WO2013039178A1 - 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置 - Google Patents

位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2013039178A1
WO2013039178A1 PCT/JP2012/073527 JP2012073527W WO2013039178A1 WO 2013039178 A1 WO2013039178 A1 WO 2013039178A1 JP 2012073527 W JP2012073527 W JP 2012073527W WO 2013039178 A1 WO2013039178 A1 WO 2013039178A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation film
film
polymer
weight
dihydroxy compound
Prior art date
Application number
PCT/JP2012/073527
Other languages
English (en)
French (fr)
Inventor
田中 智彦
正志 横木
慎悟 並木
優一 平見
山本 正規
村上 奈穂
敏行 飯田
清水 享
Original Assignee
三菱化学株式会社
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, 日東電工株式会社 filed Critical 三菱化学株式会社
Priority to CN201280055690.XA priority Critical patent/CN103930807B/zh
Priority to KR1020147009911A priority patent/KR101945075B1/ko
Priority to EP12832138.7A priority patent/EP2757395B1/en
Publication of WO2013039178A1 publication Critical patent/WO2013039178A1/ja
Priority to US14/211,777 priority patent/US20140285888A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention provides a retardation film that is less likely to cause color loss and color shift even under severe conditions of temperature and humidity, and that can be manufactured by a melt film forming method, and a circularly polarized light using the retardation film.
  • the present invention relates to a plate and an image display device.
  • a retardation film that exhibits reverse wavelength dispersion that becomes smaller as the retardation becomes shorter can obtain ideal retardation characteristics at each wavelength in the visible region. Useful for prevention.
  • a retardation film having such performance polycarbonate using 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene or 9,9-bis (4-hydroxy-3-methylphenyl) fluorene as a raw material
  • a retardation film made of a resin is disclosed (for example, see Patent Document 1).
  • the polycarbonate resin described in Patent Document 1 has a high glass transition temperature, and it is difficult to form a film by a melt film forming method, and a raw film (film before stretching treatment) is formed by a solution casting method. Yes.
  • the solution casting method literally requires the use of a solvent and has a large impact on the environment.Therefore, not only is improvement required, but the residual solvent in the product retardation film acts like a plasticizer, and the temperature Due to changes in the external environment such as humidity and humidity, the optical characteristics change, which causes a problem of color loss and color shift.
  • the solvent used for solution casting is often a chlorinated solvent such as dichloromethane from the viewpoint of solubility, volatility, and nonflammability, which causes equipment corrosion when processed into a retardation film.
  • a chlorinated solvent such as dichloromethane from the viewpoint of solubility, volatility, and nonflammability, which causes equipment corrosion when processed into a retardation film.
  • other components are adversely affected when assembled in an image display device.
  • the raw film obtained from the polycarbonate resin disclosed in Patent Document 1 is very brittle, there is also a problem that it is inferior in workability such as causing breakage during stretching.
  • Films made of terpolymer polycarbonate resins made from isosorbide, biscresol fluorene, aliphatic diols, alicyclic diols, spiroglycols, etc. are used as the resins capable of melt-forming the raw film. It is disclosed (see Patent Document 2). Also, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene or 9,9-bis (4-hydroxy-3-methylphenyl) fluorene and an alicyclic diol having 4 to 20 carbon atoms or heterocycle A film made of a binary copolymer polycarbonate resin with an atom-containing cyclic dihydroxy compound is disclosed (see Patent Document 3).
  • the original film of the retardation film having the reverse wavelength dispersion characteristic used for various image display devices and mobile devices which are rapidly expanding in recent years is improved in retardation distribution and thickness unevenness, and reduced environmental load. Therefore, it is strongly desired to form by a melt film forming method that does not use a solvent.
  • the retardation film used in such a field may be used under various temperature and humidity conditions unlike a normal application, its optical characteristic change may be small due to environmental changes during use. In particular, there has been a demand for suppressing deterioration in image quality such as color loss and color shift of images during long-term use.
  • organic EL displays which are currently in the spotlight as next-generation image display devices, basically require a reflective layer inside the display, which will further improve the anti-reflection performance and severe environmental changes. There has been a strong demand for stabilization of optical properties that are not affected.
  • the present invention is a retardation film that eliminates the above-described conventional problems, that is, it is difficult to cause color loss and color shift even under severe temperature and humidity conditions, and can be manufactured by a melt film forming method.
  • An object is to provide a retardation film.
  • Another object of the present invention is to provide a circularly polarizing plate and an image display device using such a retardation film.
  • the gist of the present invention is the following [1] to [17].
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20 carbon atoms, Represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the same or different groups are arranged as each of the four substituents on each benzene ring.
  • X 1 and X 2 are each independently a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted carbon.
  • the dihydroxy compound different from the dihydroxy compound represented by the formula (1) is a dihydroxy compound having an etheric oxygen atom in at least one ⁇ -position or ⁇ -position of the hydroxy group. Retardation film.
  • the dihydroxy compound having an etheric oxygen atom in at least one ⁇ -position or ⁇ -position of the hydroxy group is at least one compound selected from compounds represented by the following formula (2) or (3) The retardation film according to [6] or [7].
  • R 5 represents a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, and p is an integer of 2 to 50.
  • a circularly polarizing plate constituted by laminating the retardation film according to any one of [1] to [14] and a polarizing plate.
  • the retardation film of the present invention has a low environmental impact, can be formed by an economical melt film forming method, and can be used for color loss and color shift even after long-term use under high temperature and high humidity conditions. Is less likely to occur and there is little degradation in image quality. Therefore, the retardation film of the present invention and the circularly polarizing plate and the image display device using the retardation film are, for example, an optical compensation film for a display for in-vehicle devices and a circularly polarizing plate 1 for preventing reflection of organic EL. / 4 ⁇ plate or the like.
  • the retardation film of the present invention comprises at least one polymer selected from the following polycarbonates and polyester carbonates, satisfies the relationship of the following formulas (A) and (B), and preferably further includes the following formulas (C) and ( D) satisfying the relationship, preferably a single layer film (one film), satisfying the relationship of the following formulas (A) and (B), more preferably the following formulas (C) and (D) Satisfy the relationship. Since the thickness of the retardation film made of a laminated film increases, the retardation film of the present invention is preferably made of a single layer film.
  • R 1 (450) and R 1 (550) represent retardation values in the film plane at wavelengths of 450 nm and 550 nm, respectively, and R 2 (450) and R 2 (550) are respectively at a temperature of 90 ° C. Represents the retardation value in the film plane at wavelengths of 450 nm and 550 nm after standing for 48 hours.
  • the retardation value in the film plane at the measurement wavelength of 550 nm of the retardation film of the present invention is usually from 100 nm to 180 nm, preferably from 120 nm to 170 nm, particularly preferably from 135 nm to 155 nm, and is described in the Examples section below. It is measured by the method.
  • R 1 (450) / R 1 (550) is preferably 0.70 or more and 0.99 or less, more preferably 0.75 or more and 0.97 or less, More preferably, it is 0.75 or more and 0.95 or less, particularly preferably 0.86 or more and 0.93 or less, and most preferably 0.88 or more and 0.91 or less.
  • R 1 (450) / R 1 (550) If the value of R 1 (450) / R 1 (550) is in the above range, the longer the wavelength, the more the phase difference is expressed, and an ideal phase difference characteristic can be obtained at each wavelength in the visible region.
  • a circularly polarizing plate or the like can be produced by laminating the retardation film of the present invention having such wavelength dependency as a 1 ⁇ 4 ⁇ plate with a polarizing plate, and has an external light antireflection function at any wavelength. It is possible to realize a circularly polarizing plate and an image display device excellent in blackness.
  • the value of R 1 (450) / R 1 (550) when the value of R 1 (450) / R 1 (550) is out of the above range, the color loss due to the wavelength becomes large, and coloring problems occur in the circularly polarizing plate and the image display device.
  • the retardation film of the present invention is formed from at least one polymer selected from polycarbonates and polyester carbonates that satisfy the optical properties as described above, and these may be used alone or may be blended in plural types. Good. Details of the polycarbonate and polyester carbonate of the present invention will be described later.
  • the retardation film of the present invention satisfies the relationship of the above formula (B), and
  • is preferably greater than 0 and 0.018 or less, and greater than 0. More preferably, it is 0.015 or less. Furthermore, it is preferably greater than 0 and 0.010 or less.
  • the retardation film of the present invention preferably satisfies the relationship of the above formula (C), and R 1 (650) / R 1 (550) is preferably larger than 1 and smaller than 1.2.
  • R 1 (650) / R 1 (550) is more preferably from 1.00 to 1.20, more preferably from 1.00 to 1.10, More preferably, it is 1.00 or more and 1.05 or less, and particularly preferably 1.00 or more and 1.035 or less.
  • a circularly polarizing plate or the like can be produced by laminating the retardation film of the present invention having such wavelength dependency as a 1 ⁇ 4 ⁇ plate with a polarizing plate, and has an external light antireflection function at any wavelength. It is possible to realize a circularly polarizing plate and an image display device excellent in blackness.
  • the relationship of the formula (A) is satisfied, if the value of R 1 (650) / R 1 (550) is out of the above range, color loss or the like may occur.
  • the retardation film of the present invention satisfies the relationship of the above formula (D), and
  • (ie, R 2 (650 ) / R 2 (550) and R 1 (650) / R 1 (550) is preferably less than 0.010, more preferably 0.008 or less, and 0.0075 or less. It is particularly preferred that
  • the retardation film of the present invention is characterized in that the original film can be formed into a melt, and its optical property change is small even when the environment changes during use. It is important to control the glass transition temperature of the polymer constituting the.
  • the glass transition temperature of the polymer used in the retardation film of the present invention needs to be 110 ° C. or higher and 180 ° C. or lower, and the lower limit thereof is preferably 120 ° C. or higher, more preferably 125 ° C. or higher, particularly preferably 130. It is optimal to use at 140 ° C or higher. If the glass transition temperature is excessively low, the heat resistance tends to deteriorate, and the optical properties may change at high temperatures or high humidity.
  • the upper limit is preferably 160 ° C. or lower, more preferably 150 ° C. or lower.
  • the film forming temperature of the original fabric and the temperature during stretching must be increased, leading to a decrease in the molecular weight of the polymer, a deterioration such as coloring, and a film defect due to gas generation. Sometimes. Furthermore, it becomes difficult to obtain a film having a uniform thickness, and spots may appear in the expression of the phase difference.
  • the method for measuring the glass transition temperature of the present invention is described in the Examples section.
  • the thickness of the retardation film of the present invention is usually preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and more preferably 60 ⁇ m or less. If the thickness of the retardation film is excessively large, more film-forming materials are required to produce a film of the same area, which may be inefficient, and the thickness of the product using the film may increase. In addition, it may be difficult to control uniformity, and may not be compatible with equipment that requires precision, thinness, and uniformity.
  • the lower limit of the thickness of the retardation film of the present invention is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. If the thickness of the retardation film is excessively thin, handling of the film becomes difficult, wrinkles may occur during production, and it may be difficult to bond with other films such as protective films or sheets.
  • the retardation film of the present invention preferably has an internal haze of 3% or less, and more preferably 1.5% or less.
  • the lower limit of the internal haze is not particularly defined, but is usually 0.2% or more.
  • the internal haze of the optical film is measured at 23 ° C. using, for example, a haze meter (“HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.). The measurement sample was prepared by using a transparent film with a pressure-sensitive adhesive that had been measured in advance, pasted on both sides of the sample film, and removing the influence of external haze. The difference in the haze value of the attached transparent film is used.
  • the retardation film of the present invention preferably has a b * value of 3 or less. If the b * value of the retardation film is too large, problems such as coloring occur.
  • the b * value of the retardation film of the present invention is more preferably 2 or less, particularly preferably 1 or less.
  • the b * value of the retardation film is measured with a light having a wavelength of 550 nm at 23 ° C. using, for example, a spectrophotometer (“DOT-3” manufactured by Murakami Color Research Laboratory Co., Ltd.).
  • the retardation film of the present invention preferably has a total light transmittance of 80% or more, and more preferably 90% or more, regardless of the thickness. If the transmittance is equal to or higher than the above lower limit, a retardation film with little coloring is obtained, and when it is bonded to a polarizing plate, it becomes a circularly polarizing plate having a high degree of polarization and transmittance, and is high when used in an image display device. Display quality can be realized.
  • the upper limit of the total light transmittance of the retardation film of the present invention is not particularly limited but is usually 99% or less.
  • the retardation film of the present invention preferably has a refractive index of 1.57 to 1.62 at the sodium d line (589 nm). If this refractive index is less than 1.57, birefringence may be too small. On the other hand, when the refractive index exceeds 1.62, the reflectance increases and the light transmittance may decrease.
  • the retardation film of the present invention preferably has a birefringence of 0.001 or more.
  • a higher birefringence is preferable. Therefore, the birefringence is more preferably 0.002 or more. If the birefringence is less than 0.001, it is necessary to increase the thickness of the film excessively, which increases the amount of film-forming material used, making it difficult to control homogeneity in terms of thickness, transparency, and phase difference. It becomes. Therefore, when the birefringence is less than 0.001, there is a possibility that it cannot be adapted to a device that requires precision, thinness, and homogeneity.
  • the upper limit of birefringence is not particularly limited, but in order to increase the birefringence, excessively lowering the stretching temperature or excessively increasing the stretching ratio may cause breakage during stretching or non-uniformity of the stretched film. Therefore, it is usually 0.007 or less.
  • the retardation film of the present invention preferably has a saturated water absorption greater than 1.0% by weight. If the saturated water absorption is larger than 1.0% by weight, the adhesiveness can be easily secured when the retardation film is bonded to another film. For example, since the retardation film is hydrophilic when bonded to a polarizing plate, the contact angle of water is low, the adhesive can be easily designed, and a high adhesion design can be achieved. When the saturated water absorption is 1.0% by weight or less, it becomes hydrophobic and the contact angle of water is high, making it difficult to design adhesiveness.
  • the retardation film of the present invention preferably has a saturated water absorption rate of more than 1.0% by weight and 2.0% by weight or less, more preferably 1.1% by weight or more and 1.5% by weight or less.
  • the retardation film of the present invention is formed of at least one polymer selected from polycarbonate and polyester carbonate satisfying the optical properties as described above (hereinafter referred to as the polymer of the present invention or the polymer of the present invention). is there).
  • the polycarbonate forming the retardation film of the present invention (hereinafter sometimes referred to as the polycarbonate of the present invention) is a polymer having a structure in which structural units derived from a dihydroxy compound are linked by a carbonate bond.
  • the polyester carbonate of the present invention is one in which a part of the carbonate bond of the polycarbonate is substituted with a dicarboxylic acid structure.
  • the polycarbonate and polyester carbonate of the present invention preferably contain a structural unit derived from a dihydroxy compound represented by the following formula (1).
  • R 1 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon group having 6 to 20 carbon atoms, Represents a cycloalkyl group or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the same or different groups are arranged as each of the four substituents on each benzene ring.
  • X 1 and X 2 are each independently a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, a substituted or unsubstituted cycloalkylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted carbon.
  • m and n are each independently an integer of 0 to 5.
  • carbon number of various groups means the total carbon number including the carbon number of the substituent, when the said group has a substituent.
  • examples of the substituent that R 1 to R 4 and X 1 and X 2 may have include an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group, and an aryl group such as a phenyl group and a naphthyl group. Can be mentioned.
  • R 1 to R 4 are each independently preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and R 1 to R 4 Of R 4 , R 1 and R 2 are preferably unsubstituted alkyl groups, or R 1 to R 4 are all hydrogen atoms.
  • R 1 to R 4 are substituents other than a hydrogen atom, it is preferably bonded to the 3rd or 5th position with respect to the bonding position of the benzene ring to the fluorene ring.
  • the unsubstituted alkyl group A methyl group or an ethyl group is preferred.
  • X 1 and X 2 are each independently preferably an alkylene group having 1 to 4 carbon atoms, more preferably an unsubstituted methylene group, an unsubstituted ethylene group, or an unsubstituted propylene group, and X 1 and X 2 Are preferably the same.
  • n and n are each independently an integer of 0 to 5, but the glass transition temperature of the polymer of the present invention can be adjusted to a temperature suitable for melt molding, and the toughness of the resulting film can be improved. Therefore, 1 or more is preferable, and 1 is particularly preferable. Further, m and n are preferably the same integer.
  • the dihydroxy compound represented by the formula (1) preferably has a symmetric structure with the symmetry axis of the fluorene ring as the symmetry axis.
  • dihydroxy compound represented by the formula (1) examples include 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9 , 9-bis (4-hydroxy-3-ethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-n-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-isopropylphenyl) Fluorene, 9,9-bis (4-hydroxy-3-n-butylphenyl) fluorene, 9,9-bis (4-hydroxy-3-sec-butylphenyl) fluorene, 9,9-bis (4-hydroxy- 3-tert-propylphenyl) fluorene, 9,9-bis (4-hydroxy-3-cyclohexylphenyl) fluorene, 9,9-bis 4-hydroxy-3-phenylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene,
  • the polymer of the present invention may contain only one type of structural unit derived from the dihydroxy compound represented by the formula (1), or may contain two or more types.
  • the polymer of the present invention is not only for facilitating melt film formation and imparting toughness to the film, but also for adjusting the retardation, heat resistance, optical properties, etc. It is preferable to comprise a structural unit derived from a dihydroxy compound (hereinafter sometimes referred to as other dihydroxy compound) different from the structural unit derived from the dihydroxy compound represented.
  • a dihydroxy compound hereinafter sometimes referred to as other dihydroxy compound
  • the other dihydroxy compound may be a compound having two hydroxyl groups, and examples thereof include compounds represented by the following formulas (5) to (7).
  • R 6 represents a substituted or unsubstituted alkylene group having 2 to 20 carbon atoms.
  • R 7 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • R 8 represents a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • dihydroxy compound represented by the above formula (5) examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, and the like. From the viewpoint of availability, ease of handling, high reactivity during polymerization, and hue of the resulting polymer, 1,3-propane Diols and 1,6-hexanediol are preferred.
  • R 7 has a substituent
  • examples of the substituent include a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
  • the alkyl group has a substituent
  • the substituent Examples thereof include alkoxy groups such as methoxy group, ethoxy group, and propoxy group, and aryl groups such as phenyl group and naphthyl group.
  • This dihydroxy compound has a ring structure, so that it becomes possible to improve the toughness and heat resistance of the molded product when the resulting polymer is molded.
  • the cycloalkylene group for R 7 is not particularly limited as long as it is a hydrocarbon group having a ring structure, and may be a bridge structure having a bridgehead carbon atom.
  • the dihydroxy compound represented by the formula (6) is a compound having a 5-membered ring structure or a 6-membered ring structure, that is, R 7 is A dihydroxy compound which is a substituted or unsubstituted cyclopentylene group or a substituted or unsubstituted cyclohexylene group is preferred.
  • the heat resistance of the polymer obtained can be made high by including a 5-membered ring structure or a 6-membered ring structure.
  • the 6-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the dihydroxy compound represented by formula (6) is preferably R 7 is various isomers represented by the following formula (8).
  • R 9 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
  • substituent include alkoxy groups such as a methoxy group, an ethoxy group, and a propoxy group, and aryl groups such as a phenyl group and a naphthyl group Is mentioned.
  • dihydroxy compound represented by the formula (6) tetramethylcyclobutanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1,3 -Cyclohexanediol, 1,4-cyclohexanediol, 2-methyl-1,4-cyclohexanediol, tricyclodecanediols, pentacyclodiols and the like.
  • the dihydroxy compound represented by the formula (7) is an alicyclic dihydroxy compound having a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms, preferably 3 to 18 carbon atoms, in R 8. is there.
  • R 8 has a substituent
  • examples of the substituent include a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms.
  • the alkyl group has a substituent
  • the substituent Examples thereof include alkoxy groups such as methoxy group, ethoxy group, and propoxy group, and aryl groups such as phenyl group and naphthyl group.
  • This dihydroxy compound has a ring structure, so that it is possible to increase the toughness and heat resistance of the molded product when the obtained polymer is molded, and in particular, the toughness when molded into a film can be increased.
  • the R 8 cycloalkylene group is not particularly limited as long as it is a hydrocarbon group having a ring structure, and may have a bridged structure having a bridgehead carbon atom.
  • the dihydroxy compound represented by the formula (7) is a compound containing a 5-membered ring structure or a 6-membered ring structure, that is, R 8 is A dihydroxy compound which is a substituted or unsubstituted cyclopentylene group or a substituted or unsubstituted cyclohexylene group is preferred.
  • the heat resistance of the polymer obtained can be made high by including a 5-membered ring structure or a 6-membered ring structure.
  • the 6-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • R 8 is various isomers represented by the formula (8).
  • examples of the dihydroxy compound represented by the formula (7) include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 3,8-bis (hydroxy).
  • these dihydroxy compounds may be obtained as a mixture of isomers for production reasons, they can be used as they are as an isomer mixture.
  • 3,8-bis (hydroxymethyl) tricyclo [5.2.1.0 2.6 ] decane, 3,9-bis (hydroxymethyl) tricyclo [5.2.1.0 2.6 ] decane, 4,8-bis (hydroxymethyl) tricyclo [5.2.1.0 2.6 ] decane and a mixture of 4,9-bis (hydroxymethyl) tricyclo [5.2.1.0 2.6 ] decane Can be used.
  • cyclohexanedimethanols are particularly preferable. From the viewpoint of easy availability and easy handling, 1,4-cyclohexanedimethanol, 1 1,3-cyclohexanedimethanol and 1,2-cyclohexanedimethanol are preferable, and 1,4-cyclohexanedimethanol is particularly preferable because it has a great effect of imparting toughness.
  • dihydroxy compounds are preferably those having a structure having an etheric oxygen atom in at least one ⁇ -position or ⁇ -position of the hydroxy group.
  • Polycarbonate and polyester carbonate having a structural unit derived from a dihydroxy compound having such a structure have high hydrophilicity and excellent adhesion when processed into a retardation film and laminated with another film or the like.
  • the ⁇ -position and ⁇ -position are based on the carbon atom to which the hydroxy group is bonded in the dihydroxy compound. It means that the position of the adjacent carbon atom is ⁇ -position, the adjacent carbon atom is ⁇ -position, and the adjacent carbon atom is ⁇ -position.
  • the carbon atom corresponding to the ⁇ -position is an etheric oxygen atom based on the carbon atom constituting the hydroxy group, and “the etheric oxygen atom is located at the ⁇ -position of the hydroxy group.
  • aliphatic dihydroxy compound corresponding to “aliphatic dihydroxy compound”.
  • dihydroxy compounds having an etheric oxygen atom in at least one ⁇ -position or ⁇ -position of the hydroxy group dihydroxy compounds having an acetal structure easily become a crosslinking point during the polymerization reaction and cause a crosslinking reaction.
  • the dihydroxy compound having an acetal structure may cause troubles in the reaction, or may cause gel breakage and cause a stretch breakage during the production of a retardation film or a film defect. Is preferably 10 mol% or less, and more preferably 5 mol% or less, based on the structural units derived from all dihydroxy compounds. It is more preferably 2 mol% or less, and most preferably 0 mol%.
  • dihydroxy compound having such a structure examples include a cyclic ether compound represented by the following formula (2) or (3).
  • dihydroxy compound represented by the above formula (2) examples include isosorbide, isomannide and isoidet having a stereoisomeric relationship. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these dihydroxy compounds, isosorbide obtained by dehydrating condensation of sorbitol produced from various starches that are abundant as resources and are readily available is easy to obtain and manufacture, optical properties, moldability From the viewpoint of
  • dihydroxy compound examples include compounds represented by the following formula (3).
  • H— (O—R 5 ) p —OH (3) (In the above formula (3), R 5 represents a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, and p is an integer of 2 to 50.)
  • dihydroxy compound represented by the formula (3) examples include diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • diethylene glycol Triethylene glycol and polyethylene glycol having a number average molecular weight of 300 to 2500, preferably a number average molecular weight of 800 to 2500 are suitable.
  • dihydroxy compounds include bisphenols.
  • 2,2-bis (4-hydroxyphenyl) propane 1,1-bis (4-hydroxyphenyl) -2 -Ethylhexane and 1,1-bis (4-hydroxyphenyl) decane are preferred, and 2,2-bis (4-hydroxyphenyl) propane is particularly preferred.
  • polyester carbonate in which a part of the carbonate bond of the polycarbonate is substituted with a dicarboxylic acid structure can also be used.
