 在全护筒工法施工装置进行转场运输时, 从条形孔中拔出定位 销轴,取土设备 1的底盘后退带动连接块 213从搓管钻机 2的底盘 22中抽 出一定距离, 而后将定位销轴 2插入到定位圓孔中, 实现连接块 213与搓 管钻机 2的底盘 22的固定连接, 从而实现整个搓管钻机 2的移位。
显然地, 连接块 213上也可以不开设上述定位圓孔, 在转场时, 将搓 管钻机 2和取土设备 1拆分后分别运输。
上述接口座 21还可以包括至少两个连接臂 214,所述连接臂 214沿搓 管钻机 2的底盘 22的横向设置, 接口座 21通过连接臂 214与取土设备 1 固定连接, 以便较为方便地实现接口座 21和取土设备 1的固定连接。
上述连接臂 214与取土设备 1的固定连接可以为销轴连接的方式, 具 体地, 可以使用两排销轴实现多点固定, 以便保证连接可靠性。
上述接口座 21可以为 U形的框架式接口座, 搓管钻机 2的连接工作 部分的连接部, 在水平方向上位于该框架内; 当搓管钻机 2的两个搓管油 缸交替伸缩搓动护筒时, 搓管钻机 2在连接端的方向交替摆动, 由于接口 座 21为 U形的框架式结构, 搓管钻机 2的连接端交替撞在接口座 21上, 而接口座 21通过销轴和连接臂 214与取土设备 1的底盘固定连接,在水平 面内接口座 21与取土设备 1的底盘形成一体, 从而实现限制搓管钻机 2 的摆动, 提高了设备的工作稳定性。
还可以对本发明所提供的全护筒工法施工装置进行进一步的改进。 请参考图 4, 图 4为图 2所示搓管钻机的底盘在俯视方向的结构示意 图。
在另一种具体实施方式中, 本发明所提供的全护筒工法施工装置, 其 搓管钻机 2的固定副卡 23通过转动连接部件转动安装于搓管钻机 2的底盘 22, 转动连接部件的转轴沿搓管钻机 2的底盘 22的横向水平设置; 这样, 固定副卡 23保持在水平方向的固定以实现对护筒的抱定,同时在垂直方向 可实现转动, 在压拔油缸下压提起搓管钻机 2的底盘 22时, 固定副卡 23 不随底盘 22—起被提起, 从而避免了搓管钻机 2与护筒之间的干涉。 转动连接部件包括转轴和轴座, 轴座固定于搓管钻机 2的底盘 22 , 转 轴通过轴承安装于轴座; 当压拔油缸下压油缸时, 搓管钻机 2 的底盘 22 远离取土设备 1的一端被提起, 由于护筒插入地下可以认为是固定不动, 此时上述转轴在轴座内转动,从而带动固定副卡 23在竖直面上转动,避免 搓管钻机 2的底盘 22与护筒之间的干涉;该种转动连接部件的结构较为筒 单, 力。工较为方便。
转动连接部件也不局限于上述转轴在轴座中转动的形式, 只要能够实 现固定副卡 23相对于搓管钻机 2的底盘 22在竖直面上的摆动, 转动连接 部件可以有多种形式,例如令固定副卡 23与搓管钻机 2的底盘 22铰接等。
上述转轴的数目可以为两个, 两转轴分别设置于固定副卡 23 的两端 点。
固定副卡 23可以为抱紧面呈光滑弧面的弧板,弧板的外部顶端安装有 支板; 光滑弧面能够降低教工难度, 同时, 在弧板的外部顶端设置的支板, 能够避免在固定副卡 23抱紧护筒时,转轴承受全部的剪切力, 降低了转轴 的受力要求。
本发明所提供的搓管钻机 2的变径移动副卡可以为整体式结构, 变径 移动副卡可拆装地安装于搓管钻机 2的移动副卡 25。 具体地, 变径移动副 卡上设有安装轴,移动副卡 25上开设有安装孔,安装轴插入所述安装孔中, 所述安装轴径向插装有定位销; 这样, 当护筒的尺寸改变时, 将变径移动 副卡拆下, 同时换上符合尺寸要求的变径移动副卡, 该种结构使得更换变 径移动副卡的过程较为方便, 提高了设备的适用性。
上述搓管钻机 2还可以包括轴套, 安装轴沿轴套的径向插装于轴套, 定位销同轴地插装于轴套, 以便提高安装轴的安装可靠性。
上述搓管钻机 2的主卡 26和夹持臂 27两者中的一者安装有限位杆 29, 另一者设置有与所述限位杆 29抵靠或者分离的挡块 210; 当夹持油缸拉动 夹持臂 27打开主卡 26时, 夹持臂 27绕其转动轴转动到一定程度时,上述 限位杆 29挡住夹持臂 27, 夹持臂 27继续打开从而推动限位杆 29运动, 进而推动整个主卡 26的规则打开, 使得主卡 26的打开更加规则, 保证了 主卡 26打开的可靠性。 显然地, 挡块 210 可以为夹持臂的既有结构或通过开设在夹持臂 27 上的凹槽实现, 也可以为另外设置的元件。
本发明所提供的全护筒工法施工装置, 其取土设备 1为旋挖钻机或者 抓斗起重机, 也可以为其他能够提供动力, 且能够实现取土钻孔作业的工 程机械。
以上对本发明所提供的一种全护筒工法施工装置进行了详细介绍。 本 的说明只是用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本 技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还可以对 本发明进行若干改进和修饰, 这些改进和修饰也落入本发明权利要求的保 护范围内。

