WO2013039247A1 - ダイカスト方法及びダイカスト装置ならびにダイカスト品 - Google Patents

ダイカスト方法及びダイカスト装置ならびにダイカスト品 Download PDF

Info

Publication number
WO2013039247A1
WO2013039247A1 PCT/JP2012/073851 JP2012073851W WO2013039247A1 WO 2013039247 A1 WO2013039247 A1 WO 2013039247A1 JP 2012073851 W JP2012073851 W JP 2012073851W WO 2013039247 A1 WO2013039247 A1 WO 2013039247A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
die
die casting
casting method
less
Prior art date
Application number
PCT/JP2012/073851
Other languages
English (en)
French (fr)
Inventor
板村 正行
浩一 安斎
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US14/345,531 priority Critical patent/US9038705B2/en
Priority to JP2013533752A priority patent/JP5825583B2/ja
Publication of WO2013039247A1 publication Critical patent/WO2013039247A1/ja
Priority to US14/684,860 priority patent/US10384262B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/002Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure using movable moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2236Equipment for loosening or ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Definitions

  • the present invention relates to a die casting method, a die casting apparatus, and a die cast product.
  • Die casting is a technique in which a die is attached to a die casting machine, a molten metal (non-ferrous metal such as zinc, aluminum, magnesium, and its alloys) is injected into the die at high pressure and solidified, and then removed from the die. Die-casting has high productivity, and die-casting products have excellent features such as high dimensional accuracy, excellent strength, beautiful appearance and minimal machining.
  • a semi-solid material (semi-solid slurry) is stored in a sleeve provided in front of the mold, and the semi-solid slurry is placed in the mold by a plunger.
  • Semi-solid die casting technology has also been developed. That is, as a new casting technique for obtaining a high-quality casting, semi-solid die casting (semi-melting / thixocasting and semi-solidification / leocasting) has been attracting attention.
  • the rheocast method is a method in which the alloy is cooled while being stirred from a liquid state, and the primary crystal is grown in a granular form and formed when a predetermined solid phase ratio is reached, and is also called a semi-solid die casting method.
  • the thixocast method is a method in which the alloy is melted and then solidified while stirring to produce a billet, and then the billet is heated again to form a solid-liquid coexisting state during casting. Also called die casting method.
  • die casting method In the thixocast method, not only is a special billet whose structure has been adjusted expensive, but the billet is remelted to form a semi-molten slurry. There is a problem that it cannot be used and cannot be recycled, and now Leocast is the mainstream.
  • the NRC method is a method in which a low-temperature molten metal is poured without stirring in a slurry cup, and after a predetermined amount of solid phase is crystallized, a slurry in a solid-liquid coexistence state is injected into an injection sleeve and injection filled. .
  • Patent Document 1 Nanocasting method
  • patented a method of self-stirring
  • the cup method is a semi-solid die casting method in which a molten metal is poured into a cup to form a semi-solid slurry in the cup, the semi-solid slurry is moved to a sleeve, and then the semi-solid slurry is injected into a mold.
  • a semi-solid die casting method in which molten metal is poured into a sleeve, a slurry is formed in the sleeve, and then the semi-solid slurry is pushed into a mold. This method is called a sleeve method (for example, Patent Document 3).
  • the conventional die casting techniques including the semi-solid die casting method have a thin wall limit, that is, a product wall thickness that can be manufactured.
  • Patent Document 3 proposes a separator manufacturing technique by a semi-solid die casting method, and claim 6 has a description that “the thickness of the separator plate is 0.4 mm or less at the thinnest portion”.
  • the plate thickness referred to here is: “Since the separator has grooves formed on both sides thereof, the plate thickness is the thinnest at the portion where the groove on one side and the groove on the other side cross. ”(Patent Document 4, Paragraph 0032), the distance of the portion where the groove on one side and the groove on the other side cross each other. In paragraph 0053,“ the flat plate is molded and later machined. You may form a groove
  • the technique of patent document 5 is proposed as an attempt to refine the primary crystal ⁇ .
  • This is a technique in which molten metal is poured into a container or the like along an inclined plate, and is a method for generating a semi-solid slurry by generating nuclei by cooling control using an inclined cooling plate.
  • the granulation is not stable and has not been put into practical use.
  • Japanese Patent No. 3496833 Japanese Patent No. 39198110 JP 2004-114154 A JP 2010-92613 A JP-A-8-325652
  • An object of the present invention is to provide a die casting method and apparatus and a die casting product capable of producing a die casting product having a thickness of 0.5 mm or less in an as cast state.
  • the present invention is a die casting method characterized by forming a metal semi-solid body having a solid phase particle size of less than 30 ⁇ m and then injecting the metal semi-solid body into a mold.
  • the particle size in the solidified material is maintained in the product after die casting.
  • the particle size is an average value of the major axis and the minor axis.
  • the invention according to claim 1 is a die casting method characterized in that a metal semi-solid body having a particle size of 30 ⁇ m or less is formed in a sleeve, and then the metal semi-solid body is injected into a mold.
  • the invention according to claim 2 is the die casting method according to claim 1, wherein the particle size is 10 ⁇ m or more and 30 ⁇ m or less.
  • the invention according to claim 3 is the die casting method according to claim 1, wherein a portion that becomes a thick portion of 0.5 mm or less exists in the mold in the course of hot water flow.
  • a product having a shape manufactured by sequentially flowing a thick part, a thin part, a thick part, and a thin part, and the thin part is 0.5 mm or less, and further 0.1 mm or less. Even so, the thin part is completely filled.
  • the invention according to claim 4 is a die-cast product having a structure with a particle size of less than 30 ⁇ m.
  • the die-cast product Since the fine particle size such as primary crystals formed in the sleeve is reflected in the product, the die-cast product has a metal structure with a fine particle size (30 ⁇ m or less).
  • the invention according to claim 5 is a die-cast product having a thick portion of 0.5 mm or less in an as-cast state.
  • the particle size of the semi-solid material is 30 ⁇ m or less, this particle size is regarded as critical, and even at the temperature of solidification, a viscous material is realized that is not apparently solidified and corresponds to the pressure received. And keep flowing in the mold. As a result, since a thickness portion of 0.5 mm or less, further 0.1 mm or less is filled, it is possible to manufacture such a thin part.
  • the invention according to claim 6 is the die-cast product according to claim 4 or 5, wherein the die-cast product is made of a eutectic alloy.
  • the invention according to claim 7 is the die-cast product according to any one of claims 3 to 6, wherein the die-cast product is made of an aluminum alloy.
  • the metal subject to the present invention is not particularly limited.
  • low melting point alloys such as aluminum alloys are effective.
  • Al-Si-based (ADC1), Al-Si-Mg-based (ADC3), Al-Si-Cu-based (ADC10, 10Z, ADC12, 12Z, ADC14), Al-Mg-based (ADC5, 6) etc. are also preferably used.
  • magnesium alloys In addition to aluminum alloys, similar effects can be obtained with magnesium alloys, zinc alloys and other alloys.
  • a metal semi-solid body having a particle size of 30 ⁇ m or less is formed in the sleeve by appropriately selecting the molten metal filling rate, the pouring temperature, the sleeve size, the sleeve temperature, and the cooling rate in the sleeve.
  • the filling rate is (A / S) ⁇ 100 (%), where S is the cross-sectional area of the sleeve in the cross section perpendicular to the longitudinal direction of the sleeve, and A is the cross-sectional area of the molten metal after pouring.
  • S is the cross-sectional area of the sleeve in the cross section perpendicular to the longitudinal direction of the sleeve
  • A is the cross-sectional area of the molten metal after pouring.
  • a metal semi-solid body of 30 ⁇ m or less was selected by appropriately selecting the filling rate of the molten metal in the sleeve, the pouring temperature, the sleeve size, the sleeve temperature, and the cooling rate. The formation of was realized. By reducing the filling rate of the molten metal in the sleeve, the contact area between the molten metal and the sleeve can be increased.
  • FIG. 3 is a graph showing the relationship between the modulus (V / S) and the filling rate in the sleeve.
  • the modulus (V / S) of the molten metal filled in the sleep increases as the filling rate increases.
  • the modulus (V / S) is substantially proportional to the distance L from the molten metal surface to the sleeve bottom. Therefore, the higher the filling rate, the larger the modulus and the longer the solidification time. In other words, since the cooling rate is low, the filling rate should be as low as possible in order to produce many nuclei.
  • the number of nuclei generated can be increased by lowering the casting temperature, lowering the mold temperature, and increasing the heat removal rate.
  • a large amount of nucleation is achieved by controlling the heat removal rate or the like while setting the sleeve filling rate to 30% or less or without making the sleeve filling rate 30% or less.
  • the heat removal rate may be controlled by controlling the sleeve size, sleeve temperature, cooling rate, and the like. Specifically, it may be obtained in advance by experiments.
  • the heat capacity of the sleeve should be increased. Therefore, the thickness of the sleeve may be increased. Also, if the sleeve temperature is lowered, the heat removal rate increases.
  • the invention according to claim 9 is the die-casting method according to claim 8, wherein the molten metal is poured into the sleeve so that the filling rate is 30% or less.
  • the invention according to claim 10 is the die casting method according to claim 8 or 9, wherein the hot water is poured into the sleeve so that the filling rate is 20% or less.
  • the basics of die casting are to develop various types of molten metal heat retaining means in the die casting process so that the molten metal can be filled into the cavity with a superheat of liquidus + ⁇ .
  • the temperature of the molten metal decreases with time.
