WO2013039093A1 - 立方晶窒化ほう素基焼結材料製切削工具 - Google Patents
立方晶窒化ほう素基焼結材料製切削工具 Download PDFInfo
- Publication number
- WO2013039093A1 WO2013039093A1 PCT/JP2012/073292 JP2012073292W WO2013039093A1 WO 2013039093 A1 WO2013039093 A1 WO 2013039093A1 JP 2012073292 W JP2012073292 W JP 2012073292W WO 2013039093 A1 WO2013039093 A1 WO 2013039093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cbn
- boron nitride
- film
- cubic boron
- particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62805—Oxide ceramics
- C04B35/62813—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62889—Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62897—Coatings characterised by their thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/12—Boron nitride
- B23B2226/125—Boron nitride cubic [CBN]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3804—Borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3856—Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
- C04B2235/3869—Aluminium oxynitrides, e.g. AlON, sialon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/127—The active component for bonding being a refractory metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/361—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/401—Cermets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/003—Cubic boron nitrides only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/27—Cutters, for shaping comprising tool of specific chemical composition
Definitions
- the present invention relates to a cubic boron nitride (hereinafter referred to as cBN) -based sintered material cutting tool (hereinafter referred to as a cBN tool) excellent in chipping resistance and fracture resistance.
- cBN cubic boron nitride
- a cBN tool sintered material cutting tool
- a cBN tool using a cBN-based sintered material (hereinafter referred to as a cBN sintered body) as a tool material having low affinity with the work material is used.
- a cBN sintered body a cBN-based sintered material
- a tool material having low affinity with the work material is used.
- cBN sintered body a cBN-based sintered material having low affinity with the work material.
- a sintered body is produced using coated cBN particles coated with Al 2 O 3 or the like on the surface of cBN particles as a raw material powder, and this cBN sintered body is used as a tool base.
- cBN tools have also been proposed. According to this cBN tool, it is known that the wear resistance and toughness of the tool are improved.
- an object of the present invention is to provide a cBN tool that exhibits excellent chipping resistance and fracture resistance even in intermittent cutting of high hardness steel, and exhibits excellent cutting performance over a long period of use. .
- the present inventors focused on cBN particles, which are hard phase components of cBN tools, and conducted intensive research, and obtained the following knowledge.
- the cBN sintered body of a conventional cBN tool as shown in Patent Document 2 uses coated cBN particles whose surface is coated with an Al 2 O 3 film in advance as a raw material powder. And after shape
- this conventional cBN tool tensile residual stress is generated in the Al 2 O 3 film coated on the cBN particle surface due to the difference in thermal expansion characteristics.
- ALD Atomic Layer Deposition
- ALD is a method of forming a film by reacting raw material compound molecules one layer at a time in a base material in a vacuum chamber and repeatedly purging with Ar or nitrogen, and is a kind of CVD method.
- a partial gap is formed in the Al 2 O 3 film by a ball mill or the like, and cBN particles in which the cBN particle surface is exposed between the gaps are produced.
- This invention is made
- the material powder for forming the hard phase is obtained by coating the surface of the cBN particles with an Al 2 O 3 film partially having a gap. It is used as. This is mixed with a raw material powder for forming a binder phase containing, for example, TiN as a main binder phase and sintered. Therefore, there is an Al 2 O 3 film in which a gap is partially formed between the cBN hard phase and the binder phase, and the cBN hard phase is uniformly distributed and distributed in the sintered body. As well as the interfacial adhesion strength between the cBN hard phase and the binder phase is improved.
- the tensile residual stress generated in the Al 2 O 3 film partially formed with a gap is greatly reduced as compared with a film having no gap. Therefore, even when the cBN tool of the present invention is used for intermittent cutting of high-hardness steel subjected to intermittent and impact loads, the occurrence of chipping and chipping is suppressed, and excellent cutting performance is demonstrated over a long period of use. .
- FIG. 2A shows a schematic cross section of the Al 2 O 3 film around the cBN particles of the present invention cBN sintered compact. Schematic illustrations of cross-section processing by FIB and cross-sectional image acquisition by SIM are shown. In the cross-sectional processing shown in FIG. 2A, cross-sectional images at respective depths are shown. In cBN sintered body of the present invention, cBN particles, and an example of a SIM cross-sectional image of a partially rift is formed the Al 2 O 3 film present in the cBN particle surface shown. The measurement example of the perimeter length of the cBN grain and the gap length of the Al 2 O 3 film by the SIM cross-sectional image is shown. The SIM cross-sectional image before binarized image processing and the SIM cross-sectional image after binarized image processing are shown. The histogram created for the binarized image processing is shown.
- the cBN sintered body is usually composed of a hard phase component and a binder phase component.
- the cBN sintered body which is the base material of the cBN tool of this embodiment, is Al 2 O 3 having a partial gap as the hard phase component.
- other components in the cBN sintered body for example, Ti nitride, carbide, carbonitride and boride, Al nitride and boride, and the like, which are usually contained in the cBN sintered body Is contained.
- Average particle size of cBN The average particle size of the cBN particles used in this embodiment has an average particle size that falls within the range of 0.5 to 8 ⁇ m.
- the average particle size of the cBN particles is smaller than 0.5 ⁇ m, the thermal conductivity as the cBN sintered body is lowered, so that the blade temperature during use of the tool is increased, and as a result, the hardness is lowered and the wear resistance is reduced. to degrade.
- the average particle size of the cBN particles exceeds 8 ⁇ m, when cBN particles on the tool surface fall off during use of the tool, the surface roughness of the tool increases and the surface roughness of the work material surface also decreases. Therefore, it is not desirable.
- the average particle size of the cBN particles used in this embodiment falls within the range of 0.5 to 8 ⁇ m.
- the content ratio of cBN particles in the cBN sintered body is less than 50% by volume, the fracture resistance as a tool is lowered.
- the content ratio of cBN particles exceeds 80% by volume the content ratio of the binder phase is relatively decreased, and the sinterability is deteriorated.
- the content ratio of cBN particles in the cBN sintered body is preferably 50 to 80% by volume.
- the cBN particles coated with an Al 2 O 3 film having a partial gap used in the present embodiment can be produced, for example, by the following steps (a) and (b).
- a uniform and thin Al 2 O 3 film is formed on the cBN particle surface by, for example, an ALD (Atomic Layer Deposition) method.
- ALD atomic layer Deposition
- an Al 2 O 3 film can be deposited on the surface of the cBN particles one by one in molecular units. Therefore, a uniform and thin Al 2 O 3 film can be coated without causing aggregation of cBN particles.
- cBN particles having an average particle size of 0.5 to 8 ⁇ m are charged into the furnace, the temperature inside the furnace is raised to about 350 ° C., and an Ar + Al (CH 3 ) 3 gas inflow process, The Ar gas purge step, Ar + H 2 O gas inflow step, and Ar gas purge step are defined as one cycle, and this cycle is repeated until the target film thickness is reached. For example, by forming the film over 5 hours, an Al 2 O 3 film having a thickness of 50 nm can be formed on the surface of the cBN particles. When the cross section of the cBN particles obtained here was observed by SEM (Scanning Electron Microscopy), it was confirmed that the surface of the cBN particles was coated with a uniform and unbroken Al 2 O 3 film.
- the cBN particles coated with the uniform and unbroken Al 2 O 3 film are produced in the subsequent step (b) in the film of the Al 2 O 3 film.
- the thickness can be controlled to a desired value, and the ratio between the gap length h of the Al 2 O 3 film and the peripheral length H of the cBN particles (h / H) is similarly controlled to the desired value.
- a predetermined partial gap obtained from the number q of cubic boron nitride particles not covered with the Al 2 O 3 film and the number Q of cubic boron nitride particles contained in the sintered body. This is because the content ratio (Qq) / Q of the cBN grains covered with the Al 2 O 3 film having a predetermined film thickness is controlled to a desired value.
- Average film thickness of Al 2 O 3 film In this embodiment, the Al 2 O 3 film formed on the surface of the cBN particles, that is, an average film of the Al 2 O 3 film in which a gap is partially formed and the surface of the cBN particle is exposed.
- the thickness needs to be 10 to 90 nm.
- the average film thickness of the Al 2 O 3 film is less than 10 nm, it is difficult to control the uniform film thickness even if it is formed by the ALD method, and the effect of suppressing crater wear is reduced.
- the average film thickness of the Al 2 O 3 film exceeds 90 nm, since the tensile residual stress in the Al 2 O 3 film on the surface of the cBN particles in the sintered body is large, when used as a tool, Cracks are likely to occur at the interface between the cBN particle surface and the Al 2 O 3 film, and chipping resistance and chipping resistance are reduced. Therefore, in the present embodiment, the average film thickness of the Al 2 O 3 film formed on the cBN particle surface is 10 to 90 nm.
- Partial gaps formed in the aluminum oxide film By covering the surface of the cBN particles with the Al 2 O 3 film, the effect of suppressing crater wear can be obtained, so that a reduction in blade strength due to the development of crater wear can be prevented.
- the Al 2 O 3 film covering the surface of the cBN particles needs to be partially cut. In this gap, the cBN particle surface is substantially in contact with the binder phase component of the cBN sintered body (for example, Ti nitride, carbide, carbonitride and boride, Al nitride and boride, etc.).
- h is the gap length of the aluminum oxide film formed along the surface of the cubic boron nitride particles
- H represents the peripheral length of the surface of the cubic boron nitride particles.
- the average formation ratio h / H between breaks is larger than 0, that is, there is a break, the tensile residual stress generated in the Al 2 O 3 film covering the surface of the cBN particles is reduced. For this reason, when used under cutting conditions in which intermittent and impact loads act, cracks are less likely to occur at the interface between the cBN particles and the Al 2 O 3 film, and the occurrence of chipping and defects can be suppressed.
- An average formation ratio h / H in the range of 0.02 or more and 0.08 or less is preferable because the effect of suppressing crater wear and the effect of suppressing the occurrence of defects are enhanced.
- Ratio of cubic boron nitride particles in which a gap is partially formed in the aluminum oxide film The number of cubic boron nitride particles not covered with the Al 2 O 3 film is q, and the number of cubic boron nitride particles contained in the sintered body is Q.
- the ratio (Qq) / Q of the number of cBN particles covered with the partially formed aluminum oxide film is 0.85 or more, that is, all cubic nitride nitride in the sintered body. If it is 85% or more of the elementary particles, the effect of suppressing crater wear is increased, which is desirable.
- the ratio between the gap length h formed on the Al 2 O 3 film coated on the surface of the cBN particle and the peripheral length H of the surface of the cBN particle can be calculated by, for example, the following measurement method. it can. That is, after the sintered body shown in the schematic diagram of FIG. 1 is manufactured, the cross section of the sintered body is polished, and further, the cross section is processed by FIB (Focused Ion Beam) as shown in FIG. 2A, and the SIM (Scanning Ion Microscopy) is performed. ), A plurality of cross-sectional images having different depths as shown in FIG. 2B are acquired.
- FIB Flucused Ion Beam
- FIG. 2A shows an example in which a sintered body is cross-sectionally processed by FIB.
- a SIM observation image is acquired for a square region (observation region) that is a part of the front surface of the rectangular parallelepiped-shaped sintered body and has a vertical and horizontal dimensions of 19 ⁇ m.
- FIB processing is performed every 200 nm in the depth direction, and a SIM image of the observation region is acquired each time. This is to acquire a sufficient number of cBN grain data that is necessary for subsequent analysis in the depth direction where the whole grain is contained in the plurality of cross-sectional images.
- the length (depth) for cross-section processing is set to (average particle diameter of used cBN particles + 1 ⁇ m) or more.
- FIG. 2B shows cross-sectional images at respective depths when the cross-section processing length (depth) is 0 to 5.2 ⁇ m.