Claims

权 利 要 求
1、 一种全护筒工法施工装置, 其特征在于, 包括取土设备(1)和搓 管钻机( 2 ), 所述搓管钻机( 2 )通过连接部件安装于所述取土设备 ( 1 ) 的机身, 所述搓管钻机(2) 的动力源为所述取土设备 ( 1) 的动力元件。
2、根据权利要求 1所述的全护筒工法施工装置, 其特征在于, 所述连 接部件为所述搓管钻机(2) 的接口座(21)。
3、根据权利要求 2所述的全护筒工法施工装置, 其特征在于, 所述搓 管钻机(2)的底盘(22)上设置有压台 (221), 所述接口座(21 ) 包括位 于所述压台 (221)上方 J 氐靠或者远离所述压台 (221) 的压块; 所述接 口座(21 )远离所述压块的一端与所述取土设备 ( 1 ) 固定连接, 其靠近所 述压块的一端与所述搓管钻机(2)的底盘(22)转动连接, 所述搓管钻机 (2) 的底盘(22)相对于所述接口座(21)在竖直方向摆动。
4、根据权利要求 3所述的全护筒工法施工装置, 其特征在于, 所述接 口座(21)上设置有挂轴(212), 所述挂轴 (212) 沿所述搓管钻机(2) 的底盘( 22 )的横向设置, 所述搓管钻机( 2 )的底盘( 22 )上安装有挂接 于所述挂轴 (212) 的挂钩 (222)。
5、根据权利要求 4所述的全护筒工法施工装置, 其特征在于, 所述接 口座( 21 )还包括连接块( 213 ), 所述搓管钻机( 2 )的底盘( 22 )上开设 有沿其纵向开设的滑槽, 所述连接块(213)滑动安装于所述滑槽, 所述挂 钩 (222)安装于所述连接块(213) 的末端。
6、根据权利要求 5所述的全护筒工法施工装置, 其特征在于, 所述连 接块( 213 )上开设有条形孔,所述条形孔沿所述搓管钻机( 2 )的底盘( 22 ) 的纵向开设, 定位销轴通过条形孔插入所述连接块(213)。
7、根据权利要求 3所述的全护筒工法施工装置, 其特征在于, 所述接 口座(21) 包括至少两个连接臂 (214), 所述连接臂沿所述搓管钻机(2) 的底盘(22) 的横向设置, 所述接口座(21)通过所述连接臂与所述取土 设备 (1) 固定连接。
8、根据权利要求 1所述的全护筒工法施工装置, 其特征在于, 所述搓 管钻机( 2 )的固定副卡( 23 )通过转动连接部件转动安装于所述搓管钻机 (2)的底盘( 22 ), 所述转动连接部件的转轴沿所述搓管钻机( 2 )的底盘 ( 22 ) 的横向水平设置。
9、根据权利要求 8所述的全护筒工法施工装置, 其特征在于, 所述转 动连接部件包括轴座, 所述轴座固定于所述搓管钻机(2 ) 的底盘(22 ), 所述转轴通过轴承安装于所述轴座。
10、 根据权利要求 9所述的全护筒工法施工装置, 其特征在于, 所述 固定副卡 (23 ) 为抱紧面呈光滑弧面的弧板, 所述弧板的外部顶端安装有 支板。
11、 根据权利要求 1所述的全护筒工法施工装置, 其特征在于, 所述 搓管钻机(2 )的变径移动副卡为整体式结构, 所述变径移动副卡可拆装地 安装于所述搓管钻机( 2 ) 的移动副卡( 25 )。
12、 根据权利要求 11所述的全护筒工法施工装置, 其特征在于, 所述 变径移动副卡上设有安装轴, 所述移动副卡(25 )上开设有安装孔, 所述 安装轴插入所述安装孔中, 所述安装轴径向插装有定位销。
13、根据权利要求 12所述的全护筒工法施工装置, 其特征在于, 还包 括轴套, 所述安装轴沿所述轴套的径向插装于所述轴套, 所述定位销同轴 地插装于所述轴套。
14、 根据权利要求 1所述的全护筒工法施工装置, 其特征在于, 所述 搓管钻机( 2 )的主卡( 26 )和夹持臂( 27 )两者中的一者安装有限位杆( 29 ), 另一者设置有与所述限位杆(29 )抵靠或者分离的挡块(210 )。
15、根据权利要求 1至 13任一项所述的全护筒工法施工装置,其特征 在于, 所述取土设备 ( 1 ) 为旋挖钻机或者抓斗起重机。
PCT/CN2012/073755 2011-09-19 2012-04-11 一种全护筒工法施工装置 WO2013040887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110278363 CN102304922B (zh) 2011-09-19 2011-09-19 一种全护筒工法施工装置
CN201110278363.8 2011-09-19