  • the molten metal cannot be filled into the cavity with the degree of superheat of the liquidus + ⁇ . Therefore, generally, the molten metal heated to about 100 ° C. from the liquidus temperature is poured into the sleeve so that the temperature does not decrease in the sleeve. Therefore, the sleeve filling rate is 30 to 40%.
  • the molten metal is injected before the temperature of the molten metal decreases (so that the shot time lag is reduced).
  • the present invention is an idea that goes the opposite of the conventional idea, and has a particle size of 30 ⁇ m or less by reducing the filling rate (preferably 30% or less, more preferably 20% or less).
  • the invention according to claim 11 is the die casting method according to any one of claims 8 to 10, wherein the pouring temperature is set to 0 to 100 ° C. higher than the melting point.
  • the low viscosity state is maintained for a long time. Therefore, it is possible to set the pouring temperature to a lower temperature than before. It becomes possible to reduce the entrainment of impurities and the entrainment of gas by lowering the molten metal temperature. It is preferable to carry out at a temperature 0 to 50 ° C. higher than the melting point.
  • the invention according to claim 12 is the die-casting method according to any one of claims 8 to 11, wherein the pouring temperature is set to 0 to 50 ° C. higher than the melting point.
  • the invention according to claim 13 is the die-casting method according to any one of claims 8 to 12, wherein the sleeve has a thickness of 0.6 to 0.8D.
  • the invention according to claim 14 is the die-casting method according to any one of claims 8 to 13, wherein the sleeve is made of a material having a thermal conductivity larger than that of SKD61.
  • the invention according to claim 15 is the die-casting method according to any one of claims 8 to 13, wherein the sleeve is made of SC46 or a copper alloy.
  • the invention according to claim 16 is the die-casting method according to any one of claims 9 to 15, wherein the temperature of the sleeve is 100 to 200 ° C.
  • the invention according to claim 17 is the die casting method according to any one of claims 8 to 16, wherein the time from pouring to the start of pressurization is within 5 seconds.
  • the invention according to claim 18 is the die casting method according to any one of claims 8 to 17, wherein the time from pouring to the start of pressurization is within 3 seconds.
  • the invention according to claim 19 is the die casting method according to any one of claims 8 to 18, characterized in that pressurization is performed immediately after pouring into the sleeve.
  • the invention according to claim 20 is the die casting method according to any one of claims 8 to 19, wherein the solid phase ratio at the time of injection is 50% or more.
  • the solid phase ratio is high, the fluidity is deteriorated, a high pressure is required for injection, and it is difficult to fill the thin portion in the mold.
  • the solid phase ratio is preferably 50% or more.
  • injection pressure will become high when it exceeds 80%, 80% or less is preferable.
  • the invention according to claim 20 is the die casting method according to any one of claims 8 to 19, wherein a cooling rate when passing through the liquidus is 20 ° C / s or more. When the cooling rate is 20 ° C./s or more, very fine particles (particle size 2 to 4 ⁇ m) are distributed. The presence of the fine particles is considered to enable the production of a die-cast product that is thinner and has little gas entrainment and almost no nest.
  • the invention according to claim 21 is the die-cast product according to any one of claims 4 to 7, wherein the internal gas content is 1 cc / 100 g or less in an environment of normal temperature and normal pressure. .
  • the invention according to claim 22 is a fixed platen, A movable platen; A fixed mold attached to a fixed platen; A movable type attached to a movable platen; A sleeve that penetrates the inside of the stationary platen and communicates with a product space in which one end is formed of a stationary mold and a movable mold; Pressurizing means inserted into the other end of the sleeve; Have The ceiling side of the sleeve is a die casting apparatus that opens over a range longer than the diameter of the sleeve.
  • the pressurization means such as a plunger starts pressurizing immediately after pouring into the sleeve, if the upper side of the sleeve is open, the molten metal will be ejected from the opening.
  • the material since the material flows with high viscosity, the material does not jump out of the opening. Since the upper part is open, the problem that the clearance with the plunger has to be solved is solved.
  • a sleeve whose material and dimensions (longitudinal length, diameter, cross-sectional shape, etc.) are changed corresponding to the casting conditions may be appropriately replaced and used.
  • a sleeve made of a material having a thermal conductivity larger than that of SKD61 may be used in order to increase the amount of heat removal and thus the cooling rate, for example.
  • a sleeve made of copper or a copper alloy, ductile cast iron (for example, FCD700), SC46, or the like may be used.
  • the sleeve may have a two-layer structure of an outer layer and an inner layer, the inner layer may be made of a material having a higher thermal conductivity than the outer layer, and the outer layer may be made of a material having a higher strength than the inner layer.
  • a detachable damming stopper may be provided inside the sleeve, and a damming bar may be provided when pouring, and the damaging may be removed when pressurizing with the plunger.
  • the present invention it is possible to manufacture a die-cast product having a wall thickness portion of 0.5 mm or less with higher dimensional accuracy than the conventional one by breaking the wall that has been regarded as the flow limit.
  • FIG. 2 is a photograph showing a metal structure of a die-cast product according to Example 1.
  • FIG. It is a graph which shows the relationship between a solid-phase rate and a filling behavior. It is a graph which shows the influence which a pouring temperature and a sleeve exert on the temperature in a sleeve.
  • the molten metal is poured directly into the sleeve, which is referred to as a sleeve method.
  • a sleeve method since a cup is not separately used, an existing die casting machine can be used as a basic configuration.
  • FIG. 1 shows the basic configuration.
  • a plunger sleeve 5 communicating with the cavity 10 of the fixed mold 5a and the movable mold 5b attached to the die casting machine is disposed, and the molten metal 4 supplied into the plunger sleeve 5 is injected by the plunger 2.
  • the cavity 10 is filled.
  • the plunger 2 is coupled to an injection cylinder rod disposed in the injection cylinder by a coupling, and the hydraulic pressure accumulated in the accumulator according to the opening degree of the flow control valve disposed in the hydraulic circuit system of the injection device.
  • the injection speed in the injection stroke can be adjusted by adjusting the flow rate of the hydraulic oil.
  • the process of semi-solid die casting by the sleeve method is also shown in FIG.
  • the sleeve method does not have a separate slurry generation facility. Therefore, it is possible to appropriately control the crystal growth without causing the crystal nuclei to disappear by crystallizing many crystal nuclei in the sleeve only with the existing die casting machine equipment.
  • the sleeve method when the fixed mold 5a, the movable mold 5b, and the mold clamping are completed (FIG. 1 (1)), pouring into the sleeve is performed through the pouring port 3 (FIG. 1 (2)). At this time, optimum control of the pouring temperature, sleeve temperature, sleeve filling rate, etc. is performed.
  • the characteristics of the sleeve method compared with the NRC, nanocast method, and cup method are shown below.
  • (1) By optimal control of the molten metal temperature in the sleeve, slurry generation is possible without having a conventional slurry generation facility. Miniaturization is possible by increasing the number of nuclei that can be injected into the cup (container) immediately after pouring. No cup equipment is required according to the casting weight. No need for additional equipment for cup cooling, cleaning, and release agent application (Relationship between sleeve filling rate, modulus and solid phase rate)
  • the pouring temperature, sleeve size, sleeve temperature, sleeve filling rate and cooling rate are optimized.
  • the sleeve filling rate is considered to have a significant effect.
  • the sleeve filling rate is (A / S) ⁇ 100 (S) where S is the cross-sectional area of the sleeve in the cross section perpendicular to the longitudinal direction of the sleeve, and A is the cross-sectional area of the molten metal after pouring. %).
  • S the cross-sectional area of the sleeve in the cross section perpendicular to the longitudinal direction of the sleeve
  • A is the cross-sectional area of the molten metal after pouring.
  • the contact area between the molten metal and the sleeve can be increased.
  • the relationship between the sleeve filling rate and the modulus (V / S) in the sleeve is as described above.
  • the modulus (V / S) of the molten metal filled in the sleep increases as the sleeve filling rate increases.
  • the modulus (V / S) is approximately proportional. Therefore, the higher the filling rate, the larger the modulus and the longer the solidification time. That is, the higher the filling rate, the higher the temperature of the melt immediately after pouring the sleeve, and the lower the cooling rate. For this reason, in order to obtain a fine sphere, it is important to select an appropriate sleeve filling rate.
  • a door mirror component having the shape shown in FIG. 1 was manufactured using a 125 ton die casting machine.
  • the structure of the die casting machine and the die casting process are conceptually shown in FIG.
  • a fixed platen 1a and a movable platen 1b are arranged to face each other.
  • a fixed mold 5a is attached to the fixed platen 1a
  • a movable mold 5b is attached to the movable platen 1b.
  • a space formed between both molds becomes a product space.
  • a sleeve member 4 as a cylindrical tubular portion is attached to the fixed platen 1a.
  • a plunger 2 as a pressurizing unit is inserted into one end portion of the sleeve member 4.
  • an internal space communicating with the internal space of the sleeve member 4 is formed in the fixed mold 5a.
  • the internal space of the fixed mold 5a communicates with the product space via a gate.
  • a portion formed by the internal space of the sleeve member 4 and the internal space of the fixed mold 5a is a sleeve.
  • the molten metal poured from the pouring port 3 is also allowed to flow into the internal space of the fixed tube mold 5a.
  • the sleeve length L is the distance from the left end of the fixed mold to the plunger tip.
  • the sleeve of the die casting machine used the following dimensions.