  • dicarboxylic acid compound forming the dicarboxylic acid structure include terephthalic acid, phthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 4 , 4′-diphenoxyethanedicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, And alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic
  • Aromatic dicarboxylic acids are preferred, especially from handling and easy availability, terephthalic acid, isophthalic acid are preferred, with preference terephthalic acid.
  • These dicarboxylic acid components can be used as the raw material for the polymer of the present invention as dicarboxylic acid itself, but depending on the production method, dicarboxylic acid esters such as methyl ester and phenyl ester, and dicarboxylic acids such as dicarboxylic acid halides can be used.
  • An acid derivative can also be used as a raw material.
  • the content ratio of the structural units derived from the dicarboxylic acid compound is the total of the structural units derived from the total dihydroxy structure and the total carboxylic acid compound (hereinafter sometimes referred to as the total carboxylic acid structure).
  • the total carboxylic acid structure When it is 100 mol%, it is preferably 45 mol% or less, and more preferably 40 mol% or less.
  • the content ratio of the dicarboxylic acid compound is more than 45 mol%, the polymerizability is lowered and the polymerization may not proceed to a desired molecular weight.
  • 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is used as the dihydroxy compound represented by the formula (1), and other dihydroxy compounds are used in combination.
  • Polycarbonate may be mentioned.
  • preferred other dihydroxy compounds include isosorbide.
  • a structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is contained in the total dihydroxy structure in an amount of 20 mol% to 50 mol%, particularly 30 mol% or more. What contains 48 mol% or less is preferable.
  • the content of the structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is too small, there is a possibility that desired optical properties cannot be imparted. May become too high, making melt film formation difficult, or losing desired optical properties.
  • desired optical properties cannot be imparted. May become too high, making melt film formation difficult, or losing desired optical properties.
  • those having a glass transition temperature of 120 ° C. or higher and 160 ° C. or lower, more preferably 125 ° C. or higher and 150 ° C. or lower, particularly preferably 135 ° C. or higher and 147 ° C. or lower are preferable. If the glass transition temperature is too high, melt film formation may be difficult, and if it is too low, the optical properties of the retardation film may change due to environmental changes.
  • Isosorbide has a low photoelastic coefficient, easily develops a phase difference, and not only can impart heat resistance, but is also useful as a carbon neutral dihydroxy compound made from plants as other dihydroxy compounds used in the present invention. More preferably, other dihydroxy compounds different from isosorbide are used in combination to control the glass transition temperature, control the optical properties, and improve the workability of the film.
  • the content of structural units derived from other dihydroxy compounds different from isosorbide in the polymer of the present invention can be appropriately determined according to the required performance, but if it is too much, Since there is a possibility of impairing the optical properties, when using other dihydroxy compounds other than isosorbide having a molecular weight of 200 or less, it is preferably 30 mol% or less in the total dihydroxy structure, and 20 mol% or less. More preferably. Moreover, when using together that whose molecular weight of other dihydroxy compounds other than isosorbide exceeds 200, it is preferable that it is 10 mol% or less in all the dihydroxy structures, and it is more preferable that it is 5 mol% or less.
  • polyethylene glycol having a number average molecular weight of 800 or more when used in combination, it is preferably 3 mol% or less, more preferably 2 mol% or less, and particularly preferably 1 mol% or less in the total dihydroxy structure.
  • dihydroxy compounds other than isosorbide can be appropriately selected from the above-mentioned dihydroxy compounds.
  • 1,4-cyclohexanedimethanol and bisphenol A are preferable from the viewpoint of the balance between heat resistance and processability.
  • 1,6-hexanediol, diethylene glycol, triethylene glycol, and polyethylene glycol are preferable from the viewpoint of suppressing changes in optical properties of the retardation film due to changes in properties and environment, and among these, polyethylene glycol is preferable, and number average molecular weight is particularly preferable. Is preferably 800 to 2500 polyethylene glycol.
  • the desired optical properties may not be imparted.
  • the content of the structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is too small or too large, the desired optical properties may not be imparted.
  • the content of the structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is too small, the content of bisphenol A is relatively increased, leading to an increase in the photoelastic coefficient.
  • the optical characteristics of the retardation film may change due to environmental changes. Among them, those having a glass transition temperature of 120 ° C. or higher and 160 ° C. or lower, 130 ° C. or higher and 155 ° C. or lower, and particularly 145 ° C. or higher and 150 ° C. or lower are preferable. If the glass transition temperature is too high, melt film formation may be difficult, and if it is too low, the optical properties of the retardation film may change due to environmental changes.
  • Bisphenol A is inexpensive and easy to handle and can impart heat resistance, so it is useful as another dihydroxy compound used in the present invention.
  • bisphenol A is used in combination with another dihydroxy compound different from bisphenol A, and has a glass transition temperature. Control, control of optical characteristics, and improvement of film processability can also be achieved.
  • the content of structural units derived from other dihydroxy compounds different from bisphenol A can be determined as appropriate according to the required performance, but if it is too much, the heat resistance and optical properties inherently possessed may be impaired. Therefore, when using other dihydroxy compounds other than bisphenol A having a molecular weight of 200 or less, it is preferably 30 mol% or less, more preferably 20 mol% or less in the total dihydroxy structure. .
  • dihydroxy compounds other than bisphenol A can be appropriately selected from the above-mentioned dihydroxy compounds.
  • 1,4-cyclohexanedimethanol and isosorbide are preferable from the viewpoint of the balance between heat resistance and processability.
  • 1,6-hexanediol, diethylene glycol, triethylene glycol, and polyethylene glycol are preferable from the viewpoint of suppressing changes in optical properties of the retardation film due to changes in properties and environment, and among these, polyethylene glycol is preferable, and number average molecular weight is particularly preferable. Is preferably 800 to 2500 polyethylene glycol.
  • the polymer of the present invention preferably, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is used as the dihydroxy compound represented by the formula (1), and terephthalic acid is used as the dicarboxylic acid compound.
  • the terephthalic acid and isophthalic acid components can be used as the raw material of the polymer as the dicarboxylic acid itself.
  • diesters such as dimethyl terephthalate and dimethyl isophthalate are used for ease of reaction. It is preferable.
  • the structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is preferably 60 mol% or more and 90 mol% when the total of all dihydroxy structures and all dicarboxylic acid structures is 100 mol%. It is contained below, more preferably 65 mol% or more and 80 mol% or less, and particularly preferably 68 mol% or more and 77 mol% or less. If the content of the structural unit derived from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is too small or too large, the desired optical properties may not be imparted.
  • the preferred glass transition temperature of the polyester carbonate having this structure is 120 ° C. or higher and 170 ° C.
  • dihydroxy compounds different from 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene can be used in combination to control the glass transition temperature, control the optical properties, and improve the workability of the film.
  • the content of the structural unit derived from the dihydroxy compound is preferably 20 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less in the total dihydroxy structure.
  • dicarboxylic acids other than aromatic dicarboxylic acids can be used in combination to control the glass transition temperature, control optical properties, and improve the workability of the film, but structures derived from dicarboxylic acids other than aromatic dicarboxylic acids If the content of the unit is too large, the heat resistance and optical properties originally possessed may be impaired, so when using a dicarboxylic acid other than an aromatic dicarboxylic acid, the content of the structural unit derived from these Is preferably 20 mol% or less, more preferably 10 mol% or less, and particularly preferably 5 mol% or less in the total dicarboxylic acid structure.
  • the retardation film of the present invention is characterized in that the raw film can be formed into a melt, and its optical property change is small even when the environment changes during use. In addition, it is important to control the molecular structure and composition of the polymer constituting the retardation film and the glass transition temperature corresponding to it.
  • the composition of the polymer of the present invention can be determined from the signal intensity based on each monomer unit by 1 H-NMR after dissolving in a deuterated solvent such as deuterated chloroform. By doing so, each monomer component can be measured and determined using a technique such as high performance liquid chromatography.
  • the polycarbonate of the present invention can be produced by a generally used polymerization method, and the polymerization method may be any of an interfacial polymerization method using phosgene or a melt polymerization method in which a dihydroxy compound and a carbonic acid diester are transesterified.
  • the interfacial polymerization method not only requires the use of toxic phosgene and chlorine-containing solvents such as methylene chloride and chlorobenzene, which cause environmental destruction, but also contains a small amount of chlorine-containing solvent in the polycarbonate.
  • Chlorine-containing components that volatilize during film forming and stretching operations can cause corrosion and damage to the film forming device and stretching device, and adversely affect other components even after being assembled as a phase difference plate Therefore, the melt polymerization method in which a dihydroxy compound and a carbonic acid diester are reacted without using a solvent in the presence of a polymerization catalyst is preferred. .
  • the polyester carbonate of the present invention can also be produced by a generally used polymerization method.
  • Any method of melt polymerization in which ester and carbonic acid diester are transesterified without using a solvent may be used, but for the same reason as described above, a dihydroxy compound and dicarboxylic acid or dicarboxylic acid ester and carbonic acid diester are present in the presence of a polymerization catalyst.
  • the melt polymerization method is preferably used.
  • Examples of the carbonic acid diester used in this melt polymerization method include those represented by the following formula (10).
  • a 1 and A 2 are each independently a substituted or unsubstituted aliphatic group having 1 to 18 carbon atoms, or a substituted or unsubstituted C 6 to C 18 carbon atom. It is an aromatic group.
  • Examples of the carbonic acid diester represented by the formula (10) are represented by diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carnate, bis (biphenyl) carbonate, and the like.
  • Examples include dialkyl carbonates represented by diaryl carbonates, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Of these, diaryl carbonates are preferably used, and diphenyl carbonate is particularly preferably used.
  • These carbonic acid diesters may be used alone or in combination of two or more.
  • the carbonic acid diester is preferably used in a molar ratio of 0.90 to 1.10, more preferably 0.96 to 1.05, particularly preferably based on all dihydroxy compounds used in the reaction. Is used in a molar ratio of 0.98 to 1.03.
  • polyester carbonate it is preferably used in a molar ratio of 0.90 to 1.10 with respect to the number of moles of dihydroxy compound obtained by subtracting the number of moles of all dicarboxylic acids from the number of moles of all dihydroxy compounds. More preferably, it is used in a molar ratio of 0.96 to 1.05, particularly preferably 0.98 to 1.03.
  • an alkali metal compound and / or an alkaline earth metal compound is used as a polymerization catalyst (transesterification catalyst) in melt polymerization.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, or an amine compound can be used in combination with an alkali metal compound and / or an alkaline earth metal compound. It is particularly preferred to use only metal compounds and / or alkaline earth metal compounds.
  • alkali metal compound used as the polymerization catalyst examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, potassium carbonate.
  • alkaline earth metal compound examples include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, Examples include magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate, etc. preferable.
  • alkali metal and “alkaline earth metal” are referred to as “Group 1 element” and “Group 2 element” in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005), respectively. Used synonymously with
  • alkali metal compounds and / or alkaline earth metal compounds may be used alone or in combination of two or more.
  • basic boron compounds used in combination with alkali metal compounds and / or alkaline earth metal compounds include tetramethyl boron, tetraethyl boron, tetrapropyl boron, tetrabutyl boron, trimethylethyl boron, trimethylbenzyl boron, trimethyl Sodium salt such as phenyl boron, triethylmethyl boron, triethylbenzyl boron, triethylphenyl boron, tributylbenzyl boron, tributylphenyl boron, tetraphenyl boron, benzyltriphenyl boron, methyltriphenyl boron, butyltriphenyl boron, potassium salt, lithium Examples thereof include salts, calcium salts, barium salts, magnesium salts, and strontium salts.
  • Examples of the basic phosphorus compound include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.
  • Examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydride Kishido, butyl triphenyl ammonium hydroxide, and the like.
  • amine compounds include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2 -Dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline and the like.
  • the amount of the polymerization catalyst is usually within a range of 0.1 ⁇ mol to 100 ⁇ mol as a metal conversion amount with respect to 1 mol of all dihydroxy compounds used in the reaction. And preferably in the range of 0.5 ⁇ mol to 50 ⁇ mol, and more preferably in the range of 1 ⁇ mol to 25 ⁇ mol. If the amount of the polymerization catalyst used is too small, the polymerization activity required to produce a polymer having a desired molecular weight cannot be obtained.
  • transesterification catalysts such as a titanium compound, a tin compound, a germanium compound, an antimony compound, a zirconium compound, a lead compound, an osmium compound, are used together with or without the above basic compound. Can also be used.
  • the amount of these transesterification catalysts used is usually in the range of 10 ⁇ mol to 1 mmol, preferably in the range of 20 ⁇ mol to 800 ⁇ mol, particularly preferably in terms of metal relative to 1 mol of all dihydroxy compounds used in the reaction. Is in the range of 50 ⁇ mol to 500 ⁇ mol.
  • the dihydroxy compound represented by the formula (1) may be supplied as a solid or heated and supplied in a molten state.
  • the melting point of the dihydroxy compound represented by 1) is higher than 150 ° C., there is a possibility of coloring or the like when melted alone. Therefore, the melting point is higher than that of the diester carbonate and the dihydroxy compound represented by the formula (1). It is preferable to supply it by dissolving in other dihydroxy compounds having a low molecular weight.
  • other dihydroxy compounds and dicarboxylic acid compounds may be supplied as a solid, heated and supplied in a molten state, or supplied as an aqueous solution if soluble in water. Also good.
  • a dihydroxy compound and, if necessary, a dicarboxylic acid compound are reacted with a carbonic acid diester in the presence of a polymerization catalyst.
  • the polymerization is usually carried out in a multistage process having two or more stages, and the polymerization reactor may be carried out in two or more stages by changing the conditions by one, or using two or more reactors, respectively.
  • two or more, preferably three or more, more preferably three to five, and particularly preferably four reactions may be performed.
  • the polymerization reaction may be a batch type, a continuous type, or a combination of a batch type and a continuous type, but a continuous type is preferred from the viewpoint of production efficiency and quality stability.
  • the polymerization catalyst can be added to the raw material preparation tank, the raw material storage tank, or can be added directly to the polymerization tank. From the viewpoint of supply stability and polymerization control, the polymerization catalyst is supplied to the polymerization tank. It is preferable that a catalyst supply line is installed in the middle of the raw material line before being supplied and supplied as an aqueous solution or a phenol solution. If the temperature of the polymerization reaction is too low, it may cause a decrease in productivity and an increase in the thermal history of the product, and if it is too high, it may not only cause the vaporization of the monomer, but also promote the decomposition and coloring of the polymer of the present invention. There is.
  • the melt polymerization reaction for obtaining the polymer of the present invention, it is important to control the balance between temperature and pressure in the reaction system. If either one of the temperature and the pressure is changed too quickly, unreacted monomers will be distilled out of the reaction system, and the molar ratio of the dihydroxy compound and the carbonic acid diester may change, and the desired polymer may not be obtained.
  • the first stage reaction is carried out at a temperature of 130 ° C. to 250 ° C., preferably 140 ° C. to 240 ° C., more preferably 150 ° C. to 230 ° C. as the maximum internal temperature of the polymerization reactor.
  • the maximum internal temperature is 210 ° C. to 270 ° C., preferably 220 ° C. to 250 ° C., usually 0.1 to 10 hours, preferably 0.5 to 6 hours, particularly preferably 5 kPa or less, preferably 3 kPa. For 1 to 3 hours.
  • the maximum internal temperature in all reaction stages is 270 ° C. or less, particularly 260 ° C. or less. Is preferred.
  • a horizontal reactor with excellent plug flow and interface renewability at the final stage of polymerization it is necessary to use a horizontal reactor with excellent plug flow and interface renewability at the final stage of polymerization. preferable.
  • the polymer of the present invention is usually cooled and solidified after polycondensation as described above, and pelletized with a rotary cutter or the like.
  • the method of pelletization is not limited, but it is extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of a strand, and pelletized, or from the final polymerization reactor in a molten state, uniaxial or biaxial extrusion.
  • the resin is supplied to the machine, melt-extruded, cooled and solidified into pellets, or extracted from the final polymerization reactor in a molten state, cooled and solidified in the form of strands, once pelletized, and then uniaxially again
  • a method may be mentioned in which resin is supplied to a biaxial extruder, melt-extruded, cooled and solidified, and pelletized.
  • the monohydroxy compound is removed using an extruder, and in particular, the resin is fed from the final polymerization reactor to a uniaxial or biaxial extruder having one or more vent ports in a molten state, and the vent ports
  • a method is preferably used in which the mixture is melt-extruded while removing the monohydroxy compound under reduced pressure and then cooled and solidified to form pellets.
  • the polymer of the present invention is produced by the melt polymerization method using carbonic acid diester as a raw material, and completely uses toxic phosgene and a chlorine-containing solvent that causes environmental destruction and equipment corrosion / damage.
  • a monohydroxy compound such as phenol is by-produced in the polymerization reaction, so that it remains in the polymer of the present invention, volatilizes during film formation or stretching, and causes odor. This may cause a film defect.
  • the monohydroxy compound remaining in the film after the polymer of the present invention is processed into a retardation film may change the optical properties of the retardation film due to environmental changes.
  • the upper limit of the concentration of the monohydroxy compound contained in the polymer is usually 0.3% by weight, preferably 0.2% by weight, particularly preferably 0.15% by weight.
  • the lower limit is better to solve the above problem, but it is difficult to make the monohydroxy compound remaining in the polymer zero by the melt polymerization method, and excessive labor is required for removal. Since it is necessary, it is usually 0.001% by weight, preferably 0.005% by weight, more preferably 0.01% by weight.
  • the polymer is devolatilized with an extruder as described above, and the pressure in the final polymerization tank is 3 kPa or less, preferably 2 kPa or less.
  • the pressure in the final polymerization tank is 3 kPa or less, preferably 2 kPa or less.
  • the dihydroxy compound represented by the formula (1) is used as the raw material for the polymer of the present invention, the equilibrium constant is large, and if the pressure is lowered too much, the molecular weight increases rapidly. Not only is it difficult to obtain a uniform product, but monohydroxy compounds that remain in equilibrium are proportional to the product of the polymer end group concentration. Thus, it is preferable to manufacture with a balanced end group.
  • the hydroxyl group terminal concentration is preferably 30 ⁇ eq / g or less, particularly preferably 20 ⁇ eq / g or less.
  • the hydroxyl terminal concentration can be quantified by 1 H-NMR or the like.
  • the molecular weight of the polymer of the present invention can be represented by a reduced viscosity.
  • the reduced viscosity of the polymer of the present invention was determined by using methylene chloride as a solvent and precisely adjusting the polymer concentration to 0.6 g / dL at a temperature of 20.0, as described in the Examples section below. Measured with an Ubbelohde viscometer at +/- 0.1 ° C.
  • macromolecule of this invention Preferably it is 0.30 dL / g or more, More preferably, it is 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is preferably 1.20 dL / g or less, more preferably 0.60 dL / g or less, and still more preferably 0.50 dL / g or less.
  • the reduced viscosity of the polymer of the present invention is smaller than the above lower limit, there may be a problem that the mechanical strength of the obtained retardation film becomes small.
  • the reduced viscosity is larger than the above upper limit value, the fluidity at the time of forming into a film is lowered, resulting in a problem that productivity is lowered, or it is difficult to remove foreign matters in the polymer by filtration. Therefore, there is a possibility that the quality of the film is deteriorated due to the difficulty in reducing foreign matter, the presence of bubbles in the film formation, and the occurrence of thickness spots.
  • the polymer of the present invention has a melt viscosity at a temperature of 240 ° C. and a shear rate of 91.2 sec ⁇ 1 , preferably 500 Pa ⁇ sec or more and 5000 Pa ⁇ sec or less, more preferably 1000 Pa ⁇ sec or more and 4000 Pa ⁇ sec or less, particularly Preferably, it is 1500 Pa ⁇ sec or more and 3000 Pa ⁇ sec or less.
  • melt viscosity of the polymer of the present invention is smaller than the above lower limit, there may be a problem that the mechanical strength of the obtained retardation film becomes small.
  • melt viscosity is larger than the above upper limit value, the fluidity at the time of forming into a film is lowered, resulting in a problem that productivity is lowered, or it is difficult to remove foreign matters in the polymer by filtration. Therefore, there is a possibility that the quality of the film is deteriorated due to the difficulty in reducing foreign matter, the presence of bubbles in the film formation, and the occurrence of thickness spots.
  • the polymer of the present invention has a photoelastic coefficient of 45 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less measured by a method described later on a sheet obtained by press molding by the method described in the Examples section below. It is preferable that it is 35 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less. If the photoelastic coefficient is too large, the retardation film obtained by molding this polymer is bonded to a circularly polarizing plate, and when this polarizing plate is further mounted on an image display device, the stress at the time of bonding In addition, a partial stress is applied to the retardation film due to the viewing environment or the heat of the backlight, causing a nonuniform retardation change, resulting in a problem of significant deterioration in image quality.
  • the photoelastic coefficient of the polymer of the present invention is usually ⁇ 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more, preferably 0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more, from the viewpoint of ease of production.
  • One or more other polymers can be blended with the polycarbonate or polyester carbonate constituting the polymer of the present invention in order to impart film formability, stretchability and flexibility.
  • Polymers to be blended include ⁇ -olefins such as ethylene and propylene, butadiene, isoprene, polymers having an aliphatic hydrocarbon structure composed of hydrogenated products thereof, styrene, ⁇ -methylstyrene, and other aromatics.
  • copolymer examples include polycarbonates other than the polymer of the present invention, polyester carbonate, polyester, polyamide, polyphenylene ether, and polyimide.
  • the glass transition temperature of the polymer of the present invention is 140 ° C. or higher
  • blending with a polymer having a glass transition temperature of 100 ° C. or lower improves the film formability, stretchability, and flexibility while improving the film environment.
  • the effect of suppressing changes in the optical properties of the retardation film due to changes is great.
  • polystyrene, polycarbonate other than the polymer of the present invention, polyester carbonate, and polyester are preferable.
  • polyesters polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, which have a large effect on film formability, stretchability, and flexibility, are used.
  • a copolymerized polyester is preferred.
  • the ratio of blending polymers having other structures is not particularly limited. However, if the addition amount is too large, the optical performance of the polymer of the present invention such as transparency and wavelength dispersibility may be deteriorated, or the environment may change. Since the optical properties of the retardation film may change, it is preferably 10% by weight or less in the total polymer, more preferably 5% by weight or less, and particularly preferably 3% by weight or less.
  • the above components are mixed simultaneously or in an arbitrary order by a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder.
  • a mixer such as a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, or extruder.
  • kneading with an extruder, particularly a twin screw extruder is preferable from the viewpoint of improving dispersibility.
  • a compound having a reactive functional group such as an epoxy compound, an isocyanate compound, or a carbodiimide compound is added to the polymer of the present invention in order to suppress a change in optical properties of the retardation film due to an environmental change. It is also effective. If the amount of these compounds added is too large, gelation will be caused, causing defects in the retardation film, and optical characteristics will be deteriorated.
  • the amount is 0.01 to 5 parts by weight, preferably 0.05 to 4 parts by weight, and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the polymer.
  • the above-described compound components may be added simultaneously or in any order in a tumbler, V-type blender, nauter mixer, Banbury mixer, kneading roll, extruder.
  • a method of mixing with the polymer of the present invention by a mixer such as the above can be mentioned.
  • kneading with an extruder, particularly a twin screw extruder is preferable from the viewpoint of improving dispersibility.
  • the carbodiimide compound used in the present invention is preferably a carbodiimide compound (including a polycarbodiimide compound) having one or more carbodiimide groups in the molecule.
  • a carbodiimide compound including a polycarbodiimide compound having one or more carbodiimide groups in the molecule.
  • Those synthesized by a generally well-known method can be used.