Publications (1)

Publication Number Publication Date
WO2013040887A1 true WO2013040887A1 (zh) 2013-03-28

Family

ID=45378825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073755 WO2013040887A1 (zh) 2011-09-19 2012-04-11 一种全护筒工法施工装置

Country Status (2)

Country Link
CN (1) CN102304922B (zh)
WO (1) WO2013040887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293546A (zh) * 2021-12-28 2022-04-08 山东省公路桥梁建设集团有限公司 一种穿越溶洞桩基双护筒支护、碎石加固施工方法
CN114960641A (zh) * 2022-05-30 2022-08-30 中铁二十三局集团有限公司 一种基于钢护筒的基桩施工方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304922B (zh) * 2011-09-19 2013-10-30 北京市三一重机有限公司 一种全护筒工法施工装置
CN102877467A (zh) * 2012-09-12 2013-01-16 陈瑜 一种钻孔灌注桩的筒体连接装置
CN103806834B (zh) * 2014-02-14 2015-12-23 山河智能装备股份有限公司 护筒压拔钻机
CN104141455B (zh) * 2014-07-08 2016-01-13 上海中联重科桩工机械有限公司 钻机设备和钻机钻进方法
CN104563126B (zh) * 2014-12-22 2016-04-27 中铁十九局集团有限公司 一种旋挖钻钻孔灌注桩施工方法
CN105545206B (zh) * 2016-01-28 2018-01-23 国家电网公司 旋挖钻机按压护筒装置
CN105502178B (zh) * 2016-02-04 2017-10-03 徐工集团工程机械股份有限公司 一种具备旋挖功能的伸缩臂履带起重机
CN105970920B (zh) * 2016-05-27 2018-06-05 东通岩土科技(杭州)有限公司 一种咬合桩施工工艺
CN105822226A (zh) * 2016-06-08 2016-08-03 上海力阳道路加固科技股份有限公司 一种高效道路钻孔车
CN109371960A (zh) * 2018-12-12 2019-02-22 河北庄重工程机械有限公司 一种srp工法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244572Y (zh) * 1994-09-07 1997-01-08 刘富华 液压摇动式全套管灌柱桩机
EP1118718A2 (en) * 2000-01-20 2001-07-25 Compagnie Du Sol Rotary displacement piling equipment
JP2004308412A (ja) * 2003-03-24 2004-11-04 Nippon Sharyo Seizo Kaisha Ltd ケーシングの回転圧入装置の連結装置および移動方法
KR20110019885A (ko) * 2009-08-21 2011-03-02 김성배 케이싱 오실레이터의 실린더 회전결합장치
CN102304922A (zh) * 2011-09-19 2012-01-04 北京市三一重机有限公司 一种全护筒工法施工装置
CN202227346U (zh) * 2011-09-19 2012-05-23 北京市三一重机有限公司 一种全护筒工法施工装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1085775A (en) * 1965-04-30 1967-10-04 Bade & Co Gmbh Improvements in and relating to drill rigs for sinking casings in deep boreholes
KR100341456B1 (ko) * 1999-08-24 2002-06-22 김정돌 케이싱 오실레이터
TWM290512U (en) * 2005-11-17 2006-05-11 Ming-Fu Ye Improved structure of vertical shaft casing oscillator
JP2010031523A (ja) * 2008-07-28 2010-02-12 Endo Ecoraise Co Ltd 立坑掘削機