- the whole image of one cBN particle means that the entire image of the cBN particle is included in the observation region, and the whole particle is contained in the plurality of cross-sectional images in the depth direction.
- the peripheral length H 1 of the surface of the cBN particles and the total length h 1 between the cuts are measured, and the formation ratio h 1 / H 1 between the cuts is obtained.
- the formation ratio h n / H n between the cuts is measured, and the average formation ratio h / H between the cuts can be calculated from these average values.
- the case where the surface of cBN particles is not coated with an Al 2 O 3 film is excluded.
- N total number of cBN particles to be measured
- n identification number of cBN particles to be measured
- N M total number of acquired images used for measurement in cBN particle
- n m identification number of acquired image used for measurement in cBN particle n
- the content ratio of cBN particles covered with a cut Al 2 O 3 film can be calculated by, for example, the following measurement method. That is, after the sintered body shown in the schematic diagram of FIG. 1 is manufactured, the cross section of the sintered body is polished, and the cross section is processed with FIB as shown in FIG. 2A. To get.
- FIG. 2A shows an example in which a sintered body is cross-sectionally processed by FIB.
- the SIM image to be acquired is a part of the front surface of the rectangular parallelepiped sintered body, and the SIM observation image is acquired for a square region (observation region) whose vertical and horizontal dimensions are 19 ⁇ m.
- FIB processing is performed 200 nm in the depth direction, and a SIM image of the observation region is acquired.
- the reason why the SIM image is acquired for the observation region after the FIB processing is to eliminate the influence of contamination on the sample surface before the FIB processing.
- the observation area is such that when the diagonal line is drawn in the acquired SIM image, the number Q of cBN grains in contact with the diagonal line is 10 or more. Moreover, the area to be observed is five or more places in different places. In a plurality of cross-sectional images obtained by the above-described procedure at different locations, a diagonal line is drawn in each cross-sectional image, and attention is paid to the cBN particles in contact.
- the cBN particle number Q 1 in contact with the diagonals in each cross-sectional image, Al 2 O 3 film is measured cBN particle number q 1 of non attached, Al 2 O 3 number cBN particles coated with a film with a rift in its Content ratio (Q 1 -q 1 ) / Q 1 is determined. Further, for at least four different SIM images at different locations, the content ratio (Q n -q n ) / Q n of the number of cBN particles covered with a gap Al 2 O 3 film was determined, and from these average values, It is possible to calculate the content ratio (Qq) / Q of the number of cBN particles covered with a gap Al 2 O 3 film.
- the cBN particles coated with the partially cut Al 2 O 3 film produced by the above-described procedure are used as the raw material powder for forming the hard phase.
- the binder phase for example, TiN powder is used as at least a binder phase forming raw material powder. These two raw material powders are blended so as to have a predetermined blending composition, and sintered under normal ultra-high pressure and high temperature conditions to produce the cBN sintered body of this embodiment.
- the cBN particle surface is covered with an Al 2 O 3 film partially formed with a gap.
- the cBN particle surface is substantially in contact with the binder component of the cBN sintered body (for example, Ti nitride, carbide, carbonitride and boride, Al nitride and boride, etc.).
- the binder component of the cBN sintered body for example, Ti nitride, carbide, carbonitride and boride, Al nitride and boride, etc.
- Aggregation of the cBN particles can be prevented.
- a cBN sintered body in which cBN is uniformly dispersed can be produced over the entire cBN sintered body.
- components normally contained in the cBN sintered body that is, nitrides, carbides, borides, oxides of the periodic table 4a, 5a, and 6a elements, and these One or more selected from the group consisting of solid solutions may be contained.
- Binarization of cross-sectional image of cubic boron nitride particles is a gray scale image, and each pixel has multi-level shading information (pixel value).
- the cross-sectional image is an 8-bit grayscale image, and each pixel has 256 levels (0 to 255) of grayscale information.
- FIG. 4 shows a SIM cross-sectional image before binarized image processing and a SIM cross-sectional image after binarized image processing.
- a threshold necessary for binarization is first calculated by mathematical processing, image processing is performed using this threshold as a boundary value, and Al formed on the surface of the cBN particles A 2 O 3 film is distinguished from a region where the Al 2 O 3 film is not formed.
- This binary image processing is performed according to the following procedure. First, pixels corresponding to 2% of the number of vertical and horizontal pixels are removed from the four outer sides of the acquired gray scale image toward the inside of the image. Next, a histogram is generated with the vertical axis representing the number of pixels and the horizontal axis representing the image value of the grayscale image cut out from the outside. At the time of generating the histogram, the brightness and contrast are adjusted so that the pixel value 255 or 0 of the image does not reach the maximum number of pixels. It is desirable that the maximum value of the histogram falls between 50 and 150.
- FIG. 5 An example of the histogram obtained by the above procedure is shown in FIG.
- the histograms shown at the top and bottom of FIG. 5 are histograms created based on the same data.
- the number of pixels on the vertical axis is displayed in a linear scale.
- the vertical axis represents the log scale.
- the log scale histogram is shown to facilitate explanation of the minimum pixel value and the maximum pixel value, which will be described later.
- the maximum number of pixels when the pixel values are compared is determined using the created histogram. That is, the bar having the highest height (the number of pixels) is determined in the histogram. Then, this pixel number is multiplied by 0.01 to calculate a value corresponding to 1% of the maximum pixel number.
- a line parallel to the horizontal axis of the histogram is drawn with a value of 1% of the calculated maximum number of pixels as a base point. In FIG. 5, the parallel lines are indicated by horizontal dotted lines. A value closest to the pixel value 0 at the intersection of the parallel line and the histogram is set as the minimum pixel value, and a value closest to the pixel value 255 is set as the maximum pixel value.
- the minimum pixel value is subtracted from the maximum pixel value to obtain a difference value.
- this difference value is multiplied by 0.75.
- a difference value multiplied by 0.75 is subtracted from the maximum pixel value to obtain a threshold value for binarization processing.
- a pixel having a pixel value smaller than the threshold value is converted into a black pixel, and a pixel having a pixel value larger than the threshold value is converted into a white pixel.
- a cBN particle having an average particle size of 0.5 to 8 ⁇ m was used as a base material, and a uniform and thin Al 2 O 3 film was formed on the particle surface by an ALD (Atomic Layer Deposition) method. More specifically, for example, cBN particles having an average particle diameter of 3 ⁇ m were charged in the furnace, and the temperature in the furnace was raised to about 350 ° C. Next, Al (CH 3 ) 3 and H 2 O gas are used as the deposition gas, Ar gas is used as the purge gas, and (i) Ar + Al (CH 3 ) 3 gas flows into the furnace.
- ALD Atomic Layer Deposition
- the steps (i) to (iv) were set as one cycle, and this cycle was repeated according to the desired film thickness.
- an Al 2 O 3 film having a desired film thickness was uniformly coated on the surface of the cBN particles.
- SEM Sccanning Electron Microscopy
- cBN particle powder produced by the above-described procedure and covered with a partially-cut Al 2 O 3 film, TiN powder, Al powder, TiAl 3 powder, Al 2 O 3 powder These raw material powders were blended so that the content of the cBN particle powder was 50% by volume. All of the TiN powder, Al powder, TiAl 3 powder, and Al 2 O 3 powder have an average particle diameter in the range of 0.3 to 0.9 ⁇ m. After mixing with an ultrasonic stirrer in an organic solvent and drying, it was press-molded to a size of diameter: 50 mm ⁇ thickness: 1.5 mm at a molding pressure of 120 MPa with a hydraulic press.
- this compact was heat-treated in a vacuum atmosphere at a pressure of 1 Pa or less at 1000 ° C. for 30 minutes to remove volatile components and components adsorbed on the powder surface to obtain a pre-sintered product.
- this pre-sintered body was overlaid with a separately prepared support piece made of WC-based cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm ⁇ thickness: 2 mm.
- a normal ultra-high pressure sintering apparatus In a combined state, it was charged into a normal ultra-high pressure sintering apparatus. Next, these were subjected to ultrahigh pressure and high temperature sintering under normal conditions of pressure: 5 GPa, temperature: 1500 ° C., and holding time: 30 minutes, to obtain a cBN sintered body.
- the disc-shaped cBN sintered material thus obtained was cut to a predetermined size with a wire electric discharge machine, and Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and ISO standard CNGA120408 insert shape.
- Ag brazing material having a composition consisting of Cu: 26%, Ti: 5%, and Ag: the remainder will be used. I attached.
- the cBN tools 1 to 43 of the present invention having the insert shape of ISO standard CNGA120408 were manufactured by polishing the upper and lower surfaces and the outer periphery and honing treatment.
- the cross section of the sintered compact was grind
- a magnification at which 10 or more cBN grains are in contact with the diagonal line is desirable.
- the magnification is preferably about 4000 times.
- FIB processing is performed every 200 nm, and the length (depth) of cross-section processing is not less than a value obtained by adding 1 ⁇ m to the average particle diameter of cBN particles used. did. Focusing on the cBN particles that can be grasped in their entirety by the fragmentary and plurality of cross-sectional images obtained by the above-mentioned procedure, the circumference of the cBN particles and the gap length are measured for the cBN particles, and the formation ratio h of the gaps 1 / H 1 was determined.
- the circumference of cBN particles and the length between cuts were also measured, and the formation ratio of the cuts was obtained for each cBN particle, and the average formation ratio h between the cuts was determined from these average values.
- the value of / H was calculated.
- a diagonal line is drawn on each cross-sectional image by the fragmentary and cross-sectional images obtained above. Note the cBN particles in contact.
- the film thickness of the Al 2 O 3 film covering the surface of each contacted cBN particle was measured at least five locations per image, and the film thickness of the cBN particle was determined from the average value.
- the thickness of the Al 2 O 3 film covering the surface of the cBN particles was also measured, and the average value thereof was obtained to obtain the average film thickness.
- the cross section of a sintered compact is grind
- the magnification is preferably about 4000 times.
- a plurality of cross-sectional images obtained by the above-described procedure are used to draw a diagonal line in each cross-sectional image and to contact the cBN particles. Focus on it.
- the number of cBN particles Q 1 in contact with the diagonal and the number of cBN particles q 1 without an Al 2 O 3 film were measured, and the cBN particles covered with an Al 2 O 3 film having a gap Content ratio (Q 1 -q 1 ) / Q 1 is determined.
- the content ratio of the cBN particles covered with the Al 2 O 3 film having the same gap is obtained, and from these average values, the Al 2 O 3 film having the gap is obtained.
- the content ratio (Qq) / Q of the covered cBN particles was calculated. Table 1 shows these values.
- a cBN particle powder not coated with an Al 2 O 3 film was prepared as a raw material powder. It was also prepared average thickness cBN particles coated with the Al 2 O 3 film of the outside range of the present invention without a rift. It was also prepared cBN particles coated with the average film thickness of the Al 2 O 3 film outside the scope the present invention having the rift. In addition, cBN particle powder in which an Al 2 O 3 film having no gap was coated on a cBN powder having an average particle size of cBN outside the scope of the present invention was prepared. It was also prepared cBN particles coated with the Al 2 O 3 film having a rift over cBN powder of cBN average particle size outside the range present invention.
- the ratio of the mixed cBN particles and the cemented carbide ball is: The weight ratio was adjusted to be 1:10 to 20 and the mixing time was 0.08 to 0.15 hours.
- the ratio of the mixed cBN particles and the cemented carbide balls was adjusted so that the weight ratio was 1:20 to 40, and the mixing time was 48 hours at maximum.
- the average particle diameter of cBN particles, the average formation rate between breaks h / H, Al 2 as in the case of the cBN tools 1 to 43 of the present invention.
- O 3 film average thickness of, determine the proportion (Q-q) / Q of a rift the Al 2 O 3 film covered with cBN particles. Table 2 shows these values.