  • an organophosphorus compound or organometallic compound is used as a catalyst, and various polyisocyanates synthesized by subjecting them to a decarboxylation condensation reaction in a solvent-free or inert solvent at a temperature of about 70 ° C. or higher are used. be able to.
  • monocarbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, and the like.
  • dicyclohexylcarbodiimide or diisopropylcarbodiimide is preferred from the viewpoint of easy industrial availability.
  • polycarbodiimide compound contained in the carbodiimide compound those produced by various methods can be used. Basically, conventional polycarbodiimide production methods (for example, US Pat. No. 2,941,956) , No. 47-33279, J. Org. Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 8 No. 4, p 619-621). Can do.
  • organic diisocyanate that is a synthetic raw material in the production of the polycarbodiimide compound
  • aromatic diisocyanates examples include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof.
  • the content of the carbodiimide compound of the present invention is 0.01 to 5 parts by weight, preferably 0.05 to 4 parts by weight, based on 100 parts by weight of the polymer of the present invention.
  • the amount is preferably 0.1 to 3 parts by weight.
  • the content of the carbodiimide compound is less than 0.01 parts by weight, the optical characteristics of the retardation film obtained by stretching after forming the raw film are greatly changed due to long-term use under high temperature conditions. There is a possibility that the image quality will deteriorate due to a shift.
  • the content of the carbodiimide compound is more than 5 parts by weight, it may cause gelation, causing defects in the retardation film, causing a decrease in optical properties, and reducing transparency. .
  • a heat stabilizer can be blended in order to prevent a decrease in molecular weight or a deterioration in hue during polymerization or molding.
  • heat stabilizers examples include generally known hindered phenol heat stabilizers and / or phosphorus heat stabilizers.
  • hindered phenol compounds include 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4-methoxyphenol, 2-tert-butyl- 4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,5-di-tert-butylhydroquinone, n- Octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxy Benzyl) -4-methylphenyl acrylate, 2,2′-methylene-bis- (4-methyl-6-tert-butylpheno) 2,2'-methylene-bis- (6-cyclohexyl-4-methylphenol), 2,2'-ethoxyphenol
  • Examples of phosphorus compounds include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, and esters thereof.
  • triphenyl phosphite tris (nonylphenyl) phosphite, tris (2, 4-di-tert-butylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite Phyto, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaeryth
  • heat stabilizers may be used alone or in combination of two or more.
  • the heat stabilizer when a film is formed using an extruder such as a melt extrusion method, the heat stabilizer may be formed by adding the heat stabilizer or the like to the extruder, or the extruder may be used in advance.
  • the heat stabilizer or the like can be added to the resin composition, or can be added at the time of melt polymerization.
  • it can mix
  • the blending amount of these heat stabilizers is preferably 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight, based on 100 parts by weight of the polymer of the present invention. More preferred is 0.001 to 0.2 part by weight.
  • the polymer of the present invention can be blended with an antioxidant generally known for the purpose of antioxidant.
  • antioxidants examples include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-lauryl thiopropionate), glycerol-3-stearyl thiopropionate, triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], Pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1, 3,5-trimethyl-2,4 6-tris (3,5-di-tert-butyl-4-hydroxybenzyl)
  • the blending amount of these antioxidants is preferably 0.0001 to 0.5 parts by weight when the polymer of the present invention is 100 parts by weight.
  • the retardation film using the polymer of the present invention is irradiated with high energy rays such as electron beams.
  • high energy rays such as electron beams.
  • a crosslinked structure can be formed in the molecule.
  • a compound having a double bond such as divinylbenzene or allyl (meth) acrylate or a polymer thereof can be blended with the polymer of the present invention in advance so as to easily form a crosslinked structure.
  • a compound having two or more double bond groups in the molecule such as isocyanurate and diallyl monoglycidyl isocyanuric acid, can also be blended.
  • the compounding amount of the compound having two or more unsaturated double bond groups in the molecule is 0.01 to 5 parts by weight, especially 0.05 parts by weight when the polymer of the present invention is 100 parts by weight. ⁇ 3 parts by weight are preferred.
  • stretching becomes like this.
  • it is 5 kGy or more and 200 kGy or less, More preferably, it is 10 kGy or more and 100 kGy or less.
  • the irradiation intensity of the electron beam is less than 5 kGy, the effect of suppressing the fluctuation of the optical characteristics due to the long-term use of the retardation film is small, and when the irradiation intensity is more than 200 kGy, the retardation film causes breakage of the molecular chain. There is a possibility that the strength of the resin may be reduced or colored.
  • the polymer of the present invention may contain commonly used nucleating agents, flame retardants, inorganic fillers, impact modifiers, foaming agents, dyes and pigments, etc., as long as the object of the present invention is not impaired. .
  • the above-mentioned additives are produced by mixing the above-described components with the polymer of the present invention simultaneously or in any order with a mixer such as a tumbler, V-type blender, Nauta mixer, Banbury mixer, kneading roll, extruder or the like.
  • a mixer such as a tumbler, V-type blender, Nauta mixer, Banbury mixer, kneading roll, extruder or the like.
  • kneading with an extruder, particularly a twin screw extruder is preferred from the viewpoint of improving dispersibility.
  • the raw material film is obtained by the melt film-forming method using the polymer of the present invention, and the method for producing the retardation film of the present invention by adjusting the treatment conditions for the stretching treatment will be described.
  • a method for forming a raw film using the polymer of the present invention after casting after dissolving in a solvent, a casting method for removing the solvent, a method for forming a melt without using a solvent, specifically, There are melt extrusion method using T-die, calender molding method, hot press method, co-extrusion method, co-melting method, multilayer extrusion, inflation molding method, etc., although not particularly limited, the casting method remains as described above. Since there is a problem with a solvent, a melt film forming method is preferable, and a melt extrusion method using a T die is particularly preferable because of the ease of subsequent stretching treatment.
  • the forming temperature is preferably 265 ° C. or less, more preferably 260 ° C. or less, and particularly preferably 258 ° C. or less. If the molding temperature is too high, there is a possibility that defects due to the generation of foreign matters and bubbles in the obtained original film increase or the original film may be colored. However, if the molding temperature is too low, the viscosity of the polymer of the present invention becomes too high, it becomes difficult to mold the raw film, and it may be difficult to produce a uniform raw film, The lower limit of the molding temperature is usually 200 ° C. or higher, preferably 210 ° C. or higher, more preferably 220 ° C. or higher.
  • the forming temperature of the raw film is a temperature at the time of forming in the melt film forming method, and is usually a value obtained by measuring the temperature at the die outlet for extruding the molten resin.
  • the thickness of the original film is not limited, but if it is too thick, uneven thickness is likely to occur, and if it is too thin, it may cause breakage during stretching, so it is usually 50 ⁇ m to 200 ⁇ m, preferably 70 ⁇ m to 120 ⁇ m. Further, if there is unevenness in the thickness of the original film, there is a possibility of causing retardation in the retardation film. Therefore, the thickness of the portion used as the retardation film is preferably set thickness ⁇ 3 ⁇ m or less. It is more preferable that the thickness is ⁇ 2 ⁇ m or less, and it is particularly preferable that the set thickness is ⁇ 1 ⁇ m or less.
  • the raw film thus obtained can be used as the retardation film of the present invention by stretching in at least one direction.
  • various stretching methods such as free-end stretching, fixed-end stretching, free-end contraction, and fixed-end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction can be performed in various directions and dimensions such as a horizontal direction, a vertical direction, a thickness direction, and a diagonal direction, and is not particularly limited.
  • a transverse uniaxial stretching method, a longitudinal and transverse simultaneous biaxial stretching method, a longitudinal and transverse sequential biaxial stretching method, and the like can be mentioned.
  • any appropriate stretching machine such as a tenter stretching machine or a biaxial stretching machine can be used.
  • the stretching temperature can be appropriately selected depending on the purpose.
  • the stretching is performed at a temperature of Tg ⁇ 20 ° C. to Tg + 30 ° C., preferably Tg ⁇ 10 with respect to the glass transition temperature (Tg) of the raw film (that is, the polymer or resin composition that is the film forming material of the raw film) C. to Tg + 20.degree. C., more preferably Tg-5.degree. C. to Tg + 10.degree.
  • the stretching temperature is 90 ° C. to 210 ° C., more preferably 100 ° C. to 200 ° C., and particularly preferably 100 ° C. to 180 ° C.
  • the draw ratio is appropriately selected depending on the purpose, and the unstretched case is 1 time, preferably 1.1 times to 6 times, more preferably 1.5 times to 4 times, and still more preferably 1.8 times. It is 2 times or more and 3 times or less, and particularly preferably 2 times or more and 2.5 times or less. If the draw ratio is excessively large, not only may there be a break during stretching, but also the effect of suppressing fluctuations in optical properties due to long-term use under high temperature conditions may be reduced. There is a possibility that the intended optical characteristics cannot be imparted in terms of thickness.
  • a heat setting treatment may be performed in a heating furnace after stretching, or the relaxation step may be performed by controlling the width of the tenter or adjusting the roll peripheral speed.
  • the temperature of the heat setting treatment is 60 ° C. to Tg, preferably 70 ° C. to Tg, with respect to the glass transition temperature (Tg) of the original film (that is, the polymer or resin composition that is the film forming material of the original film). Perform in the range of -5 ° C. If the heat treatment temperature is too high, the orientation of the molecules obtained by stretching is disturbed, and there is a possibility that the desired retardation will be greatly reduced.
  • the stress generated in the stretched film can be removed by shrinking to 95% to 100% with respect to the width of the film widened by stretching.
  • the treatment temperature applied to the film at this time is the same as the heat setting treatment temperature.
  • the retardation film of the present invention can be produced by appropriately selecting and adjusting the processing conditions in such a stretching process.
  • chlorine may be contained in the retardation film by the method for producing a polymer of the present invention or the method for producing a raw film.
  • the interfacial method is adopted as a method for producing a polymer or the casting method is adopted as a method for producing a raw film
  • methylene chloride, chlorobenzene, etc. are converted into a polymer in the form of a residual solvent, and further to a retardation film.
  • the chlorine-containing component that volatilizes during raw film formation or stretching operation may cause corrosion or breakage of the film-forming device or stretching device. After assembling as a phase difference plate, other members may be adversely affected.
  • the residual solvent in the retardation film works like a plasticizer, it may cause a change in optical properties due to changes in the external environment such as temperature and humidity, so the chlorine-containing content contained in the retardation film of the present invention
  • the amount is preferably 50 ppm by weight or less, more preferably 20 ppm by weight or less, further preferably 10 ppm by weight or less, and particularly preferably 5 ppm by weight or less as chlorine atoms.
  • the chlorine-containing solvent is an organic solvent containing chlorine in the molecular structure.
  • the content of the chlorine-containing solvent in the retardation film of the present invention is small, but usually 50 ppm by weight or less, more preferably 20 ppm by weight or less, More preferably, it is 10 ppm by weight or less, particularly preferably 5 ppm by weight or less, and preferably 1 ppm by weight or less.
  • a method of devolatilizing the obtained polymer using an extruder examples thereof include a method of drying with hot air, hot nitrogen, etc., a method of forming a film while devolatilizing with an extruder used for forming a raw film.
  • the polymer of the present invention when the polymer of the present invention is produced by a melt polymerization method, a monohydroxy compound such as phenol as a by-product may be contained in the retardation film. Therefore, the optical characteristics may change due to changes in the external environment such as temperature and humidity. Therefore, the upper limit of the concentration of the monohydroxy compound contained in the retardation film of the present invention is usually 3000 ppm by weight, preferably 2000 ppm by weight, more preferably 1500 ppm by weight, and particularly preferably 1000 ppm by weight. The lower limit is better to solve the above problem, but it is difficult to make the monohydroxy compound remaining in the polymer obtained by the melt polymerization method zero, and excessive for removal. Since labor is required, it is usually 1 ppm by weight, preferably 10 ppm by weight, more preferably 100 ppm by weight.
  • the final polymerization tank pressure is set to 3 kPa or less, preferably 2 kPa or less when the polymer of the present invention as a raw material is produced.
  • Resin is supplied from a polymerization reactor to a uniaxial or biaxial extruder having one or more vent ports in a molten state, and the vent ports of the extruder are reduced in pressure to remove monohydroxy compounds or to form a raw film.
  • the extruder to be used has a structure having a vent port and is formed while devolatilizing under reduced pressure, or a method of processing under vacuum or hot air after stretching the raw film or stretching, etc. A combination of two or more operations is effective.
  • the circularly polarizing plate of the present invention is constituted by laminating the retardation film of the present invention on a polarizing plate.
  • a well-known various structure is employable.
  • a film prepared by adsorbing a dichroic substance such as iodine or a dichroic dye on various films by a conventionally known method, dyeing, crosslinking, stretching, and drying can be used.
  • the image display device of the present invention uses such a circularly polarizing plate of the present invention, and makes use of the feature that there is no problem of deterioration in image quality even in long-term use under an environment where temperature conditions and humidity conditions are severe.
  • it is used in various liquid crystal display devices, mobile devices and the like, and in particular, it is preferably used in an organic EL display which has recently attracted attention as a next-generation image display device.
  • Photoelastic coefficient ⁇ Sample preparation> A polycarbonate, polyester carbonate, and polycarbonate resin composition sample 4.0 g vacuum-dried at 80 ° C. for 5 hours using a spacer having a width of 8 cm, a length of 8 cm, and a thickness of 0.5 mm is subjected to a hot press temperature of 200. After pressurizing at 250 ° C. for 1 minute under conditions of preheating 1 to 3 minutes and a pressure of 20 MPa, the spacers were taken out, and cooled by a water tube cooling press at a pressure of 20 MPa for 3 minutes to produce a sheet.
  • a sample was cut out from this sheet to a width of 5 mm and a length of 20 mm.
  • ⁇ Measurement> Measured using a device that combines a birefringence measuring device composed of a He-Ne laser, a polarizer, a compensation plate, an analyzer, and a photodetector and a vibration type viscoelasticity measuring device ("DVE-3" manufactured by Rheology). .
  • DVE-3 vibration type viscoelasticity measuring device manufactured by Rheology
  • the emitted laser light is passed through the polarizer, sample, compensator, and analyzer in this order, picked up by a photodetector (photodiode), and passed through a lock-in amplifier with respect to the amplitude and distortion of the waveform of angular frequency ⁇ or 2 ⁇ .
  • the phase difference was determined, and the strain optical coefficient O ′ was determined.
  • the directions of the polarizer and the analyzer were orthogonal to each other, and each was adjusted so as to form an angle of ⁇ / 4 with respect to the extending direction of the sample.
  • the photoelastic coefficient C was obtained from the following equation using the storage elastic modulus E ′ and the strain optical coefficient O ′.
  • C O '/ E'
  • the glass transition temperature of the polymer of the present invention was measured using a differential scanning calorimeter (DSC220, manufactured by SII Nanotechnology Co., Ltd.) about 10 mg of a retardation film at 10 ° C./min. Measured by heating at a rate of temperature increase, and in accordance with JIS-K7121 (1987), the slope of the curve of the stepwise change part of the glass transition and the straight line obtained by extending the low-temperature base line to the high-temperature side is maximized.
  • the extrapolated glass transition start temperature which is the temperature of the intersection with the tangent drawn at such a point, was determined, and was used as the glass transition temperature.
  • Phenol content in polymer After approximately 1 g of polymer sample was precisely weighed and dissolved in 5 mL of methylene chloride to make a solution, acetone was added so that the total amount was 25 mL, and reprecipitation was performed. . The solution was filtered through a 0.2 ⁇ m disk filter and quantified by liquid chromatography. This measured value was defined as the phenol content of the retardation film.
  • the retardation R 1 (450), retardation R 1 (550) and retardation R 1 (650) are measured for the retardation film after the stretching step, and the retardation film is measured at 90 ° C. for 48 hours.
  • the phase difference R 2 (450), the phase difference R 2 (550), and the phase difference R 2 (650) after being held were measured.
  • the organic EL panel used for evaluation was used after peeling off the antireflection film bonded to the surface in advance.
  • the evaluation method was performed as shown below.
  • the prepared panel was stored in a constant temperature oven at 90 ° C. for 48 hours (heating test), and then visually confirmed for screen unevenness and color tone before and after the heat treatment.
  • Unevenness could not be confirmed on the screen by visual observation, and a sharp black color was obtained.
  • Unevenness could not be confirmed on the screen by visual observation, but the black sharpness was reduced.
  • X Unevenness was confirmed on the screen by visual observation, and the black sharpness was reduced.
  • Glass transition temperature (Tg) The glass transition temperature of the raw film and the retardation film was measured by the same method as the glass transition temperature of the polymer described above.
  • Isosorbide hereinafter may be abbreviated as “ISB”
  • BHEPF 9,9- (4- (2-hydroxyethoxy) phenyl) fluorene
  • the pressure in the reaction vessel is set to 6.67 kPa, and the heat medium temperature of the reaction vessel is increased to 230 ° C. in 15 minutes.
  • the generated phenol was extracted out of the reaction vessel. Since the stirring torque of the stirrer increased, the temperature was raised to 250 ° C. in 8 minutes, and the pressure in the reaction vessel was reduced to 200 Pa or less in order to remove the generated phenol.
  • DEG diethylene glycol
  • the internal temperature was maintained at 220 ° C.
  • the generated phenol was extracted out of the reaction vessel.
  • the second step after reaching 13.3 kPa, the internal temperature was increased to 240 ° C. over 15 minutes.
  • the pressure was maintained at 13.3 kPa.
  • the pressure was reduced from 13.3 kPa to 200 Pa or less over 15 minutes.
  • the phenol vapor produced as a by-product with the polymerization reaction is led to a reflux condenser at 100 ° C., and a monomer component contained in a small amount in the phenol vapor is returned to the polymerization reactor, and the non-condensed phenol vapor is led to a condenser at 45 ° C. And recovered.
  • the content thus oligomerized is once restored to atmospheric pressure and then transferred to another polymerization reaction apparatus equipped with a stirring blade and a reflux condenser controlled at 100 ° C.
  • the internal temperature was 260 ° C. and the pressure was 200 Pa in 50 minutes.
  • Table 1 shows the evaluation results of the characteristics of the polycarbonates A to M obtained in Synthesis Examples 1 to 13.
  • Example 1 After the polycarbonate A obtained in Synthesis Example 1 was vacuum-dried at 80 ° C. for 5 hours, a single-screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 200 mm, set temperature) : 220 ° C.), a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder, to prepare a raw film having a thickness of 100 ⁇ m. A sample having a width of 6 cm and a length of 6 cm was cut out from this film, and thickness spots were measured.
  • a single-screw extruder manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.
  • T die width 200 mm, set temperature
  • 220 ° C. a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder
  • this sample was adjusted at a stretching temperature of 127 to 177 ° C. so that R 1 (550) was 130 ⁇ 20 nm, and a stretching speed of 720 mm / min (strain The film was uniaxially stretched 1 ⁇ 2.0 times at a speed of 1200% / min to obtain a retardation film. At this time, it extended
  • Example 2 A retardation film was obtained in the same manner as in Example 1 except that the polycarbonate B obtained in Synthesis Example 2 was used instead of the polycarbonate A. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 3 A retardation film was obtained in the same manner as in Example 1 except that the polycarbonate C obtained in Synthesis Example 3 was used instead of the polycarbonate A. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 4 A retardation film was obtained in the same manner as in Example 1 except that the polycarbonate D obtained in Synthesis Example 4 was used instead of the polycarbonate A. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 5 A retardation film was obtained in the same manner as in Example 1 except that the polycarbonate E obtained in Synthesis Example 5 was used instead of the polycarbonate A. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 6 Twin-screw extrusion made by Nippon Steel Co., Ltd., which has 2 vent ports, 0.5 parts by weight of a carbodiimide compound (trade name: Carbodilite LA-1 manufactured by Nisshinbo Industries, Inc.) and 99.5 parts by weight of the polycarbonate G obtained in Synthesis Example 7.
  • a machine TEX30HSS-32
  • the resin was extruded at a resin temperature of 230 ° C., cooled and solidified with water, and then pelletized with a rotary cutter. After the obtained pellets were dried in the same manner as in Example 1, film formation, removal of phenol, and the like were performed and stretched in the same manner to obtain a retardation film.
  • the obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 7 A retardation film was obtained in the same manner as in Example 1 except that the polycarbonate F obtained in Synthesis Example 6 was used instead of the polycarbonate A. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 8 Polycarbonate I obtained in Synthesis Example 9 was vacuum dried at 80 ° C. for 5 hours, and then a single screw extruder (manufactured by Isuzu Chemical Industries, screw diameter 25 mm, cylinder set temperature: 220 ° C.), T die (width 200 mm, set temperature) : 220 ° C.), a film forming apparatus equipped with a chill roll (set temperature: 120 to 130 ° C.) and a winder, to prepare a 95 ⁇ m-thick original film. A sample having a width of 12 cm and a length of 12 cm was cut out from this film, and thickness spots were measured. This sample was vacuum-dried at 100 ° C.
  • Example 9 A twin screw extruder (TEX30HSS-32) manufactured by Nippon Steel Co., Ltd. having 1 vent part of polystyrene resin (manufactured by PS Japan Co., Ltd., trade name: G9504) and 99 parts by weight of the polycarbonate I obtained in Synthesis Example 9 is provided. Then, while devolatilizing from a vent port using a vacuum pump, the resin was extruded at a resin temperature of 230 ° C., cooled and solidified with water, and then pelletized with a rotary cutter. After drying the obtained pellet similarly to Example 8, it formed into a film by the same method, the phenol etc. were removed and extended
  • Example 10 2 parts manufactured by Nippon Steel Co., Ltd., having 2 vent ports, 1 part by weight of polycarbonate (product name: Novalex 7022J) having bisphenol A as a dihydroxy compound component to 99 parts by weight of polycarbonate I obtained in Synthesis Example 9
  • a shaft extruder TEX30HSS-32
  • the resin was extruded from a vent port using a vacuum pump at a resin temperature of 230 ° C., cooled and solidified with water, and pelletized with a rotary cutter. After drying the obtained pellet similarly to Example 8, it formed into a film by the same method, the phenol etc. were removed and extended
  • the obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 11 Polyester elastomer comprising 1,4-butanediol, terephthalic acid and polytetramethylene glycol as structural components in 99 parts by weight of the polycarbonate I obtained in Synthesis Example 9 (trade name: Primalloy CP300H, manufactured by Mitsubishi Chemical Corporation) 1 Using a twin-screw extruder (TEX30HSS-32) manufactured by Nippon Steel Co., Ltd., which has two vent ports, the weight part was extruded from the vent port using a vacuum pump at a resin temperature of 230 ° C and cooled with water. After solidifying, it was pelletized with a rotary cutter. After drying the obtained pellet similarly to Example 8, it formed into a film by the same method, the phenol etc. were removed and extended
  • Example 12 A twin-screw extruder manufactured by Nippon Steel (TEX30HSS-32) having 99 parts by weight of the polycarbonate I obtained in Synthesis Example 9 and 1 part by weight of a polyester elastomer (manufactured by EASTMAN Chemical, trade name: ECDEL 9966) and two vent ports. Then, while devolatilizing from a vent port using a vacuum pump, the resin was extruded at a resin temperature of 230 ° C., cooled and solidified with water, and then pelletized with a rotary cutter. After drying the obtained pellet similarly to Example 8, it formed into a film by the same method, the phenol etc. were removed and extended
  • Example 13 A retardation film was obtained in the same manner as in Example 8 except that instead of polycarbonate I, polycarbonate J obtained in Synthesis Example 10 was used to obtain an extruded film having a thickness of 107 ⁇ m. The obtained retardation film was evaluated, and the results are shown in Table 2.
  • Example 14 A retardation film was obtained in the same manner as in Example 8 except that polyester carbonate K obtained in Synthesis Example 11 was used instead of Polycarbonate I to obtain an extruded film having a thickness of 99 ⁇ m. The obtained retardation film was evaluated, and the results are shown in Table 3.
  • Example 15 A retardation film was obtained in the same manner as in Example 8 except that instead of polycarbonate I, polycarbonate L obtained in Synthesis Example 12 was used to obtain an extruded film having a thickness of 103 ⁇ m. The obtained retardation film was evaluated, and the results are shown in Table 3.
  • Example 16 A retardation film was obtained in the same manner as in Example 8 except that instead of polycarbonate I, polycarbonate M obtained in Synthesis Example 13 was used to obtain an extruded film having a thickness of 100 ⁇ m. The obtained retardation film was evaluated, and the results are shown in Table 3.
  • Example 17 A retardation film was obtained in the same manner as in Example 15 except that the polycarbonate L obtained in Synthesis Example 12 was used and the phenol film was not removed by vacuum drying of the raw film. The obtained retardation film was evaluated, and the results are shown in Table 3.
  • Example 18 A retardation film was obtained in the same manner as in Example 8 except that instead of polycarbonate I, the polycarbonate H obtained in Synthesis Example 8 was used to obtain an extruded film having a thickness of 92 ⁇ m. The obtained retardation film was subjected to a heat treatment at a heat treatment temperature of 100 ° C. and a heat treatment time of 1 minute. The obtained retardation film after the heat treatment was evaluated, and the results are shown in Table 3.
  • the retardation film defined in the present invention has little fluctuation in retardation even after long-term use under high temperature conditions, is excellent in stability against temperature, has no unevenness in the image, and has a sharp black color.