  • Sleeve diameter D 70 mm
  • the following materials were used as the molten metal material.
  • the sleeve heat capacity, the heat capacity of the molten metal to be poured, and the burning heat are calculated in advance so that the solid phase ratio arbitrarily selected when the sleeve and the poured material reach a thermal equilibrium state,
  • the sleeve dimensions, molten metal temperature, sleeve temperature, molten metal amount, etc. were designed so that heat balance was achieved at a predetermined solid phase ratio.
  • the temperature T eq at this time (hereinafter referred to as the equilibrium temperature) is given by the following equation.
  • T c is the melt initial temperature
  • T m is the sleeve initial temperature
  • those H ⁇ f is obtained by dividing the latent heat of solidification in the specific heat
  • f s is the solid fraction.
  • is obtained by dividing the amount of heat necessary for increasing the temperature of the cup by 1K by the amount of heat necessary for increasing the temperature of the molten metal by 1K, and is given by the following equation.
  • ( ⁇ m c m V m ) / ( ⁇ c c c V c ) ⁇ (2)
  • is the density
  • c is the specific heat
  • V is the volume
  • the suffix c is for the molten metal
  • the suffix m is for the sleeve.
  • a filling rate in the sleeve during pouring was 30%.
  • a filling rate is a cross-sectional area which the molten metal poured shows with respect to the cross-sectional area in the longitudinal cross-section (surface perpendicular to the advancing direction of a pressurizing means) in a sleeve.
  • the solid phase ratio at the time of injection into the mold was set to 50%.
  • Table 1 shows the casting conditions under pressure.
  • the conditions shown in the column (semi-solidified die casting) in the right column of Table 1 are the conditions of this example.
  • Table 1 Normal die casting (Comparative Example 1)
  • Semi-solid die casting (Example 1) Injection speed 0.2m / s 0.2m / s Injection speed 1.0m / s 1.0m / s Casting pressure 60MPa 60MPa Mold temperature (fixed) 250 °C 250 °C Mold temperature (working part) 250 °C 250 °C Pouring temperature (AC4CH) 720 ° C 650 ° C Sleeve temperature 190 ° C
  • An external view of the die-cast product (door mirror part) according to this example is shown in FIG.
  • a die-cast product indicated by (semi-solidified die casting) is a door mirror part according to the first embodiment.
  • the tip of the cylindrical portion was completely filled in a disk shape.
  • tip part is 0.1 mm thick.
  • the roundness of the cylindrical portion is increased.
  • FIG. 5 shows a cross-sectional metal structure diagram of the door mirror component according to the first embodiment.
  • the structure having a particle size of 10 to 30 ⁇ m is shown in all 10 cross sections.
  • the die-cast product was placed in a vacuum melting chamber, and the chamber was purged with high-purity argon gas to remove external gas adhering to the walls of the chamber or the surface of the test material. Next, the vacuum casting chamber was evacuated and then the die cast product was dissolved.
  • the molten metal was sufficiently stirred to release gas from the molten metal.
  • This example is a comparative example in which pressurization and injection are performed in a liquid state.
  • the molten metal temperature was made higher than that in Example 1, and pressurization was started immediately after pouring (that is, in a liquid state).
  • FIG. 4 shows the appearance of the door mirror parts in the first embodiment and the comparative example.
  • the metal structure was a dendrite structure.
  • This die-cast product did not meet the acceptance standards for both surface roughness accuracy and dimensional accuracy (roundness).
  • Die casting was performed under the same casting conditions as in Example 1.
  • the speed of the plunger as the pressurizing means and the pressure received by the plunger were measured. The result is shown in FIG.
  • the graph on the left is a comparative example showing a case where pressurization / injection is performed in a state where the solid phase ratio is 0% (complete liquid).
  • the graph on the right is an example in which the particle size is 30 ⁇ m or less and the pressurization / injection is performed in a state where the solid phase ratio is 50%.
  • the solid phase ratio is 50%, it proceeds at a constant speed when pressurization is started after pouring. The pressure is zero. Once inside the mold, acceleration begins and pressure increases. When the mold is filled, the peak is reached and the speed is reduced. However, instead of decelerating at a stretch, the vehicle decelerates with a gradient until the speed reaches zero.
  • a die cast product was manufactured by controlling the particle size to 30 ⁇ m or less in the same manner as in Example 1.
  • ZDC2 was used instead of AC4CH in Comparative Example 1.
  • the surface roughness was 3.8 S, and the dimensional accuracy (roundness) was 24/1000 mm, which met the acceptance criteria.
  • an experiment was performed by changing the filling rate of the molten metal into the sleeve.
  • the filling rate was changed by changing the diameter and length of the sleeve. Immediately after pouring the sleeve, it was cooled rapidly and the tissue was observed.
  • the sleeve temperature was 200 ° C. That is, the experiment was performed in a state where the cooling rate was slower than that of Example 1 and the influence of the filling rate was likely to appear.
  • the molten metal temperature in the sleeve was higher than the liquidus temperature at the pouring temperatures of 710 ° C. and 640 ° C.
  • the temperature is the solid-liquid coexistence temperature, and the longitudinal direction (plunger traveling direction) and the sleeve height direction It was found that a substantially uniform semi-solid slurry can be generated in both directions (from the sleeve surface).
  • Casting was performed under the casting conditions shown in Table 2 using a 125 ton die casting machine, a prism house mold, and a molten AC4CH, with a sleeve filling rate of 10%, 30%, 50%, and an injection time lag of 5 seconds.
  • FIG. 10 shows the observation results of the metal structure when the sleeve filling rate is changed to 10%, 30%, and 50%.
  • the filling rate was 50%, large particles having a particle size of 30 to 50 ⁇ m were observed throughout.
  • the filling rate was 30%, many particles having a particle size of 10 to 30 ⁇ m and many particles having a particle size of 2 to 3 ⁇ m were observed.
  • the filling rate was 10%, particles having a particle size of 10 ⁇ m or less were found throughout. From this structure, when the filling rate is 30% or less, the particle size is 10 to 30 ⁇ m. It was found that not only spherical crystals but also fine spherical crystals of about 2 to 4 ⁇ m, which are not normally generated, are generated.
  • FIG. 10 shows the measurement result of the molten metal temperature in the sleeve.
  • Table 3 shows a comparison of cooling rate and spherical structure particle size in the NRC method, nanocast method, and cup method.
  • FIG. 11 shows a logarithmic graph of the cooling rate and the spherical structure particle size. From this measurement result, the cooling rate at the time of nucleation around the liquidus temperature (tangential slope in FIG. 10) is 20 ° C./sec, from the cooling rate of 0.2 to 2 ° C./sec at the time of conventional semi-solid slurry generation. I know that it is too fast. In the conventional rheocast, there is no report on the generation of fine spherical crystals as obtained this time.
  • the cooling rate and the crystal grains of the spherical structure are connected by a 1: 3 straight line in the log-log graph. However, in the case of 20 ° C./s, it was shown that the particle diameter deviated from the straight line and the particle size was further refined.
  • T L is the liquidus temperature
  • the amount of hot water supply is limited, and the cooling rate of the molten metal in the sleeve It is considered that many crystal nuclei are generated due to large (20 ° C./s or more) and the like, and in the growth process, adjacent crystals are restrained to form a fine spherical structure. Since such fine spherical particles continue to exist and solidify into fine voids in the mold, the thin portion can be filled and the gas can be almost completely entrained.
  • the filling rate was 40% in the example.
  • the thickness of the sleeve was 0.6D.
  • D is the inner diameter of the sleeve.
  • the sleeve temperature was kept at 100 ° C., and the pouring temperature was 640 ° C.
  • the other points were the same as in Example 1. Also in this example, a particle size of 30 ⁇ m or less was obtained, and a thin portion of 0.4 mm or less was also filled.
  • Example 1 the mold was changed and a plate-shaped part was cast.
  • the plate thickness is 0.6mm, 0.5mm, 0.4mm, 0.3mm, 0.2mm, 0.1mm flat shape and 0.1mm diaphragm in the middle of 0.4mm flat shape It was performed with respect to the shape provided with.
  • the shot time lag was 3 seconds.
  • the solid phase ratio was changed.
  • the solid phase ratio was changed every 10% between 10 and 80%.
  • the degree of filling in the thin portion was higher than when the solid phase ratio was less than 50%.
  • FIG. 12 shows the relationship between the injection time lag and the fine spherical structure when the sleeve filling rate is 25%.
  • FIG. 13 shows the results of measuring the particle size of the spherical crystals at each injection time lag and determining the distribution.
  • the fine spherical structure filling the space between primary crystals at 0 seconds decreases, and at 5 seconds, the eutectic structure that is usually observed is observed between primary crystals of about 10 to 30 ⁇ . Is done. It is not yet clear what kind of history this fine spherical structure was generated after pouring the molten metal into the sleeve, and then the injection and molding. However, the cooling rate of the melt after pouring into the container is 20 ° C./s, which is so fast that it is incomparable with the time required for conventional semi-solid metal slurry generation and injection / solidification. For this reason, the passing speed just above the melting point is also fast.
  • the present invention can be widely used in various fields where thin parts such as electric / electronic, automobiles, fuel cells and the like are required. Without the conventional slurry generation equipment, it is possible to promote the generation of nuclei and the formation of fine spherical crystals in the sleeve by optimally controlling the molten metal temperature in the sleeve. A semi-solid slurry can be produced.
  • the aluminum semi-solid cast product (AC4CH) of the sleeve method has better surface roughness accuracy (transferability) and dimensional accuracy than the zinc cast product (ZDC2), and material replacement is possible. Development is also expected in fields such as weight reduction and precision parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