- the cBN tools 1 to 43 of the present invention and the comparative cBN tools 44 to 73 were subjected to a cutting test up to a maximum processing length of 7000 m under the cutting conditions shown in Table 3, and chipping or chipping occurred at every processing length of 100 m. It was confirmed.
- Table 4 shows the results of the cutting test.
- the cBN tools 1 to 43 of the present invention the Al 2 O 3 film partially formed with a gap is coated on the surface of the cBN particles. Accordingly, the cBN hard phase is uniformly dispersed and distributed in the sintered body, and not only uniform tool characteristics are obtained, but also the interfacial adhesion strength between the cBN hard phase and the binder phase is improved. Furthermore, the tensile residual stress generated in the Al 2 O 3 film partially formed with a gap is greatly reduced as compared with a film having no gap.
- the Al 2 O 3 film is not formed on the surface of the cBN particles, or the Al 2 O 3 film having an average film thickness outside the range defined by the present invention, Since it is the average formation rate h / H between the breaks outside the range specified in the present invention, it is inferior in chipping resistance and chipping resistance, both of which are short-lived.
- the cBN tool of the present invention is excellent in chipping resistance and fracture resistance, it can be applied under cutting conditions other than intermittent cutting of high-hardness steel. It can fully satisfy the labor saving, energy saving, and cost reduction of cutting.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Abstract
高硬度鋼の断続切削加工で、すぐれた耐チッピング性、耐欠損性を発揮する立方晶窒化ほう素基焼結材料製切削工具を提供する。立方晶窒化ほう素基焼結材料製切削工具において、立方晶窒化ほう素粒子の平均粒径は0.5~8μmである。前記立方晶窒化ほう素粒子の表面は、部分的に切れ間が形成された平均膜厚10~90nmの酸化アルミニウム膜によって被覆される。前記切れ間の平均形成割合h/Hは、0.02≦h/H≦0.08を満足する。ここで、hは酸化アルミニウム膜の切れ間長、Hは立方晶窒化ほう素粒子の周囲長を示す。
Description
本発明は、耐チッピング性と耐欠損性にすぐれる立方晶窒化ほう素(以下、cBNで示す)基焼結材料製切削工具(以下、cBN工具という)に関する。
本願は、2011年9月12日に、日本に出願された特願2011-198016号、および2012年9月11日に、日本に出願された特願2012-199070号に基づき優先権を主張し、その内容をここに援用する。
本願は、2011年9月12日に、日本に出願された特願2011-198016号、および2012年9月11日に、日本に出願された特願2012-199070号に基づき優先権を主張し、その内容をここに援用する。
従来、鋼、鋳鉄等の鉄系被削材の切削加工には、被削材との親和性の低い工具材料としてcBN基焼結材料(以下、cBN焼結体という)を用いたcBN工具が知られている。例えば、特許文献1に示すように、硬質相としてのcBNを20~80体積%含有し、残部が、周期律表の4a、5a、6aの炭化物、窒化物、ほう化物等のセラミックス化合物を結合相としたcBN工具が知られている。 また、例えば、特許文献2に示すように、cBN粒子の表面に、Al2O3等を被覆した被覆cBN粒子を原料粉として焼結体を作製し、このcBN焼結体を工具基体とするcBN工具も提案されている。このcBN工具によれば、工具の耐摩耗性と靭性が改善されることが知られている。
前記特許文献2に示される従来のcBN工具においては、cBN粒子を被覆するAl2O3膜が、cBN工具の靭性向上に寄与している。しかし、この場合、Al2O3膜が厚い(0.1~1μm)ために、cBN焼結体の結合相中のAl2O3が増加し、cBN焼結体中の硬質成分であるcBN粒子の含有割合が相対的に低下することから、工具の硬さが低下するという問題があった。さらに、前記従来cBN工具を高硬度鋼の断続切削に用いた場合には、耐チッピング性と耐欠損性が十分でないため、工具寿命が短命であるという問題点もあった。
そこで、本発明は、高硬度鋼の断続切削加工においても、すぐれた耐チッピング性、耐欠損性を発揮し、長期の使用にわたりすぐれた切削性能を発揮するcBN工具を提供することを目的とする。
そこで、本発明は、高硬度鋼の断続切削加工においても、すぐれた耐チッピング性、耐欠損性を発揮し、長期の使用にわたりすぐれた切削性能を発揮するcBN工具を提供することを目的とする。
本発明者等は、前記課題を解決するため、cBN工具の硬質相成分であるcBN粒子に着目し、鋭意研究したところ、次のような知見を得た。
特許文献2に示されるような従来のcBN工具のcBN焼結体は、cBN粒子表面に予めAl2O3膜を被覆した被覆cBN粒子を原料粉として使用している。そして、この原料粉を成形した後、55kb、1000℃以上の高温で焼結を行い、次いで室温にまで冷却することにより作製する。この従来のcBN工具では、cBN粒子表面に被覆したAl2O3膜に、熱膨張特性の違いから、引張残留応力が発生する。
この従来のcBN工具を、高硬度鋼の断続切削加工に供した場合には、切削時の断続的・衝撃的な負荷と前記引張残留応力により、特に、すくい面の表面に露出したcBN粒子、及びその表面に被覆したAl2O3膜の界面にクラックが発生する。そして、このクラックが起点となり、チッピング、欠損が生じる。
この従来のcBN工具を、高硬度鋼の断続切削加工に供した場合には、切削時の断続的・衝撃的な負荷と前記引張残留応力により、特に、すくい面の表面に露出したcBN粒子、及びその表面に被覆したAl2O3膜の界面にクラックが発生する。そして、このクラックが起点となり、チッピング、欠損が生じる。
本発明者らは前記の課題を解決すべく鋭意研究した結果、以下の知見を得た。
まず、cBN粒子表面に、ALD(Atomic Layer Deposition)法により、薄膜かつ均一なAl2O3膜を被覆する。ALDとは、真空チャンバ内の基材に、原料化合物の分子を一層ごと反応させ、Arや窒素によるパージを繰り返し行うことで成膜する方法で、CVD法の一種である。
次に、ボールミル等により前記Al2O3膜に部分的な切れ間を形成し、切れ間ではcBN粒子表面が露出するcBN粒子を作製する。
最後に、前記cBN粒子を原料粉として、通常の条件で焼結を行ってcBN焼結体を作製し、このcBN焼結体からcBN工具を作製する。
前記の工程により得られたcBN工具は、断続的かつ衝撃的負荷が作用する切削加工条件で用いられた場合でも、チッピングの発生、欠損の発生が抑制され、長期の使用にわたって優れた切削性能を発揮する。
まず、cBN粒子表面に、ALD(Atomic Layer Deposition)法により、薄膜かつ均一なAl2O3膜を被覆する。ALDとは、真空チャンバ内の基材に、原料化合物の分子を一層ごと反応させ、Arや窒素によるパージを繰り返し行うことで成膜する方法で、CVD法の一種である。
次に、ボールミル等により前記Al2O3膜に部分的な切れ間を形成し、切れ間ではcBN粒子表面が露出するcBN粒子を作製する。
最後に、前記cBN粒子を原料粉として、通常の条件で焼結を行ってcBN焼結体を作製し、このcBN焼結体からcBN工具を作製する。
前記の工程により得られたcBN工具は、断続的かつ衝撃的負荷が作用する切削加工条件で用いられた場合でも、チッピングの発生、欠損の発生が抑制され、長期の使用にわたって優れた切削性能を発揮する。
つまり、前記cBN工具においては、cBN粒子表面がAl2O3膜によって部分的に切れ間をもって被覆されていることから、cBN粒子表面と、前記粒子表面を部分的に被覆するAl2O3膜との熱膨張特性の違いに起因する界面のクラック発生がない。そのため、このクラックを原因とするチッピング発生、欠損発生が防止されているのである。
本発明は、前記知見に基づいてなされたものであって、以下に示す態様を持つ。
(1)硬質相成分として立方晶窒化ほう素粒子を含有する立方晶窒化ほう素基焼結材料製切削工具において、前記立方晶窒化ほう素粒子の平均粒径は0.5~8μmであり、前記立方晶窒化ほう素粒子のうちには、その表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、前記酸化アルミニウム膜には部分的に切れ間が形成されている前記立方晶窒化ほう素粒子が含まれることを特徴とする立方晶窒化ほう素基焼結材料製切削工具。
(2)酸化アルミニウム膜により被覆されている立方晶窒化ほう素粒子の断面画像を観察し、立方晶窒化ほう素粒子の表面に沿って形成されている酸化アルミニウム膜の切れ間の平均形成割合を求めた場合、0.02≦h/H≦0.08を満足することを特徴とする前記(1)に記載の立方晶窒化ほう素基焼結材料製切削工具。
但し、hは酸化アルミニウム膜の切れ間長、Hは立方晶窒化ほう素粒子の周囲長。
(3)表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、前記酸化アルミニウム膜には部分的に切れ間が形成されている立方晶窒化ほう素粒子数の割合を求めた場合、(Q-q)/Q≧0.85を満足することを特徴とする前記(1)または(2)に記載の立方晶窒化ほう素基焼結材料製切削工具。
但し、qは酸化アルミニウム膜が被覆されていない立方晶窒化ほう素粒子の数、Qは焼結体に含まれる立方晶窒化ほう素粒子の数。
(1)硬質相成分として立方晶窒化ほう素粒子を含有する立方晶窒化ほう素基焼結材料製切削工具において、前記立方晶窒化ほう素粒子の平均粒径は0.5~8μmであり、前記立方晶窒化ほう素粒子のうちには、その表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、前記酸化アルミニウム膜には部分的に切れ間が形成されている前記立方晶窒化ほう素粒子が含まれることを特徴とする立方晶窒化ほう素基焼結材料製切削工具。
(2)酸化アルミニウム膜により被覆されている立方晶窒化ほう素粒子の断面画像を観察し、立方晶窒化ほう素粒子の表面に沿って形成されている酸化アルミニウム膜の切れ間の平均形成割合を求めた場合、0.02≦h/H≦0.08を満足することを特徴とする前記(1)に記載の立方晶窒化ほう素基焼結材料製切削工具。
但し、hは酸化アルミニウム膜の切れ間長、Hは立方晶窒化ほう素粒子の周囲長。
(3)表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、前記酸化アルミニウム膜には部分的に切れ間が形成されている立方晶窒化ほう素粒子数の割合を求めた場合、(Q-q)/Q≧0.85を満足することを特徴とする前記(1)または(2)に記載の立方晶窒化ほう素基焼結材料製切削工具。
但し、qは酸化アルミニウム膜が被覆されていない立方晶窒化ほう素粒子の数、Qは焼結体に含まれる立方晶窒化ほう素粒子の数。
本発明の態様のcBN工具(以下、本発明のcBN工具と称する)においては、cBN粒子の表面を、部分的に切れ間をもったAl2O3膜で被覆したものを硬質相形成用原料粉末として用いている。これを、例えば、TiNを主たる結合相とする結合相形成用原料粉末と混合し焼結される。そのため、cBN硬質相と結合相との間には、部分的に切れ間が形成されたAl2O3膜が存在し、cBN硬質相が焼結体中で均一に分散分布し、均質な工具特性が得られるばかりか、cBN硬質相と結合相との界面密着強度が改善される。さらに、部分的に切れ間が形成されたAl2O3膜に発生する引張残留応力は、切れ間が無いものと比べて大幅に低減される。そのため、本発明のcBN工具を断続的・衝撃的負荷が作用する高硬度鋼の断続切削加工に用いた場合でも、チッピング、欠損の発生は抑えられ、長期の使用にわたってすぐれた切削性能を発揮する。