CN201470934U (zh) * 2009-08-19 2010-05-19 北京市三一重机有限公司 搓管钻机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2244572Y (zh) * 1994-09-07 1997-01-08 刘富华 液压摇动式全套管灌柱桩机
EP1118718A2 (en) * 2000-01-20 2001-07-25 Compagnie Du Sol Rotary displacement piling equipment
JP2004308412A (ja) * 2003-03-24 2004-11-04 Nippon Sharyo Seizo Kaisha Ltd ケーシングの回転圧入装置の連結装置および移動方法
KR20110019885A (ko) * 2009-08-21 2011-03-02 김성배 케이싱 오실레이터의 실린더 회전결합장치
CN102304922A (zh) * 2011-09-19 2012-01-04 北京市三一重机有限公司 一种全护筒工法施工装置
CN202227346U (zh) * 2011-09-19 2012-05-23 北京市三一重机有限公司 一种全护筒工法施工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZHIYONG: "Shaking-type totally casing equipment and its construction method analysis", CONSTRUCTION MECHANIZATION, October 2008 (2008-10-01), pages 25 - 27 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293546A (zh) * 2021-12-28 2022-04-08 山东省公路桥梁建设集团有限公司 一种穿越溶洞桩基双护筒支护、碎石加固施工方法
CN114293546B (zh) * 2021-12-28 2023-06-23 山东省公路桥梁建设集团有限公司 一种穿越溶洞桩基双护筒支护、碎石加固施工方法
CN114960641A (zh) * 2022-05-30 2022-08-30 中铁二十三局集团有限公司 一种基于钢护筒的基桩施工方法

Also Published As

Publication number Publication date
CN102304922B (zh) 2013-10-30
CN102304922A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2013040887A1 (zh) 一种全护筒工法施工装置
CN102425372B (zh) 振动钻进式冲挖钻机
JP6144542B2 (ja) 中堀掘削機
JP2006241919A (ja) 杭施工機および杭施工方法
JP2014114543A (ja) 中堀掘削機
US10876363B2 (en) Negative angle capable blasthole drilling mast
CN202227346U (zh) 一种全护筒工法施工装置
CN109798069A (zh) 深基坑小口径管道修复成套设备及施工方法
CN202417302U (zh) 振动钻进式冲挖钻机
JP4693586B2 (ja) 円形立坑掘削方法
JP7017962B2 (ja) 既設構造物の支持杭施工方法
JP2020143440A (ja) パイル圧入機及びパイル圧入工法
JP3392810B2 (ja) 立坑掘削機
JP2010031523A (ja) 立坑掘削機
JP4635725B2 (ja) 杭の施工システム
JP3497948B2 (ja) 拡底孔施工用の掘削装置及び拡底孔施工方法
JP2013053475A (ja) 掘削機及び掘削孔の形成方法
JP2012102559A (ja) 既設杭の撤去方法
JP4504752B2 (ja) 筒状プレキャストコンクリート部材の施工方法及び装置
KR100479514B1 (ko) 굴착 장치 및 방법
JP3544029B2 (ja) 立坑掘削機
CN116043846B (zh) 灌桩机
JP5127274B2 (ja) 二重管式掘削装置およびその施工方法
CN202228011U (zh) 一种搓管钻机及其主卡组件
JP2001020655A (ja) 立坑掘削方法及び立坑掘削機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833948

Country of ref document: EP

Kind code of ref document: A1