 従来実現不可能であった薄肉のダイキャスト品を製造することが可能なダイキャスト方法及び装置ならびにダイキャスト品を提供する。 固相の粒径が30μm未満である金属半凝固体を形成し、次いで、該金属半凝固体を型内へ射出する。ダイカストマシンのスリーブ部に溶湯を注湯し、所望の固相率となった時点でプランジャーを加圧して型内へ射出を行う。スリーブにおける縦断面積の30%以下に溶湯を注湯する。本凝固材における粒径は、ダイカスト後の製品にも維持される。

Description

ダイカスト方法及びダイカスト装置ならびにダイカスト品
 本発明は、ダイカスト方法及びダイカスト装置ならびにダイカスト品に関する。
 ダイカストは、金型をダイカストマシンに取り付け、金型内に金属(亜鉛、アルミニウム、マグネシウムなどの非鉄金属とその合金)の溶湯を高圧で注入し凝固させた後金型から取り出す技術である。ダイカストは、高い生産性を持ち、ダイカスト製品は寸法精度が高く、強度に優れ、外観が美しく機械加工も少なく済むという優れた特長を持っている。
 また、溶湯を金型内に注入することに代え、金型の前に設けられたスリーブ内に半凝固状態の材料(半凝固スラリー)を収納し、プランジャーにより半凝固スラリーを金型内に注入する半凝固ダイカスト技術も開発されている。
 すなわち、高品質鋳物を得るための新しい鋳造技術として、セミソリッドダイカスト(半溶融・チクソキャストと半凝固・レオキャスト)が注目されている。
 レオキャスト法は、合金を液体状態から撹搾しながら冷却して,初晶を粒状に成長させて所定の固相率に到達した時点で成形する方法で,半凝固ダイカスト法とも呼ばれる。一方,チクソキャスト法は,合金を溶融した後に撹絆しながら一旦凝固させてビレットを製作し,鋳造の際に再度ビレットを加熱して固液共存状態にしてから成形する方法であり,半溶融ダイカスト法とも呼ばれる。チクソキャスト法は、組織調整された特殊なビレットが高価というだけでなく、ビレットを再溶融して半溶融スラリーとしたものを鋳造するため、省エネルギーの点と一度鋳造したものは、再溶解して使用できず、リサイクルできないという問題があり、現在はレオキャストが主流である。
 いままで実用化されているレオキャスト法の中の一つとして、自動車の足回り部品やブレーキキャリパーの量産品として鋳鉄からアルミ合金への置換実績のある宇部興産が開発したNRC法(Ube’sNewRheocast Process)がある。
 NRC法は、低温の溶湯をスラリーカップで無撹絆による注湯をし、所定量の固相を晶出させた後に射出スリーブに固液共存状態のスラリーを投入して射出充填する方法である。
 しかしなら、NRC法は、半凝固スラリーの生成に時間を要し、設備が大きく高価であることと核発生数が十分でないため球状結晶の微細化に限界があった。
 本発明者は別途、安価に迅速かっ簡便にスラリーを生成させ、かつ核発生数を多くするために、電磁撹拌を与える方法(特許文献1)(ナノキャスト法)や自己撹搾による方法(特許文献2)などのカップ法を開発している。
 カップ法は、カップ内に溶湯を注湯してカップ内で半凝固スラリーを形成後、その半凝固スラリーをスリーブに移動させ、次いで半凝固スラリーを金型内に注入する半凝固ダイカスト法である。
 一方、スリーブ内に溶湯を注湯し、スリーブ内でスラリーを形成し、次いで半凝固スラリーを金型内に押入する半凝固ダイカスト法がある。この方法は、スリーブ法と称する(例えば、特許文献3)。
 しかし、半凝固ダイカスト法を含め従来のダイカスト技術には、薄肉限界、すなわち、製造可能な製品肉厚の限界がある。この薄肉限界はt=0.6~1.0mmとされている(例えば、http://www.nagae.co.jp/technology/index.html)。
 そのため、0.6mm未満の肉厚を有するダイカスト製品は存在しない。
 なお、特許文献3は、半凝固ダイカスト法によるセパレータの製造技術を提案しており、その請求項6には、『セパレータ板厚は最も薄い部分で0.4mm以下である』との記載がある。
 しかし、ここにいう板厚は、『セパレータはその両面に溝が形成されているため、片面の溝と他面の溝とがクロスする部分では板厚が最も薄くなる。』(特許文献4段落0032)と記載されている通り、片面の溝と他面の溝とがクロスする部分の距離であり、また、段落0053に、『フラットな板を成型し、後に機械加工により溝を形成してもよい。さらに、ダイカストによりフラットな板を成型し、スタンピングにより溝を形成してもよい。』と記載されている通り、ダイカスト後溝の加工後に生じる部分であり、アズカストの状態での厚みではない。
 初晶αを微細化するための試みとして特許文献5の技術が提示されている。
 溶湯を傾斜板に沿わせて容器などに注湯する技術であり、傾斜冷却板による冷却制御により核発生させ半凝固スラリーを生成させる方法である。しかし、傾斜冷却板の温度、接触距離、傾斜角度、注湯温度の最適化を試みても粒状化が安定せず、実用化されていない。冷却速度を早くするため溶湯を傾斜冷却板に流す量が大きくできないという制約があり、流れる量が少ないと溶湯が蛇行しながら流れていく。そのため、定常状態を保つことができないため、初晶αの粒径が100~200μmの範囲でバラツキが発生するだけでなく、流れる溶湯量が少ないため、表面が酸化することで実用化されていないのが現状である。
特許3496833号公報 特許3919810号公報 特開2004-114154号公報 特開2010-92613号公報 特開平8-325652号公報
 本発明は、アズキャスト(as cast)状態で、0.5mm以下の肉厚を有するダイカスト製品を製造することが可能なダイカスト方法及び装置ならびにダイカスト品を提供することを目的とする。
 本発明は、固相の粒径が30μm未満である金属半凝固体を形成し、次いで、該金属半凝固体を型内へ射出することを特徴とするダイカスト方法である。
 本発明の内容を、本発明をなすに際して得た知見とともに説明する。
 本発明者は、薄肉限界を破るべく鋭意研究を重ねたところ、従来の初晶αの径(50μm)に比較してさらに微細な径になると、凝固しないで圧力に依存した粘性流体へと流動挙動が変化することを見出した。
 この流動挙動の変化はある値を境として生ずることも見出した。
 そして、その場合、0.5mm以下の薄肉部ですら完全に充填することが観察された。
 液体状態で加圧、射出を行うと、溶湯は瞬時に凝固が進むため低い固相率なのに流動が停止する。それは、流動を阻害するデンドライトが一気に発生し成長するためと考えられる。
 それに対し、微細な初晶を多数形成させると過冷現象が促進され、本来凝固すべき温度に至っているにもかかわらず凝固が進展せず高い圧力が加わると圧力に応じて流動する。すなわち、粘性流体のように流動する。特に30μmが臨界点として存在することを発見した。すなわち、この値を境として上記のような粘性流体のような挙動を発揮することを見出した。
 固相の粒径を30μm以下とすることにより粘性流体が確保され、それにより0.5mm以下の厚みを有するダイカスト製品を製造することも可能となる。
 また、本凝固材における粒径は、ダイカスト後の製品にも維持される。
 なお、粒径は、長径と短径との平均値である。
 請求項1に係る発明は、粒径が30μm以下である金属半凝固体をスリーブ内で形成し、次いで該金属半凝固体を型内へ射出することを特徴とするダイカスト方法である。
 請求項2に係る発明は、粒径が10μm以上30μm以下である請求項1記載のダイカスト方法である。
 粘性流体のような挙動は粒径が小さいほど顕著となる。
 請求項3に係る発明は、湯流れ途中に0.5mm以下の肉厚部となる部分が前記型内に存在する請求項1記載のダイカスト方法である。
 本発明によれば、材料が厚い部分、薄い部分、厚い部分、薄い部分と順次流れて製造される形状の製品であって、その薄い部分が0.5mm以下、さらには0.1mm以下であっても、薄い部分は完全に充填される。
 請求項4に係る発明は、粒径が30μm未満の組織を有するダイカスト品である。
 スリーブに注湯され、そこで、形成された初晶などの微細粒径は製品にも反映されるため、ダイカスト製品としても微細な粒径(30μm以下)の金属組織を有している。
 請求項5に係る発明は、アズカストの状態で0.5mm以下の肉厚部を有するダイカスト品である。
 前述したとおり、半凝固材の粒径を30μm以下とすると、この粒径を臨界として、本来凝固している温度であっても、見掛け上凝固しておらず粘性材料が実現され受ける圧力に対応して型内を流動し続ける。その結果、0.5mm以下、さらには0.1mm以下の厚み部の充填されるため、かかる薄肉部品の製造も可能となる。
 請求項6に係る発明は、前記ダイカスト品は共晶系合金からなる請求項4又は5記載のダイカスト品である。
 請求項7に係る発明は、前記ダイカスト品はアルミニウム合金からなる請求項3ないし6のいずれか1項記載のダイカスト品である。
 本発明の対象となる金属は、特に限定されない。特にアルミニウム合金などの低融点合金が有効である。JISに規定するAl-Si系(ADC1)、Al-Si-Mg系(ADC3)、Al-SiーCu系(ADC10、10Z、ADC12、12Z、ADC14)、Al-Mg系(ADC5,6)なども好適に用いられる。
 アルミニウム合金以外に、マグネシウム合金、亜鉛合金その他の合金についても同様の効果が得られる。
 請求項8に係る発明は、スリーブにおける溶湯の充填率、注湯温度、スリーブ寸法、スリーブ温度及び冷却速度を適宜選択することにより粒径が30μm以下である金属半凝固体をスリーブ内で形成する請求項1記載のダイカスト方法である。
 充填率とは、スリーブの長手方向に垂直な断面におけるスリーブの断面積をS、注湯後における溶湯の断面積をAとしたときの(A/S)×100(%)である。
 粒径を30μm以下の金属半凝固体を形成するためには、より大きな過冷度(大きな冷却速度)を達成できること、より多くの核生成サイトを作ることが必要となる。
  そこで、各種条件を変化させて、その条件の探求を行ったところ、スリーブにおける溶湯の充填率、注湯温度、スリーブ寸法、スリーブ温度及び冷却速度を適宜選択することにより30μm以下の金属半凝固体の形成が実現できた。
 スリーブにおける溶湯の充填率は小さくすることにより、溶湯とスリーブとの接触面積を大きくとることが可能となる。
 図3にスリーブにおけるモジュラス(V/S)と充填率との関係を示すグラフを示す。