本発明のcBN工具の実施形態について、以下に説明する。
cBN焼結体:
cBN焼結体は、通常、硬質相成分と結合相成分からなるが、本実施形態のcBN工具の基材であるcBN焼結体は、硬質相成分として部分的な切れ間を持つAl2O3膜によって被覆されたcBN粒子を含有する。
また、cBN焼結体中の他の構成成分としては、例えば、Tiの窒化物、炭化物、炭窒化物及び硼化物、Alの窒化物及び硼化物等、cBN焼結体に通常含有される成分が含有される。
cBN焼結体は、通常、硬質相成分と結合相成分からなるが、本実施形態のcBN工具の基材であるcBN焼結体は、硬質相成分として部分的な切れ間を持つAl2O3膜によって被覆されたcBN粒子を含有する。
また、cBN焼結体中の他の構成成分としては、例えば、Tiの窒化物、炭化物、炭窒化物及び硼化物、Alの窒化物及び硼化物等、cBN焼結体に通常含有される成分が含有される。
cBNの平均粒径:
本実施形態で用いるcBN粒子の平均粒径は、0.5~8μmの範囲に収まる平均粒径を持つ。
cBN粒子の平均粒径が、0.5μmより小さいと、cBN焼結体としての熱伝導率が低下するため、工具使用中の刃先温度が高くなり、その結果、硬度が低下し耐摩耗性が劣化する。一方、cBN粒子の平均粒径が、8μmを超えると、工具使用中に、工具表面のcBN粒子が脱落した場合、工具の面粗さが大きくなって、被削材表面の面粗さも低下するため望ましくない。
したがって、本実施形態で用いるcBN粒子の平均粒径は、0.5~8μmの範囲内に収まる。
cBN焼結体に占めるcBN粒子の含有割合が50容積%未満の場合、工具としての耐欠損性が低下する。一方、cBN粒子の含有割合が80容積%を超える場合、結合相の含有割合が相対的に減少し、焼結性が低下する。以上の理由により、cBN焼結体に占めるcBN粒子の含有割合は、50~80容積%であることが好ましい。
本実施形態で用いるcBN粒子の平均粒径は、0.5~8μmの範囲に収まる平均粒径を持つ。
cBN粒子の平均粒径が、0.5μmより小さいと、cBN焼結体としての熱伝導率が低下するため、工具使用中の刃先温度が高くなり、その結果、硬度が低下し耐摩耗性が劣化する。一方、cBN粒子の平均粒径が、8μmを超えると、工具使用中に、工具表面のcBN粒子が脱落した場合、工具の面粗さが大きくなって、被削材表面の面粗さも低下するため望ましくない。
したがって、本実施形態で用いるcBN粒子の平均粒径は、0.5~8μmの範囲内に収まる。
cBN焼結体に占めるcBN粒子の含有割合が50容積%未満の場合、工具としての耐欠損性が低下する。一方、cBN粒子の含有割合が80容積%を超える場合、結合相の含有割合が相対的に減少し、焼結性が低下する。以上の理由により、cBN焼結体に占めるcBN粒子の含有割合は、50~80容積%であることが好ましい。
Al2O3膜が被覆形成されたcBN粒子の作製:
本実施形態で用いられる、部分的な切れ間を持つAl2O3膜が被覆されたcBN粒子は、例えば、以下の工程(a)、(b)で作製することができる。
本実施形態で用いられる、部分的な切れ間を持つAl2O3膜が被覆されたcBN粒子は、例えば、以下の工程(a)、(b)で作製することができる。
(a)まず、cBN粒子表面に、例えば、ALD(Atomic Layer Deposition)法により、均一かつ薄膜のAl2O3膜を被覆形成する。ALD法によれば、cBN粒子表面に、分子単位で一層ずつAl2O3を成膜させていくことができる。そのため、cBN粒子の凝集を引き起こすことなく、均一でかつ薄膜のAl2O3膜を被覆形成することができる。
より具体的にいえば、炉内に、例えば、平均粒径0.5~8μmのcBN粒子を装入し、炉内を350℃程度に昇温し、Ar+Al(CH3)3ガス流入工程、Arガスパージ工程、Ar+H2Oガス流入工程、Arガスパージ工程を1サイクルとして、このサイクルを目標膜厚になるまで繰り返し行う。例えば、5時間かけて成膜することにより、膜厚50nmのAl2O3膜をcBN粒子表面に被覆形成することができる。
なお、ここで得られたcBN粒子断面をSEM(Scanning Electron Microscopy)観察したところ、cBN粒子の表面には、均一で切れ間のないAl2O3膜で被覆されていることが確認された。
より具体的にいえば、炉内に、例えば、平均粒径0.5~8μmのcBN粒子を装入し、炉内を350℃程度に昇温し、Ar+Al(CH3)3ガス流入工程、Arガスパージ工程、Ar+H2Oガス流入工程、Arガスパージ工程を1サイクルとして、このサイクルを目標膜厚になるまで繰り返し行う。例えば、5時間かけて成膜することにより、膜厚50nmのAl2O3膜をcBN粒子表面に被覆形成することができる。
なお、ここで得られたcBN粒子断面をSEM(Scanning Electron Microscopy)観察したところ、cBN粒子の表面には、均一で切れ間のないAl2O3膜で被覆されていることが確認された。
(b)次いで、前記(a)で作製した均一で薄膜のAl2O3膜で被覆されたcBN粒子を、超硬合金製容器へ装入し、超硬合金製ボール(直径1mm)とともに所定の条件でボールミル混合を行うことによって、部分的な切れ間を持ち、所定の膜厚のAl2O3膜によって被覆されたcBN粒子を作製することができる。
なお、混合するcBN粒子に対する超硬合金製ボールの重量比が大きくなると切れ間の形成割合は大きくなる。また、cBN粒子と超硬合金製ボールとの混合時間が長くなると切れ間の形成割合は大きくなる。
なお、ここで得られたcBN粒子断面をSEMにて観察したところ、前記(a)で作製したAl2O3膜で被覆されたcBN粒子のAl2O3膜に切れ間が形成されていることが確認された。
なお、混合するcBN粒子に対する超硬合金製ボールの重量比が大きくなると切れ間の形成割合は大きくなる。また、cBN粒子と超硬合金製ボールとの混合時間が長くなると切れ間の形成割合は大きくなる。
なお、ここで得られたcBN粒子断面をSEMにて観察したところ、前記(a)で作製したAl2O3膜で被覆されたcBN粒子のAl2O3膜に切れ間が形成されていることが確認された。
前記の工程(a)で、まず、均一で切れ間のないAl2O3膜で被覆されたcBN粒子を作製するのは、これに続く前記(b)の工程で、Al2O3膜の膜厚を所望の値に制御することができるようにし、かつ、Al2O3膜の切れ間長hと、cBN粒子の周囲長Hの割合(h/H)を、同様に、所望の値に制御し、かつ、Al2O3膜が被覆されていない立方晶窒化ほう素粒子の数qと、焼結体に含まれる立方晶窒化ほう素粒子の数Qから得られる所定の部分的な切れ間を持った所定の膜厚のAl2O3膜によって被覆されたcBN粒の含有割合(Q-q)/Qを所望の値に制御するようにするという理由による。
Al2O3膜の平均膜厚:
本実施形態でcBN粒子表面に被覆形成されるAl2O3膜、即ち、部分的に切れ間が形成され、この切れ間には、cBN粒子表面が露出しているAl2O3膜、の平均膜厚は、10~90nmとすることが必要である。
Al2O3膜の平均膜厚が10nm未満であると、ALD法で成膜しても均一な膜厚の制御が難しく、クレータ摩耗抑制効果が低減する。一方、Al2O3膜の平均膜厚が90nmを超える場合には、焼結体におけるcBN粒子表面のAl2O3膜内の引張残留応力が大となるため、工具として使用した際に、cBN粒子表面とAl2O3膜の界面にクラックが生じやすくなり、耐チッピング性、耐欠損性を低下させることになる。
したがって、本実施形態では、cBN粒子表面に被覆形成されるAl2O3膜の平均膜厚は、10~90nmとする。
本実施形態でcBN粒子表面に被覆形成されるAl2O3膜、即ち、部分的に切れ間が形成され、この切れ間には、cBN粒子表面が露出しているAl2O3膜、の平均膜厚は、10~90nmとすることが必要である。
Al2O3膜の平均膜厚が10nm未満であると、ALD法で成膜しても均一な膜厚の制御が難しく、クレータ摩耗抑制効果が低減する。一方、Al2O3膜の平均膜厚が90nmを超える場合には、焼結体におけるcBN粒子表面のAl2O3膜内の引張残留応力が大となるため、工具として使用した際に、cBN粒子表面とAl2O3膜の界面にクラックが生じやすくなり、耐チッピング性、耐欠損性を低下させることになる。
したがって、本実施形態では、cBN粒子表面に被覆形成されるAl2O3膜の平均膜厚は、10~90nmとする。
酸化アルミニウム膜に形成する部分的な切れ間:
cBN粒子の表面をAl2O3膜によって覆うことにより、クレータ摩耗抑制効果が得られることから、クレータ摩耗の発達による刃先強度の低下を防止できる。本実施形態において、cBN粒子の表面を覆うAl2O3膜には、部分的に切れ間が形成されていることが必要である。この切れ間では、cBN粒子表面がcBN焼結体の結合相成分(例えば、Tiの窒化物、炭化物、炭窒化物及び硼化物、Alの窒化物及び硼化物等)と実質的に接している。
ここで、hは、立方晶窒化ほう素粒子の表面に沿って形成されている酸化アルミニウム膜の切れ間長であり、また、Hは、立方晶窒化ほう素粒子の表面の周囲長を表す。
切れ間の平均形成割合h/Hが0、すなわち切れ間がないと、cBN粒子の表面全体をAl2O3膜で覆った状態になる。そのため、Al2O3膜には引張残留応力が発生し、切削加工時の断続的・衝撃的負荷と前記引張残留応力との相乗作用により、cBN粒子とAl2O3膜の界面にはクラックが発生しやすくなる。一方、切れ間の平均形成割合h/Hが0より大きい、すなわち切れ間があると、cBN粒子の表面を覆うAl2O3膜に生じる引張残留応力が低減される。そのため、断続的かつ衝撃的負荷が作用する切削加工条件で用いた場合、cBN粒子とAl2O3膜の界面にクラックが発生しにくくなり、チッピングの発生、欠損の発生を抑制できる。なお、平均形成割合h/Hが0.02以上0.08以下の範囲であると、クレータ摩耗抑制効果と欠損の発生の抑制効果がより高くなるので望ましい。
cBN粒子の表面をAl2O3膜によって覆うことにより、クレータ摩耗抑制効果が得られることから、クレータ摩耗の発達による刃先強度の低下を防止できる。本実施形態において、cBN粒子の表面を覆うAl2O3膜には、部分的に切れ間が形成されていることが必要である。この切れ間では、cBN粒子表面がcBN焼結体の結合相成分(例えば、Tiの窒化物、炭化物、炭窒化物及び硼化物、Alの窒化物及び硼化物等)と実質的に接している。
ここで、hは、立方晶窒化ほう素粒子の表面に沿って形成されている酸化アルミニウム膜の切れ間長であり、また、Hは、立方晶窒化ほう素粒子の表面の周囲長を表す。
切れ間の平均形成割合h/Hが0、すなわち切れ間がないと、cBN粒子の表面全体をAl2O3膜で覆った状態になる。そのため、Al2O3膜には引張残留応力が発生し、切削加工時の断続的・衝撃的負荷と前記引張残留応力との相乗作用により、cBN粒子とAl2O3膜の界面にはクラックが発生しやすくなる。一方、切れ間の平均形成割合h/Hが0より大きい、すなわち切れ間があると、cBN粒子の表面を覆うAl2O3膜に生じる引張残留応力が低減される。そのため、断続的かつ衝撃的負荷が作用する切削加工条件で用いた場合、cBN粒子とAl2O3膜の界面にクラックが発生しにくくなり、チッピングの発生、欠損の発生を抑制できる。なお、平均形成割合h/Hが0.02以上0.08以下の範囲であると、クレータ摩耗抑制効果と欠損の発生の抑制効果がより高くなるので望ましい。
酸化アルミニウム膜に部分的に切れ間が形成されている立方晶窒化ほう素粒子の割合:
Al2O3膜が被覆されていない立方晶窒化ほう素粒子の数をq、焼結体に含まれる立方晶窒化ほう素粒子の数をQとする。
本実施形態において、部分的に切れ間が形成された酸化アルミニウム膜により被覆されたcBN粒子数の割合(Q-q)/Qが0.85以上、すなわち、焼結体中の全立方晶窒化ほう素粒子中の85%以上であると、クレータ摩耗抑制効果が高くなり望ましい。
Al2O3膜が被覆されていない立方晶窒化ほう素粒子の数をq、焼結体に含まれる立方晶窒化ほう素粒子の数をQとする。
本実施形態において、部分的に切れ間が形成された酸化アルミニウム膜により被覆されたcBN粒子数の割合(Q-q)/Qが0.85以上、すなわち、焼結体中の全立方晶窒化ほう素粒子中の85%以上であると、クレータ摩耗抑制効果が高くなり望ましい。
切れ間の平均形成割合h/H:
本実施形態では、cBN粒子表面に被覆したAl2O3膜に形成した切れ間長hと、cBN粒子の表面の周囲長Hとの割合は、例えば、以下の様な測定法により算出することができる。
即ち、図1に模式図で示す焼結体を作製後、焼結体の断面を研磨し、さらに、図2Aに示すようにFIB(Focused Ion Beam)で断面を加工し、SIM(Scanning Ion Microscopy)により、図2Bに示すような奥行きの異なる複数の断面画像を取得する。
図2Aは、FIBで焼結体を断面加工する場合の例を示す。直方体形状の焼結体の正面の一部であって、縦および横の寸法がそれぞれ19μmの正方形の領域(観察領域)について、SIM観察像を取得する。
FIB加工は、奥行き方向で200nmごとに行い、その都度前記観察領域のSIM像を取得する。これは、奥行き方向で粒全体が前記複数の断面画像に収まっているcBN粒のデータを、後の分析に必要とされる充分数、取得するためである。断面加工する長さ(奥行き)は、(使用したcBN粒子の平均粒径+1μm)以上とする。