Abstract

 本発明の位相差フィルムは、ガラス転移温度が110℃以上180℃以下である、ポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子を成形して得られ、下記式(A)及び(B)の関係を満たす。 式(A):0.7<R(450)/R(550)<1 式(B):|R(450)/R(550)-R(450)/R(550)|<0.020

Description

位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
 本発明は、温度条件や湿度条件が厳しい環境下でも、色抜けやカラーシフトが発生しにくく、溶融製膜法で製造することが可能な位相差フィルムと、この位相差フィルムを用いた円偏光板及び画像表示装置に関する。
 位相差が短波長になるほど小さくなる逆波長分散性を示す位相差フィルムは、可視領域の各波長において理想的な位相差特性を得ることができ、いわゆる円偏光板として画像表示装置の外光反射防止に有用である。このような性能を有する位相差フィルムとして、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンや9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンを原料とするポリカーボネート樹脂からなる位相差フィルムが開示されている(例えば、特許文献1参照)。
 しかし、特許文献1に記載のポリカーボネート樹脂は、ガラス転移温度が高く、溶融製膜法では製膜することが困難で、原反フィルム(延伸処理前のフィルム)は溶液キャスト法により製膜されている。溶液キャスト法は、文字通り溶媒を使用せざるを得ず、環境への負荷が大きいことから、改善が求められているだけではなく、製品位相差フィルム中の残存溶媒が可塑剤的に働き、温度や湿度等の外部環境変化によって、光学的特性の変化を招くため、色抜けやカラーシフトを招くという問題があった。また、溶液キャストに使用される溶媒は、溶解性や揮発性、不燃性の観点から、ジクロロメタン等の塩素系溶媒が使用されることが多く、位相差フィルムへ加工する際に設備の腐食を招いたり、画像表示装置に組み上げた際に他の部品へ悪影響を及ぼしたりするという問題があった。更に特許文献1に開示されているポリカーボネート樹脂から得られる原反フィルムは、非常に脆いため、延伸時の破断を招く等、加工性に劣るという問題もあった。
 原反フィルムの溶融製膜が可能な樹脂を用いたものとしては、イソソルビドとビスクレゾールフルオレン及び脂肪族ジオール、脂環族ジオール、スピログリコール等を原料とする3元共重合ポリカーボネート樹脂からなるフィルムが開示されている(特許文献2参照)。
 また、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン又は9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンと炭素原子数4~20の脂環式ジオールやヘテロ原子含有環状ジヒドロキシ化合物との2元系共重合ポリカーボネート樹脂からなるフィルムが開示されている(特許文献3参照)。
 ところが、特許文献2、3に開示されているポリカーボネート樹脂は、その分子構造に基づくフィルムの脆さによる原反フィルムの製膜のし難さや、その後の延伸加工のし難さが解消されておらず、位相差フィルムの画質の低下やむら、波長分散特性の長期使用時や厳しい使用環境に置かれた場合の変化についても満足ゆくものではなかった。
日本国特許第3325560号公報 国際公開第2006/41190号 国際公開第2010/64721号
 このように近年急速に伸張しつつある各種画像表示装置やモバイル機器等に用いられる逆波長分散性特性を有する位相差フィルムの原反フィルムは、位相差分布や厚み斑改善、環境への負荷低減のため、溶媒を用いない溶融製膜法で成形することが強く望まれている。また、このような分野で用いられる位相差フィルムは、通常の用途とは異なり様々な温度や湿度条件で利用される場合があるため、使用時の環境変化によってもその光学特性変化が少ないことが求められており、特に長期使用時の画像の色抜けやカラーシフトという画質低下を抑制することが求められていた。中でも次世代の画像表示装置として最近脚光を浴びている有機ELディスプレイにおいては、原理的にディスプレイ内部の反射層が必須であるため、外光反射防止性能の更なる向上と、過酷な環境変化に左右されない光学特性の安定化が強く求められていた。
 本発明は、上記従来の課題を解消した位相差フィルム、即ち、温度条件や湿度条件が厳しい環境下でも、色抜けやカラーシフトが発生しにくく、しかも溶融製膜法で製造することが可能な位相差フィルムを提供することを目的とする。本発明はまた、このような位相差フィルムを用いた円偏光板及び画像表示装置を提供することを目的とする。
 本発明者らは上記課題を解決するべく検討を重ねた結果、特定の位相差比の関係式を満たす位相差フィルムが、上記課題を解決することができることを見出し、本発明に到達した。
 即ち、本発明の要旨は下記[1]~[17]である。
[1] ガラス転移温度が110℃以上180℃以下である、ポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子を成形して得られ、
下記式(A)及び(B)の関係を満たす位相差フィルム。
 式(A):0.7<R(450)/R(550)<1
 式(B):|R(450)/R(550)-R(450)/R(550)|<0.020
(ただし、上記R(450)及びR(550)はそれぞれ波長450nm及び550nmにおけるフィルム面内の位相差値を表し、上記R(450)及びR(550)はそれぞれ温度90℃において48時間放置した後の波長450nm及び550nmにおけるフィルム面内の位相差値を表す。)
[2] 下記式(C)及び(D)の関係を満たす、前記[1]に記載の位相差フィルム。
 式(C):1<R(650)/R(550)<1.2
 式(D):|R(650)/R(550)-R(650)/R(550)|<0.010
(ただし、上記R(650)は波長650nmにおけるフィルム面内の位相差値を表し、前記R(650)は温度90℃において48時間放置した後の波長650nmにおけるフィルム面内の位相差値を表す。)
[3] 前記高分子が、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含む、前記[1]または前記[2]に記載の位相差フィルム。
Figure JPOXMLDOC01-appb-C000003
(前記式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。X及びXはそれぞれ独立に、置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。)
[4] 前記高分子がジカルボン酸化合物に由来する構造単位を含む、前記[3]に記載の位相差フィルム。
[5] 前記高分子が、前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物に由来する構造単位を含む、前記[3]または前記[4]に記載の位相差フィルム。
[6] 前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物が、ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有するジヒドロキシ化合物である、前記[5]に記載の位相差フィルム。
[7] 前記高分子に含まれる、アセタール構造を有するジヒドロキシ化合物に由来する構造単位が、全ジヒドロキシ化合物に由来する構造単位に対し10mol%以下である、前記[6]に記載の位相差フィルム。
[8] 前記ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有するジヒドロキシ化合物が、下記式(2)または(3)で表される化合物から選ばれる少なくとも1種の化合物である、前記[6]または前記[7]に記載の位相差フィルム。
Figure JPOXMLDOC01-appb-C000004
   H-(O-R-OH      (3)
(上記式(3)中、Rは置換若しくは無置換の炭素数2~炭素数10のアルキレン基を表し、pは2~50の整数である。)
[9] 前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物が、芳香族ジヒドロキシ化合物である、前記[5]から前記[8]の何れか1項に記載の位相差フィルム。
[10] 前記芳香族ジヒドロキシ化合物が、2,2-ビス(4-ヒドロキシフェニル)プロパンである、前記[9]に記載の位相差フィルム。
[11] 塩素含有量が、塩素原子の重量として50重量ppm以下である、前記[1]から前記[10]の何れか1項に記載の位相差フィルム。
[12] モノヒドロキシ化合物の含有量が、2000重量ppm以下である、前記[1]から前記[11]の何れか1項に記載の位相差フィルム。
[13] 前記高分子の光弾性係数が45×10-12Pa-1以下である、前記[1]から前記[12]の何れか1項に記載の位相差フィルム。
[14] 前記高分子のガラス転移温度が125℃以上150℃以下である、前記[1]から前記[13]の何れか1項に記載の位相差フィルム。
[15] 前記[1]から前記[14]の何れか1項に記載の位相差フィルムと、偏光板とを積層して構成される円偏光板。
[16] 前記[15]に記載の円偏光板を有する画像表示装置。
[17] 前記画像表示装置が、有機ELを用いたものである、前記[16]に記載の画像表示装置。
 本発明の位相差フィルムは、環境への負荷が少なく、経済性に優れた溶融製膜法で製膜することができ、かつ高温・高湿条件下での長期使用によっても色抜けやカラーシフトが発生しにくく、画質の低下が少ない。したがって、本発明の位相差フィルム及びこの位相差フィルムを用いた円偏光板及び画像表示装置は、例えば、車載機器用のディスプレイの光学補償フィルムや有機ELの反射防止のための円偏光板用1/4λ板等に好適に使用することができる。
 以下、本発明を詳細に説明する。尚、本発明は、以下に説明する実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
〔位相差フィルム〕
 本発明の位相差フィルムは、後述のポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子からなり、下記式(A)及び(B)の関係を満たし、好ましくは更に下記式(C)及び(D)の関係を満たすものであり、好ましくは単層のフィルム(1枚のフィルム)で、下記式(A)及び(B)の関係を満たし、好ましくは更に下記式(C)及び(D)の関係を満たす。積層フィルムよりなる位相差フィルムは厚みが大きくなるため、本発明の位相差フィルムは単層フィルムよりなることが好ましい。
 式(A):0.7<R(450)/R(550)<1
 式(B):|R(450)/R(550)-R(450)/R(550)|<0.020
(ただし、上記R(450)及びR(550)はそれぞれ波長450nm及び550nmにおけるフィルム面内の位相差値を表し、上記R(450)及びR(550)はそれぞれ温度90℃において48時間放置した後の波長450nm及び550nmにおけるフィルム面内の位相差値を表す。)
 式(C):1<R(650)/R(550)<1.2
 式(D):|R(650)/R(550)-R(650)/R(550)|<0.01
(ただし、上記R(650)は波長650nmにおけるフィルム面内の位相差値を表し、前記R(650)は温度90℃において48時間放置した後の波長650nmにおけるフィルム面内の位相差値を表す。)
 本発明の位相差フィルムの測定波長550nmにおけるフィルム面内の位相差値は、通常100nm~180nm、好ましくは120nm~170nm、特に好ましくは135nm~155nmであり、後掲の実施例の項に記載される方法で測定される。
[式(A)~(D)について]
<式(A)>
 本発明の位相差フィルムは、前記式(A)の関係を満たし、R(450)/R(550)が0.7より大きく1より小さいことを特徴とする。
 本発明の位相差フィルムは、R(450)/R(550)が、0.70以上0.99以下であることが好ましく、0.75以上0.97以下であることがより好ましく、0.75以上0.95以下であることが更に好ましく、0.86以上0.93以下が特に好ましく、0.88以上0.91以下が最適である。
 R(450)/R(550)の値が上記範囲であれば、長波長ほど位相差が発現し、可視領域の各波長において理想的な位相差特性を得ることができる。例えば1/4λ板としてこのような波長依存性を有する本発明の位相差フィルムを偏光板と貼り合わせることにより、円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板及び画像表示装置の実現が可能である。一方、R(450)/R(550)の値が上記範囲外の場合には、波長による色抜けが大きくなり、円偏光板や画像表示装置に着色の問題が生じる。
 本発明の位相差フィルムは上記のような光学特性を満足させるポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子から形成され、これらは単独で用いてもよいし、複数種をブレンドしてもよい。本発明のポリカーボネートおよびポリエステルカーボネートについての詳細は後述する。
<式(B)>
 本発明の位相差フィルムは、前記式(B)の関係を満たし、|R(450)/R(550)-R(450)/R(550)|(即ち、R(450)/R(550)とR(450)/R(550)の差の絶対値)が0.020より小さいことを特徴とする。
 本発明の位相差フィルムは、|R(450)/R(550)-R(450)/R(550)|が0より大きく0.018以下であることが好ましく、0より大きく0.015以下であることがより好ましい。更に、0より大きく0.010以下であることが好ましい。
 |R(450)/R(550)-R(450)/R(550)|が0.020よりも小さいものは、高温条件下での長期使用によっても位相差の変動が小さく、温度に対する安定性に優れたものであり、好ましい。また、この値は初期の設計値との差が小さくなるという点で、0に近い程好ましい。
<式(C)>
 本発明の位相差フィルムは、前記式(C)の関係を満たし、R(650)/R(550)が1より大きく1.2より小さいことが好ましい。
 本発明の位相差フィルムは、R(650)/R(550)が1.00以上1.20以下であることがより好ましく、1.00以上1.10以下であることがより好ましく、1.00以上1.05以下であることが更に好ましく、特には1.00以上1.035以下であることが好ましい。
 R(650)/R(550)の値が上記範囲であれば、長波長ほど位相差が発現し、可視領域の各波長においてより一層理想的な位相差特性を得ることができる。例えば1/4λ板としてこのような波長依存性を有する本発明の位相差フィルムを偏光板と貼り合わせることにより、円偏光板等を作製することができ、あらゆる波長において外光反射防止機能を有する黒色性に優れた円偏光板及び画像表示装置の実現が可能である。一方、前記式(A)の関係を満たしていても、R(650)/R(550)の値が上記範囲外の場合には、色抜け等が生じる場合がある。
<式(D)>
 本発明の位相差フィルムは、前記式(D)の関係を満たし、|R(650)/R(550)-R(650)/R(550)|(即ち、R(650)/R(550)とR(650)/R(550)の差の絶対値)が0.010より小さいことが好ましく、0.008以下であることがより好ましく、0.0075以下であることが特に好ましい。
 |R(650)/R(550)-R(650)/R(550)|が上記範囲にあるものは、高温条件下での長期使用によっても位相差の変動がより小さく、温度に対する安定性により一層優れたものであり、好ましい。この値は0に近い程好ましい。
 本発明の位相差フィルムは、その原反フィルムが溶融製膜可能で、使用時の環境変化によってもその光学特性変化が少ないことを特徴とするが、これらの両立させるためには、位相差フィルムを構成するポリマーのガラス転移温度の制御が重要である。
[その他の物性]
<高分子のガラス転移温度>
 本発明の位相差フィルムに用いられる高分子のガラス転移温度は110℃以上180℃以下であることが必要で、その下限は、好ましくは120℃以上、より好ましくは125℃以上、特に好ましくは130℃以上、中でも140℃以上が最適である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、高温下や高湿下において光学特性の変化を起こす可能性がある。一方、その上限は、好ましくは160℃以下、より好ましくは150℃以下である。ガラス転移温度が過度に高いと、原反の製膜温度や延伸時の温度を高くせざるを得ず、ポリマーの分子量低下や着色等の劣化を招いたり、ガスの発生によるフィルムの欠陥を招いたりすることがある。更に均一な厚みのフィルムを得ることが困難になり、位相差の発現に斑が生じる可能性がある。
 本発明のガラス転移温度の測定法は実施例の項で記載する。
<厚み>
 本発明の位相差フィルムの厚みは、通常150μm以下であることが好ましく、100μm以下であることが更に好ましく、60μm以下であることがより好ましい。位相差フィルムの厚みが過度に厚いと、同じ面積のフィルムを製造するのにより多くの製膜材料が必要になり非効率であったり、当該フィルムを使用する製品の厚みが厚くなったりする可能性があると共に、均一性の制御が困難となり、精密性・薄型・均質性を求められる機器に適合できない場合がある。本発明の位相差フィルムの厚みの下限としては、好ましくは5μm以上、より好ましくは10μm以上である。位相差フィルムの厚みが過度に薄いとフィルムの取り扱いが困難になり、製造中にしわが発生したり、保護フィルムなどの他のフィルムやシートなどと貼合わせることが困難になったりすることがある。
<内部ヘイズ>
 本発明の位相差フィルムは、内部ヘイズが3%以下であることが好ましく、1.5%以下であることがより好ましい。位相差フィルムの内部ヘイズが上記上限値よりも大きいと光の散乱が起こり、例えば偏光子と積層した際、偏光解消を生じる原因となる。内部ヘイズの下限値は特に定めないが、通常0.2%以上である。
 なお、光学フィルムの内部ヘイズは、例えば、ヘイズメーター(村上色彩技術研究所(株)製「HM-150」)を用いて、23℃において測定される。測定サンプルは、事前にヘイズ測定を行っておいた粘着剤付き透明フィルムを、試料フィルムの両面に貼り合せ、外部ヘイズの影響を除去した状態のものを作成して用い、測定値は、粘着剤付き透明フィルムのヘイズ値の差分を用いる。
<b*値>
 本発明の位相差フィルムは、b*値が3以下であることが好ましい。位相差フィルムのb*値が大き過ぎると着色等の問題が生じる。本発明の位相差フィルムのb*値はより好ましくは2以下、特に好ましくは1以下である。
 なお、位相差フィルムのb*値は、例えば、分光光度計(村上色彩技術研究所(株)製「DOT-3」)を用いて、23℃において波長550nmの光で測定される。
<全光線透過率>
 本発明の位相差フィルムは、厚みによらず、当該位相差フィルムそのものの全光線透過率が80%以上であることが好ましく、この透過率は90%以上であることが更に好ましい。透過率が上記下限以上であれば、着色の少ない位相差フィルムが得られ、偏光板と貼り合わせた際、偏光度や透過率の高い円偏光板となり、画像表示装置に用いた際に、高い表示品位を実現することが可能となる。なお、本発明の位相差フィルムの全光線透過率の上限は特に制限はないが通常99%以下である。
<屈折率>
 本発明の位相差フィルムは、ナトリウムd線(589nm)における屈折率が1.57~1.62であることが好ましい。この屈折率が1.57未満の場合には、複屈折が小さくなりすぎるおそれがある。一方、屈折率が1.62を超える場合には、反射率が大きくなり、光透過性が低下するおそれがある。
<複屈折>
 本発明の位相差フィルムは、複屈折が、0.001以上であることが好ましい。後述の本発明の樹脂組成物を用いて成形するフィルムの厚みを非常に薄く設計するためには、複屈折が高い方が好ましい。従って、複屈折は0.002以上であることが更に好ましい。複屈折が0.001未満の場合には、フィルムの厚みを過度に大きくする必要があるため、製膜材料の使用量が増え、厚み・透明性・位相差の点から均質性の制御が困難となる。そのため、複屈折が0.001未満の場合には、精密性・薄型・均質性を求められる機器に適合できない可能性がある。
 複屈折の上限に特に制限はないが、複屈折を大きくするために、延伸温度を過度に下げたり、延伸倍率を過度に上げたりすると、延伸時の破断や延伸フィルムの不均一性を招くことがあるため、通常0.007以下である。
<吸水率>
 本発明の位相差フィルムは、飽和吸水率が1.0重量%より大きいことが好ましい。飽和吸水率が1.0重量%より大きければ、この位相差フィルムを他のフィルムなどと貼りあわせる際、容易に接着性を確保することができる。例えば、偏光板と貼りあわせる際、位相差フィルムが親水性であるため、水の接触角も低く、接着剤を自由に設計し易く、高い接着設計ができる。飽和吸水率が1.0重量%以下の場合は、疎水性となり、水の接触角も高く、接着性の設計が困難になる。また、フィルムが帯電し易くなり、異物の巻き込み等、円偏光板、画像表示装置に組み込んだ際、外観欠点が多くなるという問題が生じる。一方、飽和吸水率が2.0重量%より大きくなると湿度環境下での光学特性の耐久性が悪くなるため好ましくない。本発明の位相差フィルムは、飽和吸水率が1.0重量%より大きく2.0重量%以下であることが好ましく、更に好ましくは1.1重量%以上1.5%重量以下である。
<本発明の高分子>
 本発明の位相差フィルムは上記のような光学特性を満足させるポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子から形成される(以下、本発明の高分子または本発明のポリマーと称することがある)。本発明の位相差フィルムを形成するポリカーボネートとは(以下、本発明のポリカーボネートと称することがある)、ジヒドロキシ化合物に由来する構造単位が、カーボネート結合で連結された構造を有するポリマーであり、ポリエステルカーボネートとは(以下、本発明のポリエステルカーボネートと称することがある)、前記ポリカーボネートのカーボネート結合の一部がジカルボン酸構造に置換されたものである。本発明のポリカーボネートおよびポリエステルカーボネートは、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
(前記式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。X及びXはそれぞれ独立に、置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。)
 なお、本明細書において、各種の基の炭素数は、当該基が置換基を有する場合、その置換基の炭素数をも含めた合計の炭素数を意味する。
 ここで、R~R及びX,Xの有していてもよい置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
 R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数10のアルキル基、置換若しくは無置換の炭素数6~炭素数15のアリール基が好ましく、R~Rのうち、RおよびRが無置換のアルキル基であるか、R~Rが全て水素原子であることが好ましい。R~Rが水素原子以外の置換基である場合、ベンゼン環のフルオレン環への結合位置に対して3位又は5位に結合していることが好ましく、無置換のアルキル基としては、メチル基またはエチル基が好ましい。
 X,Xはそれぞれ独立に、炭素数1~炭素数4のアルキレン基が好ましく、中でも無置換のメチレン基、無置換のエチレン基、無置換のプロピレン基が好ましく、XとXとは同じであることが好ましい。
 m及びnはそれぞれ独立に0~5の整数であるが、本発明の高分子のガラス転移温度を溶融成形に適した温度に調節したり、得られるフィルムの靭性を向上させたりすることが可能となるため、1以上であることが好ましく、中でも1が好ましい。また、mとnは同じ整数であることが好ましい。
 特に、前記式(1)で表されるジヒドロキシ化合物は、フルオレン環の対称軸を対称軸として左右対称構造であることが好ましい。
 前記式(1)で表されるジヒドロキシ化合物としては、具体的には、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-n-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-tert-プロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレン等が例示され、光学的特性の付与の観点からは、好ましくは、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレンが挙げられ、フィルムへの靭性付与の観点から、特に好ましくは、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンである。
 本発明の高分子は、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位の1種のみを含んでいてもよく、2種以上を含んでいてもよい。
 本発明の高分子は、溶融製膜を容易にし、フィルムへの靭性を付与するためだけでなく、位相差発現性、耐熱性、光学的特性の調整等のために、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位とは異なるジヒドロキシ化合物(以下、その他のジヒドロキシ化合物と称することがある)に由来する構造単位を含んでなることが好ましい。
 その他のジヒドロキシ化合物としては、水酸基を2つ有する化合物であればよく、例えば下記式(5)~(7)で表される化合物が挙げられる。
   HO-R-OH         (5)
(上記式(5)中、Rは置換若しくは無置換の炭素数2~炭素数20のアルキレン基を表す。)
   HO-R-OH         (6)
(上記式(6)中、Rは置換若しくは無置換の炭素数4~炭素数20のシクロアルキレン基を表す。)
   HO-CH-R-CH-OH  (7)
(上記式(7)中、Rは置換若しくは無置換の炭素数4~炭素数20のシクロアルキレン基を表す。)
 上記式(5)で表されるジヒドロキシ化合物としては、具体的にはエチレングルコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどが挙げられ、入手のし易さ、取扱いの容易さ、重合時の反応性の高さ、得られるポリマーの色相の観点からは、1,3-プロパンジオール、1,6-ヘキサンジオールが好ましい。
 上記式(6)で表されるジヒドロキシ化合物としては、Rに置換若しくは無置換の炭素数4~炭素数20、好ましくは炭素数4~炭素数18のシクロアルキレン基を有する脂環式ジヒドロキシ化合物である。ここで、Rが置換基を有する場合、当該置換基としては、置換若しくは無置換の炭素数1~炭素数12のアルキル基が挙げられ、該アルキル基が置換基を有する場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
 このジヒドロキシ化合物は、環構造を有することにより、得られるポリマーを成形したときの成形品の靭性や耐熱性を高めることが可能となる。
 Rのシクロアルキレン基としては、環構造を有する炭化水素基であれば特に制限は無く、橋頭炭素原子を有するような橋かけ構造であっても構わない。ジヒドロキシ化合物の製造が容易で不純物量を少なくすることができるという観点から、前記式(6)で表されるジヒドロキシ化合物は、5員環構造又は6員環構造を含む化合物、即ち、Rが置換若しくは無置換のシクロペンチレン基又は置換若しくは無置換のシクロへキシレン基であるジヒドロキシ化合物が好ましい。このようなジヒドロキシ化合物であれば、5員環構造又は6員環構造を含むことにより、得られるポリマーの耐熱性を高くすることができる。該6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。
 なかでも、前記式(6)で表されるジヒドロキシ化合物は、Rが下記式(8)で示される種々の異性体であることが好ましい。ここで、式(8)中、Rは水素原子、又は、置換若しくは無置換の炭素数1~炭素数12のアルキル基を表す。Rが置換基を有する炭素数1~炭素数12のアルキル基である場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 前記式(6)で表されるジヒドロキシ化合物として、より具体的には、テトラメチルシクロブタンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、2-メチル-1,4-シクロヘキサンジオール、トリシクロデカンジオール類、ペンタシクロジオール類等が挙げられる。
 前記式(7)で表されるジヒドロキシ化合物は、Rに置換若しくは無置換の炭素数4~炭素数20、好ましくは炭素数3~炭素数18のシクロアルキレン基を有する脂環式ジヒドロキシ化合物である。ここで、Rが置換基を有する場合、当該置換基としては、置換若しくは無置換の炭素数1~炭素数12のアルキル基が挙げられ、該アルキル基が置換基を有する場合、当該置換基としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基等が挙げられる。
 このジヒドロキシ化合物は、環構造を有することにより、得られるポリマーを成形したときの成形品の靭性や耐熱性を高めることが可能となり、なかでもフィルムに成形したときの靭性を高めることができる。
 Rのシクロアルキレン基としては、環構造を有する炭化水素基であれば特に制限は無く、橋頭炭素原子を有するような橋かけ構造であっても構わない。ジヒドロキシ化合物の製造が容易で不純物量を少なくすることができるという観点から、前記式(7)で表されるジヒドロキシ化合物は、5員環構造又は6員環構造を含む化合物、即ち、Rが置換若しくは無置換のシクロペンチレン基又は置換若しくは無置換のシクロへキシレン基であるジヒドロキシ化合物が好ましい。このようなジヒドロキシ化合物であれば、5員環構造又は6員環構造を含むことにより、得られるポリマーの耐熱性を高くすることができる。該6員環構造は共有結合によって椅子形もしくは舟形に固定されていてもよい。前記式(7)で表されるジヒドロキシ化合物は、なかでも、Rが前記式(8)で示される種々の異性体であることが好ましい。
 前記式(7)で表されるジヒドロキシ化合物として、より具体的には、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、3,8-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、3,9-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,8-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,9-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、8-ヒドロキシ-3-ヒドロキシメチルトリシクロ[5.2.1.02.6]デカン、9-ヒドロキシ-3-ヒドロキシメチルトリシクロ[5.2.1.02.6]デカン、8-ヒドロキシ-4-ヒドロキシメチルトリシクロ[5.2.1.02.6]デカン、9-ヒドロキシ-4-ヒドロキシメチルトリシクロ[5.2.1.02.6]デカン等が挙げられ、これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらのジヒドロキシ化合物は、製造上の理由から異性体の混合物として得られる場合があるが、その際にはそのまま異性体混合物として使用することもできる。例えば、3,8-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、3,9-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、4,8-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカン、及び4,9-ビス(ヒドロキシメチル)トリシクロ[5.2.1.02.6]デカンの混合物を使用することができる。
 前記式(7)で表されるジヒドロキシ化合物の具体例のうち、特に、シクロヘキサンジメタノール類が好ましく、入手のしやすさ、取り扱いのしやすさという観点から、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノールが好ましく、特には靭性付与の効果が大きい1,4-シクロヘキサンジメタノールが好ましい。
 その他のジヒドロキシ化合物は、中でもヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有する構造であるものが好ましい。このような構造を有するジヒドロキシ化合物に由来する構造単位を有するポリカーボネートおよびポリエステルカーボネートは、位相差フィルムに加工して他のフィルム等と積層する際に、親水性が高く、接着性に優れる。
 なお、本発明の「ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有する」において、β位、γ位とは、ジヒドロキシ化合物においてヒドロキシ基が結合する炭素原子を基準にして、隣接する炭素原子の位置をα位、更にその隣の炭素原子をβ位、更にその隣の炭素原子をγ位とすることを意味する。
 例えば、後述するイソソルビドの場合は、ヒドロキシ基を構成する炭素原子を基準にして、β位に相当する炭素原子がエーテル性酸素原子となっており、「ヒドロキシ基のβ位にエーテル性酸素原子を有する脂肪族ジヒドロキシ化合物」に該当する。
 ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有する構造であるジヒドロキシ化合物の内、アセタール構造を有するジヒドロキシ化合物は、重合反応中に架橋点となって架橋反応を起こしやすく、重合反応でのトラブルを招いたり、ゲル異物を発生して位相差フィルム製造時の延伸破断の原因となったり、フィルム欠陥となったりすることがあるため、本発明においては、アセタール構造を有するジヒドロキシ化合物に由来する構造単位(以下、全ジヒドロキシ構造と称することがある。)は、全ジヒドロキシ化合物に由来する構造単位に対し、10mol%以下であることが好ましく、5mol%以下であることが更に好ましく、2mol%以下であることが更に好ましく、中でも0mol%が最も好ましい。
 このような構造を有するジヒドロキシ化合物の具体例としては、例えば下記式(2)または(3)で表される環状エーテル化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(2)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にあるイソソルビド、イソマンニド、イソイデットが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのジヒドロキシ化合物のうち、資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルビドが、入手及び製造のし易さ、光学特性、成形性の面から最も好ましい。
 更に上記ジヒドロキシ化合物の具体例としては、下記式(3)で表される化合物が挙げられる。
   H-(O-R-OH      (3)
(上記式(3)中、Rは置換若しくは無置換の炭素数2~炭素数10のアルキレン基を表し、pは2~50の整数である。)
 前記式(3)で表されるジヒドロキシ化合物の具体例としては、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどが挙げられるが、中でも、ジエチレングリコール、トリエチレングリコール、数平均分子量300~2500、好ましくは数平均分子量800~2500のポリエチレングリコールが好適である。
 その他のジヒドロキシ化合物の他の例としては、ビスフェノール類が挙げられる。
 ビスフェノール類としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、2,2-ビス(4-ヒドロキシフェニル)デカン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、4,4’-ジヒドロキシ-2,5-ジエトキシジフェニルエーテル等が挙げられ、中でも、取扱いや入手のし易さ、溶融製膜に適したガラス転移温度への調整の観点からは、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)デカンが好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパンが特に好ましい。
 上記のその他のジヒドロキシ化合物は、得られるポリマーの要求性能に応じて、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、本発明の位相差フィルムを形成する高分子としては、前記ポリカーボネートのカーボネート結合の一部がジカルボン酸構造に置換されたポリエステルカーボネートを用いることもできる。前記ジカルボン酸構造を形成するジカルボン酸化合物としては、テレフタル酸、フタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げることができ、得られるポリマーの耐熱性や熱安定性の観点から、芳香族ジカルボン酸が好ましく、特には取扱いや入手のし易さから、テレフタル酸、イソフタル酸が好ましく、中でもテレフタル酸が好適である。これらのジカルボン酸成分はジカルボン酸そのものとして本発明の高分子の原料とすることができるが、製造法に応じて、メチルエステル体、フェニルエステル体等のジカルボン酸エステルや、ジカルボン酸ハライド等のジカルボン酸誘導体を原料とすることもできる。