 スリープ内に充填された溶湯のモジュラス(V/S)は、充填率が大きくなるほど、大きくなる。湯面からスリーブ底までの距離Lに、モジュラス(V/S)は、ほぼ比例する。したがって、充填率が高くなるほど、モジュラスが大きくなり、凝固時間が延びる。言い換えれば、冷却速度が小さくなるので、核をたくさん出させるには、充填率はなるべく低い方がよい。
 また、鋳込み温度が低いこと、鋳型の温度が低いこと、抜熱速度が大きくすることにより核発生数を増加させることができる。
  以上の点をまとめると下記の通りである。
 同じ固相率でも粒径の微細化を図った場合(粒径30μm以下とした場合)には優れた流動性、金型空間充填性を示す。粒径の微細化の一手法としてスリーブ充填率を30%以下とすることがあげられる。これは、スリーブ充填率を30%以下とすると、V/S(M)が大きく変化し、冷却速度を飛躍的に早くすることが可能となり、多量の核が発生することを利用したものである。それをスリーブ内での溶湯温度を制御することで、発生した核が消滅することなく、コロイド状に均一に分散させた状態で半凝固スラリーを生成させた状況下で金型内へ射出充填させる。
 多量の核発生は、スリーブ充填率を30%以下とすることとともに、あるいはスリーブ充填率を30%以下とすることなく、抜熱速度等を制御することによって達成される。抜熱速度の制御はスリーブ寸法、スリーブ温度及び冷却速度等を制御すればよい。具体的には、予め実験で求めておけばよい。
 抜熱速度を大きくするためには、スリーブの熱容量を大きくすればよい。そのために、スリーブの厚みを厚くすればよい。また、スリーブ温度を低くしておけば抜熱速度は大きくなる。
 請求項9に係る発明は、充填率が30%以下になるようにスリーブ内に注湯することを特徴とする請求項8記載のダイカスト方法である。
 請求項10に係る発明は、充填率が20%以下になるようにスリーブ内に注湯することを特徴とする請求項8又は9記載のダイカスト方法である。
 ダイカストの基本は、溶湯がキャビティ内に、液相線+αの過熱度を持って充填できるように、ダイカストプロセス内の各種の溶湯保温手段が開発される。
 溶湯は時間と共に温度が低下するである。温度が低下すると、溶湯がキャビティ内に、液相線+αの過熱度を持って充填することができなくなるである。したがって、一般的に、液相線温度より100℃程度に過熱した溶湯をスリーブ内で温度が低下しないように、スリーブに注湯する。そのためスリーブ充填率は30~40%が常識となっている。さらにスリーブに注湯が終了するやいなや、溶湯の温度が低下しないうちに射出する(ショットタイムラグが少なくなるように)ことが、ダイカスト分野における当業者の常識となっている。
 本発明は、かかる従来の発想の逆を行く発想であり、充填率を低く(好ましくは30%以下、より好ましくは20%以下)とすることにより粒径が30μm以下とするものである。
 請求項11に係る発明は、注湯温度を、融点より0~100℃高い温度とする請求項8ないし10のいずれか1項記載のダイカスト方法である。
 本発明においては、低粘性状態が長期にわたり維持される。そのため、従来よりも注湯温度を低い温度に設定することが可能となる。溶湯温度を低くすることにより不純物の巻き込み、ガスの巻き込みを低減させることも可能となる。融点より0~50℃高い温度で行うことが好ましい。
 請求項12に係る発明は、注湯温度を、融点より0~50℃高い温度とする請求項8ないし11のいずれか1項記載のダイカスト方法である。
 請求項13に係る発明は、スリーブの厚みを0.6~0.8Dとする請求項8ないし12のいずれか1項記載のダイカスト方法である。
 請求項14に係る発明は、スリーブの材質をSKD61より大きな熱伝導率を有する材質とする請求項8ないし13のいずれか1項記載のダイカスト方法である。
 請求項15に係る発明は、スリーブの材質をSC46又は銅合金とする請求項8ないし13のいずれか1項記載のダイカスト方法である。
 請求項16に係る発明は、スリーブの温度を100~200℃とする請求項9ないし15のいずれか1項記載のダイカスト方法である。
 請求項17に係る発明は、注湯から加圧開始までの時間は5秒以内である請求項8ないし16のいずれか1項記載のダイカスト方法である。
 請求項18に係る発明は、注湯から加圧開始までの時間は3秒以内である請求項8ないし17のいずれか1項記載のダイカスト方法である。
  請求項19に係る発明は、スリーブへの注湯後、直ちに加圧をすることを特徴とする請求項8ないし18のいずれか1項記載のダイカスト方法である。
 請求項20に係る発明は、射出時における固相率を50%以上とする請求項8ないし19のいずれか1項記載のダイカスト方法である。
 一般的には、固相率が高いと流動性が悪くなり、射出には高い圧力を要し、金型内の薄肉部を充填することは困難になると考えられている。
 しかし、高い固相率であっても半凝固体における粒径が小さければ流動性は確保されること、むしろ高い固相率の方がより確実に薄肉部を充填することが判明した。
 固相率としては50%以上が好ましい。ただ、80%を超えると射出圧力が高くなってしまうため、80%以下が好ましい。
  請求項20に係る発明は、液相線を通過する際における冷却速度は20℃/s以上である請求項8ないし19のいずれか1項記載のダイカスト方法。
冷却速度は20℃/s以上の場合には、非常に微細な(粒径2~4μm)な粒子が分布する。この微粒子の存在が、より薄肉でかつガスの巻き込み、巣がほとんど無いダイカスト製品の製造を可能としていると考えられる。
請求項21に係る発明は、内部ガスの含有量が常温かつ常圧の環境下において1cc/100g以下であることを特徴とする請求項4ないし7のいずれか1項4記載のダイカスト品である。
 請求項22に係る発明は、固定プラテンと、
可動プラテンと、
固定プラテンに取り付けられた固定型と、
可動プラテンに取り付けられた可動型と、
該固定プラテンの内部を貫通し、一端部が固定型と可動型で形成される製品空間に連通するスリーブと、
該スリーブの他端に挿入されている加圧手段と、
を有し、
 該スリーブの天井側は、該スリーブの直径よりも長い範囲にわたり開口しているダイカスト装置である。
 スリーブへの注湯後直ちにプランジャーなどの加圧手段に加圧を開始した場合には、もしスリーブ上側が開口していると開口部から溶湯が飛び出してしまう。それに対して、本発明においては、高い粘性をもって流動するため開口から材料が飛び出してしまうことはない。上部が開口しているため、プランジャーとのクリアランスをとらざるを得ないという問題が解決される。
 キャスト条件に対応して、材質、寸法(長手方向長さ、直径、断面形状など)を変えたスリーブを適宜交換して用いればよい。従来は、スリーブ材質としてはSKD61しか使用されていなかったが、抜熱量ひいては冷却速度を例えば、大きくするために、SKD61よりも大きな熱伝導率を有する材料からなるスリーブを用いてもよい。例えば、銅ないし銅合金、ダクタイル鋳鉄(例えば、FCD700)、SC46などからなるスリーブを用いればよい。また、スリーブを外層と内層との2層構造とし、内層は外層より熱伝導率が大きな材料より構成し、外層は内層より強度が大きな材料より構成してもよい。また、逆としてもよい。
さらに、スリーブ内部に着脱自在のせき止めを設けておき、注湯時にはせき止めを設けて置き、プランジャによる加圧時にはせきをとりはずして加圧を行ってもよい。
 本発明によれば、従来、流動限界とされていた壁を打ち破り、0.5mm以下の肉厚部を有するダイカスト製品を、従来よりも高い寸法精度で製造することが可能となる。
スリーブ法による半凝固ダイカストの工程図である。 注湯時におけるスリーブ充填率を示す図である。 スリーブ充填率とモジュラスとの関係を示すグラフである。 実施例1及び比較例1に係るダイカスト品(ドアミラー部品)の外観を示す写真である。 実施例1に係るダイカスト品の金属組織を示す写真である。 固相率と充填挙動の関係を示すグラフである。 注湯温度とスリーブがスリーブ内温度に及ぼす影響を示すグラフである。 注湯温度とスリーブがスリーブ内温度に及ぼす影響を示すグラフである。 スリーブ充填率と微細球状組織との関係を示す顕微鏡写真である。 スリーブ内の溶湯温度の計測結果を示すグラフである。 冷却速度と結晶粒径との関係を示すグラフである。 射出タイムラグと微細球状組織の関係を示す写真である。 射出タイムラグと結晶粒径の関係を示すグラフである。
1a 固定プラテン
1b 可動プラテン
2 プランジャー
3 注湯口
4 スリーブ
5a 固定金型
5b 可動金型
  本発明は、スリーブ内に直接溶湯を注湯するものであり、スリーブ法と称する。
 スリーブ法では、カップを別途使用しないため、既存のダイカストマシンを基本構成として使用することができる。
 図1に基本構成を示す。
 図1において、ダイカストマシンに取付けられた固定金型5a,可動金型5bのキャビティ10に連通するプランジャスリーブ5が配置され、プランジャスリーブ5内に給湯された溶湯4は、プランジャ2により射出し、キャビティ10内に充填される。なお、図示しないが、プランジャ2は射出シリンダに配置された射出シリンダロッドにカップリングで連結され射出装置の油圧回路系統に配置された流量制御弁の開度に応じてアキュームレータに蓄積されている油圧作動油の流通量を加減し射出行程における射出速度を調整することができる。
 スリーブ法による半凝固ダイカストの工程も図1に示されている。図1からわかるように、スリーブ法では別途スラリー生成設備をもたない。そのため、既存のダイカストマシン設備のみでスリーブ内にて多くの結晶核を晶出させ、結晶核を消滅させないで結晶成長を適切に制御することが可能となる。
スリーブ法では、固定金型5aと可動金型5bと型締めが完了した時点(図1(1))で、注湯口3を介してスリーブへの
注湯を行う(図1(2))。この際注湯温度、スリーブ温度、スリーブ充填率等の最適制御が行われている。注湯後、
最適な射出タイムラグでプランンジャにより射出する。射出完了状態を図1(3)に示す。射出完了後製品を金型か
ら取り出す(図1(4))。プランジャ2の先端を固定金型の左端から突き出し、製品が可動金型5側bに付着するように
して型開きを行ない、製品を取り出す。
 NRC、ナノキャスト法、カップ法と比較したスリーブ法の特徴を以下に示す。
(1)スリーブ内の溶湯温度の最適制御により、従来のスラリー生成設備をもたないでスラリー生成が可能である