図2Bは、断面加工長さ(奥行き)0~5.2μmにおける、それぞれの奥行きにおける断面画像を示す。
前記上述の手順で得られた断片的かつ複数の断面画像において、1つのcBN粒子の全容が分かるcBN粒子に注目する。ここで、1つのcBN粒子の全容が分かるとは、前記観察領域中に、そのcBN粒子全体像が含まれ、かつ奥行き方向で粒全体が前記複数の断面画像に収まっていることを意味する。そのcBN粒子について、cBN粒子の表面の周囲長H1と、切れ間の合計長さh1を測定し、切れ間の形成割合h1/H1を求める。さらに、少なくとも10個以上のcBN粒子について、同じく切れ間の形成割合hn/Hnを測定し、これらの平均値から、切れ間の平均形成割合h/Hの値を算出することができる。但し、cBN粒子表面にAl2O3膜が被覆されていない場合は除く。
本実施形態では、cBN粒子表面に被覆したAl2O3膜に形成した切れ間長hと、cBN粒子の表面の周囲長Hとの割合は、例えば、以下の様な測定法により算出することができる。
即ち、図1に模式図で示す焼結体を作製後、焼結体の断面を研磨し、さらに、図2Aに示すようにFIB(Focused Ion Beam)で断面を加工し、SIM(Scanning Ion Microscopy)により、図2Bに示すような奥行きの異なる複数の断面画像を取得する。
図2Aは、FIBで焼結体を断面加工する場合の例を示す。直方体形状の焼結体の正面の一部であって、縦および横の寸法がそれぞれ19μmの正方形の領域(観察領域)について、SIM観察像を取得する。
FIB加工は、奥行き方向で200nmごとに行い、その都度前記観察領域のSIM像を取得する。これは、奥行き方向で粒全体が前記複数の断面画像に収まっているcBN粒のデータを、後の分析に必要とされる充分数、取得するためである。断面加工する長さ(奥行き)は、(使用したcBN粒子の平均粒径+1μm)以上とする。
図2Bは、断面加工長さ(奥行き)0~5.2μmにおける、それぞれの奥行きにおける断面画像を示す。
前記上述の手順で得られた断片的かつ複数の断面画像において、1つのcBN粒子の全容が分かるcBN粒子に注目する。ここで、1つのcBN粒子の全容が分かるとは、前記観察領域中に、そのcBN粒子全体像が含まれ、かつ奥行き方向で粒全体が前記複数の断面画像に収まっていることを意味する。そのcBN粒子について、cBN粒子の表面の周囲長H1と、切れ間の合計長さh1を測定し、切れ間の形成割合h1/H1を求める。さらに、少なくとも10個以上のcBN粒子について、同じく切れ間の形成割合hn/Hnを測定し、これらの平均値から、切れ間の平均形成割合h/Hの値を算出することができる。但し、cBN粒子表面にAl2O3膜が被覆されていない場合は除く。
より具体的に、切れ間の平均形成割合h/Hの測定・算出手順を述べると、以下のとおりである。
N = 測定するcBN粒子総数
n = 測定するcBN粒子の識別番号 ≦ N
M = cBN粒子nにおいて測定に使用する総取得画像数
m = cBN粒子nにおいて測定に使用する取得画像の識別番号 ≦ M
H = cBN粒の周囲長
h = Al2O3膜の切れ間長
と定義した場合、
(a)まず、ある1つのcBN粒子nにおける1断面画像において長さ情報を測定する。
例えば、総取得画像数が25枚、cBN粒子の識別番号=1とする粒子が1画像目から21画像目で全容が分かり、8画像目において長さ情報を測定する場合(n=1、M=21、m=8)、
cBN粒の周囲長 = Hmn = H81
Al2O3膜の切れ間長 = hmn = h81 =a+b
となる(図3B参照)。
(b)次いで、ある1つのcBN粒子nにおける切れ間の形成割合を算出する。
例えば、総取得画像数が25枚、cBN粒子の識別番号=1とする粒子が1画像目から21画像目で全容が分かり、これらから切れ間の割合を算出する場合(n=1、M=21、m=1~21)、
cBN粒子の表面の全周平均長さHn
= [(H1n+H2n+・・・+Hmn)/M]
であるから、
H1 = [(H11+H21+・・・+ H211)/21]
となる。
また、切れ間の合計平均長さhn
= [(h1n+h2n+・・・+hmn)/M]
であるから、
h1 = [(h11+h21+・・・+h211)/21]
となる。
よって、切れ間の形成割合hn/Hnは、
hn/Hn = h1/H1
となる。
(c)次いで、切れ間の平均形成割合を算出する。
例えば、cBN粒子を15個測定する場合(N=15、n=1~15)、
切れ間の平均形成割合[h/H]
=[((h1/H1)+(h2/H2)+・・・+(hn/Hn))/N]
である。
したがって、切れ間の平均形成割合[h/H]は、
[h/H]
=[((h1/H1)+(h2/H2)+・・・+(h15/H15))/15]
から求めることができる。
N = 測定するcBN粒子総数
n = 測定するcBN粒子の識別番号 ≦ N
M = cBN粒子nにおいて測定に使用する総取得画像数
m = cBN粒子nにおいて測定に使用する取得画像の識別番号 ≦ M
H = cBN粒の周囲長
h = Al2O3膜の切れ間長
と定義した場合、
(a)まず、ある1つのcBN粒子nにおける1断面画像において長さ情報を測定する。
例えば、総取得画像数が25枚、cBN粒子の識別番号=1とする粒子が1画像目から21画像目で全容が分かり、8画像目において長さ情報を測定する場合(n=1、M=21、m=8)、
cBN粒の周囲長 = Hmn = H81
Al2O3膜の切れ間長 = hmn = h81 =a+b
となる(図3B参照)。
(b)次いで、ある1つのcBN粒子nにおける切れ間の形成割合を算出する。
例えば、総取得画像数が25枚、cBN粒子の識別番号=1とする粒子が1画像目から21画像目で全容が分かり、これらから切れ間の割合を算出する場合(n=1、M=21、m=1~21)、
cBN粒子の表面の全周平均長さHn
= [(H1n+H2n+・・・+Hmn)/M]
であるから、
H1 = [(H11+H21+・・・+ H211)/21]
となる。
また、切れ間の合計平均長さhn
= [(h1n+h2n+・・・+hmn)/M]
であるから、
h1 = [(h11+h21+・・・+h211)/21]
となる。
よって、切れ間の形成割合hn/Hnは、
hn/Hn = h1/H1
となる。
(c)次いで、切れ間の平均形成割合を算出する。
例えば、cBN粒子を15個測定する場合(N=15、n=1~15)、
切れ間の平均形成割合[h/H]
=[((h1/H1)+(h2/H2)+・・・+(hn/Hn))/N]
である。
したがって、切れ間の平均形成割合[h/H]は、
[h/H]
=[((h1/H1)+(h2/H2)+・・・+(h15/H15))/15]
から求めることができる。
切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合の測定方法:
本実施形態では、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合は、例えば、以下の様な測定法により算出することができる。
即ち、図1に模式図で示す焼結体を作製後、焼結体の断面を研磨し、さらに、図2Aに示すようにFIBで断面を加工し、SIMにより、場所の異なる複数の断面画像を取得する。図2Aは、FIBで焼結体を断面加工する場合の例を示す。取得するSIM像は、直方体形状の焼結体の正面の一部であって、縦および横の寸法がそれぞれ19μmの正方形の領域(観察領域)について、SIM観察像を取得する。
FIB加工は、奥行き方向に200nm行い、観察領域のSIM像を取得する。FIB加工後の観察領域についてSIM像を取得するのは、FIB加工前の試料表面の汚れ等の影響を無くすためである。観察領域は、取得したSIM画像において、画像内で対角線を引いた際、対角線と接するcBN粒の数Qが10個以上とする。また、観察する領域は、場所が異なる領域で5場所以上とする。
前記上述の手順で得られた場所の異なる複数の断面画像において、各断面画像で対角線を引き、接したcBN粒子に注目する。各断面画像において対角線に接したcBN粒子数Q1と、その中でAl2O3膜がついていないcBN粒子数q1を測定し、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Q1-q1)/Q1を求める。さらに少なくとも4枚以上の場所の異なるSIM像について、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Qn-qn)/Qnを求め、これらの平均値から、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Q-q)/Qを算出することができる。
本実施形態では、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合は、例えば、以下の様な測定法により算出することができる。
即ち、図1に模式図で示す焼結体を作製後、焼結体の断面を研磨し、さらに、図2Aに示すようにFIBで断面を加工し、SIMにより、場所の異なる複数の断面画像を取得する。図2Aは、FIBで焼結体を断面加工する場合の例を示す。取得するSIM像は、直方体形状の焼結体の正面の一部であって、縦および横の寸法がそれぞれ19μmの正方形の領域(観察領域)について、SIM観察像を取得する。
FIB加工は、奥行き方向に200nm行い、観察領域のSIM像を取得する。FIB加工後の観察領域についてSIM像を取得するのは、FIB加工前の試料表面の汚れ等の影響を無くすためである。観察領域は、取得したSIM画像において、画像内で対角線を引いた際、対角線と接するcBN粒の数Qが10個以上とする。また、観察する領域は、場所が異なる領域で5場所以上とする。
前記上述の手順で得られた場所の異なる複数の断面画像において、各断面画像で対角線を引き、接したcBN粒子に注目する。各断面画像において対角線に接したcBN粒子数Q1と、その中でAl2O3膜がついていないcBN粒子数q1を測定し、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Q1-q1)/Q1を求める。さらに少なくとも4枚以上の場所の異なるSIM像について、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Qn-qn)/Qnを求め、これらの平均値から、切れ間のあるAl2O3膜で覆われたcBN粒子数の含有割合(Q-q)/Qを算出することができる。
本発明の実施形態のcBN工具を作製するにあたり、前記上述の手順で作製した部分的に切れ間をもったAl2O3膜で被覆されたcBN粒子を硬質相形成用原料粉末として用いる。さらに、主として結合相(バインダー)を構成する成分として、例えば、TiN粉末を少なくとも結合相形成用原料粉末として用いる。これら両原料粉末を所定配合組成になるように配合し、通常の超高圧高温条件下で焼結することにより、本実施形態のcBN焼結体を作製する。このcBN粒子表面は、部分的に切れ間が形成されたAl2O3膜で被覆される。この切れ間では、cBN粒子表面がcBN焼結体の結合相成分(例えば、Tiの窒化物、炭化物、炭窒化物及び硼化物、Alの窒化物及び硼化物等)と実質的に接しているので、cBN粒子相互の凝集を防止することができる。その結果、cBN焼結体全体にわたり、cBNが均一に分散したcBN焼結体を作製することができる。
cBN焼結体中の他の構成成分としては、cBN焼結体に通常含有される成分、即ち、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも一種以上、が含有されても良い。
cBN焼結体中の他の構成成分としては、cBN焼結体に通常含有される成分、即ち、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも一種以上、が含有されても良い。
図3Aに、本発明の実施形態のcBN焼結体における、cBN粒子、及び、このcBN粒子表面に存在する部分的に切れ間が形成されたAl2O3膜のSIM断面画像の一例を示す。
また以下に、図3Bを参照して、前記画像から測定される[Al2O3膜の切れ間長]、[cBN粒とAl2O3膜が接する長さ]、および[cBN粒の周囲長]の相互関係を示す。
[cBN粒とAl2O3膜が接する長さ]= [cBN粒の周囲長]-(a+b)
[Al2O3膜の切れ間長さ] = a+b
また以下に、図3Bを参照して、前記画像から測定される[Al2O3膜の切れ間長]、[cBN粒とAl2O3膜が接する長さ]、および[cBN粒の周囲長]の相互関係を示す。
[cBN粒とAl2O3膜が接する長さ]= [cBN粒の周囲長]-(a+b)
[Al2O3膜の切れ間長さ] = a+b
立方晶窒化ほう素粒子の断面画像の2値化:
前記断面観察により得られる断面画像は、グレースケール像であり、それぞれの画素が多段階の濃淡情報(画素値)を有している。本実施形態では、前記断面画像は8ビットのグレースケール像であり、それぞれのピクセルは256段階(0から255)の濃淡情報を持つ。
前記Al2O3膜の切れ間長さを測定するためには、前記Al2O3膜の切れ間の形成されている領域と、前記Al2O3膜の切れ間の形成されていない領域を明確に区別する必要がある。そのためには、上記グレースケール像に対して画像処理を行い、2値化された画像を得る必要がある。
図4には、2値化画像処理前のSIM断面画像、および2値化画像処理後のSIM断面画像を示す。