 本発明のポリエステルカーボネートにおいて、ジカルボン酸化合物に由来する構造単位の含有比率は、全ジヒドロキシ構造と全カルボン酸化合物に由来する構造単位(以下、全カルボン酸構造と称する場合がある。)の合計を100mol%とした場合に、45mol%以下であることが好ましく、さらには40mol%以下が好ましい。ジカルボン酸化合物の含有比率が45mol%よりも多くなると、重合性が低下し、所望とする分子量まで重合が進行しなくなることがある。
 本発明の高分子として、好ましくは、前記式(1)で表されるジヒドロキシ化合物として、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを用い、その他のジヒドロキシ化合物を併用したポリカーボネートが挙げられる。
 その場合の好ましいその他のジヒドロキシ化合物としては、イソソルビドが挙げられる。更に好ましくは、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位を全ジヒドロキシ構造中、20mol%以上50mol%以下含有するものであり、特には、30mol%以上48mol%以下含有するものが好ましい。9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位の含有量が少なすぎると、所望の光学的特性を付与できなくなる可能性があり、多すぎるとガラス転移温度が高くなりすぎ溶融製膜が困難になったり、所望の光学的特性が失われたりする可能性がある。中でもガラス転移温度が120℃以上160℃以下、更に好ましくは125℃以上150℃以下、特に好ましくは135℃以上147℃以下であるものが好ましい。ガラス転移温度が高すぎると溶融製膜が困難になる可能性があり、低すぎると環境変化により位相差フィルムの光学的特性が変化する可能性がある。
 イソソルビドは、光弾性係数が低く、位相差を発現し易く、耐熱性を付与できるだけでなく、植物を原料とするカーボンニュートラルなジヒドロキシ化合物として、本発明で用いるその他のジヒドロキシ化合物として有用であるが、イソソルビドとは異なるその他のジヒドロキシ化合物を併用して、ガラス転移温度の制御や光学的特性の制御、フィルムの加工性向上を図ることがより好ましい。
 本発明の高分子中のイソソルビドとは異なるその他のジヒドロキシ化合物に由来する構造単位の含有量は、要求される性能に応じて適宜決めることができるが、多すぎると本来有していた耐熱性や光学的特性を損なう可能性があるため、イソソルビド以外のその他のジヒドロキシ化合物の分子量が200以下であるものを併用する場合には、全ジヒドロキシ構造中30mol%以下であることが好ましく、20mol%以下であることがより好ましい。また、イソソルビド以外のその他のジヒドロキシ化合物の分子量が200を超えるものを併用する場合には、全ジヒドロキシ構造中10mol%以下であることが好ましく、5mol%以下であることがより好ましい。中でも数平均分子量が800以上のポリエチレングリコールを併用する場合には、全ジヒドロキシ構造中3mol%以下であることが好ましく、2mol%以下であることがより好ましく、1mol%以下であることが特に好ましい。
 イソソルビド以外のその他のジヒドロキシ化合物は、前記のジヒドロキシ化合物から適宜選択することができるが、中でも、耐熱性と加工性のバランスの観点からは、1,4-シクロヘキサンジメタノール、ビスフェノールAが好ましく、加工性と環境変化による位相差フィルムの光学的特性変化を抑制するという観点からは、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールが好ましく、中でもポリエチレングリコールが好ましく、特には数平均分子量が800以上2500以下のポリエチレングリコールが好ましい。
 また、本発明に係る好ましい高分子として、前記式(1)で表されるジヒドロキシ化合物として、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを用い、その他のジヒドロキシ化合物として、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)を用いたポリカーボネートを挙げることができる。更に好ましくは、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位を全ジヒドロキシ構造中、60mol%以上90mol%以下含有するものであり、特には70mol%以上85mol%以下含有するものが好ましく、とりわけ74mol%以上80mol%以下含有するものが好ましい。9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位の含有量が少なすぎても多すぎても、所望の光学的特性を付与できなくなる可能性がある。また、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位の含有量が少なすぎると相対的にビスフェノールAの含有量が多くなり、光弾性係数の上昇を招いて環境変化により位相差フィルムの光学的特性が変化する可能性がある。中でもガラス転移温度が120℃以上160℃以下、更には130℃以上155℃以下、特には145℃以上150℃以下であるものが好ましい。ガラス転移温度が高すぎると溶融製膜が困難になる可能性があり、低すぎると環境変化により位相差フィルムの光学的特性が変化する可能性がある。
 ビスフェノールAは、安価で取り扱いが容易で、耐熱性を付与できるため、本発明で用いるその他のジヒドロキシ化合物として有用であるが、ビスフェノールAとは異なるその他のジヒドロキシ化合物を併用して、ガラス転移温度の制御や光学的特性の制御、フィルムの加工性向上を図ることもできる。ビスフェノールAとは異なるその他のジヒドロキシ化合物に由来する構造単位の含有量は、要求される性能に応じて適宜決めることができるが、多すぎると本来有していた耐熱性や光学的特性を損なう可能性があるため、ビスフェノールA以外のその他のジヒドロキシ化合物の分子量が200以下であるものを併用する場合には、全ジヒドロキシ構造中30mol%以下であることが好ましく、20mol%以下であることがより好ましい。また、ビスフェノールA以外のその他のジヒドロキシ化合物の分子量が200を超えるものを併用する場合には、全ジヒドロキシ構造中10mol%以下であることが好ましく、5mol%以下であることがより好ましい。中でも数平均分子量が800以上のポリエチレングリコールを併用する場合には、全ジヒドロキシ構造中3mol%以下であることが好ましく、2mol%以下であることがより好ましく、1mol%以下であることが特に好ましい。
 ビスフェノールA以外のその他のジヒドロキシ化合物は、前記のジヒドロキシ化合物から適宜選択することができるが、中でも、耐熱性と加工性のバランスの観点からは、1,4-シクロヘキサンジメタノール、イソソルビドが好ましく、加工性と環境変化による位相差フィルムの光学的特性変化を抑制するという観点からは、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールが好ましく、中でもポリエチレングリコールが好ましく、特には数平均分子量が800以上2500以下のポリエチレングリコールが好ましい。
 本発明の高分子として、好ましくは、前記式(1)で表されるジヒドロキシ化合物として、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを用い、ジカルボン酸化合物として、テレフタル酸、イソフタル酸、より好ましくはテレフタル酸を用いたポリエステルカーボネートが挙げられる。テレフタル酸、イソフタル酸成分はジカルボン酸そのものとしてポリマーの原料とすることができるが、後述するエステル交換法で製造する場合には、反応の容易性からジメチルテレフタレート、ジメチルイソフタレート等のジエステルを使用することが好ましい。
 中でも好ましくは、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位を、全ジヒドロキシ構造と全ジカルボン酸構造の合計を100mol%とした場合、60mol%以上90mol%以下含有するものであり、より好ましくは65mol%以上80mol%以下、特に好ましくは68mol%以上77mol%以下含有するものである。9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに由来する構造単位の含有量が少なすぎても多すぎても、所望の光学的特性を付与できなくなる可能性がある。該構造を有するポリエステルカーボネートの好ましいガラス転移温度は、120℃以上170℃以下、更に好ましくは130℃以上160℃以下、特に好ましくは145以上154℃以下である。9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとは異なるその他のジヒドロキシ化合物を併用して、ガラス転移温度の制御や光学的特性の制御、フィルムの加工性向上を図ることもできるが、その他のジヒドロキシ化合物に由来する構造単位の含有量が多すぎると本来有していた耐熱性や光学的特性を損なう可能性があるため、その他のジヒドロキシ化合物を併用する場合は、その他のジヒドロキシ化合物に由来する構造単位の含有量は、全ジヒドロキシ構造中20mol%以下であることが好ましく、10mol%以下であることがより好ましく、5mol%以下であることが特に好ましい。
 同様に芳香族ジカルボン酸以外のジカルボン酸を併用してガラス転移温度の制御や光学的特性の制御、フィルムの加工性向上を図ることもできるが、芳香族ジカルボン酸以外のジカルボン酸に由来する構造単位の含有量が多すぎると本来有していた耐熱性や光学的特性を損なう可能性があるため、芳香族ジカルボン酸以外のジカルボン酸を併用する場合は、これらに由来する構造単位の含有量が全ジカルボン酸構造中20mol%以下であることが好ましく、10mol%以下であることがより好ましく、5mol%以下であることが特に好ましい。
 本発明の位相差フィルムは、その原反フィルムが溶融製膜可能で、使用時の環境変化によってもその光学特性変化が少ないことを特徴とするが、これらの両立させるためには、上記のように位相差フィルムを構成する高分子の分子構造と組成、それに見合ったガラス転移温度の制御が重要である。本発明の高分子の組成は、重クロロホルム等の重水素化溶媒に溶解させて、H-NMRで各モノマーユニットに基づくシグナル強度から決定することができるが、アルカリで加水分解または加アルコール分解することにより、各モノマー成分を高速液体クロマトグラフィー等の手法を用いて測定し、決定することもできる。
[本発明の高分子の製造方法]
 本発明のポリカーボネートは、一般に用いられる重合方法で製造することができ、その重合方法は、ホスゲンを用いた界面重合法、ジヒドロキシ化合物と炭酸ジエステルとエステル交換反応させる溶融重合法のいずれの方法でもよいが、界面重合法は、毒性の強いホスゲンや環境破壊の原因となる塩化メチレン、クロロベンゼン等の含塩素溶媒を用いなければならないだけでなく、含塩素溶媒がポリカーボネート中に微量でも残存していると、原反製膜や延伸操作の際に揮発する含塩素成分により、製膜装置や延伸装置の腐食や破損を招いたり、位相差板として組み立てた後にも他の部材に悪影響を与えたりする可能性があるため、重合触媒の存在下にジヒドロキシ化合物と炭酸ジエステルとを溶媒を用いずに反応させる溶融重合法が好ましい。
 一方、本発明のポリエステルカーボネートも一般に用いられる重合方法で製造することができ、例えばジヒドロキシ化合物とジカルボン酸またはジカルボン酸ハライドとホスゲンを、溶媒の存在下反応させる方法、ジヒドロキシ化合物とジカルボン酸もしくはジカルボン酸エステルと炭酸ジエステルとを溶媒を用いずにエステル交換反応させる溶融重合法のいずれの方法でもよいが、上記同様の理由により、重合触媒の存在下にジヒドロキシ化合物とジカルボン酸もしくはジカルボン酸エステルと炭酸ジエステルとを反応させる溶融重合法が好ましい。
 この溶融重合法で用いられる炭酸ジエステルとしては、通常、下記式(10)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式(10)において、A及びAは、それぞれ独立に、置換若しくは無置換の炭素数1~炭素数18の脂肪族基、又は、置換若しくは無置換の炭素数6~炭素数18の芳香族基である。)
 前記式(10)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネートなどに代表されるジアリールカーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネートなどに代表されるジアルキルカーボネート類が挙げられる。なかでも、好ましくはジアリールカーボネート類が用いられ、特にジフェニルカーボネートが好ましく用いられる。
 これらの炭酸ジエステルは、1種を単独で用いても良く、2種以上を混合して用いてもよい。
 炭酸ジエステルは、ポリカーボネートを得る場合には、反応に用いる全ジヒドロキシ化合物に対して、0.90~1.10のモル比率で用いることが好ましく、さらに好ましくは0.96~1.05、特に好ましくは0.98~1.03のモル比率で用いる。また、ポリエステルカーボネートを得る場合には、全ジヒドロキシ化合物のモル数から全ジカルボン酸のモル数を差し引いたジヒドロキシ化合物のモル数に対し、0.90~1.10のモル比率で用いることが好ましく、さらに好ましくは0.96~1.05、特に好ましくは0.98~1.03のモル比率で用いる。このモル比率が0.90より小さくなると、製造されたポリカーボネートの末端水酸基が増加して、ポリマーの熱安定性が悪化したり、所望する高分子量体が得られなかったりする。また、このモル比率が1.10より大きくなると、同一条件下ではエステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となるばかりか、製造されたポリカーボネート中の残存炭酸ジエステル量が増加し、この残存炭酸ジエステルが、原反製膜時や延伸時に揮発し、フィルムの欠陥を招く可能性がある。
 また、溶融重合における重合触媒(エステル交換触媒)としては、アルカリ金属化合物及び/又はアルカリ土類金属化合物が使用される。アルカリ金属化合物及び/又はアルカリ土類金属化合物と共に補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、アルカリ金属化合物及び/又はアルカリ土類金属化合物のみを使用することが特に好ましい。
 重合触媒として用いられるアルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩等が挙げられる。
 また、アルカリ土類金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられ、中でも重合活性の点から、マグネシウム化合物、カルシウム化合物が好ましい。
 尚、本明細書において「アルカリ金属」及び「アルカリ土類金属」という用語を、それぞれ、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における「第1族元素」及び「第2族元素」と同義として用いる。
 これらのアルカリ金属化合物及び/又はアルカリ土類金属化合物は1種を単独で用いても良く、2種以上を併用してもよい。
 またアルカリ金属化合物及び/又はアルカリ土類金属化合物と併用される塩基性ホウ素化合物の具体例としては、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
 塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
 塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
 アミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール、アミノキノリン等が挙げられる。
 これらの塩基性化合物も1種を単独で用いても良く、2種以上を併用してもよい。
 上記重合触媒の使用量は、アルカリ金属化合物及び/又はアルカリ土類金属化合物を用いる場合、反応に用いる全ジヒドロキシ化合物1モルに対して、金属換算量として、通常、0.1μmol~100μmolの範囲内で用い、好ましくは0.5μmol~50μmolの範囲内であり、さらに好ましくは1μmol~25μmolの範囲内である。重合触媒の使用量が少なすぎると、所望の分子量のポリマーを製造するのに必要な重合活性が得られず、一方、重合触媒の使用量が多すぎると、得られるポリマーの色相が悪化し、副生成物が発生したりして流動性の低下やゲルの発生が多くなり、目標とする品質のポリマーの製造が困難になる。
 また、ポリエステルカーボネートを得る場合には、上記塩基性化合物と併用して、または併用せずに、チタン化合物、スズ化合物、ゲルマニウム化合物、アンチモン化合物、ジルコニウム化合物、鉛化合物、オスミウム化合物等のエステル交換触媒を用いることもできる。これらのエステル交換触媒の使用量は、反応に用いる全ジヒドロキシ化合物1molに対して、金属換算量として、通常、10μmol~1mmolの範囲内であり、好ましくは20μmol~800μmolの範囲内であり、特に好ましくは50μmol~500μmolの範囲内である。
 このような本発明のポリカーボネート樹脂の製造に当たり、前記式(1)で表されるジヒドロキシ化合物は、固体として供給してもよいし、加熱して溶融状態として供給してもよいが、前記式(1)で表されるジヒドロキシ化合物の融点が150℃より高い場合には、単独で溶融させると着色等の可能性があるため、炭酸ジエステルや、前記式(1)で表されるジヒドロキシ化合物より融点の低いその他のジヒドロキシ化合物に溶解させて供給することが好ましい。
 更に、その他のジヒドロキシ化合物及びジカルボン酸化合物については、固体として供給してもよいし、加熱して溶融状態として供給してもよいし、水に可溶なものであれば、水溶液として供給してもよい。
 本発明の高分子を溶融重合法で製造する方法としては、ジヒドロキシ化合物と、必要に応じジカルボン酸化合物を重合触媒の存在下で炭酸ジエステルと反応させる。重合は、通常、2段階以上の多段工程で実施され、重合反応器は1つで条件を変えて2段階以上の工程で実施してもよいし、2つ以上の反応器を用いて、それぞれの条件を変えて2段階以上の工程で実施してもよいが、生産効率の観点からは、2つ以上、好ましくは3つ以上、更に好ましくは3~5つ、特に好ましくは、4つの反応器を用いて実施する。重合反応はバッチ式、連続式、あるいはバッチ式と連続式の組み合わせの何れでも構わないが、生産効率と品質の安定性の観点から、連続式が好ましい。
 本発明において、重合触媒は原料調製槽、原料貯槽に添加することもできるし、重合槽に直接添加することもできるが、供給の安定性、重合の制御の観点からは、重合槽に供給される前の原料ラインの途中に触媒供給ラインを設置し、水溶液またはフェノール溶液として供給することが好ましい。
 重合反応の温度は、低すぎると生産性の低下や製品への熱履歴の増大を招き、高すぎるとモノマーの揮散を招くだけでなく、本発明の高分子の分解や着色を助長する可能性がある。
 本発明の高分子を得るための溶融重合反応においては、温度と反応系内の圧力のバランスを制御することが重要である。温度、圧力のどちらか一方でも早く変化させすぎると、未反応のモノマーが反応系外に留出し、ジヒドロキシ化合物と炭酸ジエステルのモル比率が変化し、所望の高分子が得られない場合がある。
 具体的には、第1段目の反応は、重合反応器の内温の最高温度として、130℃~250℃、好ましくは140℃~240℃、更に好ましくは150℃~230℃の温度で、110kPa~1kPa、好ましくは70kPa~3kPa、更に好ましくは30kPa~5kPa(絶対圧力)の圧力下、0.1時間~10時間、好ましくは0.5時間~3時間、発生するモノヒドロキシ化合物を反応系外へ留去しながら実施される。
 第2段目以降は、反応系の圧力を第1段目の圧力から徐々に下げ、引き続き発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力(絶対圧力)を5kPa以下、好ましくは3kPaにして、内温の最高温度210℃~270℃、好ましくは220℃~250℃で、通常0.1時間~10時間、好ましくは0.5時間~6時間、特に好ましくは1時間~3時間行う。
 特に本発明の高分子の着色や熱劣化を抑制し、色相や耐光性の良好な高分子を得るには、全反応段階における内温の最高温度が270℃以下、特に260℃以下であることが好ましい。また、重合反応後半の重合速度の低下を抑止し、熱履歴による劣化を最小限に抑えるためには、重合の最終段階でプラグフロー性と界面更新性に優れた横型反応器を使用することが好ましい。
 本発明の高分子は、上述の通り重縮合後、通常、冷却固化させ、回転式カッター等でペレット化される。
 ペレット化の方法は限定されるものではないが、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させてペレット化させる方法、最終重合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法、又は、最終重合反応器から溶融状態で抜き出し、ストランドの形態で冷却固化させて一旦ペレット化させた後に、再度一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、冷却固化させてペレット化させる方法等が挙げられる。後述するように、副生するモノヒドロキシ化合物が高分子中に多く含まれると、位相差フィルムに加工した後に、環境変化による光学的特性の変化を招くことがあるため、本発明の高分子は、押出機を使用してモノヒドロキシ化合物を除去することが好ましく、中でも、最終重合反応器から溶融状態で単数または複数のベント口を有する一軸または二軸の押出機に樹脂を供給し、ベント口を減圧にしてモノヒドロキシ化合物を除去しつつ溶融押出しした後、冷却固化させてペレット化させる方法が好ましい。
 本発明の高分子は上記のように、炭酸ジエステルを原料とした溶融重合法で製造することで、毒性の強いホスゲンや環境破壊や装置腐食・破損の原因となる含塩素溶媒を全く使用することなく得ることができるが、溶融重合法では重合反応においてフェノール等のモノヒドロキシ化合物が副生するため、これが本発明の高分子中に残存し、フィルム製膜時や延伸時に揮発して、臭気の原因となったり、フィルムの欠陥を招いたりすることがある。また、本発明の高分子が位相差フィルムに加工された後に、該フィルム中に残存しているモノヒドロキシ化合物は、環境変化により位相差フィルムの光学的特性を変化させることがあるため、本発明の高分子に含まれるモノヒドロキシ化合物の濃度の上限は、通常0.3重量%、好ましくは0.2重量%、特に好ましくは0.15重量%である。下限については、上記問題を解決するために少ない方がよいが、溶融重合法では高分子中に残存するモノヒドロキシ化合物をゼロにすることは困難であること、除去のためには過大な労力が必要であることから、通常0.001重量%、好ましくは0.005重量%、更に好ましくは0.01重量%である。
 本発明の高分子中に残存するモノヒドロキシ化合物を低減するためには、上記のように高分子を押出機で脱揮処理すること、最終重合槽の圧力を3kPa以下、好ましくは2kPa以下にすることが効果的であるが、前記式(1)で表されるジヒドロキシ化合物を本発明の高分子の原料とした場合には、平衡定数が大きく、圧力を下げすぎると分子量が急激に上昇して均一な製品を得るのが困難になるだけでなく、平衡で残存するモノヒドロキシ化合物は、高分子の末端基濃度の積に比例するため、高分子の末端基濃度を水酸基過剰かアリール基過剰にして、末端基バランスを偏らせて製造することが好ましい。中でも熱安定性の観点から、水酸基末端濃度を30μeq/g以下、特には20μeq/g以下にすることが好ましい。水酸基末端濃度は、H-NMR等で定量することができる。
 [本発明の高分子の物性]
 本発明の高分子の分子量は、還元粘度で表すことができる。本発明の高分子の還元粘度は、後掲の実施例の項に記載されるように、溶媒として塩化メチレンを用い、高分子濃度を0.6g/dLに精密に調整し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。本発明の高分子の還元粘度に特に制限は無いが、好ましくは0.30dL/g以上であり、より好ましくは0.35dL/g以上である。還元粘度の上限は、好ましくは1.20dL/g以下、より好ましくは0.60dL/g以下、更に好ましくは0.50dL/g以下である。
 本発明の高分子の還元粘度が上記下限値より小さいと得られる位相差フィルムの機械的強度が小さくなるという問題が生じる可能性がある。一方、還元粘度が上記上限値より大きいと、フィルムに成形する際の流動性が低下し、生産性が低下するという問題が生じたり、高分子中の異物などを濾過で除去することが困難になり異物低減が難しくなったり、フィルム成形の際に気泡が混在したり、厚み斑が生じたりしてフィルムの品質が低下する可能性がある。
 本発明の高分子は、温度240℃、せん断速度91.2sec-1での溶融粘度が、好ましくは500Pa・sec以上5000Pa・sec以下であり、より好ましくは1000Pa・sec以上4000Pa・sec以下、特に好ましくは1500Pa・sec以上3000Pa・sec以下である。
 本発明の高分子の溶融粘度が上記下限値より小さいと得られる位相差フィルムの機械的強度が小さくなるという問題が生じる可能性がある。一方、溶融粘度が上記上限値より大きいと、フィルムに成形する際の流動性が低下し、生産性が低下するという問題が生じたり、高分子中の異物などを濾過で除去することが困難になり異物低減が難しくなったり、フィルム成形の際に気泡が混在したり、厚み斑が生じたりしてフィルムの品質が低下する可能性がある。
 本発明の高分子は、後述の実施例の項に記載される方法でプレス成形して得られたシートについて、後述の方法で測定された光弾性係数が45×10-12Pa-1以下であることが好ましく、特には35×10-12Pa-1以下であることが好ましい。光弾性係数が大き過ぎると、この高分子を成形して得られた位相差フィルムを円偏光板に貼り合わせ、更にこの偏光板を画像表示装置に搭載させたときに、貼り合わせ時の応力により、視認環境やバックライトの熱で位相差フィルムに部分的応力がかかり、不均一な位相差変化が生じ、著しい画像品質の低下が起きるという問題が生じる。本発明の高分子の光弾性係数は、製造上の容易性という点で、通常-10×10-12Pa-1以上、好ましくは0×10-12Pa-1以上である。
[その他の成分]
 本発明の高分子を構成するポリカーボネートやポリエステルカーボネートに、フィルム成形性や延伸性、柔軟性付与のために1種以上のその他の高分子をブレンドすることができる。ブレンドする高分子としては、エチレン、プロピレン等のα-オレフィン、ブタジエン、イソプレン、またはこれらの水素添加物から構成される脂肪族炭化水素構造からなる高分子、スチレン、α-メチルスチレン等、芳香族炭化水素構造からなる高分子、アクリロニトリル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル等、アクリル化合物から構成される高分子、またはAS樹脂、ABS樹脂、SEBS樹脂等に代表されるこれらの共重合体、本発明の高分子以外のポリカーボネート、ポリエステルカーボネート、ポリエステル、ポリアミド、ポリフェニレンエーテル、ポリイミド等が挙げられる。中でも、本発明の高分子のガラス転移温度が140℃以上の場合に、ガラス転移温度が100℃以下の高分子をブレンドすると、フィルム成形性や延伸性、柔軟性を改良しながら、フィルムの環境変化による位相差フィルムの光学的特性の変化を抑制する効果が大きい。特には、ポリスチレン、本発明の高分子以外のポリカーボネート、ポリエステルカーボネート、ポリエステルが好ましく、ポリエステルの中でも、フィルム成形性や延伸性、柔軟性付与の効果の大きいポリエチレングリコールやポリプロピレングリコール、ポリテトラメチレングリコールを共重合したポリエステルが好ましい。
 他の構造の高分子をブレンドする比率は特に制限はないが、添加量が多すぎると透明性や波長分散性等の本発明の高分子が有する光学的性能を悪化させたり、環境変化により位相差フィルムの光学的特性が変化したりする可能性があるため、全高分子中10重量%以下が好ましく、5重量%以下が更に好ましく、3重量%以下が特に好ましい。
 本発明の高分子とその他の高分子とのブレンドは、上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して行うことができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
 本発明においては、本発明の高分子に、環境変化による位相差フィルムの光学的特性の変化を抑制するために、エポキシ化合物、イソシアネート化合物、カルボジイミド化合物等の反応性官能基を有する化合物を添加することも有効である。これらの化合物の添加量は多すぎると、ゲル化を招き位相差フィルムの欠陥の原因となったり、光学的特性の低下を招いたりするため、本発明の高分子に対する混合比率としては、本発明の高分子100重量部に対して0.01~5重量部であり、好ましくは0.05~4重量部、より好ましくは0.1~3重量部である。
 本発明の高分子に上記反応性官能基を有する化合物を添加する方法としては、上記化合物成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により本発明の高分子と混合する方法が挙げられるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
 以下に、本発明の高分子にカルボジイミド化合物を添加した樹脂組成物を用いることにより、本発明の位相差フィルムを作製する方法について説明する。
 本発明で用いるカルボジイミド化合物(以下「本発明のカルボジイミド化合物」と称す場合がある。)は、分子中に1個以上のカルボジイミド基を有するカルボジイミド化合物(ポリカルボジイミド化合物を含む)であることが好ましく、一般的に良く知られた方法で合成されたものを使用することができる。例えば、触媒として有機リン系化合物又は有機金属化合物を用い、各種ポリイソシアネートを約70℃以上の温度で、無溶媒又は不活性溶媒中で、脱炭酸縮合反応に付することにより合成したものを用いることができる。
 上記カルボジイミド化合物のうち、モノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易であるという面から、ジシクロヘキシルカルボジイミド或いはジイソプロピルカルボジイミドが好適である。
 また、上記カルボジイミド化合物に含まれるポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができるが、基本的には、従来のポリカルボジイミドの製造方法(例えば、米国特許第2941956号明細書、日本国特公昭47-33279号公報、J.Org.Chem.28,2069-2075(1963)、Chemical Review 1981,Vol.8No.4、p619-621)により、製造されたものを用いることができる。
 ポリカルボジイミド化合物の製造における合成原料である有機ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート,2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等を例示することができる。
 本発明のカルボジイミド化合物の好ましい例としては、4,4’-ジシクロヘキシルメタンカルボジイミド(重合度=2~20)、テトラメチレンキシリレンカルボジイミド(重合度=2~20)、N,N-ジメチルフェニルカルボジイミド(重合度2~20)、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド(重合度=2~20)等が挙げられる。
 これらは、これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の位相差フィルムにおいて、本発明のカルボジイミド化合物の含有量は、本発明の高分子100重量部に対して0.01~5重量部であり、好ましくは0.05~4重量部、より好ましくは0.1~3重量部である。カルボジイミド化合物の含有量が0.01重量部未満では、原反フィルム製膜後、延伸して得られる位相差フィルムの高温条件下での長期使用による光学的特性の変動が大きく、光漏れやカラーシフトを起こして画質が低下する可能性がある。一方、カルボジイミド化合物の含有量が5重量部より多いと、ゲル化を招き位相差フィルムの欠陥の原因となったり、光学的特性の低下を招いたり、透明性を低下させたりする可能性がある。
 本発明の高分子には、重合時や成形時等における分子量の低下や色相の悪化を防止するために熱安定剤を配合することができる。
 かかる熱安定剤としては、通常知られるヒンダードフェノール系熱安定剤および/またはリン系熱安定剤が挙げられる。
 ヒンダードフェノール系化合物としては、具体的には、2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4-メトキシフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,5-ジ-tert-ブチルヒドロキノン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(6-シクロヘキシル-4-メチルフェノール)、2,2’-エチリデン-ビス-(2,4-ジ-tert-ブチルフェノール)、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼンなどが挙げられる。中でも、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]-メタン、n-オクタデシル-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼンが挙げられる。
 リン系化合物としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸及びこれらのエステル等が挙げられ、具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル等が挙げられる。
 これらの熱安定剤は、1種を単独で用いても良く、2種以上を併用してもよい。
 かかる熱安定剤は、例えば、溶融押出し法等の押出機を用いてフィルムを製膜する場合、押出機に前記熱安定剤等を添加して製膜してもよいし、予め押出機を用いて、樹脂組成物中に前記熱安定剤等を添加することもできるし、溶融重合時に添加することもできる。また、溶融重合時に添加した添加量に加えて、上記のような方法で更に追加で配合することができる。即ち、適当量の熱安定剤を配合して、本発明の高分子を得た後に、さらに熱安定剤を配合すると、ヘイズの上昇、着色、及び耐熱性の低下を回避して、さらに多くの熱安定剤を配合でき、色相の悪化の防止が可能となる。
 これらの熱安定剤の配合量は、本発明の高分子を100重量部とした場合、0.0001重量部~1重量部が好ましく、0.0005重量部~0.5重量部がより好ましく、0.001重量部~0.2重量部が更に好ましい。
 また、本発明の高分子には、酸化防止の目的で通常知られた酸化防止剤を配合することもできる。
 かかる酸化防止剤としては、例えばペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、グリセロール-3-ステアリルチオプロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等の1種又は2種以上が挙げられる。
 これら酸化防止剤の配合量は、本発明の高分子を100重量部とした場合、0.0001重量部~0.5重量部が好ましい。
 また、分子の動きを抑制し、高温条件下での長期使用による光学的特性の変動を抑制するために、本発明の高分子を用いた位相差フィルムに、電子線等の高エネルギー線照射をして分子内に架橋構造を構成することができる。
 この時、予め本発明の高分子に、架橋構造を構成しやすいようにジビニルベンゼンやアリル(メタ)アクリレート等の二重結合を有する化合物もしくはそれらの重合体を配合することができ、中でもトリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌル酸等の二重結合基を分子内に2個以上有する化合物を配合することもでき、このような化合物を含むことにより、位相差フィルムに加工した後、熱や電子線等の高エネルギー線照射により分子内に架橋構造を構成し、分子の動きを抑制することが容易になる。
 これら不飽和二重結合基を分子内に2個以上有する化合物の配合量は、本発明の高分子を100重量部とした場合、0.01重量部~5重量部、特に0.05重量部~3重量部が好ましい。
 なお、延伸後のフィルムに電子線を照射する場合の電子線の強度は、好ましくは5kGy以上200kGy以下、より好ましくは10kGy以上100kGy以下である。電子線の照射強度が5kGy未満であると位相差フィルムの高温条件下での長期使用による光学的特性の変動抑制効果が小さく、照射強度が200kGyより大きいと、分子鎖の破断を招き位相差フィルムの強度が低下したり、着色したりする可能性がある。