カップ(容器)に注湯直後の射出が可能である
核発生数を多くすることで微細化が可能である

鋳込み重量にあわせてカップ設備が不要である

カップ冷却・洗浄・離型剤塗布の附属装置が不要である

(スリーブ充填率とモジュラスおよび固相率の関係)
従来よりも細かい粒径の半凝固成形体得るためには、より大きな過冷度(大きな冷却速度)を達成できること、より多くの核を生成することが必要と考えられる。そこで、注湯温度、スリーブ寸法、スリーブ温度、スリーブ充填率および冷却速度を最適化する。このうち、スリーブ充填率は、中でも大きな影響を持つと考えられる。スリーブ充填率とは、図2に示すようにスリーブの長手方向に垂直な断面におけるスリーブの断面積をS、注湯後における溶湯の断面積をAとしたときの(A/S)×100(%)である。従来の球状組織よりさらに微細化するためには、より大きな過
冷度(大きな冷却速度)を達成できること、より多くの核生成サイトを作ることが必要となる。
 スリーブ充填率を小さくすることにより、溶湯とスリーブとの接触面積を大きくとることが可能となる。図3にスリー
ブにおけるスリーブ充填率とモジュラス(V/S)の関係は前述したとおりである。
 スリープ内に充填された溶湯のモジュラス(V/S)は、スリーブ充填率が大きくなるほど、大きくなる。湯面からスリーブ底までの距離Lに、
モジュラス(V/S)はほぼ比例する。したがって、充填率が高くなるほど、モジュラスが大きくなり、凝固時間が延びる。すなわち充填率が高くなるほど、スリーブ注湯直後の溶湯温度が高くなり、またその冷却速度が低下する。このため、微細球状を得るためには適正なスリーブ充填率を選択することが重要である。
 本例では図1に示す形状を有するドアミラー部品を125tonダイカストマシンを用いて製造した。
 ダイカストマシンの構造及びダイカストの工程を図1に概念的に示す。
 ダイカスト装置は、固定プラテン1aと可動プラテン1bが対向して配置されている。
固定プラテン1aには固定金型5aが取り付けられ、可動プラテン1bには可動金型5bが取り付けられている。固定金型5aと可動金型5bとを型締めした状態において、両金型の間で形成される空間が製品空間となる。
 固定プラテン1aには円筒状の筒状部としてのスリーブ部材4が取り付けられている。このスリーブ部材4の一端部には、加圧手段としてのプランジャ2が挿入されている。
 一方、固定金型5aには、スリーブ部材4の内部空間と連通する内部空間が形成されている。固定金型5aの内部空間は湯口を介して製品空間に連通している。スリーブ部材4の内部空間と、固定金型5aの内部空間とで形成される部分がスリーブとなる。本発明では、注湯口3から注湯された溶湯が、固定管型5aの内部空間にも流れるようにする。
 スリーブ長さLは、固定金型の左端からプランジャー先端までの距離である。
 固定金型5aと可動金型5bと型締めが完了した時点(図1(1))で、注湯口3を介してスリーブへの注湯を行う(図1(2))。この際充填率の制御が行われている。
 注湯後、所定の時間待機後プランンジャにより加圧射出を開始する。射出完了状態を図1(3)に示す。
 射出完了後製品を金型から取り出す。プランジャ2の先端を固定金型の左端から少し突き出し、製品が可動金型5側bに付着するようにして型開きを行う。
 ダイカストマシンのスリーブは次の寸法のものを用いた。
  スリーブの直径D:70mm
  スリーブ長さ:L=5D(=350mm)
  スリーブ温度:190℃
 一方、溶湯材料としては、次のものを用いた。
溶湯材質 :AC4CH
     液相線温度T:610~612℃
     固相線温度T:555℃
  注湯温度 :液相線温度+40℃(650℃)
  重量   :450g
 なお、スリーブ内への溶湯の注湯に際しては、スリーブ底からの高さが250mmの高さ(Dの3.5倍以上の高さ)から注湯を行った。
 また、スリーブと注湯した材料とが熱平衡状態に達したときに任意に選択した特定の固相率となるように、スリーブの熱容量、注湯する溶湯の熱容量、僭熱をあらかじめ計算して、所定の固相率において熱バランスが取れるようにスリーブ寸法、溶湯温度、スリーブ温度、溶湯量などを設計した。
 溶湯とスリーブとの温度が同じになったとき熱の移動はなくなり、それ以上温度は変化しないと考える。このときの温度Teq(以下,平衡温度と呼ぶ)は次式で与えられる。
式1
 
Figure JPOXMLDOC01-appb-I000001
ここで,Tは溶湯初期温度、Tはスリーブ初期温度、H`は凝固潜熱を比熱で除したもの、fは固相率である。また、γは、カップの温度を1K上昇させるために必要な熱量を溶湯の温度を1K上昇させるために必要な熱量で除したもので、次式で与えられる。
       γ=(ρ)/(ρ) -(2)
ここで、ρは密度、cは比熱、Vは体積であり、添字cは溶湯、添字mはスリーブのものであることを示す。
 注湯時におけるスリーブ内の充填率は30%とした。なお、充填率は、スリーブにおける縦断面(加圧手段の進行方向に垂直な面)における断面積に対する、注湯した溶湯の示す断面積である。
 スリーブへ注湯してから4秒経過後に加圧・射出を開始した。すなわち、ショットタイムラグは4秒とした。
 加圧時に、溶湯の上面は静かに上昇して行き、乱流は発生しなかった。充填率が100%となり、金型内に射出が行われた。
 なお、本例では、金型への射出時における固相率は50%とした。
 加圧による鋳造条件を表1に示す。表1の右欄の(半凝固ダイカスト)の欄に示した条件が本実施例の条件である。
(表1)
           普通ダイカスト(比較例1)  半凝固ダイカスト(実施例1)
射出速度       0.2m/s          0.2m/s
射出速度       1.0m/s          1.0m/s
鋳造圧力       60MPa           60MPa
金型温度(固定)   250℃            250℃
金型温度(稼動部)  250℃            250℃
注湯温度(AC4CH)720℃            650℃
スリーブ温度                     190℃
 
 本例に係るダイカスト製品(ドアミラー部品)の外観図を図4に示す。
 図4において、(半凝固ダイカスト)で示されるダイカスト製品が本実施例1に係るドアミラー部品である。本実施例に係るドアミラー部品では、その円筒状部の先端部は完全に円板状に充填されていた。なお、この先端部は0.1mmの肉厚である。また、円板上に肉が充填されている場合には円筒状部分の真円度が高くなる。
 ダイカスト品の面粗さ、寸法精度についても調べたところ次の結果が得られた。
 面粗さ精度:2.1S(合格基準6.3S)
 寸法精度(真円度):19/1000mm(合格基準50/1000mm)
 図5に実施例1に係るドアミラー部品の断面金属組織図を示す。
 図5からわかるように、10個の断面のすべてにおいて、粒径が10~30μmの組織を示している。
 次に鋳造後のダイカスト品中における含有ガス量を調べた。
<ガス分析>
 ダイカスト品を真空溶解室内に配置し、室内を高純度アルゴンガスでパージして、室内の壁、あるいは供試材表面に付着している外部ガスを除去した。次いで、真空溶解室内を真空引きした後にダイカスト品を溶解した。
 溶湯を十分攪拌し、溶湯からガスを放出させた。
 一定時間経過後に真空室内の圧力が一定となったところで、その圧力を測定した。
 真空室内部の容積と圧力を用いてガス量を計算した。アルミニウム(Al)溶湯100μg当たりに含まれるガス量は、常温・常圧では0.4mlであった。
比較例1
 本例は、液体状態で加圧・射出を行った比較例である。
 表1の中欄の(普通ダイカスト)に示す条件で鋳造を行った。
 この比較例は、溶湯温度を実施例1の場合より高くし、注湯後直ちに(すなわち、液体状態のまま)加圧を開始した。
 加圧時には、溶湯表面には乱流(しぶきを伴う波状の流れ)が発生した。
 図4に上記実施例1と比較例におけるドアミラー部品の外観を示す。
 図4において(普通ダイカスト)で示される比較例に係るドアミラー部品の円筒状部の先端部には肉が充填されていなかった。なお、この肉厚は本来0.1mmの厚みを有している。
 金属組織は、デンドライト組織となっていた。
 このダイカスト製品は、面粗さ精度、寸法精度(真円度)ともに合格基準に達していなかった。
 実施例1と同様の鋳造条件でダイカストを行った。
ダイカストを行う際に、加圧手段であるプランジャの速度とプランジャが受ける圧力を測定した。
 その結果を図6に示す。
 図6において、左側のグラフは、固相率は0%(完全な液体)の状態で加圧・射出を行った場合を示す比較例である。右側のグラフは、粒径が30μm以下であり、固相率50%の状態で加圧・射出を行った場合を示す実施例である。固相率50%の場合は、注湯後加圧を開始すると一定速度で進行する。圧力は0である。金型内に入ると加速が始まり圧力も増加する。金型内が充填されるとピークに達し、速度は減速する。しかし、一気に減速するのではなく、速度が零に達するまで勾配を持って減速する。これは、金型内で凝固収縮が生じるに従い、収縮部にさらに流動していき、収縮部を充填していることを意味する。かかる充填は粒径が30μm以下である故に生じる。図6に示すように収縮部がなくなるまでこの現象が連続的に続いている。従って、0.5mm以下の薄肉部が存在したとしてもその部分は十分充填されて欠肉状態の発生はない。また、収縮部には絶えず補われていくため、ひけ巣、ガスの含有も生じない。
 この試料の断面を観察したところ、ガスの巻き込みはなく、粒径は30μm以下の微細な粒径であった。
 一方、固相率0%の場合は、一気に(グラフでは垂直に)速度は停止する。この現象は、凝固収縮が生じてもその部分に流動していかないことを意味する。そのため、収縮部は補われること無くひけ巣になってしまう。
 ZDC2材料を用い、実施例1と同様に粒径を30μm以下に制御してダイカスト製品を製造した。
 本例では、充填性、面粗さ、寸法精度のすべての点において、実施例1より優れた結果が得られた。
比較例2
 本例は、比較例1におけるAC4CHに代えてZDC2を用いた。
 面粗さは3.8S、寸法精度(真円度)は24/1000mmであり、合格基準に達していた。
 また、充填性は比較例1よりは良好であった。しかし、未充填部が一部に存在し、切削加工などを行うことにより製品化する必要がある。
 本例では、スリーブ内への溶湯の充填率を変化させた実験を行った。スリーブの直径や長さ等を変化させることにより充填率を変化させた。スリーブに注湯後直ちに急冷し組織を観察した。本例では、スリーブ温度を200℃とした。すなわち、冷却速度を実施例1より遅くし、充填率の影響が現れやすい状態で実験を行った。
 それぞれの充填率における粒径を調べた。その結果を以下に示す。
   50%    80~120μm
   45%    80~100μm
   40%    60~100μm
   35%    50~80μm
   30%    10~30μm
   25%    10~30μm
   20%    10~30μm
   15%    10~30μm
   10%    10~30μm
 30~35%の間で粒径は急激に小さくなることがわかった。
 また、30%以下の場合は、それ以上の場合に比べてガス含有量は著しく減少していた。
 本例では、充填率と注湯後におけるスリーブ内における溶湯の温度分布との関係を調べた。
 A 注湯温度:T+100℃(710℃)
   充填率 :35%
 B 注湯温度:T+(10~40℃)(620~650℃)
   充填率 :35%
 C 注湯温度:T+(10~40℃)(620~650℃)
   充填率 :10~30%
     (ただし、T:液相線温度)
 注湯後に、プランジャーの先端から136mm、256mm、376mm、スリーブ表面から1mm、5mm、11mmの各点における温度を測定した。
 その結果を図7及び図8に示す。なお、上記Cについては、注湯温度640℃、充填率18%の場合を代表例として示す。充填率30%の場合も充填率18%の場合とほぼ同様であった。
図7及び図8からわかるように、スリーブ充填率35%では注湯温度710℃および640℃では、スリーブ内の溶湯温度が液相線温度以上であることがわかった.それに対して、スリーブ充填率30%以下、注湯温度が液相線上10~40℃の条件では、固液共存温度になっており、しかも、長手方向(プランジャー進行方向)及びスリーブ高さ方向(スリーブ表面からの方向)の両方向においてほぼ均一な半凝固スラリーが生成できることがわかった。
 表2に示す鋳造条件で125tonダイカストマシン、プリズムハウス金型、AC4CHの溶湯を用いてスリーブ充填率を10%、30%、50%、射出タイムラグを5secとして鋳造を行った。
Figure JPOXMLDOC01-appb-T000002
 図10にスリーブ充填率を10%、30%、50%と変化させた場合の金属組織観察結果を示す。
 充填率が50%の場合は粒径が30~50μmの大きな粒子が全体に見られた。
 充填率が30%の場合は、粒径が10~30μmの粒子とともに、2~3μmの粒子が多数見られた。
 充填率が10%の場合は、粒径は10μm以下の粒子が全体に見られた。
 この組織から、充填率を30%以下とした場合には、粒径が10~30μm
の球状結晶だけでなく、通常発生しない2~4μm程度の微細な球状結晶が多く発生していることがわかった。
 これらの組織は、
いままで本発明者らが取り組んできたナノキャスト法やカップ法、従来の半凝固鋳造法で得られた結果よりも微細になっていることがわかった。
 図10にスリーブ内の溶湯温度の計測結果を示す。
 .表3にNRC法、ナノキャスト法、カップ
法における冷却速度および球状組織粒径の比較を示す。また、図11に冷却速度および球状組織粒径を両対数グラフで示す。
 この計測結果から液相線温度前後における核生成時の冷却速度(図10における接線の傾き)は20℃/secで、従来の半凝固スラリー生成時の冷却速度0.2~2℃/secよりも早いことがわかる。従来のレオキャストにおいて、今回得られたような微細な球状結晶の発生に関する報告はない。
 冷却速度と球状組織の結晶粒とは両対数グラフにおいては1:3の直線で結ばれる。しかるに、20℃/sの場合にはその直線からはずれ、粒径はより微細化することが示された。
 この微細球状結晶の発生に今回の試験ではスリーブへの鋳込み温度が低いことと(T+50℃以下:Tは液相温度)、給湯量が限定されていること、スリーブ内溶湯の冷却速度が大きい(20℃/s以上)ことなどにより多くの結晶核が発生し、その成長過程で、隣接する結晶同士が牽制し合ったために微細な球状組織になったものと考えられる。