前記断面観察により得られる断面画像は、グレースケール像であり、それぞれの画素が多段階の濃淡情報(画素値)を有している。本実施形態では、前記断面画像は8ビットのグレースケール像であり、それぞれのピクセルは256段階(0から255)の濃淡情報を持つ。
前記Al2O3膜の切れ間長さを測定するためには、前記Al2O3膜の切れ間の形成されている領域と、前記Al2O3膜の切れ間の形成されていない領域を明確に区別する必要がある。そのためには、上記グレースケール像に対して画像処理を行い、2値化された画像を得る必要がある。
図4には、2値化画像処理前のSIM断面画像、および2値化画像処理後のSIM断面画像を示す。
この2値化画像処理を行うためには、数学的処理により2値化のために必要な閾値をまず算出し、この閾値を境界値として画像処理を行い、cBN粒子の表面に形成されたAl2O3膜と、このAl2O3膜が形成されていない領域とを区別する。
この2値化画像処理は、以下の手順で行われる。まず、取得されたグレースケール画像の外周4辺で、画像の内側へ向けて縦横の各ピクセル数の2%にあたるピクセル分を取り除く。次に、この外側を切り取ったグレースケール画像について、縦軸を画素数、横軸を画像値としてヒストグラムを生成する。このヒストグラム生成時に、画像の画素値255あるいは0が、最大画素数とならないように明るさとコントラストを調整する。ヒストグラムの最大値が50から150の間に入ることが望ましい。
上記の手順で得られるヒストグラムの例を図5に示す。図5の上段および下段に示されたヒストグラムは、同じデータに基づいて作成されたヒストグラムである。上段のヒストグラムでは、縦軸である画素数がリニアスケールで表示してある。下段のヒストグラムでは、縦軸がログスケールで示してある。ログスケールのヒストグラムは、後述する最小画素値および最大画素値の説明を容易にするために示した。
次に、作成されたヒストグラムを用いて、それぞれの画素値間で比較した場合の、最大画素数を決定する。すなわち、上記ヒストグラムにおいて、最も高さの高い(画素数が多い)バーを決定する。そして、この画素数に0.01を乗じて、最大画素数の1%に相当する値を算出する。
次に、この算出された最大画素数の1%の値を基点として、上記ヒストグラムの横軸に対して平行な線を引く。図5では、この平行線は、水平な点線で示されている。
そして、この平行線と上記ヒストグラムとの交点であって、画素値0から最も近い値を最小画素値とし、画素値255から最も近い値を最大画素値とする。
次に、前記最大画素値から前記最小画素値を減算し、差分値を得る。次に、この差分値に0.75を乗算する。
最後に、前記最大画素値から、この0.75を乗算した差分値を減算し、2値化処理のための閾値を得る。
2値化処理では、前記閾値よりも小さい画素値を持つ画素は黒い画素へと変換され、前記閾値よりも大きい画素値を持つ画素は白い画素へと変換される。
次に、この算出された最大画素数の1%の値を基点として、上記ヒストグラムの横軸に対して平行な線を引く。図5では、この平行線は、水平な点線で示されている。
そして、この平行線と上記ヒストグラムとの交点であって、画素値0から最も近い値を最小画素値とし、画素値255から最も近い値を最大画素値とする。
次に、前記最大画素値から前記最小画素値を減算し、差分値を得る。次に、この差分値に0.75を乗算する。
最後に、前記最大画素値から、この0.75を乗算した差分値を減算し、2値化処理のための閾値を得る。
2値化処理では、前記閾値よりも小さい画素値を持つ画素は黒い画素へと変換され、前記閾値よりも大きい画素値を持つ画素は白い画素へと変換される。
以下に、本発明のcBN工具を実施例に基づいて説明する。
部分的に切れ間を持つAl2O3膜で被覆されたcBN粒子の作製:
(a)平均粒径0.5~8μmのcBN粒子を基材とし、この粒子表面に、ALD(Atomic Layer Deposition)法により、均一かつ薄膜のAl2O3膜を被覆形成した。
より具体的にいえば、炉内に、例えば、平均粒径3μmのcBN粒子を装入し、炉内を350℃程度に昇温した。次に、その炉内へ、成膜用ガスとして、Al(CH3)3とH2Oガスを、また、パージ用ガスとしてArガスを使用し、(i)Ar+Al(CH3)3ガス流入工程、(ii)Arガスパージ工程、(iii)Ar+H2Oガス流入工程、(iv)Arガスパージ工程を行った。この(i)から(iv)の工程を1サイクルとして、このサイクルを所望膜厚に応じて繰り返し行った。1~12時間かけて成膜することにより、各所望の膜厚のAl2O3膜を均一にcBN粒子表面に被覆形成した。
なお、前記上述の手順で得られたAl2O3膜で被覆されたcBN粒子について、断面をSEM(Scanning Electron Microscopy)を用いて観察したところ、cBN粒子表面に均一かつ薄膜のAl2O3膜で被覆されていることが確認された。
(b)次いで、前記(a)で作製した均一かつ薄膜のAl2O3膜がその表面に被覆形成されたcBN粒子を、超硬合金製容器内へ装入した。そこへ有機溶剤を加え、超硬合金製ボール(直径1mm)とともにボールミルの回転数50rpmでボールミル混合を行った。cBN粒子表面には、所定膜厚を有し、所定の切れ間割合の切れ間を有するAl2O3膜が形成された。この切れ間には、cBN粒子表面が露出していた。所定の切れ間を持った所定の膜厚のAl2O3膜によって被覆されたcBN粒を所定の割合含有するcBN粒子粉末を作製した。
なお、混合したcBN粒子と超硬合金製ボールの割合は、重量比で1:10~20となるように調整した。また、混合時間は、0.25~1.5時間となるように調整した。
(a)平均粒径0.5~8μmのcBN粒子を基材とし、この粒子表面に、ALD(Atomic Layer Deposition)法により、均一かつ薄膜のAl2O3膜を被覆形成した。
より具体的にいえば、炉内に、例えば、平均粒径3μmのcBN粒子を装入し、炉内を350℃程度に昇温した。次に、その炉内へ、成膜用ガスとして、Al(CH3)3とH2Oガスを、また、パージ用ガスとしてArガスを使用し、(i)Ar+Al(CH3)3ガス流入工程、(ii)Arガスパージ工程、(iii)Ar+H2Oガス流入工程、(iv)Arガスパージ工程を行った。この(i)から(iv)の工程を1サイクルとして、このサイクルを所望膜厚に応じて繰り返し行った。1~12時間かけて成膜することにより、各所望の膜厚のAl2O3膜を均一にcBN粒子表面に被覆形成した。
なお、前記上述の手順で得られたAl2O3膜で被覆されたcBN粒子について、断面をSEM(Scanning Electron Microscopy)を用いて観察したところ、cBN粒子表面に均一かつ薄膜のAl2O3膜で被覆されていることが確認された。
(b)次いで、前記(a)で作製した均一かつ薄膜のAl2O3膜がその表面に被覆形成されたcBN粒子を、超硬合金製容器内へ装入した。そこへ有機溶剤を加え、超硬合金製ボール(直径1mm)とともにボールミルの回転数50rpmでボールミル混合を行った。cBN粒子表面には、所定膜厚を有し、所定の切れ間割合の切れ間を有するAl2O3膜が形成された。この切れ間には、cBN粒子表面が露出していた。所定の切れ間を持った所定の膜厚のAl2O3膜によって被覆されたcBN粒を所定の割合含有するcBN粒子粉末を作製した。
なお、混合したcBN粒子と超硬合金製ボールの割合は、重量比で1:10~20となるように調整した。また、混合時間は、0.25~1.5時間となるように調整した。
原料粉末として、前記上述の手順で作製した、部分的に切れ間が形成されたAl2O3膜で被覆されたcBN粒子粉末と、TiN粉末、Al粉末、TiAl3粉末、Al2O3粉末を用意し、これら原料粉末を、cBN粒子粉末の含有量が50容積%となるように配合した。前記TiN粉末、Al粉末、TiAl3粉末、Al2O3粉末のいずれも、0.3~0.9μmの範囲内の平均粒径を有する。有機溶剤中で超音波撹拌機により混合し、乾燥した後、油圧プレスにて成形圧120MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形した。ついでこの成形体を、圧力:1Pa以下の真空雰囲気中、1000℃で30分間保持して熱処理し、揮発成分および粉末表面への吸着成分を除去して予備焼結体とした。次に、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入した。次にこれらを、通常の条件である圧力:5GPa、温度:1500℃、保持時間:30分間の条件で超高圧高温焼結し、cBN焼結体を得た。こうして得られた円板形状のcBN焼結材を、ワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg系ろう材を用いてろう付けした。その後、上下面および外周研磨、ホーニング処理を施すことにより、ISO規格CNGA120408のインサート形状をもった本発明cBN工具1から43を製造した。
cBN粒子の平均粒径の測定方法:
前記上述の手順で得た各cBN焼結体の断面組織を走査型電子顕微鏡にてcBN焼結体組織を観察し、二次電子像を得た。得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析によって各cBN粒子の最長径を求め、各粒子の直径[μm]とした。
画像解析より求めた各粒子の直径を基に各粒子の体積を計算した。体積は、理想球と仮定して体積の計算を行った(体積=(4×π×半径3)/3)。
縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%の値をcBN粒子の平均粒径とした。
画像は、200個程度の粒子が1画像内で分かる倍率が望ましく、3画像を前記方法にて処理し求めた値の平均値を測定結果とした。
表1に、これらの値を、それぞれ示す。
前記上述の手順で得た各cBN焼結体の断面組織を走査型電子顕微鏡にてcBN焼結体組織を観察し、二次電子像を得た。得られた画像内のcBN粒子の部分を画像処理にて抜き出し、画像解析によって各cBN粒子の最長径を求め、各粒子の直径[μm]とした。
画像解析より求めた各粒子の直径を基に各粒子の体積を計算した。体積は、理想球と仮定して体積の計算を行った(体積=(4×π×半径3)/3)。
縦軸を体積百分率[%]、横軸を直径[μm]としてグラフを描画させ、体積百分率が50%の値をcBN粒子の平均粒径とした。
画像は、200個程度の粒子が1画像内で分かる倍率が望ましく、3画像を前記方法にて処理し求めた値の平均値を測定結果とした。
表1に、これらの値を、それぞれ示す。
なお、前記上述の手順で作製した本発明cBN工具1から43のcBN焼結体について、焼結体の断面を研磨し、さらに、FIBで断面を加工し、SIMにより、断面画像を取得した。画像は、画像に対角線を引いた場合、その対角線にcBN粒が10個以上接触する倍率が望ましい。例えば、平均粒径3μmのcBN粒を用いた場合、倍率は4000倍程度が望ましい。
cBN粒の全体を観察できるようにするために、FIB加工は、200nmごとに行い、また、断面加工する長さ(奥行き)は、使用したcBN粒子の平均粒径に1μmを足した値以上とした。
前記上述の手順で得られた断片的かつ複数の断面画像により、全容が把握できるcBN粒子に注目し、そのcBN粒子について、cBN粒子の周囲長と、切れ間長を測定し、切れ間の形成割合h1/H1を求めた。さらに、他の15個のcBN粒子についても、同じくcBN粒子の周囲長と、切れ間長を測定し、それぞれのcBN粒子について切れ間の形成割合を求め、これらの平均値から、切れ間の平均形成割合h/Hの値を算出した。
cBN粒子の表面を被覆する部分的に切れ間が形成されたAl2O3膜の膜厚については、前記で得られた断片的かつ複数の断面画像により、各断面画像に対角線を引き、対角線に接したcBN粒子に注目する。接した各cBN粒子の表面に被覆するAl2O3膜の膜厚を少なくとも1画像当り5ヶ所測定し、その平均値からcBN粒の膜厚を求めた。さらに、他に対角線に接する複数のcBN粒子についても、同じくcBN粒子の表面に被覆するAl2O3膜の膜厚を測定し、これらの平均値を求めることにより、その平均膜厚を求めた。
なお、前記上述の手順で作製した本発明cBN工具1から43のcBN焼結体について、焼結体の断面を研磨し、さらに、FIBで場所の異なる複数の断面を加工し、SIMにより、各断面画像を取得した。画像は、画像に対角線を引いた場合、その対角線にcBN粒が10個以上接触する倍率が望ましい。例えば、平均粒径3μmのcBN粒を用いた場合、倍率は4000倍程度が望ましい。
切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合については、前記上述の手順で得られた場所の異なる複数の断面画像により、各断面画像で対角線を引き、接したcBN粒子に注目する。各断面画像において、対角線に接したcBN粒子数Q1と、その中でAl2O3膜がついていないcBN粒子数q1を測定し、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合(Q1-q1)/Q1を求める。さらに他の5枚の場所の異なるSIM像についても、同じく切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合を求め、これらの平均値から、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合(Q-q)/Qを算出した。
表1に、これらの値を、それぞれ示す。