 更に、本発明の高分子には、本発明の目的を損なわない範囲で、通常用いられる核剤、難燃剤、無機充填剤、衝撃改良剤、発泡剤、染顔料等が含まれても差し支えない。
 上記の添加剤は、本発明の高分子に上記成分を同時に、または任意の順序でタンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の混合機により混合して製造することができるが、中でも押出機、特には二軸押出機により混練することが、分散性向上の観点から好ましい。
[位相差フィルムの作製方法]
 以下に、本発明の高分子を用い、溶融製膜法により原反フィルムを得、これら延伸処理する際の処理条件を調整することにより、本発明の位相差フィルムを作製する方法について説明する。
 本発明の高分子を用いて原反フィルムを製膜する方法としては、溶媒に溶解させてキャストした後、溶媒を除去する流延法、溶媒を用いず溶融製膜する方法、具体的にはTダイを用いた溶融押出法、カレンダー成形法、熱プレス法、共押出法、共溶融法、多層押出、インフレーション成形法等があり、特に限定されないが、流延法は、前述のように残存溶媒による問題があるため、好ましくは溶融製膜法、中でも後の延伸処理のし易さから、Tダイを用いた溶融押出法が好ましい。
 溶融製膜法で原反フィルムを成形する場合、成形温度は好ましくは265℃以下であって、より好ましくは260℃以下、特には258℃以下とすることが好ましい。成形温度が高過ぎると、得られる原反フィルム中の異物や気泡の発生による欠陥が増加したり、原反フィルムが着色したりする可能性がある。ただし、成形温度が低過ぎると本発明の高分子の粘度が高くなりすぎ、原反フィルムの成形が困難となり、厚みの均一な原反フィルムを製造することが困難になる可能性があるので、成形温度の下限は通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上である。
 ここで、原反フィルムの成形温度とは、溶融製膜法における成形時の温度であって、通常、溶融樹脂を押出すダイス出口の温度を測定した値である。
 原反フィルムの厚みに制限はないが、厚すぎると厚み斑が生じやすく、薄すぎると延伸時の破断を招く可能性があるため、通常50μm~200μm、好ましくは70μm~120μmである。また、原反フィルムに厚み斑があると、位相差フィルムの位相差斑を招く可能性があるため、位相差フィルムとして使用する部分の厚みは設定厚み±3μm以下であることが好ましく、設定厚み±2μm以下であることが更に好ましく、設定厚み±1μm以下であることが特に好ましい。
 このようにして得られる原反フィルムは、少なくとも一方向に延伸することにより本発明の位相差フィルムとすることができる。
 その延伸の方法は、自由端延伸、固定端延伸、自由端収縮、固定端収縮等、様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。
 また、延伸方向に関しても、水平方向・垂直方向・厚さ方向、対角方向等、様々な方向や次元に行なうことが可能であり、特に限定されない。
 好ましくは、横一軸延伸方法、縦横同時二軸延伸方法、縦横逐次二軸延伸方法等が挙げられる。
 延伸する手段としては、テンター延伸機、二軸延伸機等、任意の適切な延伸機を用いることができる。
 延伸温度は、目的に応じて、適宜、適切な値が選択され得る。好ましくは、延伸は、原反フィルム(即ち、原反フィルムの製膜材料であるポリマー又は樹脂組成物)のガラス転移温度(Tg)に対し、Tg-20℃~Tg+30℃、好ましくはTg-10℃~Tg+20℃、より好ましくはTg-5℃~Tg+10℃の範囲で行なう。このような条件を選択することによって、位相差値が均一になり易く、かつ、フィルムが白濁しにくくなる。具体的には、上記延伸温度は90℃~210℃であり、さらに好ましくは100℃~200℃であり、特に好ましくは100℃~180℃である。
 延伸倍率は、目的に応じて適宜選択され、未延伸の場合を1倍として、好ましくは1.1倍以上6倍以下、より好ましくは1.5倍以上4倍以下、更に好ましくは1.8倍以上3倍以下であり、特に好ましくは2倍以上2.5倍以下である。延伸倍率が過度に大きいと延伸時の破断を招く可能性があるだけでなく、高温条件下での長期使用による光学的特性の変動抑制効果が小さくなる可能性があり、過度に低いと所望の厚みにおいて意図した光学的特性が付与できなくなる可能性がある。
 延伸速度も目的に応じて適宜選択されるが、下記式で表される歪み速度で通常50%~2000%、好ましくは100%~1500%、より好ましくは200%~1000%、特に好ましくは250%~500%である。延伸速度が過度に大きいと延伸時の破断を招いたり、高温条件下での長期使用による光学的特性の変動が大きくなったりする可能性がある。また、延伸速度が過度に小さいと生産性が低下するだけでなく、所望の位相差を得るのに延伸倍率を過度に大きくしなければならない場合がある。
  歪み速度(%/分)
   ={延伸速度(mm/分)/原反フィルムの長さ(mm)}×100
 また、延伸後加熱炉で熱固定処理を行っても良いし、テンターの幅を制御したり、ロール周速を調整したりして、緩和工程を行っても良い。
 熱固定処理の温度としては、原反フィルム(即ち、原反フィルムの製膜材料であるポリマー又は樹脂組成物)のガラス転移温度(Tg)に対し、60℃~Tg、好ましくは70℃~Tg-5℃の範囲で行う。熱処理温度が高すぎると、延伸により得られた分子の配向が乱れ、所望の位相差から大きく低下してしまう可能性がある。
 また、緩和工程を設ける場合は、延伸によって広がったフィルムの幅に対して、95%~100%に収縮させることで、延伸フィルムに生じた応力を取り除くことができる。この際にフィルムにかける処理温度は、熱固定処理温度と同様である。
 上記のような熱固定処理や緩和工程を行うことで、高温条件下での長期使用による光学的特性の変動を抑制することができる。
 本発明の位相差フィルムは、このような延伸工程における処理条件を適宜選択・調整することによって作製することができる。
 また、位相差フィルムには、本発明の高分子の製造法や原反フィルムの製造法により塩素が含まれることがある。特に高分子の製造法として界面法を採用したり、原反フィルムの製造法として流延法を採用したりすると、塩化メチレンやクロロベンゼン等が残存溶媒の形態で高分子に、ひいては位相差フィルムに含まれる可能性があるが、含塩素溶媒が含まれていると、原反製膜や延伸操作の際に揮発する含塩素成分により、製膜装置や延伸装置の腐食や破損を招いたり、位相差板として組み立てた後に他の部材に悪影響を与えたりする場合がある。さらに位相差フィルム中の残存溶媒は可塑剤的に働くため、温度や湿度等の外部環境変化によって、光学的特性の変化を招く場合があるため、本発明の位相差フィルム中に含まれる塩素含有量は、好ましくは塩素原子として50重量ppm以下、より好ましくは20重量ppm以下、更に好ましくは10重量ppm以下、特には5重量ppm以下であることが好適である。
 含塩素溶媒とは、分子構造中に塩素を含む有機溶媒であり、例えば、塩化メチレン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,2,2-テトラクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素置換炭化水素化合物が挙げられる。
 塩素含有溶媒は大半が法規制の対象であることから、本発明の位相差フィルム中の塩素含有溶媒の含有量は少ない方が好ましいが、通常50重量ppm以下、より好ましくは20重量ppm以下、更に好ましくは10重量ppm以下、特に好ましくは5ppm重量以下、好適には1重量ppm以下である。
 残存溶媒を低減する方法としては、高分子の製造法として溶融重合法を採用することの他、得られた高分子を、押出機を用いて脱揮する方法、得られた高分子を減圧または熱風、熱窒素等で乾燥する方法、原反製膜に使用する押出機で脱揮しつつ製膜する方法等が挙げられる。
 他方、本発明の高分子を溶融重合法で製造すると、副生するフェノール等のモノヒドロキシ化合物が位相差フィルム中に含まれることがあるが、モノヒドロキシ化合物も上記塩素系溶媒と同様、可塑剤的に働くため、温度や湿度等の外部環境変化によって、光学的特性の変化を招く場合がある。従って、本発明の位相差フィルムに含まれるモノヒドロキシ化合物の濃度の上限は、通常3000重量ppm、好ましくは2000重量ppm、更に好ましくは1500重量ppm、特に好ましくは1000重量ppmである。下限については、上記問題を解決するために少ない方がよいが、溶融重合法で得られた高分子に残存するモノヒドロキシ化合物をゼロにすることは困難であること、除去のためには過大な労力が必要であることから、通常1重量ppm、好ましくは10重量ppm、更に好ましくは100重量ppmである。
 本発明の位相差フィルム中に残存するモノヒドロキシ化合物を低減するためには、原料となる本発明の高分子を製造する際に最終重合槽の圧力を3kPa以下、好ましくは2kPa以下にしたり、最終重合反応器から溶融状態で単数または複数のベント口を有する一軸または二軸の押出機に樹脂を供給し、押出機のベント口を減圧にしてモノヒドロキシ化合物を除去したり、原反製膜に使用する押出機を、ベント口を有する構造にして減圧で脱揮しつつ製膜したり、原反製膜や延伸後に真空下や熱風等で処理したりする方法等が挙げられ、中でもこれらの2つ以上の操作の組み合わせが有効である。
〔円偏光板及び画像表示装置〕
 本発明の円偏光板は、本発明の位相差フィルムを偏光板に積層して構成されるものである。
 上記の偏光板としては、公知の様々な構成のものを採用することができる。例えば、従来公知の方法により、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架橋、延伸、乾燥することによって調製したもの等が使用できる。
 本発明の画像表示装置は、このような本発明の円偏光板を用いたものであり、温度条件や湿度条件が厳しい環境下の長期使用においても、画質の低下の問題がないという特長を生かして、各種の液晶用ディスプレイ機器やモバイル機器等に用いられ、特に次世代の画像表示装置として最近脚光を浴びている有機ELディスプレイにおいて好適に用いられる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
 以下において、ポリカーボネート、ポリエステルカーボネート、ポリカーボネート樹脂組成物及び原反フィルム、位相差フィルムの特性評価は次の方法により行った。なお、特性評価手法は以下の方法に限定されるものではなく、当業者が適宜選択することができる。
[ポリカーボネート、ポリエステルカーボネート、ポリカーボネート樹脂組成物の評価]
 (1)光弾性係数
<サンプル作製>
 80℃で5時間真空乾燥をしたポリカーボネート、ポリエステルカーボネート、ポリカーボネート樹脂組成物サンプル4.0gを、幅8cm、長さ8cm、厚さ0.5mmのスペーサーを用いて、熱プレスにて熱プレス温度200~250℃で、予熱1~3分、圧力20MPaの条件で1分間加圧後、スペーサーごと取り出し、水管冷却式プレスにて圧力20MPaで3分間加圧冷却してシートを作製した。このシートから幅5mm、長さ20mmにサンプルを切り出した。
<測定>
 He-Neレーザー、偏光子、補償板、検光子、及び光検出器からなる複屈折測定装置と振動型粘弾性測定装置(レオロジー社製「DVE-3」)を組み合わせた装置を用いて測定した。(詳細は、日本レオロジー学会誌Vol.19,p93-97(1991)を参照。)
 切り出したサンプルを粘弾性測定装置に固定し、25℃の室温で貯蔵弾性率E’を周波数96Hzにて測定した。同時に、出射されたレーザー光を偏光子、試料、補償板、検光子の順に通し、光検出器(フォトダイオード)で拾い、ロックインアンプを通して角周波数ω又は2ωの波形について、その振幅とひずみに対する位相差を求め、ひずみ光学係数O’を求めた。このとき、偏光子と検光子の方向は直交し、またそれぞれ、試料の伸長方向に対してπ/4の角度をなすように調整した。
 光弾性係数Cは、貯蔵弾性率E’とひずみ光学係数O’を用いて次式より求めた。
       C=O’/E’
(2)還元粘度
 ポリカーボネート樹脂の還元粘度は森友理化工業社製ウベローデ型粘度管を用いて、溶媒として、塩化メチレンを用い、温度20.0℃±0.1℃で測定した。濃度は0.6g/dLになるように、精密に調整した。
 溶媒の通過時間t0、溶液の通過時間tから、下記式:
   ηrel=t/t0
より相対粘度ηrelを求め、
 相対粘度ηrelから、下記式:
   ηsp=(η-η0)/η0=ηrel-1
より比粘度ηspを求めた。
 比粘度ηspを濃度c(g/dL)で除して、下記式:
   ηred=ηsp/c
より還元粘度(換算粘度)ηredを求めた。
 この数値が高いほど分子量が大きい。
(3)高分子のガラス転移温度
 本発明の高分子のガラス転移温度は、示差走査熱量計(エスアイアイ・ナノテクノロジー社製、DSC220)を用いて、位相差フィルム約10mgを10℃/minの昇温速度で加熱して測定し、JIS-K7121(1987)に準拠して、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度とした。
(4)高分子中のモノマーユニットに由来する構造単位比の測定 
 高分子中の各ジヒドロキシ化合物に由来する構造単位比、各ジカルボン酸化合物に由来する構造単位比は、高分子30mgを秤取し、重クロロホルム約0.7mLに溶解して溶液とし、これを内径5mmのNMR用チューブに入れ、日本電子社製JNM-AL400(共鳴周波数400MHz)を用いて常温でH-NMRスペクトルを測定し、各成分に由来する構造単位に基づくシグナル強度比より求めた。
(5)高分子中の塩素含有量
 高分子試料を石英ボートに秤量し、全有機ハロゲン測定装置TOX-100(三菱化学アナリテック社製)で測定した。この測定値を位相差フィルムの塩素含有量とした。
(6)高分子中の塩化メチレン含有量
 高分子試料約10gを精秤して、加熱炉に入れて350℃に加熱し、加熱炉内に窒素ガスを40mL/minの流量で流した。加熱により発生したガスを窒素ガスに同伴させて、20mLのジオキサンを入れた吸収管に導いた。吸収管は13℃に冷却した。120分間、窒素ガスを流通させた後、吸収液をガスクロマトグラフィーで分析し、塩化メチレンの含有量を測定した。この測定値を位相差フィルムの塩化メチレン含有量とした。
(7)高分子中のフェノール含有量
 高分子試料約1gを精秤し、塩化メチレン5mLに溶解して溶液とした後、総量が25mLになるようにアセトンを添加して再沈殿処理を行った。該溶液を0.2μmディスクフィルターでろ過して、液体クロマトグラフィーにて定量を行った。この測定値を位相差フィルムのフェノール含有量とした。
[原反フィルムおよび位相差フィルムの評価]
(1)フィルム厚み、厚み斑
 尾崎製作所(株)製 製品名「PEACOCK」の接触式厚み測定機を使用して測定した。
(2)原反フィルム溶融製膜性
 溶融製膜性を評価するために、高分子の溶融製膜時において以下の観察、評価を行った。
  ○:目視により、フィルム中の異物、気泡の有無を観察した際に欠陥が無いもの。
  ×:目視により、フィルム中の異物、気泡の有無を観察した際に欠陥があるもの。
(3)位相差・複屈折
 原反フィルムを一軸延伸を行って得られたフィルムを幅4cm、長さ4cmに切り出したサンプルについて、[Axometrics社製 製品名「AxoScan」]を用いて、23℃の室内で、波長450nmの位相差R(450)及び550nmの位相差R(550)及び波長650nmの位相差R(650)を測定した。そしてそれぞれ位相差R(450)と位相差R(550)の比、位相差R(650)と位相差R(550)の比を計算した。
 位相差は、延伸工程後の位相差フィルムについて、位相差R(450)、位相差R(550)及び位相差R(650)を測定すると共に、位相差フィルムを90℃で48時間保持した後の位相差R(450)、位相差R(550)及び位相差R(650)を測定した。
 また、前記位相差R(550)を、前記一軸延伸を行って得られたフィルムの厚み(t)で除し、下記式に従い、波長550nmでの複屈折を求めた。
   複屈折(Δn1)=R(550)/t
(4)ムラ評価
 実施例及び比較例において得られた位相差フィルムの各々と偏光板(日東電工社製 商品名NPF TEG1465DUHC、粘着剤層を除いた厚み112μm)とを位相差フィルムの遅相軸と偏光子の吸収軸が45℃となるように、アクリル系粘着剤(20μm)を介して貼り合せることにより円偏光板を作製した。この円偏光板を同アクリル系粘着剤(厚み20μm)を介して有機ELパネル(LGディスプレイ社製 商品名15EL9500)の視認側に貼り合せて表示パネル装置を作成した。尚、評価に用いた有機ELパネルは、表面に貼り合わされてある反射防止フィルムを予め剥離してから使用した。評価方法は下記に示すように行った。
 作製したパネルを、90℃の恒温オーブン中に48時間保管(加熱試験)した後、目視にて熱処理前後の画面ムラと色調について確認を行った。
 ○:目視観察にて画面上にムラが確認できず、シャープな黒色が得られた。
 △:目視観察にて画面上にムラは確認できなかったが、黒色鮮鋭性が低下していた。
 ▲:目視観察にて画面の黒色鮮鋭性は低下していなかったが、ムラが確認された。
 ×:目視観察にて画面上にムラが確認され、黒色鮮鋭性が低下していた。
(5)ガラス転移温度(Tg)
 前述した高分子のガラス転移温度と同じ方法で、原反フィルムおよび位相差フィルムのガラス転移温度を測定した。
 以下の合成例において、以下の化合物を用いた。
・ISB:イソソルビド[ロケットフルーレ社製、商品名:POLYSORB]
・BHEPF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン[大阪ガスケミカル(株)製]
・PEG#1000:ポリエチレングリコール 数平均分子量1000[三洋化成工業(株)製]
・PEG#2000:ポリエチレングリコール 数平均分子量2000[三洋化成工業(株)製]
・DEG:ジエチレングリコール[三菱化学(株)製]
・BPA:ビスフェノールA[三菱化学(株)製]
・DMT:テレフタル酸ジメチル[東京化成工業(株)製]
・CHDM:1,4-シクロヘキサンジメタノール[新日本理化(株)製、商品名:SKY CHDM]
・SPG:スピログリコール[三菱ガス化学(株)製]
・DPC:ジフェニルカーボネート[三菱化学(株)製]
[合成例1]
 イソソルビド(以下、「ISB」と略記することがある。)を445.1重量部、9,9-(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(以下、「BHEPF」と略記することがある。)を906.2重量部、分子量1000のポリエチレングリコール(以下、「PEG#1000」と略記することがある。)15.4重量部、ジフェニルカーボネート(以下、「DPC」と略記することがある。)を1120.4重量部、及び触媒として炭酸セシウム(0.2重量%水溶液)6.27重量部を、それぞれ反応器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、反応容器の熱媒温度を150℃にし、必要に応じて攪拌しながら、原料を溶解させた(約15分)。次いで、反応容器内の圧力を常圧から13.3kPaにし、反応容器の熱媒温度を190℃まで1時間で上昇させながら、発生するフェノールを反応容器外へ抜き出した。
 反応容器内温度を190℃で15分保持した後、第2段目の工程として、反応容器内の圧力を6.67kPaとし、反応容器の熱媒温度を230℃まで、15分で上昇させ、発生するフェノールを反応容器外へ抜き出した。攪拌機の攪拌トルクが上昇してくるので、8分で250℃まで昇温し、さらに発生するフェノールを取り除くため、反応容器内の圧力を200Pa以下に減圧した。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出した後に、ペレット化を行い、BHEPF/ISB/PEG#1000=40.3mol%/59.4mol%/0.3mol%のポリカーボネートAを得た。
[合成例2]
 合成例1においてISBを489.7重量部、BHEPFを856重量部、PEG#1000を16重量部、DPCを1162.2重量部、触媒として炭酸セシウム水溶液を6.5重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/PEG#1000=36.7mol%/63.0mol%/0.3mol%のポリカーボネートBを得た。
[合成例3]
 合成例1においてISBを432重量部、BHEPFを906.3重量部、PEG#1000を30.3重量部、DPCを1104.1重量部、触媒として炭酸セシウム水溶液を6.2重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/PEG#1000=40.9mol%/58.5mol%/0.6mol%のポリカーボネートCを得た。
[合成例4]
 合成例1においてISBを444.7重量部、BHEPFを906.8重量部、PEG#2000を15.4重量部、DPCを1118.5重量部、触媒として炭酸セシウム水溶液を6.3重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/PEG#2000=40.4mol%/59.45mol%/0.15mol%のポリカーボネートDを得た。
[合成例5]
 合成例1においてISBを432.4重量部、BHEPFを906.3重量部、PEG#2000を30.2重量部、DPCを1101.4重量部、触媒として炭酸セシウム水溶液を6.2重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/PEG#2000=41.0mol%/58.7mol%/0.3mol%のポリカーボネートEを得た。
[合成例6]
 合成例1においてISBを433.4重量部、BHEPFを934.1重量部、DPCを1113.5重量部、触媒として炭酸セシウム水溶液を6.2重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB=41.8mol%/58.2mol%のポリカーボネートFを得た。このポリカーボネート樹脂は溶融粘度が高く、反応器からの抜き出しに長時間を要した。
[合成例7]
 合成例1においてISBを357.2重量部、BHEPFを896.8重量部、ジエチレングリコール(以下、「DEG」と略記することがある。)を103.9重量部、DPCを1194.8重量部、触媒として炭酸セシウム水溶液を6.7重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/DEG=37.4mol%/44.7mol%/17.9mol%のポリカーボネートGを得た。
[合成例8]
 合成例1においてISBを390.9重量部、BHEPFを920.5重量部、PEG#1000を62.9重量部、DPCを1056.8重量部、触媒として炭酸セシウム水溶液を5.9重量部とした以外は、合成例1と同様に実施し、BHEPF/ISB/PEG#1000=43.4mol%/55.3mol%/1.3mol%のポリカーボネートHを得た。
[合成例9]
 ISBを397.3重量部、BHEPFを960.1重量部、PEG#1000を14.6重量部、DPCを1065.1重量部、触媒として酢酸マグネシウム4水和物を8.45×10-3重量部を、それぞれ反応器に投入し、窒素雰囲気下にて、反応の第1段目の工程として、反応容器の熱媒温度を150℃にし、必要に応じて攪拌しながら、原料を溶解させた(約15分)。次いで、反応器内温を220℃まで上昇させ、220℃に到達と同時に圧力を常圧から13.3kPaに90分間かけて減圧した。この間、内温は220℃に保持した。発生するフェノールを反応容器外へ抜き出した。第2段目の工程として、13.3kPaに到達した後、内温を15分かけて240℃まで上昇させた。この間、圧力は13.3kPaに保持した。内温が240℃に到達した後、15分間かけて圧力を13.3kPaから200Pa以下に減圧した。所定の攪拌トルクに到達後、反応を終了し、生成した反応物を水中に押し出した後に、ペレット化を行い、BHEPF/ISB/PEG#1000=44.5mol%/55.2mol%/0.3mol%のポリカーボネートIを得た。
[合成例10]
 BHEPFを804.9重量部、BPAを132.3重量部、DPCを532.9重量部、及び触媒として酢酸カルシウム1水和物を1.28×10-2重量部を用い、最終の反応器内温を260℃とした以外は合成例9と同様に行い、BHEPF/BPA=76.0mol%/24.0mol%のポリカーボネートJを得た。
[合成例11]
 BHEPFを868.4重量部、DMTを149.5重量部、DPCを284.7重量部、及び触媒としてテトラブトキシチタンを1.35×10-1重量部を用い、最終の反応器内温を250℃とした合成例9と同様に行い、BHEPF/DMT=72.0mol%/28.0mol%のポリエステルカーボネートKを得た。
[合成例12]
 ISBを267.4重量部、BHEPFを571.1重量部、DEGを64.3重量部、DPCを808.7重量部、触媒として酢酸マグネシウム4水和物を8.02×10-3重量部とした以外は合成例9と同様に行い、BHEPF/ISB/DEG=34.8mol%/49.0mol%/16.2mol%のポリカーボネートLを得た。
[合成例13]
 ISBを288.1重量部、BHEPFを604.2重量部、CHDMを17.5重量部、DPCを750.9重量部、触媒として酢酸マグネシウム4水和物を2.23×10-2重量部とした以外は合成例9と同様に行い、BHEPF/ISB/CHDM=39.7mol%/56.8mol%/3.5mol%のポリカーボネートMを得た。
[合成例14]
 BHEPFを505.0重量部、SPGを428.4重量部、DPCを559.2重量部、酢酸カルシウム1水和物を9.02×10-2重量部をそれぞれ反応器に投入し、十分に窒素置換した(酸素濃度0.0005~0.001vol%)。続いて熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温を開始後40分で内温を220℃にし、内温が220℃に到達した時点でこの温度を保持するように制御すると同時に、減圧を開始し、220℃に到達してから90分で13.3kPa(絶対圧力、以下同様)にして、この圧力を保持するようにしながら、さらに30分間保持した。重合反応とともに副生するフェノール蒸気は、100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を重合反応器に戻し、凝縮しないフェノール蒸気は続いて45℃の凝縮器に導いて回収した。
 このようにしてオリゴマー化させた内容物を、一旦大気圧にまで復圧させた後、撹拌翼および100℃に制御された還流冷却器を具備した別の重合反応装置に移し、昇温および減圧を開始して、50分で内温260℃、圧力200Paにした。その後、20分かけて圧力133Pa以下にして、所定撹拌動力になった時点で復圧し、内容物をストランドの形態で抜出そうとしたところ、ゲル化が起こり、内容物が一部しか抜き出せなかった。
 合成例1~13で得られたポリカーボネートA~Mの特性の評価結果を表1に示す。
 なお、合成例14のポリカーボネートのモノマーユニットに由来する構造単位比はBHEPF/SPG=45.0mol%/55.0mol%であった。
Figure JPOXMLDOC01-appb-T000009
[実施例1]
 合成例1で得たポリカーボネートAを80℃で5時間真空乾燥した後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)及び巻取機を備えたフィルム製膜装置を用いて、厚み100μmの原反フィルムを作製した。このフィルムから幅6cm、長さ6cmの試料を切り出し、厚み斑を測定した。この試料を、バッチ式二軸延伸装置(東洋精機社製)で、延伸温度を127~177℃で調節しながらR(550)が130±20nmとなるように、延伸速度720mm/分(ひずみ速度1200%/分)で、1×2.0倍の一軸延伸を行い、位相差フィルムを得た。このとき延伸方向に対して垂直方向は、保持した状態(延伸倍率1.0)で延伸を行った。
 得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例2]
 ポリカーボネートAの代りに、合成例2で得たポリカーボネートBを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例3]
 ポリカーボネートAの代りに、合成例3で得たポリカーボネートCを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例4]
 ポリカーボネートAの代りに、合成例4で得たポリカーボネートDを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例5]
 ポリカーボネートAの代りに、合成例5で得たポリカーボネートEを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例6]
 合成例7で得たポリカーボネートG99.5重量部に、カルボジイミド化合物(日清紡績社製、商品名:カルボジライトLA-1)0.5重量部を、ベント口を2つ有する日本製鋼社製2軸押出機(TEX30HSS-32)を用いて、ベント口から真空ポンプを用いて脱揮しながら、樹脂温度230℃で押出し、水で冷却固化させた後、回転式カッターでペレット化した。
 得られたペレットを実施例1と同様に乾燥した後、同様の方法で製膜、フェノール等の除去、延伸を行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例7]
 ポリカーボネートAの代りに、合成例6で得たポリカーボネートFを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例8]
 合成例9で得たポリカーボネートIを80℃で5時間真空乾燥した後、単軸押出機(いすず化工機社製、スクリュー径25mm、シリンダー設定温度:220℃)、Tダイ(幅200mm、設定温度:220℃)、チルロール(設定温度:120~130℃)及び巻取機を備えたフィルム製膜装置を用いて、厚み95μmの原反フィルムを作製した。このフィルムから幅12cm、長さ12cmの試料を切り出し、厚み斑を測定した。この試料を100℃で3日間真空乾燥させ、原反フィルム中に含まれるフェノール等の揮発成分を除いた。このように処理した試料を、バッチ式二軸延伸装置(ブルックナー社製)で、延伸温度を127~177℃で調節しながらR(550)が130±20nmとなるように、延伸速度360mm/分(ひずみ速度300%/分)で、1×2.0倍の一軸延伸を行い、位相差フィルムを得た。このとき延伸方向に対して垂直方向は、保持せずに延伸を行った。
 得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例9]
 合成例9で得たポリカーボネートI99重量部に、ポリスチレン樹脂(PSジャパン社製、商品名:G9504)1重量部を、ベント口を2つ有する日本製鋼社製2軸押出機(TEX30HSS-32)を用いて、ベント口から真空ポンプを用いて脱揮しながら、樹脂温度230℃で押出し、水で冷却固化させた後、回転式カッターでペレット化した。
 得られたペレットを実施例8と同様に乾燥した後、同様の方法で製膜し、真空処理によるフェノール等の除去、延伸を行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例10]
 合成例9で得たポリカーボネートI99重量部に、ビスフェノールAをジヒドロキシ化合物成分とするポリカーボネート(三菱化学社製、商品名:ノバレックス7022J)1重量部を、ベント口を2つ有する日本製鋼社製2軸押出機(TEX30HSS-32)を用いて、ベント口から真空ポンプを用いて脱揮しながら、樹脂温度230℃で押出し、水で冷却固化させた後、回転式カッターでペレット化した。
 得られたペレットを実施例8と同様に乾燥した後、同様の方法で製膜し、真空処理によるフェノール等の除去、延伸を行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例11]
 合成例9で得たポリカーボネートI99重量部に、1,4-ブタンジオール、テレフタル酸、ポリテトラメチレングリコールを構成成分とするポリエステル系エラストマー(三菱化学(株)社製、商品名:プリマロイCP300H)1重量部を、ベント口を2つ有する日本製鋼社製2軸押出機(TEX30HSS-32)を用いて、ベント口から真空ポンプを用いて脱揮しながら、樹脂温度230℃で押出し、水で冷却固化させた後、回転式カッターでペレット化した。
 得られたペレットを実施例8と同様に乾燥した後、同様の方法で製膜し、真空処理によるフェノール等の除去、延伸を行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例12]
 合成例9で得たポリカーボネートI99重量部に、ポリエステル系エラストマー(EASTMAN Chemical社製、商品名:ECDEL9966)1重量部を、ベント口を2つ有する日本製鋼社製2軸押出機(TEX30HSS-32)を用いて、ベント口から真空ポンプを用いて脱揮しながら、樹脂温度230℃で押出し、水で冷却固化させた後、回転式カッターでペレット化した。
 得られたペレットを実施例8と同様に乾燥した後、同様の方法で製膜し、真空処理によるフェノール等の除去、延伸を行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例13]
 ポリカーボネートIの代りに、合成例10で得たポリカーボネートJを用いて、厚み107μmの押出フィルムを得た以外は、実施例8と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表2に示した。
[実施例14]
 ポリカーボネートIの代りに、合成例11で得たポリエステルカーボネートKを用いて、厚み99μmの押出フィルムを得た以外は、実施例8と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例15]
 ポリカーボネートIの代りに、合成例12で得たポリカーボネートLを用いて、厚み103μmの押出フィルムを得た以外は、実施例8と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例16]
 ポリカーボネートIの代りに、合成例13で得たポリカーボネートMを用いて、厚み100μmの押出フィルムを得た以外は、実施例8と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例17]
 合成例12で得たポリカーボネートLを用い、原反フィルムの真空乾燥によるフェノール除去を行わなかった以外は、実施例15と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[実施例18]
 ポリカーボネートIの代りに、合成例8で得たポリカーボネートHを用いて、厚み92μmの押出フィルムを得た以外は、延伸実施例8と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて、熱処理温度100℃、熱処理時間1分間の熱処理を行った。得られた熱処理後の位相差フィルムについて評価を行い、結果を表3に示した。
[比較例1]
 ポリカーボネートAの代りに、合成例7で得たポリカーボネートGを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[比較例2]
 ポリカーボネートAの代りに、合成例8で得たポリカーボネートHを用いた以外は、実施例1と同様に行い、位相差フィルムを得た。得られた位相差フィルムについて評価を行い、結果を表3に示した。
[比較例3]
 合成例12で得たポリカーボネートLを塩化メチレンに溶解させ、15重量%溶液を作製した。ステンレス製の板の上に、マイクロメーター付フィルムアプリケーター(テスター産業社製 SA-204)を用いて、製膜した。ステンレス板ごと熱風乾燥器に入れて、40℃で10分間、その後80℃で20分間乾燥した。ステンレス製板よりフィルムを剥がし、キャストフィルムを得た。バッチ式二軸延伸装置(ブルックナー社製)で、延伸温度を127~177℃で調節しながらR(550)が130±20nmとなるように、延伸速度360mm/分(ひずみ速度300%/分)で、1×2.0倍の一軸延伸を行い、位相差フィルムを得た。このとき延伸方向に対して垂直方向は、保持せずに延伸を行った。得られた位相差フィルムについて評価を行い、結果を表3に示した。残存塩化メチレンや残存フェノールが多く、熱処理後の波長分散性の変化が大きく、ムラや黒色先鋭性の低下が見られた。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表2,3より、本発明で規定される位相差フィルムは、高温条件下での長期使用によっても位相差の変動が小さく、温度に対する安定性に優れ、画像にムラが無く、シャープな黒色が得られることが分かる。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2011年9月14日出願の日本特許出願(特願2011-200766)および2012年8月1日出願の日本特許出願(特願2012-171498)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (17)