 かかる微細な球状粒子が存在し続け、金型内の微細な空隙へも凝固すること流動するため薄肉部の充填が可能となり、また、ガスの巻き込みも皆無に近くなる。
Figure JPOXMLDOC01-appb-T000003
 本例では、実施例において、充填率を40%とした。
 ただ、スリーブの厚みを0.6Dとした。Dはスリーブの内直径である。
 また、スリーブ温度を100℃に保持するとともに、注湯温度を640℃とした。
 他の点は実施例1と同様とした。
 本例においても30μm以下の粒径が得られ、0.4mm以下の薄肉部の充填も行われていた。
 実施例1において、金型を交換し、板形状の部品を鋳造した。
 板厚は、0.6mm、0.5mm、0.4mm、0.3mm、0.2mm、0.1mmのフラットな形状のものと、0.4mmのフラットな形状の途中に0.1mmの絞りを設けた形状のものとについて行った。ショットタイムラグは3秒とした。
 いずれのものについても、欠肉(不充填部)が生ずることなく完全の形状を有するダイカスト品が得られた。
 本例では、固相率を変化させた。
 10~80%までの間を10%ごとに固相率を変化させた。
 固相率が50%以上の場合の方が、固相率50%未満の場合より薄肉部への充填度が高かった。
 本例では、スリーブへ注湯してから、射出するまでの時間(ショットタイムラグ)の影響について調べた。
 表4に示す鋳造条件で125tonダイカストマシンを用いて射出タイムラグをOsec、3sec、5secとして鋳造を行った。
(表4)
 鋳造条件
射出速度(低速)   0,2m/s
射出速度(高速)        L   0m/s
鋳造圧力             60MPa
金型温度(固定〉        250℃
金型温度(可動)            250℃
溶湯温度(AC4CH)          650℃
スリーブ充填率            25%
 図12にスリーブ充填率25%の場合における射出タイムラグと微細球状組織の関係を示す。
 図13に、それぞれの射出タイムラグにおける球状結晶の粒径を測定し、分布を求めた結果を示す。
 この分布状況より、通常の10~30μmの球状結晶だけでなく、通常発生しない3μm程度の微細な球状結晶が多く発生していることがわかった。
 スリーブ内の溶湯温度の計測結果から液相線温度前後における核生成時の冷却速度は20℃/secで、従来の半凝固スラリー生成時の冷却速度0,2~2℃/secよりも早いことがわかる.従来のレオキャストにおいて、今回得られたような3μm程度の微細な球状結晶の発生に関する報告はない.
 ショットタイムラグが長くなるに従い、0秒のときに初晶アルミの間を埋めていた微細球状組織は減少し、5秒になると通常見られる共晶組織が10~30μ程度の初晶の間に観察される。この微細球状組織がスリーブに溶湯を注ぎ、射出、成形までの問にどのような履歴を経て生成されたかについては、まだ、明確なところは判らない。ただ、従来の半凝固メタルスラリー生成と射出・凝固までに要する時聞と比べものならないほど速く、容器注湯後の溶湯の冷却速度は20℃/sである。そのために、融点直上直下の通過速度も速い。このことが、従来確認されていないほどの結晶核の発生を促し、またその結晶核の消滅・減少を大きく抑えて、射出・凝固させることができた。その結果としてで、後微細球状組織が認められることが一つ推察される。
 一方、タイムラグの延長とともに、すなわち5秒を超えると存在していた多数の結晶核は消滅し、射出成形直前までの間にスリーブ内の球状結晶が成長したものと考えられる。このために微細な球状組織が生成されなかったと考えられる。
 本発明は、電気・電子、自動車、燃料電池その他の薄肉部品が必要とされる各種分野において広く利用することが可能である。
  従来のスラリー生成設備をもたないで、スリーブ内の溶湯温度を最適制御することで スリーブ内で核発生と微細球状結晶の生成を促進することが可能となり、安価で、迅速かつ簡便に微細な半凝固スラリーが生成できる。
 スリーブ法のアルミ半凝固鋳造品(AC4CH)は亜鉛鋳造品(ZDC2)よりも 面粗さ精度 (転写性)と寸法精度が良好の結果が得られ、材料置換が可能となり、今後、自動車部品の軽量化や精密部品などの分野に関しても展開が期待できる。

Claims (23)

  1. 粒径が30μm以下である金属半凝固体をスリーブ内で形成し、次いで該金属半凝固体を型内へ射出することを特徴とするダイカスト方法。
  2. 粒径が10μm以上30μm以下である請求項1記載のダイカスト方法。
  3. 湯流れ途中に0.5mm以下の肉厚部となる部分が前記型内に存在する請求項1記載のダイカスト方法。
  4. 粒径が30μm未満の組織を有するダイカスト品。
  5. アズカストの状態で0.5mm以下の肉厚部を有するダイカスト品。
  6. 前記ダイカスト品は共晶系合金からなる請求項4又は5記載のダイカスト品。
  7. 前記ダイカスト品はアルミニウム合金からなる請求項3ないし6のいずれか1項記載のダイカスト品。
  8. スリーブにおける溶湯の充填率、注湯温度、スリーブ寸法、スリーブ温度及び冷却速度を適宜選択することにより粒径が30μm以下である金属半凝固体をスリーブ内で形成する請求項1記載のダイカスト方法。
  9. 充填率が30%以下になるようにスリーブ内に注湯することを特徴とする請求項8記載のダイカスト方法。
  10. 充填率が20%以下になるようにスリーブ内に注湯することを特徴とする請求項8又は9記載のダイカスト方法。
  11. 注湯温度を、融点より0~100℃高い温度とする請求項8ないし10のいずれか1項記載のダイカスト方法。
  12. 注湯温度を、融点より0~50℃高い温度とする請求項8ないし11のいずれか1項記載のダイカスト方法。
  13. スリーブの厚みを0.6~0.8Dとする請求項8ないし12のいずれか1項記載のダイカスト方法。
  14. スリーブの材質をSKD61より大きな熱伝導率を有する材質とする請求項8ないし13のいずれか1項記載のダイカスト方法。
  15. スリーブの材質をSC46又は銅合金とする請求項8ないし13のいずれか1項記載のダイカスト方法。
  16. スリーブの温度を100~200℃とする請求項9ないし15のいずれか1項記載のダイカスト方法。
  17. 注湯から加圧開始までの時間は5秒以内である請求項8ないし16のいずれか1項記載のダイカスト方法。
  18. 注湯から加圧開始までの時間は3秒以内である請求項8ないし17のいずれか1項記載のダイカスト方法。
  19. スリーブへの注湯後、直ちに加圧をすることを特徴とする請求項8ないし18のいずれか1項記載のダイカスト方法。
  20. 射出時における固相率を50%以上とする請求項8ないし18のいずれか1項記載のダイカスト方法。
  21. 液相線を通過する際における冷却速度は20℃/s以上である請求項8ないし19のいずれか1項記載のダイカスト方法。
  22. 内部ガスの含有量が常温かつ常圧の環境下において1cc/100g以下であることを特徴とする請求項4ないし7のいずれか1項4記載のダイカスト品。
  23. 固定プラテンと、
    可動プラテンと、
    固定プラテンに取り付けられた固定型と、
    可動プラテンに取り付けられた可動型と、
    該固定プラテンの内部を貫通し、一端部が固定型と可動型で形成される製品空間に連通するスリーブと、
    該スリーブの他端に挿入されている加圧手段と、
    を有し、
    該スリーブの天井側は、該スリーブの直径よりも長い範囲にわたり開口しているダイカスト装置。
PCT/JP2012/073851 2011-09-15 2012-09-18 ダイカスト方法及びダイカスト装置ならびにダイカスト品 WO2013039247A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/345,531 US9038705B2 (en) 2011-09-15 2012-09-18 Die-casting method, die-casting device, and die-cast article
JP2013533752A JP5825583B2 (ja) 2011-09-15 2012-09-18 ダイカスト品及びダイカスト方法
US14/684,860 US10384262B2 (en) 2011-09-15 2015-04-13 Die-casting apparatus, die-casting method, and diecast article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202116 2011-09-15
JP2011-202116 2011-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/345,531 A-371-Of-International US9038705B2 (en) 2011-09-15 2012-09-18 Die-casting method, die-casting device, and die-cast article
US14/684,860 Division US10384262B2 (en) 2011-09-15 2015-04-13 Die-casting apparatus, die-casting method, and diecast article