cBN粒の全体を観察できるようにするために、FIB加工は、200nmごとに行い、また、断面加工する長さ(奥行き)は、使用したcBN粒子の平均粒径に1μmを足した値以上とした。
前記上述の手順で得られた断片的かつ複数の断面画像により、全容が把握できるcBN粒子に注目し、そのcBN粒子について、cBN粒子の周囲長と、切れ間長を測定し、切れ間の形成割合h1/H1を求めた。さらに、他の15個のcBN粒子についても、同じくcBN粒子の周囲長と、切れ間長を測定し、それぞれのcBN粒子について切れ間の形成割合を求め、これらの平均値から、切れ間の平均形成割合h/Hの値を算出した。
cBN粒子の表面を被覆する部分的に切れ間が形成されたAl2O3膜の膜厚については、前記で得られた断片的かつ複数の断面画像により、各断面画像に対角線を引き、対角線に接したcBN粒子に注目する。接した各cBN粒子の表面に被覆するAl2O3膜の膜厚を少なくとも1画像当り5ヶ所測定し、その平均値からcBN粒の膜厚を求めた。さらに、他に対角線に接する複数のcBN粒子についても、同じくcBN粒子の表面に被覆するAl2O3膜の膜厚を測定し、これらの平均値を求めることにより、その平均膜厚を求めた。
なお、前記上述の手順で作製した本発明cBN工具1から43のcBN焼結体について、焼結体の断面を研磨し、さらに、FIBで場所の異なる複数の断面を加工し、SIMにより、各断面画像を取得した。画像は、画像に対角線を引いた場合、その対角線にcBN粒が10個以上接触する倍率が望ましい。例えば、平均粒径3μmのcBN粒を用いた場合、倍率は4000倍程度が望ましい。
切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合については、前記上述の手順で得られた場所の異なる複数の断面画像により、各断面画像で対角線を引き、接したcBN粒子に注目する。各断面画像において、対角線に接したcBN粒子数Q1と、その中でAl2O3膜がついていないcBN粒子数q1を測定し、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合(Q1-q1)/Q1を求める。さらに他の5枚の場所の異なるSIM像についても、同じく切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合を求め、これらの平均値から、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合(Q-q)/Qを算出した。
表1に、これらの値を、それぞれ示す。
比較のため、原料粉末として、Al2O3膜を被覆形成していないcBN粒子粉末を用意した。また、切れ間を有さない本発明範囲外の平均膜厚のAl2O3膜を被覆したcBN粒子粉末を用意した。また、切れ間を有する本発明範囲外の平均膜厚のAl2O3膜を被覆したcBN粒子粉末を用意した。また、本発明範囲外のcBN平均粒径のcBN粉末上に切れ間を有さないAl2O3膜を被覆したcBN粒子粉末を用意した。また、本発明範囲外のcBN平均粒径のcBN粉末上に切れ間を有するAl2O3膜を被覆したcBN粒子粉末を用意した。本発明範囲以外の平均膜厚のAl2O3膜を被覆したcBN粒子への切れ間形成については、平均膜厚が10nmより小さい場合は、混合したcBN粒子と超硬合金製ボールの割合が、重量比で1:10~20、混合時間が0.08~0.15時間となるように調整した。平均膜厚が90nmより大きい場合は、混合したcBN粒子と超硬合金製ボールの割合が、重量比で1:20~40、混合時間が、最大で48時間となるように調整した。また、本発明範囲外のcBN平均粒径のcBN粉末上に厚み10nm~90nmの範囲内に被覆したAl2O3膜への切れ間形成については、本発明の場合と同様の条件を用いた。また、いずれも0.3~0.9μmの範囲内の平均粒径を有するTiN粉末、Al粉末、TiAl3粉末、Al2O3粉末を用意し、これら原料粉末を、cBN粒子粉末の含有量が50容積%となるように配合した後、以降は、本発明の場合と同様な処理操作(混合、乾燥、成形、熱処理、予備焼結、焼結等)を行うことにより、比較例cBN工具44から73を製造した。
前記上述の手順で作製した比較例44から73について、本発明cBN工具1から43の場合と同様に、cBN粒子の平均粒径を求めた。
表2に、これらの値を、それぞれ示す。
表2に、これらの値を、それぞれ示す。
なお、前記上述の手順で作製した比較例cBN工具44から73について、本発明cBN工具1から43の場合と同様にして、cBN粒子の平均粒径、切れ間の平均形成割合h/H、Al2O3膜の平均膜厚、切れ間のあるAl2O3膜で覆われたcBN粒子の含有割合(Q-q)/Qを求めた。
表2に、これらの値を、それぞれ示す。
表2に、これらの値を、それぞれ示す。
前記本発明cBN工具1から43、比較例cBN工具44から73について、表3に示す切削条件で、最大加工長7000mまでの切削加工試験を実施し、加工長100m毎にチッピング、欠損発生の有無を確認した。
表4に、前記切削加工試験の結果を示す。
表4に、前記切削加工試験の結果を示す。
表1から4に示される結果から、以下が示される。本発明cBN工具1から43では、cBN粒子表面に、部分的に切れ間が形成されたAl2O3膜が被覆形成されている。これにより、cBN硬質相が焼結体中で均一に分散分布し、均質な工具特性が得られるだけでなく、cBN硬質相と結合相との界面密着強度が改善される。さらに、部分的に切れ間が形成されたAl2O3膜に発生する引張残留応力は、切れ間が無いものと比べて大幅に低減される。したがって、断続的・衝撃的負荷が作用する高硬度鋼の断続切削加工に用いた場合でも、チッピング、欠損の発生は抑制され、長期の使用にわたってすぐれた切削性能を発揮する。
これに対して、比較例cBN工具44から73では、cBN粒子表面にAl2O3膜が形成されていないため、あるいは、本発明で規定する範囲外の平均膜厚のAl2O3膜、本発明で規定する範囲外の切れ間の平均形成割合h/Hであるために、耐チッピング性、耐欠損性に劣り、いずれも短命である。
これに対して、比較例cBN工具44から73では、cBN粒子表面にAl2O3膜が形成されていないため、あるいは、本発明で規定する範囲外の平均膜厚のAl2O3膜、本発明で規定する範囲外の切れ間の平均形成割合h/Hであるために、耐チッピング性、耐欠損性に劣り、いずれも短命である。
上述のように、この発明のcBN工具は、耐チッピング性、耐欠損性にすぐれることから、高硬度鋼の断続切削以外の切削条件でも適用可能であり、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるものである。
1 cBN粒
2 Al2O3膜
3 結合相
2 Al2O3膜
3 結合相
Claims (3)
- 硬質相成分として立方晶窒化ほう素粒子を含有する立方晶窒化ほう素基焼結材料製切削工具において、
前記立方晶窒化ほう素粒子の平均粒径は0.5~8μmであり、
前記立方晶窒化ほう素粒子のうちには、その表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、
前記酸化アルミニウム膜には部分的に切れ間が形成されている前記立方晶窒化ほう素粒子が含まれることを特徴とする立方晶窒化ほう素基焼結材料製切削工具。 - 酸化アルミニウム膜により被覆されている立方晶窒化ほう素粒子の断面画像を観察し、立方晶窒化ほう素粒子の表面に沿って形成されている酸化アルミニウム膜の切れ間の平均形成割合を求めた場合、0.02≦h/H≦0.08を満足することを特徴とする請求項1に記載の立方晶窒化ほう素基焼結材料製切削工具。但し、hは酸化アルミニウム膜の切れ間長、Hは立方晶窒化ほう素粒子の周囲長。
- 表面が、平均膜厚10~90nmの酸化アルミニウム膜により被覆され、前記酸化アルミニウム膜には部分的に切れ間が形成されている立方晶窒化ほう素粒子数の割合を求めた場合、(Q-q)/Q≧0.85を満足することを特徴とする請求項1または請求項2に記載の立方晶窒化ほう素基焼結材料製切削工具。但し、qは酸化アルミニウム膜が被覆されていない立方晶窒化ほう素粒子の数、Qは焼結体に含まれる立方晶窒化ほう素粒子の数。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12832497.7A EP2752265B1 (en) | 2011-09-12 | 2012-09-12 | Cutting tool made of cubic boron nitride-based sintered material |
US14/344,217 US9499441B2 (en) | 2011-09-12 | 2012-09-12 | Cutting tool made of cubic boron nitride-based sintered material |
CN201280043877.8A CN103796778B (zh) | 2011-09-12 | 2012-09-12 | 立方晶氮化硼基烧结材料制切削工具 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011198016 | 2011-09-12 | ||
JP2011-198016 | 2011-09-12 | ||
JP2012-199070 | 2012-09-11 | ||
JP2012199070A JP5126702B1 (ja) | 2011-09-12 | 2012-09-11 | 立方晶窒化ほう素基焼結材料製切削工具 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013039093A1 true WO2013039093A1 (ja) | 2013-03-21 |
Family
ID=47692929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/073292 WO2013039093A1 (ja) | 2011-09-12 | 2012-09-12 | 立方晶窒化ほう素基焼結材料製切削工具 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9499441B2 (ja) |
EP (1) | EP2752265B1 (ja) |
JP (1) | JP5126702B1 (ja) |
CN (1) | CN103796778B (ja) |
WO (1) | WO2013039093A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014147988A (ja) * | 2013-01-31 | 2014-08-21 | Mitsubishi Materials Corp | 立方晶窒化ほう素基焼結材料製切削工具 |
JP2014233767A (ja) * | 2013-05-30 | 2014-12-15 | 三菱マテリアル株式会社 | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 |
WO2015079035A1 (en) * | 2013-11-29 | 2015-06-04 | Sandvik Intellectual Property Ab | A method of making a powder composition for production of a cubic boron nitride composite material |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5305056B1 (ja) | 2012-05-16 | 2013-10-02 | 三菱マテリアル株式会社 | 立方晶窒化ほう素基焼結体製切削工具 |
GB2522728A (en) * | 2014-01-31 | 2015-08-05 | Cambridge Consultants | Monitoring device |
US10569330B2 (en) | 2014-04-01 | 2020-02-25 | Forge Nano, Inc. | Energy storage devices having coated passive components |
WO2015153584A1 (en) * | 2014-04-01 | 2015-10-08 | Pneumaticoat Technologies Llc | Passive electronics components comprising coated nanoparticles and methods for producing and using the same |
CN105693253B (zh) * | 2014-11-28 | 2020-12-11 | 三菱综合材料株式会社 | 耐缺损性优异的立方晶氮化硼烧结体切削工具 |
JP6575858B2 (ja) * | 2015-07-30 | 2019-09-18 | 三菱マテリアル株式会社 | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 |
WO2017183659A1 (ja) | 2016-04-20 | 2017-10-26 | 三菱マテリアル株式会社 | 掘削チップ、掘削工具、および掘削チップの製造方法 |