  1.  ガラス転移温度が110℃以上180℃以下である、ポリカーボネートおよびポリエステルカーボネートから選ばれる少なくとも1種の高分子を成形して得られ、
    下記式(A)及び(B)の関係を満たす位相差フィルム。
     式(A):0.7<R(450)/R(550)<1
     式(B):|R(450)/R(550)-R(450)/R(550)|<0.020
    (ただし、上記R(450)及びR(550)はそれぞれ波長450nm及び550nmにおけるフィルム面内の位相差値を表し、上記R(450)及びR(550)はそれぞれ温度90℃において48時間放置した後の波長450nm及び550nmにおけるフィルム面内の位相差値を表す。)
  2.  下記式(C)及び(D)の関係を満たす、請求項1に記載の位相差フィルム。
     式(C):1<R(650)/R(550)<1.2
     式(D):|R(650)/R(550)-R(650)/R(550)|<0.010
    (ただし、上記R(650)は波長650nmにおけるフィルム面内の位相差値を表し、前記R(650)は温度90℃において48時間放置した後の波長650nmにおけるフィルム面内の位相差値を表す。)
  3.  前記高分子が、下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含む、請求項1または請求項2に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、R~Rはそれぞれ独立に、水素原子、置換若しくは無置換の炭素数1~炭素数20のアルキル基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキル基、または、置換若しくは無置換の炭素数6~炭素数20のアリール基を表し、それぞれのベンゼン環に4つある置換基のそれぞれとして、同一の又は異なる基が配されている。X及びXはそれぞれ独立に、置換若しくは無置換の炭素数2~炭素数10のアルキレン基、置換若しくは無置換の炭素数6~炭素数20のシクロアルキレン基、または、置換若しくは無置換の炭素数6~炭素数20のアリーレン基を表す。m及びnはそれぞれ独立に0~5の整数である。)
  4.  前記高分子がジカルボン酸化合物に由来する構造単位を含む、請求項3に記載の位相差フィルム。
  5.  前記高分子が、前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物に由来する構造単位を含む、請求項3または請求項4に記載の位相差フィルム。
  6.  前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物が、ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有するジヒドロキシ化合物である、請求項5に記載の位相差フィルム。
  7.  前記高分子に含まれる、アセタール構造を有するジヒドロキシ化合物に由来する構造単位が、全ジヒドロキシ化合物に由来する構造単位に対し10mol%以下である、請求項6に記載の位相差フィルム。
  8.  前記ヒドロキシ基の少なくとも1つのβ位またはγ位にエーテル性酸素原子を有するジヒドロキシ化合物が、下記式(2)または(3)で表される化合物から選ばれる少なくとも1種の化合物である、請求項6または請求項7に記載の位相差フィルム。
    Figure JPOXMLDOC01-appb-C000002
       H-(O-R-OH      (3)
    (上記式(3)中、Rは置換若しくは無置換の炭素数2~炭素数10のアルキレン基を表し、pは2~50の整数である。)
  9.  前記式(1)で表されるジヒドロキシ化合物とは異なるジヒドロキシ化合物が、芳香族ジヒドロキシ化合物である、請求項5から請求項8の何れか1項に記載の位相差フィルム。
  10.  前記芳香族ジヒドロキシ化合物が、2,2-ビス(4-ヒドロキシフェニル)プロパンである、請求項9に記載の位相差フィルム。
  11.  塩素含有量が、塩素原子の重量として50重量ppm以下である、請求項1から請求項10の何れか1項に記載の位相差フィルム。
  12.  モノヒドロキシ化合物の含有量が、2000重量ppm以下である、請求項1から請求項11の何れか1項に記載の位相差フィルム。
  13.  前記高分子の光弾性係数が45×10-12Pa-1以下である、請求項1から請求項12の何れか1項に記載の位相差フィルム。
  14.  前記高分子のガラス転移温度が125℃以上150℃以下である、請求項1から請求項13の何れか1項に記載の位相差フィルム。
  15.  請求項1から請求項14の何れか1項に記載の位相差フィルムと、偏光板とを積層して構成される円偏光板。
  16.  請求項15に記載の円偏光板を有する画像表示装置。
  17.  前記画像表示装置が、有機ELを用いたものである、請求項16に記載の画像表示装置。
PCT/JP2012/073527 2011-09-14 2012-09-13 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置 WO2013039178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280055690.XA CN103930807B (zh) 2011-09-14 2012-09-13 相位差膜、以及使用其的圆偏振片及图像显示装置
KR1020147009911A KR101945075B1 (ko) 2011-09-14 2012-09-13 위상차 필름, 그리고 이것을 사용한 원편광판 및 화상 표시 장치
EP12832138.7A EP2757395B1 (en) 2011-09-14 2012-09-13 Phase difference film, circularly polarizing plate using same, and image display device
US14/211,777 US20140285888A1 (en) 2011-09-14 2014-03-14 Retardation film, and circularly polarizing plate and image display device each using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011200766 2011-09-14
JP2011-200766 2011-09-14
JP2012171498A JP2013076981A (ja) 2011-09-14 2012-08-01 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP2012-171498 2012-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/211,777 Continuation US20140285888A1 (en) 2011-09-14 2014-03-14 Retardation film, and circularly polarizing plate and image display device each using the same