Publications (1)

Publication Number Publication Date
WO2013039247A1 true WO2013039247A1 (ja) 2013-03-21

Family

ID=47883462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073851 WO2013039247A1 (ja) 2011-09-15 2012-09-18 ダイカスト方法及びダイカスト装置ならびにダイカスト品

Country Status (3)

Country Link
US (2) US9038705B2 (ja)
JP (1) JP5825583B2 (ja)
WO (1) WO2013039247A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015053373A1 (ja) * 2013-10-09 2017-03-09 国立大学法人東北大学 半凝固鋳鍛造装置及び方法並びに鋳鍛造品
JP2021045795A (ja) * 2020-12-25 2021-03-25 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
US11920205B2 (en) 2016-09-04 2024-03-05 Tohoku University Spherical graphite cast iron semi-solid casting method and semi-solid cast product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591060B2 (ja) * 2016-05-31 2019-10-16 三菱電機株式会社 空気調和装置
CN113680986A (zh) * 2021-05-17 2021-11-23 苏州大学 一种金属粉末与金属熔液共混半固态压铸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190871A (ja) * 1992-09-30 1994-07-12 Husky Injection Molding Syst Ltd バンドヒータ取付け装置
JPH07316709A (ja) * 1994-05-17 1995-12-05 Honda Motor Co Ltd チクソキャスティング用共晶系合金材料
JPH08197216A (ja) * 1995-01-27 1996-08-06 Ube Ind Ltd 半溶融成形に適したアルミニウム合金鋳造素材の製造 方法
JPH11226723A (ja) * 1998-02-13 1999-08-24 Nippon Light Metal Co Ltd 過共晶Al−Si系合金ダイカスト部材及びその製造方法
JP2007152435A (ja) * 2004-05-19 2007-06-21 Ayako Kikuchi 半凝固金属スラリーの作製方法
JP2010092613A (ja) * 2008-10-03 2010-04-22 South Gate:Kk 燃料電池用セパレータ及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572683B1 (en) * 1992-01-13 1999-12-08 Honda Giken Kogyo Kabushiki Kaisha Method for casting aluminum alloy casting and aluminum alloy casting
JP3378342B2 (ja) * 1994-03-16 2003-02-17 日本軽金属株式会社 耐摩耗性に優れたアルミニウム鋳造合金及びその製造方法
IT1278069B1 (it) 1994-05-17 1997-11-17 Honda Motor Co Ltd Materiale in lega per tissofusione, procedimento per la preparazione del materiale in lega semi-fuso per tissofusione e procedimento di
JP2772765B2 (ja) * 1994-10-14 1998-07-09 本田技研工業株式会社 チクソキャスティング用鋳造材料の加熱方法
JP3430684B2 (ja) * 1994-11-02 2003-07-28 日本軽金属株式会社 高温強度,耐摩耗性及び防振性に優れたダイカスト製内燃機関部品及びその製造方法
EP0733421B1 (en) * 1995-03-22 2000-09-06 Hitachi Metals, Ltd. Die casting method
JP3764200B2 (ja) * 1996-03-19 2006-04-05 株式会社デンソー 高強度ダイカスト品の製造方法
JP2000015429A (ja) * 1998-06-29 2000-01-18 Honda Motor Co Ltd 金属成形品の製造装置
JP2000052019A (ja) * 1998-08-11 2000-02-22 Honda Motor Co Ltd 金属成形品の製造装置
JP2000334554A (ja) * 1999-05-26 2000-12-05 Toshiba Mach Co Ltd ダイカストマシン用プランジャスリーブ
US6742567B2 (en) * 2001-08-17 2004-06-01 Brunswick Corporation Apparatus for and method of producing slurry material without stirring for application in semi-solid forming
US20050000604A1 (en) * 2001-09-04 2005-01-06 Hiroshi Kawahara Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
US6880613B2 (en) * 2003-05-01 2005-04-19 Spx Corporation Semi-solid metal casting process of hypoeutectic aluminum alloys
EP1767290A4 (en) 2004-05-19 2008-01-23 Ayako Kikuchi METHOD FOR PRODUCING A HALF-RESISTANT METAL CLOSURE, MOLDING PROCESS AND SHAPED PRODUCT
JP2011147955A (ja) * 2010-01-20 2011-08-04 Honda Motor Co Ltd 半凝固金属鋳造における溶湯供給方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190871A (ja) * 1992-09-30 1994-07-12 Husky Injection Molding Syst Ltd バンドヒータ取付け装置
JPH07316709A (ja) * 1994-05-17 1995-12-05 Honda Motor Co Ltd チクソキャスティング用共晶系合金材料
JPH08197216A (ja) * 1995-01-27 1996-08-06 Ube Ind Ltd 半溶融成形に適したアルミニウム合金鋳造素材の製造 方法
JPH11226723A (ja) * 1998-02-13 1999-08-24 Nippon Light Metal Co Ltd 過共晶Al−Si系合金ダイカスト部材及びその製造方法
JP2007152435A (ja) * 2004-05-19 2007-06-21 Ayako Kikuchi 半凝固金属スラリーの作製方法
JP2010092613A (ja) * 2008-10-03 2010-04-22 South Gate:Kk 燃料電池用セパレータ及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015053373A1 (ja) * 2013-10-09 2017-03-09 国立大学法人東北大学 半凝固鋳鍛造装置及び方法並びに鋳鍛造品
US10118219B2 (en) 2013-10-09 2018-11-06 Tohoku University Semisolid casting/forging apparatus and method as well as a cast and forged product
US11920205B2 (en) 2016-09-04 2024-03-05 Tohoku University Spherical graphite cast iron semi-solid casting method and semi-solid cast product
JP2021045795A (ja) * 2020-12-25 2021-03-25 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
JP7220428B2 (ja) 2020-12-25 2023-02-10 国立大学法人東北大学 球状黒鉛鋳鉄の鋳造品の製造方法

Also Published As

Publication number Publication date
US10384262B2 (en) 2019-08-20
US9038705B2 (en) 2015-05-26
US20160250684A1 (en) 2016-09-01
JP5825583B2 (ja) 2015-12-02
JPWO2013039247A1 (ja) 2015-03-26
US20140251569A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6284048B2 (ja) 半凝固溶湯鋳鍛造法
CA2582687C (en) Near liquidus injection molding process
JP5825583B2 (ja) ダイカスト品及びダイカスト方法
CA2485828C (en) Process for injection molding semi-solid alloys
Gencalp et al. Effects of Low-Frequency Mechanical Vibration and Casting Temperatures on Microstructure of Semisolid AlSi 8 Cu 3 Fe Alloy
De Brito et al. Microstructural analysis and tensile properties of squeeze cast Al-7% Mg alloy
Zhang et al. Effect of Primary α-Al morphology in slurry on segregation during 357 semi-solid die casting
Midson Semisolid Metal Casting
Czerwinski Semisolid processing and its application to magnesium alloys
Qi et al. Effects of pouring temperature and cylinder temperature on microstructures and mechanical properties of rheomoulding AZ91D alloy
Wang et al. Prediction Model of Rheological Feeding Distance Under Applied Pressure
Czerwinski et al. The influence of primary solid content on the tensile properties of a thixomolded AZ91D magnesium alloy
JP3339333B2 (ja) 溶融金属の成形方法
JP2005089827A (ja) Al−Si共晶合金、Al合金製鋳物、鋳造用Al合金およびそれらの製造方法
Gangopadhyay Optimisation of casting parameters of squeeze cast LM-24 Al-Si alloy
Schwam et al. Optimization of Squeeze Casting for Aluminum Alloy Parts
Haga et al. Semi-solid die casting of Al-25% Si
Franke et al. THINCASTTM; Providing Strong, Lightweight Castings for Automobiles and Other Applications
JP3246319B2 (ja) 半溶融金属の成形方法
Peter et al. The Role of Liquid Phase in SSM Processes
Borisov Process for production of aluminum-alloy ingots with non-dendritic thixotropic structure.
Mirzadeh et al. Study of casting fluidity of rheocast Al-7.1 wt% Si alloy in sand molds
Pan et al. Semisolid Metal Processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831104

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013533752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14345531

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12831104

Country of ref document: EP

Kind code of ref document: A1