CN105817619B (zh) * | 2016-06-03 | 2018-10-09 | 广东工业大学 | 以W/Re-B-Ni3Al-SiC合金为耐磨相的复合金属陶瓷及其制备方法与应用 |
WO2021260775A1 (ja) * | 2020-06-22 | 2021-12-30 | 住友電工ハードメタル株式会社 | 切削工具 |
JP7112607B2 (ja) * | 2020-07-31 | 2022-08-03 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体、およびそれを含む切削工具 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377811A (en) | 1976-12-21 | 1978-07-10 | Sumitomo Electric Ind Ltd | Sintered material for tools of high hardness and its preparation |
JPS5861253A (ja) | 1981-10-06 | 1983-04-12 | Mitsubishi Metal Corp | 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料 |
JPH0551267A (ja) * | 1991-08-21 | 1993-03-02 | Mitsubishi Heavy Ind Ltd | 工具用焼結材料 |
JPH0881271A (ja) * | 1994-09-14 | 1996-03-26 | Hitachi Tool Eng Ltd | 3相構造を有する超高圧相の焼結体及びその製法 |
JPH08239277A (ja) * | 1995-03-03 | 1996-09-17 | Ngk Spark Plug Co Ltd | 立方晶窒化ホウ素複合セラミック工具とその製造方法 |
JP2000044347A (ja) * | 1998-07-22 | 2000-02-15 | Sumitomo Electric Ind Ltd | cBN焼結体 |
JP2011183524A (ja) * | 2010-03-10 | 2011-09-22 | Mitsubishi Materials Corp | 立方晶窒化ホウ素基超高圧焼結材料製切削工具及び表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU512633B2 (en) | 1976-12-21 | 1980-10-23 | Sumitomo Electric Industries, Ltd. | Sintered tool |
US4990410A (en) * | 1988-05-13 | 1991-02-05 | Toshiba Tungaloy Co., Ltd. | Coated surface refined sintered alloy |
KR100333459B1 (ko) * | 1998-07-22 | 2002-04-18 | 오카야마 노리오 | 입방정 질화붕소 소결체 |
US6962751B2 (en) * | 2001-06-13 | 2005-11-08 | Sumitomo Electric Industries, Ltd. | Amorphous carbon coated tools and method of producing the same |
CN100408237C (zh) * | 2002-01-21 | 2008-08-06 | 三菱麻铁里亚尔株式会社 | 表面被覆切削工具部件和在切削工具表面形成硬质被覆层的方法 |
CA2577615C (en) * | 2005-10-04 | 2013-02-05 | Satoru Kukino | Cbn sintered body for high surface integrity machining and cbn sintered body cutting tool |
WO2007113643A2 (en) | 2006-04-03 | 2007-10-11 | Element Six (Production) (Pty) Ltd | Abrasive compact material |
CA2603458C (en) * | 2006-09-21 | 2015-11-17 | Smith International, Inc. | Atomic layer deposition nanocoatings on cutting tool powder materials |
JP5125646B2 (ja) * | 2008-03-19 | 2013-01-23 | 株式会社タンガロイ | 立方晶窒化硼素焼結体工具 |
US20130309468A1 (en) * | 2011-02-04 | 2013-11-21 | Tungaloy Corporation | Cbn sintered body tool and coated cbn sintered body tool |
US9327352B2 (en) * | 2011-11-07 | 2016-05-03 | Tungaloy Corporation | Cubic boron nitride sintered body |
JP6016271B2 (ja) * | 2013-03-29 | 2016-10-26 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
JP5663815B2 (ja) * | 2013-07-03 | 2015-02-04 | 住友電工ハードメタル株式会社 | 表面被覆窒化硼素焼結体工具 |
-
2012
- 2012-09-11 JP JP2012199070A patent/JP5126702B1/ja active Active
- 2012-09-12 WO PCT/JP2012/073292 patent/WO2013039093A1/ja active Application Filing
- 2012-09-12 EP EP12832497.7A patent/EP2752265B1/en active Active
- 2012-09-12 US US14/344,217 patent/US9499441B2/en active Active
- 2012-09-12 CN CN201280043877.8A patent/CN103796778B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5377811A (en) | 1976-12-21 | 1978-07-10 | Sumitomo Electric Ind Ltd | Sintered material for tools of high hardness and its preparation |
JPS5861253A (ja) | 1981-10-06 | 1983-04-12 | Mitsubishi Metal Corp | 切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料 |
JPH0551267A (ja) * | 1991-08-21 | 1993-03-02 | Mitsubishi Heavy Ind Ltd | 工具用焼結材料 |
JPH0881271A (ja) * | 1994-09-14 | 1996-03-26 | Hitachi Tool Eng Ltd | 3相構造を有する超高圧相の焼結体及びその製法 |
JPH08239277A (ja) * | 1995-03-03 | 1996-09-17 | Ngk Spark Plug Co Ltd | 立方晶窒化ホウ素複合セラミック工具とその製造方法 |
JP2000044347A (ja) * | 1998-07-22 | 2000-02-15 | Sumitomo Electric Ind Ltd | cBN焼結体 |
JP2011183524A (ja) * | 2010-03-10 | 2011-09-22 | Mitsubishi Materials Corp | 立方晶窒化ホウ素基超高圧焼結材料製切削工具及び表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014147988A (ja) * | 2013-01-31 | 2014-08-21 | Mitsubishi Materials Corp | 立方晶窒化ほう素基焼結材料製切削工具 |
JP2014233767A (ja) * | 2013-05-30 | 2014-12-15 | 三菱マテリアル株式会社 | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 |
WO2015079035A1 (en) * | 2013-11-29 | 2015-06-04 | Sandvik Intellectual Property Ab | A method of making a powder composition for production of a cubic boron nitride composite material |
Also Published As
Publication number | Publication date |
---|---|
JP5126702B1 (ja) | 2013-01-23 |
EP2752265B1 (en) | 2017-11-08 |
US20150003926A1 (en) | 2015-01-01 |
CN103796778A (zh) | 2014-05-14 |
EP2752265A4 (en) | 2015-05-20 |
CN103796778B (zh) | 2016-01-06 |
EP2752265A1 (en) | 2014-07-09 |
JP2013075357A (ja) | 2013-04-25 |
US9499441B2 (en) | 2016-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5126702B1 (ja) | 立方晶窒化ほう素基焼結材料製切削工具 | |
JP5305056B1 (ja) | 立方晶窒化ほう素基焼結体製切削工具 | |
JP6290872B2 (ja) | cBN材料の製造方法 | |
JP5988164B2 (ja) | 立方晶窒化ほう素基焼結材料製切削工具 | |
JP6343888B2 (ja) | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 | |
JP6144763B2 (ja) | サーメットおよびその製造方法並びに切削工具 | |
US10391561B2 (en) | Cubic boron nitride-based sintered material and cutting tool made of cubic boron nitride-based sintered material | |
JP2021151943A (ja) | cBN焼結体および切削工具 | |
JP6575858B2 (ja) | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 | |
JP6198142B2 (ja) | 立方晶窒化ホウ素基超高圧焼結材料製切削工具 | |
JP6098882B2 (ja) | 耐欠損性にすぐれた立方晶窒化硼素焼結体切削工具 | |
JP6968341B2 (ja) | 微細構造組織を有する立方晶窒化ほう素基焼結体および切削工具 | |
JP7068657B2 (ja) | 立方晶窒化ほう素基焼結体製切削工具 | |
US11383305B2 (en) | cBN sintered compact and cutting tool | |
JP2020131293A (ja) | 立方晶窒化ほう素基焼結体製切削工具 | |
JP2018065228A (ja) | TiCN基サーメット製切削工具 | |
JP6731185B2 (ja) | 立方晶窒化ほう素基焼結体および立方晶窒化ほう素基焼結体製切削工具 | |
CN105693253B (zh) | 耐缺损性优异的立方晶氮化硼烧结体切削工具 | |
WO2022196637A1 (ja) | 表面被覆切削工具 | |
JP6933017B2 (ja) | 立方晶窒化ほう素基焼結体および切削工具 | |
JP7161670B2 (ja) | 立方晶窒化ほう素基焼結体および切削工具 | |
JP2022142894A (ja) | cBN焼結体 | |
JP2024138951A (ja) | cBN焼結体 | |
JPWO2020175598A1 (ja) | cBN焼結体および切削工具 | |
JP2018065226A (ja) | TiCN基サーメット製切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12832497 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012832497 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344217 Country of ref document: US |