Publications (1)

Publication Number Publication Date
WO2013039178A1 true WO2013039178A1 (ja) 2013-03-21

Family

ID=47883395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073527 WO2013039178A1 (ja) 2011-09-14 2012-09-13 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置

Country Status (7)

Country Link
US (1) US20140285888A1 (ja)
EP (1) EP2757395B1 (ja)
JP (1) JP2013076981A (ja)
KR (1) KR101945075B1 (ja)
CN (1) CN103930807B (ja)
TW (1) TWI535755B (ja)
WO (1) WO2013039178A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128954A1 (ja) * 2012-02-27 2013-09-06 日東電工株式会社 位相差フィルム及びその製造方法、偏光板、及び表示装置
WO2014003189A1 (ja) * 2012-06-29 2014-01-03 日東電工株式会社 円偏光板および有機elパネル
EP2808317A1 (en) * 2013-05-28 2014-12-03 Samsung Electro-Mechanics Co., Ltd. Fluorene derivatives and lens using the same
WO2017002886A1 (ja) * 2015-06-30 2017-01-05 三菱化学株式会社 ポリカーボネート樹脂組成物、その製造方法、成形体
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
WO2018003154A1 (ja) * 2016-06-30 2018-01-04 デンカ株式会社 広視野角高コントラスト光学補償フィルム
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
WO2020170711A1 (ja) * 2019-02-19 2020-08-27 セントラル硝子株式会社 ヘッドアップディスプレイ装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076982A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP2014044394A (ja) * 2012-03-30 2014-03-13 Nitto Denko Corp 長尺位相差フィルム、円偏光板及び有機elパネル
JP6554852B2 (ja) * 2014-03-28 2019-08-07 三菱ケミカル株式会社 偏光子保護フィルム
KR102442909B1 (ko) 2015-03-02 2022-09-15 삼성디스플레이 주식회사 편광판 및 이를 포함하는 표시장치
KR102436821B1 (ko) * 2016-11-30 2022-08-26 니폰 제온 가부시키가이샤 광학 적층체, 원 편광판, 터치 패널 및 화상 표시 장치
KR102577308B1 (ko) * 2017-09-28 2023-09-12 에스케이케미칼 주식회사 고내열 폴리카보네이트 에스테르 및 이의 제조방법
KR20190090364A (ko) * 2018-01-24 2019-08-01 에스케이케미칼 주식회사 생물기반 폴리카보네이트 에스테르 및 이의 제조방법
EP3926000B1 (en) * 2019-02-13 2024-04-03 Teijin Limited Polycarbonate resin composition, and optical film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JP3325560B2 (ja) 1998-10-30 2002-09-17 帝人株式会社 位相差フィルム及びそれを用いた光学装置
WO2006041190A1 (ja) 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
JP2009029879A (ja) * 2007-07-25 2009-02-12 Toray Ind Inc 光学用樹脂及びこれを含有したフィルム
WO2010064721A1 (ja) 2008-12-05 2010-06-10 帝人化成株式会社 光学フィルム
JP2010134232A (ja) * 2008-12-05 2010-06-17 Teijin Chem Ltd 光学フィルム
WO2011062163A1 (ja) * 2009-11-17 2011-05-26 三菱化学株式会社 ポリカーボネート樹脂及びそれよりなる透明フィルム
JP2011150325A (ja) * 2009-12-22 2011-08-04 Mitsubishi Chemicals Corp 位相差フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178350B2 (ja) * 1998-09-29 2008-11-12 三菱瓦斯化学株式会社 新規なポリカーボネート樹脂
JP4739571B2 (ja) * 2001-04-18 2011-08-03 帝人化成株式会社 延伸フィルム
CA2459177A1 (en) * 2002-06-27 2004-01-08 Teijin Limited Polycarbonate-based oriented film and retardation film
JP2006133719A (ja) * 2004-10-07 2006-05-25 Nitto Denko Corp 位相差フィルム一体型偏光板及び位相差フィルム一体型偏光板の製造方法
EP1898238A4 (en) * 2005-05-25 2017-04-05 Toray Industries, Inc. Retardation film and polyester resin for optical use
CN101416082B (zh) * 2006-06-05 2012-07-04 帝人化成株式会社 聚碳酸酯树脂薄膜及其制造方法
JP2009271094A (ja) * 2006-08-23 2009-11-19 Mgc Filsheet Co Ltd プラスチックレンズ
US8378055B2 (en) * 2009-07-24 2013-02-19 Teijin Chemicals, Ltd. Polyester carbonate copolymer for optical lens and optical lens
WO2012153738A1 (ja) * 2011-05-09 2012-11-15 三菱化学株式会社 ポリカーボネート樹脂及びそれよりなる透明フィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (ja) 1968-12-20 1972-08-24
JP3325560B2 (ja) 1998-10-30 2002-09-17 帝人株式会社 位相差フィルム及びそれを用いた光学装置
WO2006041190A1 (ja) 2004-10-14 2006-04-20 Teijin Limited 光弾性定数の低いポリカーボネート及びそれからなるフィルム
JP2009029879A (ja) * 2007-07-25 2009-02-12 Toray Ind Inc 光学用樹脂及びこれを含有したフィルム
WO2010064721A1 (ja) 2008-12-05 2010-06-10 帝人化成株式会社 光学フィルム
JP2010134232A (ja) * 2008-12-05 2010-06-17 Teijin Chem Ltd 光学フィルム
WO2011062163A1 (ja) * 2009-11-17 2011-05-26 三菱化学株式会社 ポリカーボネート樹脂及びそれよりなる透明フィルム
JP2011150325A (ja) * 2009-12-22 2011-08-04 Mitsubishi Chemicals Corp 位相差フィルム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL REVIEW, vol. 8, no. 4, 1981, pages 619 - 621
J. ORG. CHEM., vol. 28, 1963, pages 2069 - 2075
JOURNAL OF THE SOCIETY OF RHEOLOGY JAPAN, vol. 19, 1991, pages 93 - 97

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389352B2 (en) 2012-02-27 2016-07-12 Nitto Denko Corportation Retardation film and production method therefor, polarizing plate, and display device
WO2013128954A1 (ja) * 2012-02-27 2013-09-06 日東電工株式会社 位相差フィルム及びその製造方法、偏光板、及び表示装置
WO2014003189A1 (ja) * 2012-06-29 2014-01-03 日東電工株式会社 円偏光板および有機elパネル
US9400345B2 (en) 2012-06-29 2016-07-26 Nitto Denko Corporation Circular polarizing plate and organic electroluminescence panel
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
EP2808317A1 (en) * 2013-05-28 2014-12-03 Samsung Electro-Mechanics Co., Ltd. Fluorene derivatives and lens using the same
US9206287B2 (en) 2013-05-28 2015-12-08 Samsung Electro-Mechanics Co., Ltd. Fluorene derivatives and lens using the same
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
WO2017002886A1 (ja) * 2015-06-30 2017-01-05 三菱化学株式会社 ポリカーボネート樹脂組成物、その製造方法、成形体
US10526446B2 (en) 2015-06-30 2020-01-07 Mitsubishi Chemical Corporation Polycarbonate resin composition, method for producing same, and molded object
WO2018003154A1 (ja) * 2016-06-30 2018-01-04 デンカ株式会社 広視野角高コントラスト光学補償フィルム
WO2020170711A1 (ja) * 2019-02-19 2020-08-27 セントラル硝子株式会社 ヘッドアップディスプレイ装置
CN113365868A (zh) * 2019-02-19 2021-09-07 中央硝子株式会社 平视显示器装置
JP7328575B2 (ja) 2019-02-19 2023-08-17 セントラル硝子株式会社 ヘッドアップディスプレイ装置

Also Published As

Publication number Publication date
CN103930807A (zh) 2014-07-16
EP2757395B1 (en) 2017-11-15
KR101945075B1 (ko) 2019-02-01
US20140285888A1 (en) 2014-09-25
TWI535755B (zh) 2016-06-01
EP2757395A1 (en) 2014-07-23
TW201319119A (zh) 2013-05-16
KR20140069157A (ko) 2014-06-09
JP2013076981A (ja) 2013-04-25
EP2757395A4 (en) 2015-07-15
CN103930807B (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2013039178A1 (ja) 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
WO2013039179A1 (ja) 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
KR101796442B1 (ko) 폴리카보네이트 수지 및 그것으로 이루어지는 투명 필름
TWI503349B (zh) 聚碳酸酯樹脂及由其所構成之透明薄膜
JP6823899B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
WO2014021346A1 (ja) ポリカーボネート樹脂組成物及び透明フィルム
CN106489085B (zh) 相位差膜、圆偏振片及图像显示装置
WO2012153738A1 (ja) ポリカーボネート樹脂及びそれよりなる透明フィルム
EP2821821B1 (en) Long retardation film, circularly polarizing plate and organic el panel
JP2020114933A (ja) 重縮合系樹脂及びそれよりなる光学フィルム
JP2013076059A (ja) 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
JP5796338B2 (ja) ポリカーボネート樹脂組成物及びそれよりなる光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012832138

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832138

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147009911

Country of ref document: KR

Kind code of ref document: A